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Abstract. We investigate forward-backward splitting algorithm of penalty type with iner-
tial effects for finding the zeros of the sum of a maximally monotone operator and a cocoercive
one and the convex normal cone to the set of zeroes of an another cocoercive operator. Weak
ergodic convergence is obtained for the iterates, provided that a condition expressed via the
Fitzpatrick function of the operator describing the underlying set of the normal cone is veri-
fied. Under strong monotonicity assumptions, strong convergence for the sequence of generated
iterates can be proved. As a particular instance we consider a convex bilevel minimization prob-
lem including the sum of a nonsmooth and a smooth function in the upper level and another
smooth function in the lower level. We show that in this context weak nonergodic and strong
convergence can be also achieved under inf-compactness assumptions for the involved functions.
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1 Introduction and preliminaries

1.1 Motivation and problems formulation

During the last couple years one can observe in the optimization community an increasing
interest in numerical schemes for solving variational inequalities expressed as monotone inclusion
problems of the form

0€ Az + Ny (x), (1.1)

where H is a real Hilbert space, A: H =2 H is a maximally monotone operator, M := arg min h
is the set of global minima of the proper, convex and lower semicontinuous function h: R —
R:=Ru {+00} and Nys: H =3 H is the normal cone of the set M. The article [7] was starting
point for a series of papers [0, 9 10 12, [I8, 19, 24, 25| B3] B7, B8] addressing this topic or
related ones. All these papers share the common feature that the proposed iterative schemes
use penalization strategies, namely, by evaluating the penalized h by its gradient, in case the
function is smooth (see, for instance, [9]), and by its proximal operator, in case it is nonsmooth
(see, for instance,[10]).
Weak ergodic convergence has been obtained in [9, [I0] under the hypothesis:

For all p € RanNyy,, Z AnBn [h* <p) — oM (é;)] < 400, (1.2)
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with (An)n>1, the sequence of step sizes, (8, )n>1, the sequence of penalty parameters, h*: H —
R, the Fenchel conjugate function of h, and RanN,; the range of the normal cone operator
Nyr: H =3 H. Let us mention that is the discretized counterpart of a condition introduced
in [7] for continuous-time nonautonomous differential inclusions.

One motivation for studying numerical algorithms for monotone inclusions of type
comes from the fact that, when A = 0f is the convex subdifferential of a proper, convex and
lower semicontinuous function f: H — R, they furnish iterative methods for solving bilevel
optimization problems of the form

min {f (z) : x € argminh}. (1.3)
reH
Among the applications where bilevel programming problems play an important role we mention
ithe modelling of Stackelberg games, the determination of Wardrop equilibria for network flows,
convex feasibility problems [5], domain decomposition methods for PDEs [4], image processing
problems [18], and optimal control problems [10].
Later on, in [19], the following monotone inclusion problem, which turned out to be more
suitable for applications, has been addressed in the same spirit of penalty algorithms

0e Az + Dz + Ny (2) , (1.4)

where A: H =2 H is a maximally monotone operator, D: H — H is cocoercive operator and the
constraint set M is the set of zeros of another cocoercive operator B: H — H. The provided
algorithm of forward-backward type evaluates the operator A by a backward step and the two
single-valued operators by forward steps. For the convergence analysis, has been replaced
by a condition formulated in terms of the Fitzpatrick function associated with the operator B,
which we will also use in this paper. In [I2], several particular situations for which this new
condition is fulfilled have been provided.

The aim of this work is to endow the forward-backward penalty scheme for solving from
[19] with inertial effects, which means that the new iterate is defined in terms of the previous two
iterates. Inertial algorithms have their roots in the time discretization of second order differential
systems [3]. They can accelerate the convergence of iterates when minimizing a differentiable
function [39] and the convergence of the objective function values when minimizing the sum
of a convex nonsmooth and a convex smooth function [I5, 28]. Moreover, as emphasized in
[16], see also [23], algorithms with inertial effects may detect optimal solutions of minimization
problems which cannot be found by their noninertial variants. In the last years, a huge interest
in inertial algorithms can be notices (see, for instance, [1, 2} 3], 8, 11 15} 20} 211, 22| 23], 24] 25,
29, [30], 34, [35], 136]).

We prove weak ergodic convergence of the sequence generated by the inertial forward-
backward penalty algorithm to a solution of the monotone inclusion problem , under rea-
sonable assumptions for the sequences of step sizes, penalty and inertial parameters. When
the operator A is assumed to be strongly monotone, we also prove strong convergence of the
generated iterates to the unique solution of .

In Section [3] we address the minimization of the sum of a convex nonsmooth and a convex
smooth function with respect to the set of minimizes of another convex and smooth function.
Besides the convergence results obtained from the general case, we achieve weak nonergodic
and strong convergence statements under inf-compactness assumptions for the involved func-
tions. The weak nonergodic theorem is an useful alternative to the one in [25], where a similar
statement has been obtained for the inertial forward-bacward penalty algorithm with constant
inertial parameter under assumptions which are quite complicated and hard to verify (see also
137, 38]).



1.2 Notations and preliminaries

In this subsection we introduce some notions and basic results which we will use throughout this
paper (see [13, 17, [40]). Let H be a real Hilbert space with inner product {-,-) and associated
norm. || = /. )

For a function ¥: H — R := R u {f+w}, we denote DomV¥ = {zeH: ¥ (z) < +owo} its
effective domain and say that ¥ is proper, if DomW¥ # ¢§ and ¥ (z) > —oo for all x € H. The
conjugate function of W is U*: H — R, U* (u) = sup,eqy {(x,u) — ¥ (2)}. The convex subdiffer-
ential of ¥ at the point x € H is the set oV (z) = {pe H: {y —z,p) < ¥V (y) — ¥ (z) Vy e H},
whenever U (z) € R. We take by convention 0V (z) = &, if ¥ (x) € {£o0}.

Let M be a nonempty subset of H. The indicator function of M, which is denoted by
Su: H — R, takes the value 0 on M and 400 otherwise. The convex subdifferential of the
indicator function is the normal cone of M, that is Ny () = {pe H: {y — z,p) <0 Vy e H},
if x € M, and Ny (z) = & otherwise. Notice that for z € M we have p € Ny (z) if and only if
oy (z) = {x,p), where opr = 0}, is the support function of M.

For an arbitrary set-value operator A: H =3 H we denote by GrA ={(z,v) € H x H: v € Ax}
its graph, by DomA = {x € H: Ax # (J} its domain, by RanA = {v € H: Jz € H with v € Az}
its range and by A~1: H = H its inverse operator, defined by (v,z) € GrA~! if and only if
(x,v) € GrA. We use also the notation ZerA = {z € H: 0 € Az} for the set of zeros of the
operator A. We say that A is monotone, if (x —y,v —w) = 0 for all (z,v), (y,w) € Grd. A
monotone operator A is said to be maximally monotone, if there exists no proper monotone
extension of the graph of A on H x H. Let us mention that if A is maximally monotone,
then ZerA is a convex and closed set, [I3, Proposition 23.39]. We refer to [I3 Section 23.4]
for conditions ensuring that ZerA is nonempty. If A is maximally monotone, then one has the
following characterization for the set of its zeros

z € ZerA if and only if (u —z,y) > 0 for all (u,y) € GrA. (1.5)

The operator A is said to be y—strongly monotone with v > 0, if (x — y,v —w) > ||z — yH2
for all (z,v), (y,w) € GrA. If A is maximally monotone and strongly monotone, then ZerA is
a singleton, thus nonempty, [13, Corollary 23.27].

The resolvent of A, Jx: H =3 H, is defined by Jy := (Id + A)_l, where Id: H — H denotes
the identity operator on H. If A is maximally monotone, then J4: H — H is single-value and
maximally monotone, [13, Proposition 23.7, Corollary 23.10]. For an arbitrary v > 0, we have
the following identity ([13, Proposition 23.18])

Jya + 7 Jy14-1 0y 'Id = 1d.

We denote I' (H) the family of proper, convex and lower semicontinuous extended real-valued
functions defined on H. When ¥ € I' (H) and v > 0, we denote by prox.y (x) the prozimal
point with parameter v of function ¥ at point x € H, which is the unique optimal solution of

the optimization problem
1 2
inf SU(y)+— |ly — .
int {%) + 5y - ol

Notice that Jyop = (Id + ’ya\I’)fl = Prox,y, thus prox g : H — H is a single-valued operator
fulfilling the so-called Moreau’s decomposition formula:

ProxX,y + YProx,—iyx 0 ~77d = 1d.

The function ¥: H — R is said to be y—strongly conver with v > 0, if ¥ — % -] is a

convex function. This property implies that 0V is y—strongly monotone.



The Fitzpatrick function ([32]) associated to a monotone operator A is defined as

parHxH-R, pa(r,u):= sup {{z,v)+ Y u)—y,v)}
(y,v)eGrA

and it is a convex and lower semicontinuous function. For insights in the outstanding role played
by the Fitzpatrick function in relatin the convex analysis with the theory of monotone operators
we refer to [13] [14} [17), 26 27] and the references therein. If A is maximally monotone, then ¢4
is proper and it fulfills

va(z,u) ={r,uy V(r,u)eH xH,

with equality if and only if (z,u) € GrA. Notice that if ¥ € I"(#H), then 0¥ is a maximally

monotone operator and it holds ((9\11)_1 = 0¥*. Furthermore, the following inequality is true
(see [14]):

wow (x,u) < W (x) +¥* (u) V(x,v)eH xH. (1.6)

We present as follows some statements that will be essential when carrying out the con-

vergence analysis. Let (z,)n>0 be a sequence in H and (\,),>1 be a sequenceof positive real
numbers. The sequence of weighted averages (z,)n>1 is defined for every n > 1 as

1 & C
Zn = — 2 )\kxk‘a Where Tn = Z )\k (17)
™ =1 k=1

Lemma 1.1 (Opial-Passty). Let Z be a nonempty subset of H and assume that the limit
lir}g |xn — ul|| exists for every element u € Z. If every sequential weak cluster point of (xn)n>0,
n—+0o0

respectively (zn)n>1, lies in Z, then the sequence (y,)n>0, respectively (zy)n>1, converges weakly
to an element in Z as n — +00.

Two following result can be found in [12} 19].

Lemma 1.2. Let (0,)n>0, (£n)n=1 and (6,)n>1 be sequences in Ry with (8,)n>1 € £*. If there
exists ng = 1 such that

0n+1 —0p < an (071 - enfl) - gn +d, Vn=ng

and o such that
O<a,<a<l Vn=x=l1,

then the following statements are true:

(i) Z [0n — O0n—1], < 400, where [s], := max{s,0};

n=1
(ii) the limit lim 0, exists.
n—0o0
(iii) the sequence (£,)n>1 belongs to (1.

The following result follows from Lemma [1.2] applied in case ay, := 0 and 6,, := p, — p for
all n > 1, where p is a lower bound for (p,)n>1.

Lemma 1.3. Let (pp)n>1 be a sequence in R, which is bounded from below, and (§,)n=>1, (0n)n=1
be sequences in Ry with (8,)n>1 € £1. If there exists ng = 1 such that

P+l < pn—&n +0n VN = no,
then the following statements are true:

(i) the sequence (pp)n>1 1S convergent.



(ii) the sequence (£,)n>1 belongs to £1.

The following result, which will be useful in this work, shows that statement (ii) in Lemma
can be obtained also when (p;,)n>1 is not bounded by below, but it has a particular form.

Lemma 1.4. Let (py)n>1 be a sequence in R and (£,)n>1, (0n)n>1 be sequences in Ry with
(6n)n>1 € €4 and

pn = 0p —anbp_1+xn Yn=1,

where (0p)n>0, (Xn)n>1 are sequences in Ry and there exists o such that
O0<a,<a<l Vn=x=l1.
If there exists ng = 1 such that
Pl — Pn < —&n + 0 VY = ny, (1.8)
then the sequence (£,)n>1 belongs to £*.

Proof. We fix an integer N > ng, sum up the inequalities in (I.8) for n = ng,ng +1,--- , N and
obtain

N N
PRt — Pro < — D &nt D O < D 0 < 0. (1.9)
n=ng n=ngo n=1

Hence the sequence {pn},-, is bounded from above. Let p > 0 be an upper bound of this
sequence. For all n > 1 it holds

Op —abp_1 < 0, —apbyp_1 + Xn = Pn < P,

from which we deduce that
—pn < —b, + b1 <ab,_. (1.10)
By induction we obtain for all n = ng + 1

n—ng _

by < by +p< - <a" 0, +5 Y aF Tl <at ™, + IL. (1.11)
-«
k=1
Then inequality ((1.9) combined with (1.10) and (1.11)) leads to
N N
Z §n<Pn0 —PN4+1 T Z 5n<pno +a9N+ Z On
n=ngo n=no nz=1 (112)
— a7
< pno +aN—TLO+].0nO + p + 2 511 < +OO
l1-a
n=1
We let N converge to 400 and obtain that Z &n < +00. O

n=1

2 The general monotone inclusion problem

In this section we address the following monotone inclusion problem.

Problem 2.1. Let H be a real Hilbert space, A: H =3 H a mazimally monotone operator,
D:H — H an n—cocoercive with n > 0, B: H — H a p—-cocoercive with p > 0 and assume
that M := Zer B # (4. The monotone inclusion problem to solve reads

0e Az + Dx + Ny ().



The following forward-backward penalty algorithm with inertial effects for solving Problem
will be in the focus of our investigations in this paper.

Algorithm 2.2. Let (ap)n>1, (An)n=1 and (Bn)n=1 be sequences of positive real numbers such
that

(C1) {Anbys1 € 2\ 05
(C2) {an},; is nondecreasing;
(C3) 0<ap, <a<+w foralln=>1.

Let xg,x1 € H. For alln = 1 we set
Tnt1 = JIa, A (T — Ay Dxyy — M\ BBy, + o, (T — Tp—1)) -

When D = 0 and B = Vh, where h : H — R is a convex and differentiable function with
pu~ ' —Lipschitz continuous gradient with p > 0 fulfilling min A = 0, then Problem recovers
the monotone inclusion problem addressed in [9, Section 3] and Algorithm can be seen as
an inertial version of the iterative scheme considered in this paper. When B = 0, we have
that Np; = {0} and Algorithm is nothing else than the inertial version of the classical
forward-backward algorithm (see for instance [13] [31]).

Hypotheses 2.3. The convergence analysis will be carry out in the following hypotheses (see
also [19]):

(HE) A 4+ Ny is mazimally monotone and Zer (A + D + Nyy) # &;

(Hgtz) for every p € RanNyy, Z AnBn [sup B <u, p> — oM <p>} < 400.
n>1 ueM Bn Bn
Since A and Nj; are maximally monotone operators, the sum A + Ny is maximally mono-
tone, provided some specific regularity conditions are fulfilled (see [13, 17, 26],40]). Furthermore,
since D is also maximally monotone [13, Example 20.28] and DomD = H, if A + Nj; is maxi-
mally monotone, then A + D + Nj; is also maximally monotone.
Let us also notice that for p € RanNy; there exists u € M such that p € Ny (), hence, for
every 8 > 0 it holds

swpeon (w8 ) =ow (5) = (8.5 )—ou (5) -0

For situations where is satisfied we refer the reader [12| 24] 25] 37].
Before formulating the main theorem of this section we will prove some useful technical
results.

Lemma 2.4. Let (z,)n>0 be the sequence generated by Algorithm [2.2] and (u,y) be an element
in Gr(A+ D+ Ny) such that y = v + Du + p with v € Au and p € Ny (u). Further, let
€1,€2,€3 > 0 be such that 1 —e3 > 0. Then the following inequality holds for allm = 1

lzns1 —ull® = llzn — ul?

< an l|zn — ull* = o lan-1 —ul” = (1 — 421 — €2) [@n i1 — 2
o? 2 2190 2
+ | ap + 4781 ||xn - xn—lH + gAn/Bn —2p (1 - 83) Anbn HBSETLH

4 4
+ (EA;i — 277)\n> | Dz, — Dul|® + E—A,% | Du + v]|?
2 2

+ 2e3\,0n, [sup B (u, p) — oM < P >] + 20 (u — xp, ) (2.1)
53ﬂn

weM e3Bn

6



Proof. Let n > 1 be fixed. According to definition of the resolvent of the operator A we have
Ty — Tyl — A (Dzy + BpnBxy) + ap (n — Tp—1) € ApAzpi1 (2.2)
and, since A\ v € A\, Au, the monotonicity of A guarantees
(Tpt1 — Uy Ty, — Tpt1 — Ap (Dxpy + BBy +v) + o (T, — p—1)) =0 (2.3)
or, equivalently,

2{U — Tpt1, T — Tpy1) < 2200 U — Tyt BaBrp + Dap + v) — 200, (U — Ty 1, Tn — Tn—1) -

For the term in the left-hand side of we have 24
2u = Tpi1, % = Tni1) = [Tnsr = ull® + @i — zal® = |z — ull. (2.5)
Since
—20, (U — Ty, Ty — Ty 1) = —a | — 21 |]P 4 an Ju— 20 )|* + o |0 — 20|
and

2

Yn
461

by adding the two inequalities, we obtain the following estimation for the second term in the
right-hand side of ([2.4)

2<xn+1 — In, Qn (1'” - wn—1)> < 4ey Hxn—i-l - anQ + Hxn - xn—le )

— 20, (U — Tyy1, Tn — Tp—1)
2

(0%
< ap ||z, — qu — g ||Tn-1 — qu +4eq || epg1 — mnHQ + (an + 46”1> l|xn — xn_1H2 )

(2.6)

We turn now our attention to the first term in the right-hand side of (2.4)), which can be written
as

2An {u — XTpy1, BBy, + Dy + )

= 2\, (u — Ty, B Bxy + Dy + v) + 20,80 (T — Tpy1, Bry) + 2\ {xp — Tpi1, Drp +0).
(2.7)

We have 5
&
2B {Tn — Tni1, Brn) < 52 Zns1 — znl? + 5&,@3 | Bz )2 (2.8)

and
€2 2, 2.0 2
2An Ty — Tpy1, Dy + ) < 5 |znt1 — zn||” + 5/\71 | Dy, + v
g9 4 4
< 5 lener = 2al* + AL | Dan — Dul® + — N | Du+ . (29)
€9 €2
On the other hand, we have

20\ {u — xy, fnBxy + Dxy + v)
= 2\, 00 {u — Ty, Bxyp) + 2\, (u — x4y, Dxyy — Duy + 2X\, {u — zp,, Du + v). (2.10)

Since 0 < €3 < 1 and Bu = 0, the cocoercivity of B gives us

I\ Bn (u — Ty, Bxn) < =241 (1 — €3) A B || Bxn|* + 263Mn8n (u — @y, Bt (2.11)



Similarly, the cocoercivity of D gives us
n (U — T, Dy, — Du) < =20\, || Dz, — Dul?. (2.12)

Combining (2.11)) - (2.12]) with (2.10)) and by using the definition Fitzpatrick function and the

b p
fact that oy = <u —_
53ﬁn ’ 53ﬁn

2\ (u — y, B Bxy + Dxyy + v)

< =20 (1 = £3) Mo || Bal” + 223080 (u — @0, Byy — 20\, || Dy — Du|?
+ 2\, {u — xp, Du + v)

— — 20 (1 — €3) A | Bn||* + 2630080 (u — T, Bxy) — 20\, || Dy — D)
+ 2\, {u — T,y — )

= =24 (1 —e3) M HanHQ — 20\ || Dy — DUH2 + 20 (U = T, )

b b
+ 2e3\ , B + ,— ) — . B — , ——
€3 nﬂn <<u xn> <l‘n 535n> <xn xn> <u 53Bn >>
< — 20 (1 = €3) M | B || — 202 || D2 — Dul|* + 22, (u — x40, y)
p b

+ 2e3A su U, —— | — o . 2.13

s nﬁn |:u€]I\/)[ vB ( 53ﬁn> M (53/871)] ( )

The inequalities (2.8)), (2.9) and (2.13]) lead to

2An (U — Tpy1, Bp By + Dy +0)

2 4
< (sziﬂi ou(1—ey) Anﬁn) |Baal® + (A - 2%) 1D — Dul? + £ [ns1 — 2l

, we obtain

4
+ =22 || Du + v|* + 2e3M 80 {sup B (u, p> —om < P )] + 22X (U — zp,y) . (2.14)
€2 ueM €35 £30n

Finally, by combining (2.5)), (2.6)) and (2.14)), we obtain (2.1)). O

From now on we will assume that for 0 < a < % the constants e1,e9,e3 > 0 and the
sequences (Ap)n>1 and (By,)n>1 are chosen such that

a2

(Cq) 1—e3>0, eg<l—4de;—a—— and supA,f, < pez(l—e3).
4eq n>1
€ a\?
As a consequence, there exists 0 < s <1 — — -t (14— , which means that for all
1—3e1 —e9 2e1
n = 1 it holds
al o2
i1+ — (1 —4e; —e3) <a+ — — (1 —4e; —e3) < —s, (2.15)

4eq 4eq

1
On the other hand, there exists 0 < t < p (1 — £2) — — sup A\, 3y, which means that for all n > 1

€3 n=0
it holds )
A =i (1—e2) < (2.16)
Remark 2.5. (i) Since 0 < a < %, one can always find €1, > 0 such that e5 <1 —4e; —a —
2
Z—. One possible choice is 1 = % and 0 < €5 < 1 —3a. From the second inequality in (Cy)
€1

2

it follows that 1 —3e1 —e9 > 1 + a + f— > 0.
€1



(ii) As
€1 a\? 1 a?
l-——— 1+ — ) =——————(1—4ey—e9—a— — | >0,
1—351 — £9 ( 281) 1—351 — £9 ( °1 =2 @ 481)

2
€ @
it is always possible to choose s such that 0 < s < 1 — - <1 + > . Since in

2
«
this case s <1 —4e) —e9 —a — 1 one has (2.15)).
€1

The following proposition brings us closer to the convergence result.

Proposition 2.6. Let 0 < a < %, €1,€9,e3 > 0 and the sequences (An)n=1 and (Bn)n=1 satisfy
condition (Cy4). Let (xn)n=0 be the sequence generated by Algorithm and assume that the
Hypotheses are verified. Then the following statements are true:

(i) the sequence (||Tnt1 — Znl|) 5o belongs to €% and the sequence <)\nﬁn HanH2> ) belongs to

nz=
El,'
(ii) if, moreover, limJirrgof AnBn > 0, then lil}:oo |Bxyn|| = 0 and thus every cluster point of the
n— n—
sequence (Tn)n>o lies in M.

(iii) for every u e Zer (A+ D + Nyy), the limit lirf |xn — ul| exists.
n——+0o0

2
Proof. Since lirf An = 0, there exists a integer n; > 1 such that A\, < —n for all n = ny.
n—-+0o0 e

2
According to Lemma for every (u,y) € Gr(A+ D + Nyy) such that y = v + Du + p, with
v e Au and p € Ny (u), and all n = ng the following inequality holds

lzn1 = wl® = ||z — ul?

< ap ||z — “H2 — oy ||Tp—1 — UH2 — (1 —4e1 —e2) [|[znt1 — fUnHZ

o? 2
+ (an + "> l@n — Zp1|* + ()\nﬁn —2u (1 — 53)> An B || B2
€1 €2

4
+ — 22 ||Du + v|* + 223080 {sup B (u, L ) — oM ( P )] + 2\ u — xpyy)y . (2.17)
€2 ueM €36n £36n

We consider u € Zer (A + D + Njy), which means that we can take y = 0 in (2.17)). For all

n > 1 we denote

2
(6
9n = Hxn - UH2’ Pn = en - anen—l + <an * 46;) ||33n - xn—lHZ (218)
and A
p b
On = — A2 || Du + v||* + 223\ [su (u,)—tf < >] 2.19
n 9 n” || 3A\nPn ue]B(PB 53571 M 53/877. ( )

Using that (), is nondecreasing, for all n > ny it yields

2
0%
s = pn < (ann + S = (1= de1 = 22)) o —

2
# (2o = 200 20)) M 1B 4 6,
3

< =5 ||Zne1 — 2n|* — 2tAnfy | Bzn|* + 0p, (2.20)

where s,t > 0 are chosen according to ([2.15)) and (2.16]), respectively.



Thanks to |(H5*)| and |(Cy)| it holds

S NDu ol 338 open () = (53]
O0p = — ||[Du+v A, +2 €3 nfn | su u,—— | —0o < +00.
Z €2 ” H Z Z 33 ue]\r/)[ oB €35 M €36n

n=1 n=1 n>=1
(2.21)
Hence, according to Lemma, we obtain
D [ensr = znl® < 40 and > Ay || Baa|* < 40, (2.22)
n=0 n=1
which proves (i). If, in addtion liminf \,,3, > 0, then lirf | Bxy,|| = 0, which means every
n—o0 n——+aoo

cluster point of the sequence (), lies in Zer B = M.
In order to prove (iii), we consider again the inequality (2.17) for an arbitrary element
ue Zer (A+ D + Ny) and y = 0. With the notations in (2.18) and (2.19), we get for all n > ng

2

Ons1 — On < an (B — Op_1) + (ozn + Z;) |z — Zp_1|? + On. (2.23)
1

According to (2.21)) and (2.22)) we have
ap 2 a’ 2
Do+ 7 [2n = 2nal®+ D] 60 < (a+ yr i llan = znallP + )] 0n < 400, (2.24)

n=1 n=1 n=1 n=1
therefore, by Lemma 1.2 the limit lirf O, = lirf |, — u||® exists, which means that the
n——+0o0 n—+0o0
limit lim ||z, — u|| exists, too. O
n—+00

Remark 2.7. The condition that we imposed in combination with 0 < a < % on the

sequence of inertial parameters (a,)n,>1 is the one proposed in [3, Proposition 2.1] when ad-
dressing the convergence of the inertial proximal point algorithm. However, the statements in
proposition above and in the following convergence theorem remain valid if one alternatively
assumes that there exists o such that 0 < o, <o/ <1 foralln > 1 and

04721 2
Z on + P |en — 1] < +00.
€1

n=1

This can be realized if one chooses for a fixed p > 1

o, < min {0/,251 <—1 + \/1 +n7P ||, — a:n_1H_2>} Vn > 1.

2
o 1
Indeed, in this situation we have that — + o, — 5 < 0 for all n > 1, which gives
deq nP || zn — Tp—1]
2
(67 2 1
2 (an + 4”) |zn — 2n_1]]” < 2 — < Fo0.
n=>1 <1 n>1"

Now we are ready to prove the main theorem of this section, which addresses the convergence
of the sequence generated by Algorithm [2.2]

Theorem 2.8. Let 0 < o < %, £1,€2,e3 > 0 and the sequences (Ap)n>1 and (Bp)n>1 satisfy
condition (Cy4). Let (x,,)n=0 be the sequence generated by Algorithm (2n)p>1 be the sequence
defined in (1.7) and assume that the Hypotheses are verified. Then the following statements

are true:

10



(i)
(i)

the sequence (zp)n>1 converges weakly to an element in Zer (A + D + Nyps) as n — +0.

if A is y—strongly monotone with v > 0, then (x,)n>0 converges strongly to the unique
element in Zer (A + D + Nyf) as n — +o0.

Proof. (i) According to Proposition (iii), the limit liIJIrl |z — u| exisits for every u €
n—+0o0

Zer (A+ D + Nyy). Let z be a sequential weak cluster point of (2,),,-,. We will show that
z € Zer (A+ D + Nyy), by using the characterization (1.5)) of the maximal monotonicity,
and the conclusion will follow by Lemma

To this end we consider an arbitrary (u,y) € Gr (A + D + Njy) such that y = v + Du + p,
where v € Au and p € Nps (u). From (2.17)), with the notations (2.18)) and (2.19)), we have
for all n = ng

Pn+1 — Pn

< — 5 ||Zng1 — znl|? = 2tAnBn || Bxall* + 0n + 200 (t — Ty y) < 8 + 200 (Ut — T, 1) -
(2.25)

Recall that from ([2.21)) that Z dp < +00. Since (z,,)n>0 is bounded, the sequence (pp)n>1
n=1
is also bounded.

We fix an arbitrary integer N > ng and sum up the inequalities in (2.25)) for n = ng+1,ng +
2,-+-,N. This yields

N
PN41 — Protl < Z On + 2 Z Anll + Z A, > + 2< Z )\nazn,y>.
n=1

n=1

After dividing this last inequality by 275 = 2 Z An, We obtain

n=1
1 1
E (pN+1 _pno-‘rl) < ET+2<U_ZN7Z/>7 (226)

no no
where T := Z Oon +2( — 2 Ant + Z )\nmn,y> € R. By passing in (2.26]) to the limit
= n=1

n=1
N
and by using that hm L Ty = lim Z Ap = +00, we get
Nﬁoon il

liminf {u — z5,y) = 0
N—0

As z is a sequential weak cluster point of (z,,),,~;, the above inequality gives us (u — z,y) = 0
which finally means that z € Zer (A + D + Ny).

Let u € ‘H be the unique element in Zer (A + D + Nys). Since A is y—strongly monotone
with v > 0, the formula in (2.3) reads for all n > 1

<xn+1 — Uy, T — Tptl — Ap (Dxn + BnBxy + U) + anp (SUn - xn—1)> = YA Hl'n-‘rl - UHZ
or, equivalently,
29 @1 — ull? + 2(u = @ni1, o — Tpg1)

< 20 U — Xpy1, Pn By + Dxy + 0y — 200, (U — T, Ty — Tp—1) -

11



By using again (2.5)), (2.6) and (2.14)) we obtain for all n > 1

29 [|Znr1 = ul® + [@ns1 — ull* = ||z —ul)®

< o |lon — UH2 — o || en—1 — UH2 — (1 —4e1 — &2) lantr — anQ

a? 2
+ <an + 4 n> Hxn - xn—1H2 + (/\3152 —2pu (1 - 53) Anﬁn) ”an”2
€1 £2

4 4
+ <€A3 — 2%) 1D — Dul® + — X7 || Du + v
2 2

p p
+ 2e3\,.0 {su B<u,>—0M( >]+2)\ U— Tp,Y)-
o ueJ\I/)ISO 53611 535n n< " y>
By using the notations in (2.18) and ([2.19)), this yields for all n > 1

2

4{:‘1

«
29 |Zns1 — |2 + Opgt — Op < an (0 — 1) + <an + "> |2y — Zn1 || + O

By taking into account ([2.24]), from Lemma we get

According to

(C1)

be equal to zero.

2y Z A ||zn — ul]* < +00.

n=1
we have Z An = 400, which implies that the limit lim ||z, — || must
n—a0
n=1
his provides the desired conclusion. ]

3 Applications to convex bilevel programming

We will employ the results obtained in the previous section, in the context of monotone inclu-
sions, to the solving of convex bilevel programming problems.

Problem 3.1. Let H be a real Hilbert space, f: H — R a proper, convex and lower semicon-
tinuous function and g,h: H — R differentiable functions with L,—Lipschitz continuous and,
respectively, Lp— Lipschitz continuous gradients. Suppose that argminh # & and minh = 0.
The bilevel programming problem to solve reads

min  f(z)+g(x).

rearg min h

The assumption min h = 0 is not a restricttive as, otherwise, one can replace h with h—min h.

Hypotheses 3.2. The convergence analysis will be carry out in the following hypotheses:

(HY™®) 0f + Nargminh is mazimally monotone and S := arg  min h{f () +g(x)} # J;

rearg min

(H5™®) for every p € RanNurg min h, Z AnDn {h* <p> — Gargminh <p>} < 100,

Bn B

n=1

In the above hypotheses, we have that 0f + Vg + Nargminn = 0 (f + g+ dargminn) and
hence § = Zer (0f + Vg 4+ Nargminh) # . Since according to the Theorem of Baillon-Haddad
(see, for example, [13, Corollary 18.16]), Vg and Vh are L;l—cocoercive and, respectively, L,:l—
cocoercive, and argminh = ZerVh solving the bilevel programming problem in Problem
reduces to solving the monotone inclusion

0€df(z) + Vg(x) + Narg min ().

By using to this end Algorithm we recieve the following iterative scheme.

12



Algorithm 3.3. Let (ap)n>1, (An)n>1 and (Bn)n>1 be sequences of positive real numbers such
that

(C1) Atz € N L,
(C2) {an},; is nondecreasing;
(Cs3) there exists o with 0 < oy, < @ < 1/3 for allm > 1.

Let xg,x1 € H. For alln = 1 we set
Tpi1 1= ProxX, ; (n — M Vg (2n) — MBnVh () + o (T — Tp—1)) -

By using the inequality (T.6)), one can easily notice, that (H5™°®) implies (H"), which means
that the convergence statements for Algorithm can be derived as particular instances of the
ones derived in the previous section.

Alternatively, one can use to this end the following lemma and employ the same ideas and
techniques as in Section 2| Lemma [3.4] is similar to Lemma however, it will allow us to
provide convergence statements also for the sequence of function values (h(zy))n>0-

Lemma 3.4. Let (z,)n>0 be the sequence generated by Algorithm [3.3] and (u,y) be an element
in Gr (0f + Vg + Nargminh) such that y = v+ Vg(u) + p with v e df(u) and p € Narg minh (u).
Further, let €1,e3,e3 > 0 be such that 1 —e3 > 0. Then the following inequality holds for all
n=1
2 2
[2n1 — ull” = [Jan — ull

2
(67
< an it =l = o = ul? = (1= der = e0) o =2l + (0 4 52 ) = 2l

(22262~ 20 (1= ca) 2 ) 190 )P + (202 = 200, ) 19 (20) — g (]

i [ 1) = B ()] + 202 o+ Vg )]

2 2
+ €3 nbn [h* ( p > — Oargminh (p>j| +2X, <u — Tn, y>
531371

E3B’n

Proof. Let be n > 1 fixed. The proof follows by combining the estimates used in the proof of
Lemma with some inequalities which better exploits the convexity of h. From (2.11]) we
have

20 B0 (1 — 30, VI (20)) < =201 (1 — €3) AnBn [V (20)|* + 2630080 (t — @, Vi (20))
Since h is convex, the following relation also hold
2080 {u — xp, Vh (20)) < 2X, 8, [R (0) — h (zy)].
Summing up the two inequalities above give us

20 B (U — T, VR (7)) < = (1 = £3) A [ VA (@) | + €370 B0 (u — @, VR (0))
N [h () = ()]
Using the same techniques as in the derivation of , we get
20 (U — T, v + Vg () + B Vh (24))
< = p (1= e3) MBIV (@) I* = 2000 [IVg (20) = Vg (@)lI* + M [h (w) = h (25)]

2 2
+ 2)‘71 <u - xnyy> + 53)‘71/871 [h* (U P ) — Oargminh (p):| .

" e36n £30n

With this improved estimates, the conclusion follows as in the proof of Lemma O
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By using now Lemma [3.4] one obains, after slightly adapting the proof of Proposition [2.6]
the following result.

Proposition 3.5. Let 0 < a < %, €1,€9,e3 > 0 and the sequences (An)n=1 and (Bn)n>1 satisfy
condition (Cy). Let (xn)n=0 be the sequence generated by Algorithm and assume that the
Hypotheses[3.3 are verified. Then the following statements are true:

(i) the sequence (|zns1 — 2nll),sq belongs to €2 and the sequences ()\nﬂn ||Vh(gnn)||2>n>1 and
(AnBnh(2n)),=1 belong to 0*;

(ii) if, moreover, hmi%of AnBn > 0, then hm IVh(zy,)| = hrfooh(x"> = 0 and thus every

cluster point of the sequence (y)n>0 lzes in arg min h.
(iii) for every u e S, the limit lil}rl |xn — ul| exists.
n——+0o0

Finally, the above proposition leads to the following convergence result.

Theorem 3.6. Let 0 < a < %, £1,€2,63 > 0 and the sequences (Ap)n>1 and (Bn)n>1 satisfy

condition (Ca4). Let (zn)n>0 be the sequence generated by Algorithm (2n)p>1 be the sequence
defined in (1.7) and assume that the Hypotheses are verified. Then the following statements
are true:

(i) the sequence (zn),=; converges weakly to an element in S as n — +o0.

(i) of f is y—strongly convex with v > 0, then (x,,)n>0 converges strongly to the unique element
mS asn — +0.

As follows we will show that under inf-compactness assumptions one can achieve weak non-
ergodic convergence for the sequence (z,,),>0. Weak nonergodic convergence has been obtained
for Algorithm in [25] when «,, = « for all n > 1 and for restrictive choices for both the
sequence of step sizes and penalty parameters.

We denote by (f + ¢)x = mingeargminn (f() + g(x)). For every element x in H, we denote
by dist (z,S) = 71lr€1£f9 ||z — u|| the distance from = to S. In particular, dist (z,S) = ||z — Prsz||,

where Prgax denotes the projection of  onto §. The projection operator Prg is firmly nonex-
pansive ([13, Proposition 4.8]), this means

IPrs (z) — Prs (y)|I* + |[1d - Prs] (z) - [1d = Prs] (v)|* < [« = y[|* Vo,ye H.  (3.1)

1 1
Denoting d (z) = §dist (z,8)* = 5 |z — Prsz||? for all z € #, one has that z — d(z) is
differentiable and it holds Vd (z) = x — Prgz for all x € H.

Lemma 3.7. Let (z,,)n>0 be the sequence generated by Algorithm and assume that the
Hypotheses are verified. Then the following inequality holds for all n > 1

$n+1 d(xn) — Qn (d (xn) —d (xnfl)) + An [(f + g) ($n+1) - (f + 9)*]
( Loy vty g s ) lnss — 2al + n n — 2na 2. (3.2)

Proof. Let n > 1 be fixed. Since d is convex, we have

d(zpi1) — d(wn) < (@1 — Prs (Tns1) , Tn1 — Tn) - (3.3)
Then there exists v, 41 € 0f(2n+1) such that (see (2.2))

Tp — Tp+l — An(VQ(xn) + anh(xn)) + O‘n(xn - :Enfl) = MUn1

14



and, so,

<:L'n+1 — Prg (1:n+1) y I+l — $n>
= (xpt1 — Prs(Tn1), —An+1 — Vg (2n) — MiBn VA (2) + ap (n — Tp—1))

— MBn{xn+1 — Prs (zny1), Vh(zn)) + an{tpn+1 — Prs (xni1) ,2n — op—1) . (3.4)
Since v, 41 € Of (Tp+1), We get
= M (@ns1 — Prs (@ni1) , vns1) < A [f (Prs (zns1)) — f(@n41)] (3.5)
Using the convexity of g it follows
g9 (zn) — g (Prs (zni1)) < (Vg (2n), zn — Prs (zni1)). (3.6)

On the other hand, the Descent Lemma gives
L
g (xn-&-l) <Y (an) + <Vg (1'”) y Tp4+1 — $n> + 79 Hxn+1 - anQ : (3'7)
By adding (3.6) and (3.7)), it yields

- )\n <xn+1 - PI‘S (‘rn-i-l) 7v9 (xn)> < )‘n [g (PrS (xn-i-l)) -9 ('rn-i-l)] + Lg)‘n

2

||«75n+1 - an2 .
(3.8)
1
Using the L——cocoercivity of Vh combined with the fact that Vi (Prs (zn41)) = 0 (as
h
Prs (z,41) belongs to S), it yields

1
o~ Prs (ons1), VA (2)) < - [V )
Therefore
1
me@MVJHA%Hxvmm»<Mm(@wﬂmhvm%»—Mgvm%mﬁ

L
< )‘nﬂnzh ||37n+1 - anQ . (39)
Further, we have

(077} <xn+l - PrS (xn+1) - (xn - PrS (:En)) y Ip — xn—1>

Qp Qp
< 21— Prs] (onen) — [1d — Pr] (@)l + 2 i —

(6% «
< S znr = zal® + S 2 =z |,
2 2
and
Qn <$n — Prs (xn) yIn — xn—1>
On
2

8]
< and (z,) + 7" |2n — Tnet1]|® — and (zn_1) .

«
= and (zn) + |2 — xn—1||2 - 771 |zn-1 — Prs (xn)H2
By adding two relations above, we obtain

On <xn+l — Prg (In-‘rl) y T — $n—1>
= ap{xps1 — Prs(rn41) — (vn — Prs(zy)) ,2n — xn—1) + an{xy — Prs (z,) ,xn — Tp_1)

a
< S llamer = anll® + an on = ana||* + o (d (2n) = d (20-1)) - (3.10)
By combining (3.5)) , (3.8]) , (3.9) and (3.10) with (3.4)) we obtain the desired conclusion. O
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Definition 3.8. A function U: # — R is sad to be inf-compact if for every r > 0 and x € R
the set
Lev,, (V) :={zxeH: |z <r ¥ (z) <k}

is relatively compact in H.

An useful property of inf-compact functions follows.

Lemma 3.9. Let U: H — R be inf-compact and (Tn),=0 be a bounded sequence in H such that
(U (20))n=0 is bounded as well. If the sequence (zy),~q converges weakly to an element in T as
n — 400, then it converges strongly to this element.

Proof. Let be ¥ > 0 and k € R such that for all n > 1

|zn|| <7 and W (x,) <E.

Hence, (25),5, belongs to the set Levy (¥), which is relatively compact. Then (), has
at least one strongly convergente subsequence. Since every strongly convergent subsequence
(Zn; )10 Of (¥n),>0 has as limit Z, the desired conclusion follows. O

We can formulate now the weak nonergodic convergence result.
Theorem 3.10. Let 0 < a < é, €1,€2,€3 > 0, the sequences (An),>, and (Bn),, satisfy the
condition 0 < hm 1nf MBn < Sup MnBn <, (Tn)ns0 be the sequence generated by Algorithm
and assume that the Hypotheses 2 are verified and that either f + g or h is inf-compact.

Then the following statements are true:

(i) lim d(z,) =0;

n—-+00
(ii) the sequence (xyn)n=0 converges weakly to an element in S as n — +00;

(iii) if h is inf-compact, then the sequence (ry)n>0 converges strongly to an element in S as
n — +00.

Proof. (i) Thanks to Lemma [3.7], for all n > 1 we have

d(xnt1) = d(zn) + A [(f +9) (@ns1) = (f + 9)e] < an (d(2n) —d(2n-1)) + Coy (3.11)

where
Lg 2
Cn = >\ + nﬁn 7 Hxn-‘rl - xn” + ay Hxn xn—l” .

From Proposition combined with the fact that both sequences (A\,),~; and (8,),5,
are bounded, it follows that Z Cn < +00.

n=1
In general, since (z,)p>0 is not necessarily included in argminh, we have to treat two
different cases.

Case 1: There exists an integer ny = 1 such that (f + g) () = (f + g)« for all n = ny. In
this case, we obtain from Lemma [I.2] that:

e the limit lim d(x,) exists.

n— -+

Z A [(f + 9) (Tns1) — (f + 9)«] < +00. Moreover, since (A),,=; ¢ £, we must have

n=nos

Lminf(f + g) (zn) < (f + )« (3.12)

n——+aoo
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Consider a subsequence (y, ), of (Zn), > such that
i (f+9) (en,) = minf (f + ) (22)

and note that, thanks to (3.12)), the sequence ((f + ¢)(#n,,));o is bounded. From Proposi-
tion (ii)-(iii) we get that also (zn,),sq and (h(zy,)),so are bounded. Thus, since either
f + g or his inf-compact, there exists a subsequence (zy,);>q of (Zn, )}, Which converges
strongly to an element z as | — +00. According to Proposition (ii)-(iii), & belongs to
arg min h. On the other hand,

lim (f +g) (zn,) = liminf(f + g) (zn) = (f + 9) (Z) = (f + 9)« (3.13)

l—+0o0 —+00

We deduce from (3.12) - (3.13) that (f + ¢g) (Z) = (f + g)«, or in other words, that Z € S.

In conclusion, thanks to the continuity of d,

lim d(z,) = hm d(:vnl) =d(z) =0.

n—+00

Case 2: For all n > 1 there exists some n’ > n such that (f + g) () < (f +¢g)«. We define
the set

Vi={n'21:(f+9)(zw) < (f +9)s}

There exist an integer ny > 2 such that for all n = ngy the set {k < n: k € V} is nonempty.
Hence, for all n = ny the number

tp:=max{k <n:keV}

is well-defined. By definition ¢, < n for all n > n3 and moreover the sequence {t,},,, is
nondecreasing and hrf t, = oo. Indeed, if lim ¢, = t € R, then for all n’ > t it holds
n——+0o0 n—o0

(f +9) (xn) = (f + g)«, contradiction. Choose an integer N > n

o If txy < N, then, for alln =ty,--- , N —1, since (f +¢) (zn) = (f + ¢)«, the inequality

B-11) gives

d(znt1) = d(zn) < d(@ns1) — d(@n) + An [F (Tn41) — F

<
< o (d(2n) — d (2n-1)) + Ca. (3.14)

Summing (3.14) for n = ty,--- , N —1 and using tht {a;},, is nondecreasing, it yields

N-1 N—-1
d(y) —d(zey) < Y (ond(2n) — ano1d (Te1)) + Y G
n=tn n=tyn
<ad(zy-1)+ ) (n (3.15)
n=tyn

o If ty = N, then d (zn) = d(x¢,) and we have

d(zn) —ad(zy-1) <d () + ) (o (3.16)

n>tN

For all n > 1 we define a,, := d (z,) — ad (zp—1). In both cases it yields

N
an S d(wy) + D) Gu<d(aey) 2 Cn- (3.17)
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(i)

(iii)

Passing in (3.17) to limit as N — 400 we obtain that
limsup a,, < limsupd (z¢,) . (3.18)

n—+0o0 n—+aoo
Let be ue S. For all n > 1 we have

1 1
d (2n) = 5dist (2n,S)? < 5 llan — ul?,

which shows that (d (z,,))n>0 is bounded, as lir}rloo |z — u|| exists. We obtain
limsup a,, = limsup [d (z5,) — ad (x—1)] = (1 — @) limsupd (x,) = 0. (3.19)
n—o n—0oo n—a

Further, for all n > 1 we have (f + g) (z1,,) < (f + ¢)«, which gives
limsup(f + g) (x1,,) < (f + 9)«- (3.20)

n—+0o0
This means that the sequence ((f + g) (74,)),,>¢ is bounded from above. Consider a subse-

quence (2, ),=o of (%1,),>¢ such that

lim d(zy, ) =limsupd (xy,).

k—+00 n—+ao

From Proposition (ii)-(iii) we get that also (2, ), and (h(z,));~, are bounded. Thus,
since either f + g or h is inf-compact, there exists a subsequence (xy,);5 of (1, ),~q, Which
converges strongly to an element = as | — +00. According to Proposition (ii)-(iii), @
belongs to arg min h. Furthermore, it holds

lim inf(f +g) (z1,) = (f +9) (@) = (f + 9)s- (3:21)

We deduce from (3.20) and (3.21]) that
(f +9)« < (f +9) () < imsup(f + g) () < Tmsup(f + 9) (21,) < (f + )

n—-+0oo n——+0o0

which gives Z € S. Thanks to the continuity of d we get
limsupd (xy,) = llim d(zy) =d(z)=0. (3.22)
—+00

n—+0o0

By combining (3.18), (3.19) and (3.22)), it yields

0 < (1 —a)limsupd(z,) <limsupa, < limsupd (z,) =0,
n—+00 n—+00 n—+00

which implies limsupd (z,,) = 0 and thus

n—+0o0

lim d(zp) = liminfd (z,) = limsupd (z,) = 0.

n—-+a0 n—-+00 N> +00

According to |(i)| we have lim d(z,) = 0, thus every weak cluster point of the sequence
n—0oo

(7n),>0 belongs to S. From Lemma |1.1{it follows that (x,),, -, converges weakly to a point
in § as n — 4.

Since h,?i, io%f AnBn > 0, from Proposition (ii) we have that

lim ||Vh(z,)| = nlirfmh(xn) =0.

n— -+

Since (Zn),,~( is bounded, there exist 7 > 0 and % € R such that for all n > 1
|lzn|| <7 and  h(z,) <R

Thanks to the sequence (), converges weakly to an element in S. Therefore, ac-
cording to Lemma [3.9] it converges strongly to this element in S. O
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