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Abstract. We investigate forward-backward splitting algorithm of penalty type with iner-
tial effects for finding the zeros of the sum of a maximally monotone operator and a cocoercive
one and the convex normal cone to the set of zeroes of an another cocoercive operator. Weak
ergodic convergence is obtained for the iterates, provided that a condition expressed via the
Fitzpatrick function of the operator describing the underlying set of the normal cone is veri-
fied. Under strong monotonicity assumptions, strong convergence for the sequence of generated
iterates can be proved. As a particular instance we consider a convex bilevel minimization prob-
lem including the sum of a nonsmooth and a smooth function in the upper level and another
smooth function in the lower level. We show that in this context weak nonergodic and strong
convergence can be also achieved under inf-compactness assumptions for the involved functions.
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1 Introduction and preliminaries

1.1 Motivation and problems formulation

During the last couple years one can observe in the optimization community an increasing
interest in numerical schemes for solving variational inequalities expressed as monotone inclusion
problems of the form

0 P Ax`NM pxq , (1.1)

where H is a real Hilbert space, A : HÑ H is a maximally monotone operator, M :“ arg minh
is the set of global minima of the proper, convex and lower semicontinuous function h : R Ñ
sR :“ RY t˘8u and NM : HÑ H is the normal cone of the set M . The article [7] was starting
point for a series of papers [6, 9, 10, 12, 18, 19, 24, 25, 33, 37, 38] addressing this topic or
related ones. All these papers share the common feature that the proposed iterative schemes
use penalization strategies, namely, by evaluating the penalized h by its gradient, in case the
function is smooth (see, for instance, [9]), and by its proximal operator, in case it is nonsmooth
(see, for instance,[10]).

Weak ergodic convergence has been obtained in [9, 10] under the hypothesis:

For all p P RanNM ,
ÿ

ně1

λnβn

„

h˚
ˆ

p

βn

˙

´ σM

ˆ

p

βn

˙

ă `8, (1.2)
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with pλnqně1, the sequence of step sizes, pβnqně1, the sequence of penalty parameters, h˚ : HÑ
sR, the Fenchel conjugate function of h, and RanNM the range of the normal cone operator
NM : HÑ H. Let us mention that (1.2) is the discretized counterpart of a condition introduced
in [7] for continuous-time nonautonomous differential inclusions.

One motivation for studying numerical algorithms for monotone inclusions of type (1.1)
comes from the fact that, when A ” Bf is the convex subdifferential of a proper, convex and
lower semicontinuous function f : H Ñ sR, they furnish iterative methods for solving bilevel
optimization problems of the form

min
xPH

tf pxq : x P arg minhu . (1.3)

Among the applications where bilevel programming problems play an important role we mention
ithe modelling of Stackelberg games, the determination of Wardrop equilibria for network flows,
convex feasibility problems [5], domain decomposition methods for PDEs [4], image processing
problems [18], and optimal control problems [10].

Later on, in [19], the following monotone inclusion problem, which turned out to be more
suitable for applications, has been addressed in the same spirit of penalty algorithms

0 P Ax`Dx`NM pxq , (1.4)

where A : HÑ H is a maximally monotone operator, D : HÑ H is cocoercive operator and the
constraint set M is the set of zeros of another cocoercive operator B : H Ñ H. The provided
algorithm of forward-backward type evaluates the operator A by a backward step and the two
single-valued operators by forward steps. For the convergence analysis, (1.2) has been replaced
by a condition formulated in terms of the Fitzpatrick function associated with the operator B,
which we will also use in this paper. In [12], several particular situations for which this new
condition is fulfilled have been provided.

The aim of this work is to endow the forward-backward penalty scheme for solving (1.4) from
[19] with inertial effects, which means that the new iterate is defined in terms of the previous two
iterates. Inertial algorithms have their roots in the time discretization of second order differential
systems [3]. They can accelerate the convergence of iterates when minimizing a differentiable
function [39] and the convergence of the objective function values when minimizing the sum
of a convex nonsmooth and a convex smooth function [15, 28]. Moreover, as emphasized in
[16], see also [23], algorithms with inertial effects may detect optimal solutions of minimization
problems which cannot be found by their noninertial variants. In the last years, a huge interest
in inertial algorithms can be notices (see, for instance, [1, 2, 3, 8, 11, 15, 20, 21, 22, 23, 24, 25,
29, 30, 34, 35, 36]).

We prove weak ergodic convergence of the sequence generated by the inertial forward-
backward penalty algorithm to a solution of the monotone inclusion problem (1.4), under rea-
sonable assumptions for the sequences of step sizes, penalty and inertial parameters. When
the operator A is assumed to be strongly monotone, we also prove strong convergence of the
generated iterates to the unique solution of (1.4).

In Section 3, we address the minimization of the sum of a convex nonsmooth and a convex
smooth function with respect to the set of minimizes of another convex and smooth function.
Besides the convergence results obtained from the general case, we achieve weak nonergodic
and strong convergence statements under inf-compactness assumptions for the involved func-
tions. The weak nonergodic theorem is an useful alternative to the one in [25], where a similar
statement has been obtained for the inertial forward-bacward penalty algorithm with constant
inertial parameter under assumptions which are quite complicated and hard to verify (see also
[37, 38]).
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1.2 Notations and preliminaries

In this subsection we introduce some notions and basic results which we will use throughout this
paper (see [13, 17, 40]). Let H be a real Hilbert space with inner product x¨, ¨y and associated
norm ‖¨‖ “

a

x¨, ¨y.
For a function Ψ: H Ñ sR :“ R Y t˘8u, we denote DomΨ “ tx P H : Ψ pxq ă `8u its

effective domain and say that Ψ is proper, if DomΨ ‰ H and Ψ pxq ą ´8 for all x P H. The
conjugate function of Ψ is Ψ˚ : HÑ sR,Ψ˚ puq “ supxPH txx, uy ´Ψ pxqu. The convex subdiffer-
ential of Ψ at the point x P H is the set BΨ pxq “ tp P H : xy ´ x, py ď Ψ pyq ´Ψ pxq @y P Hu,
whenever Ψ pxq P R. We take by convention BΨ pxq “ H, if Ψ pxq P t˘8u.

Let M be a nonempty subset of H. The indicator function of M , which is denoted by
δM : H Ñ sR, takes the value 0 on M and `8 otherwise. The convex subdifferential of the
indicator function is the normal cone of M , that is NM pxq “ tp P H : xy ´ x, py ď 0 @y P Hu,
if x PM , and NM pxq “ H otherwise. Notice that for x PM we have p P NM pxq if and only if
σM pxq “ xx, py, where σM “ δ˚M is the support function of M .

For an arbitrary set-value operator A : HÑ H we denote by GrA “tpx, vq P HˆH : v P Axu
its graph, by DomA “ tx P H : Ax ‰ Hu its domain, by RanA “ tv P H : Dx P H with v P Axu
its range and by A´1 : H Ñ H its inverse operator, defined by pv, xq P GrA´1 if and only if
px, vq P GrA. We use also the notation ZerA “ tx P H : 0 P Axu for the set of zeros of the
operator A. We say that A is monotone, if xx´ y, v ´ wy ě 0 for all px, vq , py, wq P GrA. A
monotone operator A is said to be maximally monotone, if there exists no proper monotone
extension of the graph of A on H ˆ H. Let us mention that if A is maximally monotone,
then ZerA is a convex and closed set, [13, Proposition 23.39]. We refer to [13, Section 23.4]
for conditions ensuring that ZerA is nonempty. If A is maximally monotone, then one has the
following characterization for the set of its zeros

z P ZerA if and only if xu´ z, yy ě 0 for all pu, yq P GrA. (1.5)

The operator A is said to be γ´strongly monotone with γ ą 0, if xx´ y, v ´ wy ě ‖x´ y‖2
for all px, vq , py, wq P GrA. If A is maximally monotone and strongly monotone, then ZerA is
a singleton, thus nonempty, [13, Corollary 23.27].

The resolvent of A, JA : HÑ H, is defined by JA :“ pId`Aq´1, where Id: HÑ H denotes
the identity operator on H. If A is maximally monotone, then JA : H Ñ H is single-value and
maximally monotone, [13, Proposition 23.7, Corollary 23.10]. For an arbitrary γ ą 0, we have
the following identity ([13, Proposition 23.18])

JγA ` γJγ´1A´1 ˝ γ´1Id “ Id.

We denote Γ pHq the family of proper, convex and lower semicontinuous extended real-valued
functions defined on H. When Ψ P Γ pHq and γ ą 0, we denote by proxγΨ pxq the proximal
point with parameter γ of function Ψ at point x P H, which is the unique optimal solution of
the optimization problem

inf
yPH

"

Ψ pyq `
1

2γ
‖y ´ x‖2

*

.

Notice that JγBΨ “ pId` γBΨq
´1
“ proxγΨ, thus proxγΨ : HÑ H is a single-valued operator

fulfilling the so-called Moreau’s decomposition formula:

proxγΨ ` γproxγ´1Ψ˚ ˝ γ
´1Id “ Id.

The function Ψ: H Ñ sR is said to be γ´strongly convex with γ ą 0, if Ψ ´
γ

2
‖¨‖2 is a

convex function. This property implies that BΨ is γ´strongly monotone.
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The Fitzpatrick function ([32]) associated to a monotone operator A is defined as

ϕA : HˆHÑ sR, ϕA px, uq :“ sup
py,vqPGrA

txx, vy ` xy, uy ´ xy, vyu

and it is a convex and lower semicontinuous function. For insights in the outstanding role played
by the Fitzpatrick function in relatin the convex analysis with the theory of monotone operators
we refer to [13, 14, 17, 26, 27] and the references therein. If A is maximally monotone, then ϕA
is proper and it fulfills

ϕA px, uq ě xx, uy @ px, uq P HˆH,

with equality if and only if px, uq P GrA. Notice that if Ψ P Γ pHq, then BΨ is a maximally
monotone operator and it holds pBΨq´1

“ BΨ˚. Furthermore, the following inequality is true
(see [14]):

ϕBΨ px, uq ď Ψ pxq `Ψ˚ puq @ px, vq P HˆH. (1.6)

We present as follows some statements that will be essential when carrying out the con-
vergence analysis. Let pxnqně0 be a sequence in H and pλnqně1 be a sequenceof positive real
numbers. The sequence of weighted averages pznqně1 is defined for every n ě 1 as

zn :“
1

τn

n
ÿ

k“1

λkxk, where τn :“
n
ÿ

k“1

λk. (1.7)

Lemma 1.1 (Opial-Passty). Let Z be a nonempty subset of H and assume that the limit
lim

nÑ`8
‖xn ´ u‖ exists for every element u P Z. If every sequential weak cluster point of pxnqně0,

respectively pznqně1, lies in Z, then the sequence pxnqně0, respectively pznqně1, converges weakly
to an element in Z as nÑ `8.

Two following result can be found in [12, 19].

Lemma 1.2. Let pθnqně0, pξnqně1 and pδnqně1 be sequences in R` with pδnqně1 P `
1. If there

exists n0 ě 1 such that

θn`1 ´ θn ď αn pθn ´ θn´1q ´ ξn ` δn @n ě n0

and α such that
0 ď αn ď α ă 1 @n ě 1,

then the following statements are true:

piq
ÿ

ně1

rθn ´ θn´1s` ă `8, where rss` :“ max ts, 0u;

piiq the limit lim
nÑ8

θn exists.

piiiq the sequence pξnqně1 belongs to `1.

The following result follows from Lemma 1.2, applied in case αn :“ 0 and θn :“ ρn ´ ρ for
all n ě 1, where ρ is a lower bound for pρnqně1.

Lemma 1.3. Let pρnqně1 be a sequence in R, which is bounded from below, and pξnqně1, pδnqně1

be sequences in R` with pδnqně1 P `
1. If there exists n0 ě 1 such that

ρn`1 ď ρn ´ ξn ` δn @n ě n0,

then the following statements are true:

piq the sequence pρnqně1 is convergent.
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piiq the sequence pξnqně1 belongs to `1.

The following result, which will be useful in this work, shows that statement (ii) in Lemma
1.3 can be obtained also when pρnqně1 is not bounded by below, but it has a particular form.

Lemma 1.4. Let pρnqně1 be a sequence in R and pξnqně1, pδnqně1 be sequences in R` with
pδnqně1 P `

1 and
ρn :“ θn ´ αnθn´1 ` χn @n ě 1,

where pθnqně0, pχnqně1 are sequences in R` and there exists α such that

0 ď αn ď α ă 1 @n ě 1.

If there exists n0 ě 1 such that

ρn`1 ´ ρn ď ´ξn ` δn @n ě n0, (1.8)

then the sequence pξnqně1 belongs to `1.

Proof. We fix an integer sN ě n0, sum up the inequalities in (1.8) for n “ n0, n0` 1, ¨ ¨ ¨ , sN and
obtain

ρ
sN`1 ´ ρn0 ď ´

sN
ÿ

n“n0

ξn `

sN
ÿ

n“n0

δn ď
ÿ

ně1

δn ă `8. (1.9)

Hence the sequence tρnuně1 is bounded from above. Let sρ ą 0 be an upper bound of this
sequence. For all n ě 1 it holds

θn ´ αθn´1 ď θn ´ αnθn´1 ` χn “ ρn ď sρ,

from which we deduce that
´ ρn ď ´θn ` αθn´1 ď αθn´1. (1.10)

By induction we obtain for all n ě n0 ` 1

θn ď αθn´1 ` sρ ď ¨ ¨ ¨ ď αn´n0θn0 ` sρ
n´n0
ÿ

k“1

αk´1 ď αn´n0θn0 `
sρ

1´ α
. (1.11)

Then inequality (1.9) combined with (1.10) and (1.11) leads to

sN
ÿ

n“n0

ξn ď ρn0 ´ ρ sN`1 `

sN
ÿ

n“n0

δn ď ρn0 ` αθ sN `
ÿ

ně1

δn

ď ρn0 ` α
sN´n0`1θn0 `

αsρ

1´ α
`

ÿ

ně1

δn ă `8

(1.12)

We let sN converge to `8 and obtain that
ÿ

ně1

ξn ă `8.

2 The general monotone inclusion problem

In this section we address the following monotone inclusion problem.

Problem 2.1. Let H be a real Hilbert space, A : H Ñ H a maximally monotone operator,
D : H Ñ H an η´cocoercive with η ą 0 , B : H Ñ H a µ´cocoercive with µ ą 0 and assume
that M :“ Zer B ‰ H. The monotone inclusion problem to solve reads

0 P Ax`Dx`NM pxq .
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The following forward-backward penalty algorithm with inertial effects for solving Problem
2.1 will be in the focus of our investigations in this paper.

Algorithm 2.2. Let pαnqně1, pλnqně1 and pβnqně1 be sequences of positive real numbers such
that

pC1q tλnuně1 P `
2 z `1;

pC2q tαnuně1 is nondecreasing;

pC3q 0 ď αn ď α ă `8 for all n ě 1.

Let x0, x1 P H. For all n ě 1 we set

xn`1 :“ JλnA pxn ´ λnDxn ´ λnβnBxn ` αn pxn ´ xn´1qq .

When D “ 0 and B “ ∇h, where h : H Ñ R is a convex and differentiable function with
µ´1´Lipschitz continuous gradient with µ ą 0 fulfilling minh “ 0, then Problem 2.1 recovers
the monotone inclusion problem addressed in [9, Section 3] and Algorithm 2.2 can be seen as
an inertial version of the iterative scheme considered in this paper. When B “ 0, we have
that NM “ t0u and Algorithm 2.2 is nothing else than the inertial version of the classical
forward-backward algorithm (see for instance [13, 31]).

Hypotheses 2.3. The convergence analysis will be carry out in the following hypotheses (see
also [19]):

pHfitz
1 q A`NM is maximally monotone and Zer pA`D `NM q ‰ H;

pHfitz
2 q for every p P RanNM ,

ÿ

ně1

λnβn

„

sup
uPM

ϕB

ˆ

u,
p

βn

˙

´ σM

ˆ

p

βn

˙

ă `8.

Since A and NM are maximally monotone operators, the sum A`NM is maximally mono-
tone, provided some specific regularity conditions are fulfilled (see [13, 17, 26, 40]). Furthermore,
since D is also maximally monotone [13, Example 20.28] and DomD ” H, if A`NM is maxi-
mally monotone, then A`D `NM is also maximally monotone.

Let us also notice that for p P RanNM there exists pu P M such that p P NM ppuq, hence, for
every β ą 0 it holds

sup
uPM

ϕB

ˆ

u,
p

β

˙

´ σM

ˆ

p

β

˙

ě

B

pu,
p

β

F

´ σM

ˆ

p

β

˙

“ 0.

For situations where pHfitz
2 q is satisfied we refer the reader [12, 24, 25, 37].

Before formulating the main theorem of this section we will prove some useful technical
results.

Lemma 2.4. Let pxnqně0 be the sequence generated by Algorithm 2.2 and pu, yq be an element
in Gr pA`D `NM q such that y “ v ` Du ` p with v P Au and p P NM puq. Further, let
ε1, ε2, ε3 ą 0 be such that 1´ ε3 ą 0. Then the following inequality holds for all n ě 1

‖xn`1 ´ u‖2 ´ ‖xn ´ u‖2

ď αn ‖xn ´ u‖2 ´ αn ‖xn´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xn`1 ´ xn‖2

`

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 `
ˆ

2

ε2
λ2
nβ

2
n ´ 2µ p1´ ε3qλnβn

˙

‖Bxn‖2

`

ˆ

4

ε2
λ2
n ´ 2ηλn

˙

‖Dxn ´Du‖2 `
4

ε2
λ2
n ‖Du` v‖

2

` 2ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

` 2λn xu´ xn, yy . (2.1)
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Proof. Let n ě 1 be fixed. According to definition of the resolvent of the operator A we have

xn ´ xn`1 ´ λn pDxn ` βnBxnq ` αn pxn ´ xn´1q P λnAxn`1 (2.2)

and, since λnv P λnAu, the monotonicity of A guarantees

xxn`1 ´ u, xn ´ xn`1 ´ λn pDxn ` βnBxn ` vq ` αn pxn ´ xn´1qy ě 0 (2.3)

or, equivalently,

2 xu´ xn`1, xn ´ xn`1y ď 2λn xu´ xn`1, βnBxn `Dxn ` vy ´ 2αn xu´ xn`1, xn ´ xn´1y .
(2.4)

For the term in the left-hand side of (2.4) we have

2 xu´ xn`1, xn ´ xn`1y “ ‖xn`1 ´ u‖2 ` ‖xn`1 ´ xn‖2 ´ ‖xn ´ u‖2 . (2.5)

Since

´2αn xu´ xn, xn ´ xn´1y “ ´αn ‖u´ xn´1‖2 ` αn ‖u´ xn‖2 ` αn ‖xn ´ xn´1‖2

and

2 xxn`1 ´ xn, αn pxn ´ xn´1qy ď 4ε1 ‖xn`1 ´ xn‖2 `
α2
n

4ε1
‖xn ´ xn´1‖2 ,

by adding the two inequalities, we obtain the following estimation for the second term in the
right-hand side of (2.4)

´ 2αn xu´ xn`1, xn ´ xn´1y

ď αn ‖xn ´ u‖2 ´ αn ‖xn´1 ´ u‖2 ` 4ε1 ‖xn`1 ´ xn‖2 `
ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 .
(2.6)

We turn now our attention to the first term in the right-hand side of (2.4), which can be written
as

2λn xu´ xn`1, βnBxn `Dxn ` vy

“ 2λn xu´ xn, βnBxn `Dxn ` vy ` 2λnβn xxn ´ xn`1, Bxny ` 2λn xxn ´ xn`1, Dxn ` vy .
(2.7)

We have

2λnβn xxn ´ xn`1, Bxny ď
ε2

2
‖xn`1 ´ xn‖2 `

2

ε2
λ2
nβ

2
n ‖Bxn‖

2 (2.8)

and

2λn xxn ´ xn`1, Dxn ` vy ď
ε2

2
‖xn`1 ´ xn‖2 `

2

ε2
λ2
n ‖Dxn ` v‖

2

ď
ε2

2
‖xn`1 ´ xn‖2 `

4

ε2
λ2
n ‖Dxn ´Du‖

2
`

4

ε2
λ2
n ‖Du` v‖

2 . (2.9)

On the other hand, we have

2λn xu´ xn, βnBxn `Dxn ` vy

“ 2λnβn xu´ xn, Bxny ` 2λn xu´ xn, Dxn ´Duy ` 2λn xu´ xn, Du` vy . (2.10)

Since 0 ă ε3 ă 1 and Bu “ 0, the cocoercivity of B gives us

2λnβn xu´ xn, Bxny ď ´2µ p1´ ε3qλnβn ‖Bxn‖2 ` 2ε3λnβn xu´ xn, Bxny . (2.11)
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Similarly, the cocoercivity of D gives us

2λn xu´ xn, Dxn ´Duy ď ´2ηλn ‖Dxn ´Du‖2 . (2.12)

Combining (2.11) - (2.12) with (2.10) and by using the definition Fitzpatrick function and the

fact that σM

ˆ

p

ε3βn

˙

“

B

u,
p

ε3βn

F

, we obtain

2λn xu´ xn, βnBxn `Dxn ` vy

ď ´ 2µ p1´ ε3qλnβn ‖Bxn‖2 ` 2ε3λnβn xu´ xn, Bxny ´ 2ηλn ‖Dxn ´Du‖2

` 2λn xu´ xn, Du` vy

“ ´ 2µ p1´ ε3qλnβn ‖Bxn‖2 ` 2ε3λnβn xu´ xn, Bxny ´ 2ηλn ‖Dxn ´Du‖2

` 2λn xu´ xn, y ´ py

“ ´ 2µ p1´ ε3qλnβn ‖Bxn‖2 ´ 2ηλn ‖Dxn ´Du‖2 ` 2λn xu´ xn, yy

` 2ε3λnβn

ˆ

xu,Bxny `

B

xn,
p

ε3βn

F

´ xxn, Bxny ´

B

u,
p

ε3βn

F˙

ď´ 2µ p1´ ε3qλnβn ‖Bxn‖2 ´ 2ηλn ‖Dxn ´Du‖2 ` 2λn xu´ xn, yy

` 2ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

. (2.13)

The inequalities (2.8), (2.9) and (2.13) lead to

2λn xu´ xn`1, βnBxn `Dxn ` vy

ď

ˆ

2

ε2
λ2
nβ

2
n ´ 2µ p1´ ε3qλnβn

˙

‖Bxn‖2 `
ˆ

4

ε2
λ2
n ´ 2ηλn

˙

‖Dxn ´Du‖2 ` ε2 ‖xn`1 ´ xn‖2

`
4

ε2
λ2
n ‖Du` v‖

2
` 2ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

` 2λn xu´ xn, yy . (2.14)

Finally, by combining (2.5), (2.6) and (2.14), we obtain (2.1).

From now on we will assume that for 0 ă α ă 1
3 the constants ε1, ε2, ε3 ą 0 and the

sequences pλnqně1 and pβnqně1 are chosen such that

pC4q 1´ ε3 ą 0, ε2 ă 1´ 4ε1 ´ α´
α2

4ε1
and sup

ně1
λnβn ă µε2 p1´ ε3q .

As a consequence, there exists 0 ă s ď 1´
ε1

1´ 3ε1 ´ ε2

ˆ

1`
α

2ε1

˙2

, which means that for all

n ě 1 it holds

αn`1 `
α2
n`1

4ε1
´ p1´ 4ε1 ´ ε3q ď α`

α2

4ε1
´ p1´ 4ε1 ´ ε3q ă ´s, (2.15)

On the other hand, there exists 0 ă t ď µ p1´ ε2q´
1

ε3
sup
ně0

λnβn, which means that for all n ě 1

it holds
1

ε3
λnβn ´ µ p1´ ε2q ď ´t. (2.16)

Remark 2.5. piq Since 0 ă α ă 1
3 , one can always find ε1, ε2 ą 0 such that ε2 ă 1´ 4ε1´α´

α2

4ε1
. One possible choice is ε1 “

α
4 and 0 ă ε2 ă 1´3α. From the second inequality in pC4q

it follows that 1´ 3ε1 ´ ε2 ą ε1 ` α`
α2

4ε1
ą 0.
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piiq As

1´
ε1

1´ 3ε1 ´ ε2

ˆ

1`
α

2ε1

˙2

“
1

1´ 3ε1 ´ ε2

ˆ

1´ 4ε1 ´ ε2 ´ α´
α2

4ε1

˙

ą 0,

it is always possible to choose s such that 0 ă s ď 1 ´
ε1

1´ 3ε1 ´ ε

ˆ

1`
α

2ε1

˙2

. Since in

this case s ă 1´ 4ε1 ´ ε2 ´ α´
α2

4ε1
, one has (2.15).

The following proposition brings us closer to the convergence result.

Proposition 2.6. Let 0 ă α ă 1
3 , ε1, ε2, ε3 ą 0 and the sequences pλnqně1 and pβnqně1 satisfy

condition pC4q. Let pxnqně0 be the sequence generated by Algorithm 2.2 and assume that the
Hypotheses 2.3 are verified. Then the following statements are true:

piq the sequence p‖xn`1 ´ xn‖qně0 belongs to `2 and the sequence
´

λnβn ‖Bxn‖2
¯

ně1
belongs to

`1;

piiq if, moreover, lim inf
nÑ`8

λnβn ą 0, then lim
nÑ`8

‖Bxn‖ “ 0 and thus every cluster point of the

sequence pxnqně0 lies in M .

piiiq for every u P Zer pA`D `NM q, the limit lim
nÑ`8

‖xn ´ u‖ exists.

Proof. Since lim
nÑ`8

λn “ 0, there exists a integer n1 ě 1 such that λn ď
2

ε2
η for all n ě n0.

According to Lemma 2.4, for every pu, yq P Gr pA`D `NM q such that y “ v `Du ` p, with
v P Au and p P NM puq, and all n ě n0 the following inequality holds

‖xn`1 ´ u‖2 ´ ‖xn ´ u‖2

ď αn ‖xn ´ u‖2 ´ αn ‖xn´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xn`1 ´ xn‖2

`

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 `
ˆ

2

ε2
λnβn ´ 2µ p1´ ε3q

˙

λnβn ‖Bxn‖2

`
4

ε2
λ2
n ‖Du` v‖

2
` 2ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

` 2λn xu´ xn, yy . (2.17)

We consider u P Zer pA`D `NM q, which means that we can take y “ 0 in (2.17). For all
n ě 1 we denote

θn :“ ‖xn ´ u‖2 , ρn :“ θn ´ αnθn´1 `

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 (2.18)

and

δn :“
4

ε2
λ2
n ‖Du` v‖

2
` 2ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

. (2.19)

Using that pαnqně1 is nondecreasing, for all n ě n0 it yields

ρn`1 ´ ρn ď

ˆ

αn`1 `
α2
n`1

4ε1
´ p1´ 4ε1 ´ ε2q

˙

‖xn`1 ´ xn‖2

`

ˆ

2

ε3
λnβn ´ 2µ p1´ ε2q

˙

λnβn ‖Bxn‖2 ` δn

ď ´s ‖xn`1 ´ xn‖2 ´ 2tλnβn ‖Bxn‖2 ` δn, (2.20)

where s, t ą 0 are chosen according to (2.15) and (2.16), respectively.
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Thanks to pHfitz
2 q and pC1q it holds

ÿ

ně1

δn “
4

ε2
‖Du` v‖2

ÿ

ně1

λ2
n ` 2

ÿ

ně1

ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

ă `8.

(2.21)
Hence, according to Lemma 1.4, we obtain

ÿ

ně0

‖xn`1 ´ xn‖2 ă `8 and
ÿ

ně1

λnβn ‖Bxn‖2 ă `8, (2.22)

which proves (i). If, in addtion lim inf
nÑ8

λnβn ą 0, then lim
nÑ`8

‖Bxn‖ “ 0, which means every

cluster point of the sequence pxnqně0 lies in Zer B “M .
In order to prove (iii), we consider again the inequality (2.17) for an arbitrary element

u P Zer pA`D `NM q and y “ 0. With the notations in (2.18) and (2.19), we get for all n ě n0

θn`1 ´ θn ď αn pθn ´ θn´1q `

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 ` δn. (2.23)

According to (2.21) and (2.22) we have

ÿ

ně1

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2`
ÿ

ně1

δn ď

ˆ

α`
α2

4ε1

˙

ÿ

ně1

‖xn ´ xn´1‖2`
ÿ

ně1

δn ă `8, (2.24)

therefore, by Lemma 1.2, the limit lim
nÑ`8

θn “ lim
nÑ`8

‖xn ´ u‖2 exists, which means that the

limit lim
nÑ`8

‖xn ´ u‖ exists, too.

Remark 2.7. The condition pC3q that we imposed in combination with 0 ă α ă 1
3 on the

sequence of inertial parameters pαnqně1 is the one proposed in [3, Proposition 2.1] when ad-
dressing the convergence of the inertial proximal point algorithm. However, the statements in
proposition above and in the following convergence theorem remain valid if one alternatively
assumes that there exists α1 such that 0 ď αn ď α1 ă 1 for all n ě 1 and

ÿ

ně1

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 ă `8.

This can be realized if one chooses for a fixed p ą 1

αn ď min

"

α1, 2ε1

ˆ

´1`

b

1` n´p ‖xn ´ xn´1‖´2

˙*

@n ě 1.

Indeed, in this situation we have that
α2
n

4ε1
`αn´

1

np ‖xn ´ xn´1‖2
ď 0 for all n ě 1, which gives

ÿ

ně1

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 ď
ÿ

ně1

1

np
ă `8.

Now we are ready to prove the main theorem of this section, which addresses the convergence
of the sequence generated by Algorithm 2.2.

Theorem 2.8. Let 0 ă α ă 1
3 , ε1, ε2, ε3 ą 0 and the sequences pλnqně1 and pβnqně1 satisfy

condition pC4q. Let pxnqně0 be the sequence generated by Algorithm 2.2, pznqně1 be the sequence
defined in (1.7) and assume that the Hypotheses 2.3 are verified. Then the following statements
are true:

10



piq the sequence pznqně1 converges weakly to an element in Zer pA`D `NM q as nÑ `8.

piiq if A is γ´strongly monotone with γ ą 0, then pxnqně0 converges strongly to the unique
element in Zer pA`D `NM q as nÑ `8.

Proof. piq According to Proposition 2.6 (iii), the limit lim
nÑ`8

}xn ´ u} exisits for every u P

Zer pA`D `NM q. Let z be a sequential weak cluster point of pznqně1. We will show that
z P Zer pA`D `NM q, by using the characterization (1.5) of the maximal monotonicity,
and the conclusion will follow by Lemma 1.1.

To this end we consider an arbitrary pu, yq P Gr pA`D `NM q such that y “ v `Du ` p,
where v P Au and p P NM puq. From (2.17), with the notations (2.18) and (2.19), we have
for all n ě n0

ρn`1 ´ ρn

ď´ s ‖xn`1 ´ xn‖2 ´ 2tλnβn ‖Bxn‖2 ` δn ` 2λn xu´ xn, yy ď δn ` 2λn xu´ xn, yy .
(2.25)

Recall that from (2.21) that
ÿ

ně1

δn ă `8. Since pxnqně0 is bounded, the sequence pρnqně1

is also bounded.

We fix an arbitrary integer sN ě n0 and sum up the inequalities in (2.25) for n “ n0`1, n0`

2, ¨ ¨ ¨ , sN . This yields

ρ
sN`1 ´ ρn0`1 ď

ÿ

ně1

δn ` 2

C

´

n0
ÿ

n“1

λnu`
n0
ÿ

n“1

λnxn, y

G

` 2

C

τ
sNu´

sN
ÿ

n“1

λnxn, y

G

.

After dividing this last inequality by 2τ
sN “ 2

sN
ÿ

n“1

λn, we obtain

1

2τ
sN

`

ρ
sN`1 ´ ρn0`1

˘

ď
1

2τ
sN

T ` 2 xu´ z
sN , yy , (2.26)

where T :“
ÿ

ně1

δn ` 2

C

´

n0
ÿ

n“1

λnu`
n0
ÿ

n“1

λnxn, y

G

P R. By passing in (2.26) to the limit

and by using that lim
NÑ8

τ
sN “ lim

sNÑ8

sN
ÿ

n“1

λn “ `8, we get

lim inf
sNÑ8

xu´ z
sN , yy ě 0.

As z is a sequential weak cluster point of pznqně1, the above inequality gives us xu´ z, yy ě 0,
which finally means that z P Zer pA`D `NM q.

piiq Let u P H be the unique element in Zer pA`D `NM q. Since A is γ´strongly monotone
with γ ą 0, the formula in (2.3) reads for all n ě 1

xxn`1 ´ u, xn ´ xn`1 ´ λn pDxn ` βnBxn ` vq ` αn pxn ´ xn´1qy ě γλn ‖xn`1 ´ u‖2

or, equivalently,

2γλn ‖xn`1 ´ u‖2 ` 2 xu´ xn`1, xn ´ xn`1y

ď 2λn xu´ xn`1, βnBxn `Dxn ` vy ´ 2αn xu´ xn`1, xn ´ xn´1y .
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By using again (2.5), (2.6) and (2.14) we obtain for all n ě 1

2γλn ‖xn`1 ´ u‖2 ` ‖xn`1 ´ u‖2 ´ ‖xn ´ u‖2

ď αn ‖xn ´ u‖2 ´ αn ‖xn´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xn`1 ´ xn‖2

`

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 `
ˆ

2

ε2
λ2
nβ

2
n ´ 2µ p1´ ε3qλnβn

˙

‖Bxn‖2

`

ˆ

4

ε2
λ2
n ´ 2ηλn

˙

‖Dxn ´Du‖2 `
4

ε2
λ2
n ‖Du` v‖

2

` 2ε3λnβn

„

sup
uPM

ϕB

ˆ

u,
p

ε3βn

˙

´ σM

ˆ

p

ε3βn

˙

` 2λn xu´ xn, yy .

By using the notations in (2.18) and (2.19), this yields for all n ě 1

2γλn ‖xn`1 ´ u‖2 ` θn`1 ´ θn ď αn pθn ´ θn´1q `

ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2 ` δn

By taking into account (2.24), from Lemma 1.2 we get

2γ
ÿ

ně1

λn ‖xn ´ u‖2 ă `8.

According to pC1q we have
ÿ

ně1

λn “ `8, which implies that the limit lim
nÑ8

‖xn ´ u‖ must

be equal to zero. This provides the desired conclusion.

3 Applications to convex bilevel programming

We will employ the results obtained in the previous section, in the context of monotone inclu-
sions, to the solving of convex bilevel programming problems.

Problem 3.1. Let H be a real Hilbert space, f : H Ñ sR a proper, convex and lower semicon-
tinuous function and g, h : H Ñ R differentiable functions with Lg´Lipschitz continuous and,
respectively, Lh´Lipschitz continuous gradients. Suppose that arg minh ‰ H and minh “ 0.
The bilevel programming problem to solve reads

min
xParg minh

f pxq ` g pxq .

The assumption minh “ 0 is not a restricttive as, otherwise, one can replace h with h´minh.

Hypotheses 3.2. The convergence analysis will be carry out in the following hypotheses:

pHprog
1 q Bf `Narg minh is maximally monotone and S :“ arg min

xParg minh
tf pxq ` g pxqu ‰ H;

pHprog
2 q for every p P RanNarg minh,

ÿ

ně1

λnβn

„

h˚
ˆ

p

βn

˙

´ σarg minh

ˆ

p

βn

˙

ă `8.

In the above hypotheses, we have that Bf ` ∇g ` Narg minh “ B pf ` g ` δarg minhq and
hence S “ Zer pBf `∇g `Narg minhq ‰ H. Since according to the Theorem of Baillon-Haddad
(see, for example, [13, Corollary 18.16]), ∇g and ∇h are L´1

g -cocoercive and, respectively, L´1
h -

cocoercive, and arg minh “ Zer∇h solving the bilevel programming problem in Problem 3.1
reduces to solving the monotone inclusion

0 P Bfpxq `∇gpxq `Narg minhpxq.

By using to this end Algorithm 2.2, we recieve the following iterative scheme.
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Algorithm 3.3. Let pαnqně1, pλnqně1 and pβnqně1 be sequences of positive real numbers such
that

pC1q tλnuně1 P `
2 z `1;

pC2q tαnuně1 is nondecreasing;

pC3q there exists α with 0 ď αn ď α ă 1{3 for all n ě 1.

Let x0, x1 P H. For all n ě 1 we set

xn`1 :“ proxλnf pxn ´ λn∇g pxnq ´ λnβn∇h pxnq ` αn pxn ´ xn´1qq .

By using the inequality (1.6), one can easily notice, that pHprog
2 q implies pHfitz

2 q, which means
that the convergence statements for Algorithm 3.3 can be derived as particular instances of the
ones derived in the previous section.

Alternatively, one can use to this end the following lemma and employ the same ideas and
techniques as in Section 2. Lemma 3.4 is similar to Lemma 2.4, however, it will allow us to
provide convergence statements also for the sequence of function values phpxnqqně0.

Lemma 3.4. Let pxnqně0 be the sequence generated by Algorithm 3.3 and pu, yq be an element
in Gr pBf `∇g `Narg minhq such that y “ v `∇gpuq ` p with v P Bfpuq and p P Nargminh puq.
Further, let ε1, ε2, ε3 ą 0 be such that 1 ´ ε3 ą 0. Then the following inequality holds for all
n ě 1

‖xn`1 ´ u‖2 ´ ‖xn ´ u‖2

ď αn ‖xn ´ u‖2 ´ αn ‖xn´1 ´ u‖2 ´ p1´ 4ε1 ´ ε2q ‖xn`1 ´ xn‖2 `
ˆ

αn `
α2
n

4ε1

˙

‖xn ´ xn´1‖2

ˆ

2

ε2
λ2
nβ

2
n ´ 2µ p1´ ε3qλnβn

˙

‖∇h pxnq‖2 `
ˆ

4

ε2
λ2
n ´ 2ηλn

˙

‖∇g pxnq ´∇g puq‖2

` λnβn rh puq ´ h pxnqs `
4

ε2
λ2
n ‖v `∇g puq‖

2

` ε3λnβn

„

h˚
ˆ

2p

ε3βn

˙

´ σarg minh

ˆ

2p

ε3βn

˙

` 2λn xu´ xn, yy .

Proof. Let be n ě 1 fixed. The proof follows by combining the estimates used in the proof of
Lemma 2.4 with some inequalities which better exploits the convexity of h. From (2.11) we
have

2λnβn xu´ xn,∇h pxnqy ď ´2µ p1´ ε3qλnβn ‖∇h pxnq‖2 ` 2ε3λnβn xu´ xn,∇h pxnqy .

Since h is convex, the following relation also hold

2λnβn xu´ xn,∇h pxnqy ď 2λnβn rh puq ´ h pxnqs .

Summing up the two inequalities above give us

2λnβn xu´ xn,∇h pxnqy ď ´µ p1´ ε3qλnβn ‖∇h pxnq‖2 ` ε3λnβn xu´ xn,∇h pxnqy
` λnβn rh puq ´ h pxnqs .

Using the same techniques as in the derivation of (2.13), we get

2λn xu´ xn, v `∇g pxnq ` βn∇h pxnqy
ď ´ µ p1´ ε3qλnβn ‖∇h pxnq‖2 ´ 2ηλn ‖∇g pxnq ´∇g puq‖2 ` λnβn rh puq ´ h pxnqs

` 2λn xu´ xn, yy ` ε3λnβn

„

h˚
ˆ

u,
2p

ε3βn

˙

´ σarg minh

ˆ

2p

ε3βn

˙

.

With this improved estimates, the conclusion follows as in the proof of Lemma 2.4.
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By using now Lemma 3.4, one obains, after slightly adapting the proof of Proposition 2.6,
the following result.

Proposition 3.5. Let 0 ă α ă 1
3 , ε1, ε2, ε3 ą 0 and the sequences pλnqně1 and pβnqně1 satisfy

condition pC4q. Let pxnqně0 be the sequence generated by Algorithm 3.3 and assume that the
Hypotheses 3.2 are verified. Then the following statements are true:

piq the sequence p‖xn`1 ´ xn‖qně0 belongs to `2 and the sequences
´

λnβn ‖∇hpxnq‖2
¯

ně1
and

pλnβnhpxnqqně1 belong to `1;

piiq if, moreover, lim inf
nÑ`8

λnβn ą 0, then lim
nÑ`8

‖∇hpxnq‖ “ lim
nÑ`8

h pxnq “ 0 and thus every

cluster point of the sequence pxnqně0 lies in arg minh.

piiiq for every u P S, the limit lim
nÑ`8

‖xn ´ u‖ exists.

Finally, the above proposition leads to the following convergence result.

Theorem 3.6. Let 0 ă α ă 1
3 , ε1, ε2, ε3 ą 0 and the sequences pλnqně1 and pβnqně1 satisfy

condition pC4q. Let pxnqně0 be the sequence generated by Algorithm 3.3, pznqně1 be the sequence
defined in (1.7) and assume that the Hypotheses 3.2 are verified. Then the following statements
are true:

piq the sequence pznqně1 converges weakly to an element in S as nÑ `8.

piiq if f is γ´strongly convex with γ ą 0, then pxnqně0 converges strongly to the unique element
in S as nÑ `8.

As follows we will show that under inf-compactness assumptions one can achieve weak non-
ergodic convergence for the sequence pxnqně0. Weak nonergodic convergence has been obtained
for Algorithm 3.3 in [25] when αn “ α for all n ě 1 and for restrictive choices for both the
sequence of step sizes and penalty parameters.

We denote by pf ` gq˚ “ minxParg minh pfpxq ` gpxqq. For every element x in H, we denote
by dist px,Sq “ inf

uPS
‖x´ u‖ the distance from x to S. In particular, dist px,Sq “ ‖x´PrSx‖,

where PrSx denotes the projection of x onto S. The projection operator PrS is firmly nonex-
pansive ([13, Proposition 4.8]), this means

‖PrS pxq ´PrS pyq‖2 ` ‖rId´PrSs pxq ´ rId´PrSs pyq‖2 ď ‖x´ y‖2 @x, y P H. (3.1)

Denoting d pxq “
1

2
dist px,Sq2 “ 1

2
‖x´PrSx‖2 for all x P H, one has that x ÞÑ dpxq is

differentiable and it holds ∇d pxq “ x´PrSx for all x P H.

Lemma 3.7. Let pxnqně0 be the sequence generated by Algorithm 3.3 and assume that the
Hypotheses 3.2 are verified. Then the following inequality holds for all n ě 1

d pxn`1q ´ d pxnq ´ αn pd pxnq ´ d pxn´1qq ` λn rpf ` gq pxn`1q ´ pf ` gq˚s

ď

ˆ

Lg
2
λn `

Lh
4
λnβn `

αn
2

˙

‖xn`1 ´ xn‖2 ` αn ‖xn ´ xn´1‖2 . (3.2)

Proof. Let n ě 1 be fixed. Since d is convex, we have

d pxn`1q ´ d pxnq ď xxn`1 ´PrS pxn`1q , xn`1 ´ xny . (3.3)

Then there exists vn`1 P Bfpxn`1q such that (see (2.2))

xn ´ xn`1 ´ λnp∇gpxnq ` βn∇hpxnqq ` αnpxn ´ xn´1q “ λnvn`1
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and, so,

xxn`1 ´PrS pxn`1q , xn`1 ´ xny

“ xxn`1 ´PrS pxn`1q ,´λnvn`1 ´ λn∇g pxnq ´ λnβn∇h pxnq ` αn pxn ´ xn´1qy

´ λnβn xxn`1 ´PrS pxn`1q ,∇h pxnqy ` αn xxn`1 ´PrS pxn`1q , xn ´ xn´1y . (3.4)

Since vn`1 P Bf pxn`1q, we get

´ λn xxn`1 ´PrS pxn`1q , vn`1y ď λn rf pPrS pxn`1qq ´ f pxn`1qs . (3.5)

Using the convexity of g it follows

g pxnq ´ g pPrS pxn`1qq ď x∇g pxnq , xn ´PrS pxn`1qy . (3.6)

On the other hand, the Descent Lemma gives

g pxn`1q ď g pxnq ` x∇g pxnq , xn`1 ´ xny `
Lg
2
‖xn`1 ´ xn‖2 . (3.7)

By adding (3.6) and (3.7), it yields

´ λn xxn`1 ´PrS pxn`1q ,∇g pxnqy ď λn rg pPrS pxn`1qq ´ g pxn`1qs `
Lgλn

2
‖xn`1 ´ xn‖2 .

(3.8)

Using the
1

Lh
´cocoercivity of ∇h combined with the fact that ∇h pPrS pxn`1qq “ 0 (as

PrS pxn`1q belongs to S), it yields

´xxn ´PrS pxn`1q ,∇h pxnqy ď ´
1

Lh
‖∇h pxnq‖2 .

Therefore

´λnβn xxn`1 ´PrS pxn`1q ,∇h pxnqy ď λnβn

ˆ

xxn ´ xn`1,∇h pxnqy ´
1

Lh
‖∇h pxnq‖2

˙

ď λnβn
Lh
4
‖xn`1 ´ xn‖2 . (3.9)

Further, we have

αn xxn`1 ´PrS pxn`1q ´ pxn ´PrS pxnqq , xn ´ xn´1y

ď
αn
2
‖rId´PrSs pxn`1q ´ rId´PrSs pxnq‖2 `

αn
2
‖xn ´ xn´1‖2

ď
αn
2
‖xn`1 ´ xn‖2 `

αn
2
‖xn ´ xn´1‖2 ,

and

αn xxn ´PrS pxnq , xn ´ xn´1y

“ αnd pxnq `
αn
2
‖xn ´ xn´1‖2 ´

αn
2
‖xn´1 ´PrS pxnq‖2

ď αnd pxnq `
αn
2
‖xn ´ xn´1‖2 ´ αnd pxn´1q .

By adding two relations above, we obtain

αn xxn`1 ´PrS pxn`1q , xn ´ xn´1y

“ αn xxn`1 ´PrS pxn`1q ´ pxn ´PrS pxnqq , xn ´ xn´1y ` αn xxn ´PrS pxnq , xn ´ xn´1y

ď
αn
2
‖xn`1 ´ xn‖2 ` αn ‖xn ´ xn´1‖2 ` αn pd pxnq ´ d pxn´1qq . (3.10)

By combining (3.5) , (3.8) , (3.9) and (3.10) with (3.4) we obtain the desired conclusion.
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Definition 3.8. A function Ψ: H Ñ sR is sad to be inf-compact if for every r ą 0 and κ P R
the set

Levrκ pΨq :“ tx P H : ‖x‖ ď r,Ψ pxq ď κu

is relatively compact in H.

An useful property of inf-compact functions follows.

Lemma 3.9. Let Ψ: HÑ sR be inf-compact and pxnqně0 be a bounded sequence in H such that
pΨ pxnqqně0 is bounded as well. If the sequence pxnqně0 converges weakly to an element in px as
nÑ `8, then it converges strongly to this element.

Proof. Let be sr ą 0 and sκ P R such that for all n ě 1

‖xn‖ ď sr and Ψ pxnq ď sκ.

Hence, pxnqně0 belongs to the set Levsr
sκ pΨq, which is relatively compact. Then pxnqně0 has

at least one strongly convergente subsequence. Since every strongly convergent subsequence
pxnl

qlě0 of pxnqně0 has as limit px, the desired conclusion follows.

We can formulate now the weak nonergodic convergence result.

Theorem 3.10. Let 0 ă α ă 1
3 , ε1, ε2, ε3 ą 0, the sequences pλnqně1 and pβnqně1 satisfy the

condition 0 ă lim inf
nÑ8

λnβn ď sup
ně0

λnβn ď µ, pxnqně0 be the sequence generated by Algorithm

3.3, and assume that the Hypotheses 3.2 are verified and that either f ` g or h is inf-compact.
Then the following statements are true:

piq lim
nÑ`8

d pxnq “ 0;

piiq the sequence pxnqně0 converges weakly to an element in S as nÑ `8;

piiiq if h is inf-compact, then the sequence pxnqně0 converges strongly to an element in S as
nÑ `8.

Proof. piq Thanks to Lemma 3.7 , for all n ě 1 we have

d pxn`1q ´ d pxnq ` λn rpf ` gq pxn`1q ´ pf ` gq˚s ď αn pd pxnq ´ d pxn´1qq ` ζn, (3.11)

where

ζn :“

ˆ

Lg
2
λn `

Lh
4
λnβn `

αn
2

˙

‖xn`1 ´ xn‖2 ` αn ‖xn ´ xn´1‖2 .

From Proposition 3.5 piq, combined with the fact that both sequences pλnqně1 and pβnqně1

are bounded, it follows that
ÿ

ně1

ζn ă `8.

In general, since pxnqně0 is not necessarily included in arg minh, we have to treat two
different cases.

Case 1: There exists an integer n1 ě 1 such that pf ` gq pxnq ě pf ` gq˚ for all n ě n1. In
this case, we obtain from Lemma 1.2 that:

• the limit lim
nÑ`8

d pxnq exists.

•
ÿ

něn2

λn rpf ` gq pxn`1q ´ pf ` gq˚s ă `8. Moreover, since pλnqně1 R `
1, we must have

lim inf
nÑ`8

pf ` gq pxnq ď pf ` gq˚. (3.12)
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Consider a subsequence pxnk
qkě0 of pxnqně0 such that

lim
kÑ`8

pf ` gq pxnk
q “ lim inf

nÑ`8
pf ` gq pxnq

and note that, thanks to (3.12), the sequence ppf ` gqpxnk
qqkě0 is bounded. From Proposi-

tion 3.5 (ii)-(iii) we get that also pxnk
qkě0 and phpxnk

qqkě0 are bounded. Thus, since either
f ` g or h is inf-compact, there exists a subsequence pxnl

qlě0 of pxnk
qkě0, which converges

strongly to an element px as l Ñ `8. According to Proposition 3.5 (ii)-(iii), px belongs to
arg minh. On the other hand,

lim
lÑ`8

pf ` gq pxnl
q “ lim inf

nÑ`8
pf ` gq pxnq ě pf ` gq ppxq ě pf ` gq˚. (3.13)

We deduce from (3.12) - (3.13) that pf ` gq ppxq “ pf ` gq˚, or in other words, that px P S.
In conclusion, thanks to the continuity of d,

lim
nÑ`8

d pxnq “ lim
lÑ8

d pxnl
q “ d ppxq “ 0.

Case 2 : For all n ě 1 there exists some n1 ą n such that pf ` gq pxn1q ă pf ` gq˚. We define
the set

V “
 

n1 ě 1: pf ` gq pxn1q ă pf ` gq˚
(

.

There exist an integer n2 ě 2 such that for all n ě n2 the set tk ď n : k P V u is nonempty.
Hence, for all n ě n2 the number

tn :“ max tk ď n : k P V u

is well-defined. By definition tn ď n for all n ě n3 and moreover the sequence ttnuněn2
is

nondecreasing and lim
nÑ`8

tn “ 8. Indeed, if lim
nÑ8

tn “ t P R, then for all n1 ą t it holds

pf ` gq pxn1q ě pf ` gq˚, contradiction. Choose an integer N ě n2.

• If tN ă N , then, for all n “ tN , ¨ ¨ ¨ , N ´ 1, since pf ` gq pxnq ě pf ` gq˚, the inequality
(3.11) gives

d pxn`1q ´ d pxnq ď d pxn`1q ´ d pxnq ` λn rF pxn`1q ´ F˚s

ď αn pd pxnq ´ d pxn´1qq ` ζn. (3.14)

Summing (3.14) for n “ tN , ¨ ¨ ¨ , N´1 and using tht tαnuně1 is nondecreasing, it yields

d pxN q ´ d pxtN q ď
N´1
ÿ

n“tN

pαnd pxnq ´ αn´1d pxn´1qq `

N´1
ÿ

n“tN

ζn

ď αd pxN´1q `
ÿ

nětN

ζn. (3.15)

• If tN “ N , then d pxN q “ d pxtN q and we have

d pxN q ´ αd pxN´1q ď d pxtN q `
ÿ

nětN

ζn. (3.16)

For all n ě 1 we define an :“ d pxnq ´ αd pxn´1q. In both cases it yields

aN ď d pxtN q `
N
ÿ

n“tN

ζn ď d pxtN q `
ÿ

nětN

ζn. (3.17)
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Passing in (3.17) to limit as N Ñ `8 we obtain that

lim sup
nÑ`8

an ď lim sup
nÑ`8

d pxtnq . (3.18)

Let be u P S. For all n ě 1 we have

d pxnq “
1

2
dist pxn,Sq2 ď

1

2
‖xn ´ u‖2 ,

which shows that pd pxnqqně0 is bounded, as lim
nÑ`8

‖xn ´ u‖ exists. We obtain

lim sup
nÑ8

an “ lim sup
nÑ8

rd pxnq ´ αd pxn´1qs ě p1´ αq lim sup
nÑ8

d pxnq ě 0. (3.19)

Further, for all n ě 1 we have pf ` gq pxtnq ă pf ` gq˚, which gives

lim sup
nÑ`8

pf ` gq pxtnq ď pf ` gq˚. (3.20)

This means that the sequence ppf ` gq pxtnqqně0 is bounded from above. Consider a subse-
quence pxtkqkě0 of pxtnqně0 such that

lim
kÑ`8

d pxtkq “ lim sup
nÑ`8

d pxtnq .

From Proposition 3.5 (ii)-(iii) we get that also pxtkqkě0 and phpxtkqqkě0 are bounded. Thus,
since either f ` g or h is inf-compact, there exists a subsequence pxtlqlě0 of pxtkqkě0, which
converges strongly to an element px as l Ñ `8. According to Proposition 3.5 (ii)-(iii), px
belongs to arg minh. Furthermore, it holds

lim inf
lÑ`8

pf ` gq pxtlq ě pf ` gq ppxq ě pf ` gq˚. (3.21)

We deduce from (3.20) and (3.21) that

pf ` gq˚ ď pf ` gq ppxq ď lim sup
nÑ`8

pf ` gq pxtlq ď lim sup
nÑ`8

pf ` gq pxtnq ď pf ` gq˚,

which gives px P S. Thanks to the continuity of d we get

lim sup
nÑ`8

d pxtnq “ lim
lÑ`8

d pxtlq “ d ppxq “ 0. (3.22)

By combining (3.18), (3.19) and (3.22), it yields

0 ď p1´ αq lim sup
nÑ`8

d pxnq ď lim sup
nÑ`8

an ď lim sup
nÑ`8

d pxtnq “ 0,

which implies lim sup
nÑ`8

d pxnq “ 0 and thus

lim
nÑ`8

d pxnq “ lim inf
nÑ`8

d pxnq “ lim sup
nÑ`8

d pxnq “ 0.

piiq According to piq we have lim
nÑ8

d pxnq “ 0, thus every weak cluster point of the sequence

pxnqně0 belongs to S. From Lemma 1.1 it follows that pxnqně0 converges weakly to a point
in S as nÑ `8.

piiiq Since lim inf
nÑ8

λnβn ą 0, from Proposition 3.5(ii) we have that

lim
nÑ`8

‖∇h pxnq‖ “ lim
nÑ`8

h pxnq “ 0.

Since pxnqně0 is bounded, there exist sr ą 0 and sκ P R such that for all n ě 1

‖xn‖ ď sr and h pxnq ď sκ.

Thanks to piiq the sequence pxnqně0 converges weakly to an element in S. Therefore, ac-
cording to Lemma 3.9, it converges strongly to this element in S.
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[12] S. Banert and R. I. Boţ. Backward penalty schemes for monotone inclusion problems. Journal of Optimization
Theory and Applications, Vol. 166(3): 930–948 (2015)

[13] H. H. Bauschke and P. L. Combettes. Convex Analysis Monotone Operator Theory in Hilbert Spaces. CMS
Books in Mathematics, Springer, New York (NY) (2011)

[14] H. H. Bauschke, D.A. McLaren and H.S. Sendov. Fitzpatrick functions: inequalities, examples and remarks
on a problem by S. Fitzpatrick. Journal of Convex Analysis, Vol. 13(3): 499–523 (2006)

[15] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, Vol. 2(1): 183–202 (2009)

[16] D. P. Bertsekas. Nonlinear programming. Athena Scientific, Cambridge (MA) (1999)
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[20] R. I. Boţ and E. R. Csetnek. An inertial forward-backward-forward primal-dual splitting algorithm for solving
monotone inclusion problems. Numerical Algorithms, Vol. 71(3): 519–540 (2016)
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[40] C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

20


	Introduction and preliminaries
	Motivation and problems formulation
	Notations and preliminaries

	The general monotone inclusion problem
	Applications to convex bilevel programming

