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1 Introduction
Optimisation problems where the objective function can be written as a difference of
two convex functions arise naturally in several applications, such as image processing
[18], machine learning [28], optimal transport [12] and sparse signal recovering [14].
Generally, the class of d.c. functions is rather broad and contains for example every
twice continuously differentiable function. For an overview over d.c. functions, see e.g.
[15].
The classical approach to iteratively find local extrema of d.c. problems was described

by Tao and An [27] in 1997 under the name DCA (d.c. algorithms). One of the most
recent papers on this topic is [2], where an accelerated variant of the DCA method is
proposed under the supplementary assumption that both the convex and the concave
part are continuously differentiable. In 2003, Sun, Sampaio and Candido introduced a
proximal point approach into the theory of d.c. algorithm [26], where the convex part is
evaluated by its proximal point operator, while its concave part is still evaluated by one
of its subgradients. Later on, the approach in [26] has been extended in [1, 13, 19] by
considering in the convex part a further convex smooth summand that is evaluated via
its gradient.
In this paper, we go one step further by proposing an algorithm, where both the

convex and concave parts are evaluated via proximal steps. In convex optimisation,
using proximal steps instead of subgradient steps has several advantages:

• The subdifferential at a point may be a non-singleton set, in particular it may be
empty or may consist of several distinct elements. In an algorithm, one may get
stuck or have to choose one, respectively.

• Even if the subdifferential is a singleton in each step, it might be highly discontin-
uous, so small deviations might lead to a very different behaviour of the iterations.

• Better convergence rates can be guaranteed for proximal algorithms than for sub-
gradient algorithms (compare [7] and [20, Theorem 3.2.3]).

In addition, we consider a linear operator in the concave part of the objective function,
which is evaluated in a forward manner in the spirit of primal-dual splitting methods.
In Section 2, we present the problem to be solved together with its Toland dual

and attach to them a primal-dual formulation in the form of a minimisation problem,
too. We derive first-order optimality conditions, relate the optimal solutions and the
critical points of the primal-dual minimisation problems to the optimal solutions and,
respectively, the critical points of both primal and dual optimisation problems.
In Section 3, we propose a double-proximal d.c. algorithm, which generates both a

primal and a dual sequence of iterates and show several properties which make it com-
parable to DCA. More precisely, we prove a descent property for the objective function
values of a primal-dual formulation and that every cluster point of the sequence of pri-
mal iterates is a critical point of the primal problem, while every critical point of the
sequence of dual iterates is a critical point of the dual problem.
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In Section 4, we show global convergence of our algorithm and convergence rates for
the iterates in certain cases, provided that the objective function of the primal-dual
reformulation satisfies the Kurdyka–Łojasiewicz property; in other words, it is a KŁ
function. The convergence analysis relies on methods and concepts of real algebraic
geometry introduced by Łojasiewicz [17] and Kurdyka [16] and later developed in the
nonsmooth setting by Attouch, Bolte, Redont, and Soubeyran [4], Attouch, Bolte, and
Svaiter [5] and Bolte, Sabach and Teboulle [9]. One of the remarkable properties of
the KŁ functions is their ubiquity in applications (see [9]). The class of KŁ functions
contains semi-algebraic, real sub-analytic, semiconvex, uniformly convex and convex
functions satisfying a growth condition.
We close our paper with some numerical examples addressing an image deblurring and

denoising problem in the context of different DC regularisations.

1.1 Notation and preliminaries
For the theory of convex analysis in finite-dimensional spaces, see the book [24]. We
shall consider functions taking values in the extended real line R := R∪{+∞,−∞}. We
agree on the order −∞ < a < +∞ for any real number a and the operations

+∞+ a = a+∞ = +∞−∞ = −∞+∞ = +∞+∞ = +∞,
−∞+ a = a−∞ = −∞−∞ = −∞,

0 · (−∞) = 0, 0 · (+∞) = +∞

for arbitrary a ∈ R (see [31]). Let H be a real finite-dimensional Hilbert space. For a
function f : H → R, we denote by

dom f := {x ∈ H | f(x) < +∞}

its domain. The function f is called proper if it does not take the value −∞ and
dom f 6= ∅. It is called convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ H and 0 ≤ λ ≤ 1. The conjugate function f∗ : H → R of f : H → R is
defined by

f∗(x∗) = sup {〈x∗, x〉 − f(x) |x ∈ H} .
If f is proper, convex, and lower semicontinuous, then f∗∗ := (f∗)∗ = f by the Fenchel–
Moreau theorem.
The convex subdifferential ∂f(x) at x ∈ H of a function f : H → R is empty if

x /∈ dom f and

∂f(x) = {x∗ ∈ H | ∀y ∈ H : f(y) ≥ f(x) + 〈x∗, y − x〉}

otherwise. Let γ > 0 and f : H → R be proper, convex, and lower semicontinuous. The
proximal point Proxγf (x) of γf at x ∈ H is defined as

Proxγf (x) = arg min
{
γf(y) + 1

2 ‖y − x‖
2
∣∣∣∣ y ∈ H} .
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The set of minimisers in the definition above is a singleton [6, Proposition 12.15], and
the proximal point is characterised by the variational inequality [6, Proposition 12.26]

f(y) ≥ f(Proxγf (x)) + 1
2γ 〈y − Proxγf (x), x− Proxγf (x)〉

for all y ∈ H, which is equivalent to

1
γ

(x− Proxγf (x)) ∈ ∂f(Proxγf (x)). (1)

When dealing with nonconvex and nonsmooth functions, we have to consider sub-
differentials more general than the convex one. The Fréchet subdifferential ∂F f(x) at
x ∈ H of a proper and lower semicontinuous function f : H → R is empty if x /∈ dom f
and

∂F f(x) =

x∗ ∈ H
∣∣∣∣∣∣ lim inf

y→x
y 6=x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0


otherwise. The limiting (Mordukhovich) subdifferential ∂Lf(x) at x ∈ H of a proper and
lower semicontinuous function f : H → R is empty if x /∈ dom f , and

∂Lf(x) =
{
x∗ ∈ H

∣∣∣∣ ∃(xk)k≥0, (x
∗
k)k≥0 : xk ∈ H, x∗k ∈ ∂F f(xk), k ≥ 0,

xk → x, f(xk)→ f(x), x∗k → x∗ as k → +∞
}

otherwise.

2 Problem statement
Let G and H be real finite-dimensional Hilbert spaces, let g : H → R and h : G → R be
proper, convex, and lower semicontinuous functions, let ϕ : H → R be a convex, Fréchet
differentiable function with 1

β -Lipschitz continuous gradient, for some β > 0, and let
K : H → G be a linear mapping (and K∗ : G → H its adjoint). We consider the problem

min {g(x) + ϕ(x)− h(Kx) |x ∈ H} (2)

together with its Toland dual problem [29, 30]

min {h∗(y)− (g + ϕ)∗(K∗y) | y ∈ G} . (3)

The following primal-dual formulation will turn out to be useful in the sequel:

min {Φ(x, y) |x ∈ H, y ∈ G} with Φ(x, y) := g(x) + ϕ(x) + h∗(y)− 〈y,Kx〉 , (4)

where Φ : H× G → R is proper and lower semicontinuous.
Let us derive necessary optimality conditions for the problems (2), (3), and (4):
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Proposition 1. 1. The optimal values of (2), (3), and (4) are equal.

2. For all x ∈ H and y ∈ G,

Φ(x, y) ≥ g(x) + ϕ(x)− h(Kx) and
Φ(x, y) ≥ h∗(y)− (g + ϕ)∗(y)(K∗y).

3. Let x̄ ∈ H be a solution of (2). Then ∂(h ◦K)(x̄) ⊆ ∂g(x̄) +∇ϕ(x̄).

4. Let ȳ ∈ G be a solution of (3). Then ∂((g + ϕ)∗ ◦K∗)(ȳ) ⊆ ∂h∗(ȳ).

5. Let (x̄, ȳ) ∈ H × G be a solution of (4). Then x̄ is a solution of (2), and ȳ is a
solution of (3). Furthermore, the inclusions

K∗ȳ ∈ ∂g(x̄) +∇ϕ(x̄), (5)
Kx̄ ∈ ∂h∗(ȳ) (6)

hold.

Proof. 1. By the Fenchel–Moreau theorem, applied to h, we have

inf {g(x) + ϕ(x)− h(Kx) |x ∈ H}
= inf {g(x) + ϕ(x)− h∗∗(Kx) |x ∈ H}
= inf {g(x) + ϕ(x)− sup {〈y,Kx〉 − h∗(y) | y ∈ G} |x ∈ H}
= inf {g(x) + ϕ(x) + h∗(y)− 〈y,Kx〉 |x ∈ H, y ∈ G}
= inf {h∗(y)− sup {〈x,K∗y〉 − (g + ϕ)(x) |x ∈ H} | y ∈ G}
= inf {h∗(y)− (g + ϕ)∗(K∗y) | y ∈ G} .

2. Let x ∈ H and y ∈ G. Then,

g(x) + ϕ(x)− h(Kx) = g(x) + ϕ(x)− h∗∗(Kx)
= g(x) + ϕ(x)− sup {〈Kx, ỹ〉 − h∗(ỹ) | ỹ ∈ G}
≤ g(x) + ϕ(x)− 〈Kx, y〉+ h∗(y),

and the other inequality is verified by an analogous calculation.

3. This kind of optimality condition is classical in d.c. programming, see e.g. [26,
Proposition 1.1].

4. The proof of this statement is analogous.

5. Let (x̄, ȳ) be a solution of (4). (In particular, if such a solution exists, the common
optimal value of (2), (3) and (4) must be finite.) The function x 7→ Φ(x, ȳ) is
convex and takes a minimum at x̄. Therefore

0 ∈ ∂g(x̄) +∇ϕ(x̄)−K∗ȳ,
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which proves (5). The same argument works for the function y 7→ Φ(x̄, y) and
implies

0 ∈ ∂h∗(ȳ)−Kx̄,
which is (6). For these inclusions, we obtain equality in the Young–Fenchel in-
equality [6, Proposition 16.9], i.e.,

(g + ϕ)∗(K∗ȳ) + (g + ϕ)(x̄) = 〈x̄,K∗ȳ〉 ,
h∗(ȳ) + h(Kx̄) = 〈ȳ, Kx̄〉 .

Therefore, by subtracting these equalities,

(g + ϕ)(x̄)− h(Kx̄) = h∗(ȳ)− (g + ϕ)∗(K∗ȳ)
= h∗(ȳ)− sup {〈x,K∗ȳ〉 − g(x)− ϕ(x) |x ∈ H}
≤ h∗(ȳ) + g(x̄) + ϕ(x̄)− 〈x̄,K∗ȳ〉 .

Since (x̄, ȳ) is a solution of (4), the last expression equals the common optimal
value of (2), (3), and (4).

Definition 1. We say that (x̄, ȳ) ∈ H×G is a critical point of the objective function Φ
of (4) if the inclusions (5) and (6) are satisfied. We denote by critΦ the set of critical
points of the function Φ.

Remark 1. If (x̄, ȳ) ∈ H × G is a critical point of Φ, then

K∗ȳ ∈ K∗∂h(Kx̄) ∩ (∂g(x̄) +∇ϕ(x̄)), (7)
Kx̄ ∈ K∂(g + ϕ)∗(K∗ȳ) ∩ ∂h∗(ȳ). (8)

By adopting the terminology of e.g. [27, p. 297], we denote by

crit(g + ϕ− h ◦K) := {x ∈ H : K∗∂h(Kx) ∩ (∂g(x) +∇ϕ(x)) 6= ∅}

the set of critical points of the objective function g + ϕ− h ◦K of (2) and by

crit(h∗ − (g + ϕ)∗ ◦K∗) := {y ∈ G : K∂(g + ϕ)∗(K∗y) ∩ ∂h∗(y) 6= ∅}

the set of critical points of the objective function h∗− (g + ϕ)∗ ◦K∗ of (3). (Recall that
K∗∂h(Kx) ⊆ ∂(h ◦K)(x) and K∂(g + ϕ)∗(K∗y) ⊆ ∂((g + ϕ) ◦K∗)(y).)
Thus, if (x̄, ȳ) ∈ H×G is a critical point of the objective function Φ, then x̄ is a critical

point of g + ϕ− h ◦K and ȳ is a critical point of h∗ − (g + ϕ)∗ ◦K∗.

3 The algorithm
Let (x0, y0) ∈ H×G, and let (γn)n≥0 and (µn)n≥0 be sequences of positive numbers. We
propose the following iterative scheme: For all n ≥ 0 set

xn+1 = Proxγng (xn + γnK
∗yn − γn∇ϕ(xn)), (9)

yn+1 = Proxµnh∗ (yn + µnKxn+1). (10)
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By the inequalities for the proximal points, we have, for every x, y ∈ H and n ≥ 0,

g(xn+1)− g(x) ≤ 1
γn
〈xn + γnK

∗yn − γn∇ϕ(xn)− xn+1, xn+1 − x〉

= 1
γn
〈xn − xn+1, xn+1 − x〉+ 〈K∗yn, xn+1 − x〉 −〈∇ϕ(xn), xn+1 − x〉 ,

h∗(yn+1)− h∗(y) ≤ 1
µn
〈yn + µnKxn+1 − yn+1, yn+1 − y〉

= 1
µn
〈yn − yn+1, yn+1 − y〉+ 〈Kxn+1, yn+1 − y〉 .

Moreover, using [6, Theorem 18.15 (iii)] and the subdifferential inequality, we have for
every x ∈ H and n ≥ 0,

ϕ(xn+1)− ϕ(xn) ≤ 〈∇ϕ(xn), xn+1 − xn〉+ 1
2β ‖xn − xn+1‖2 ,

ϕ(xn)− ϕ(x) ≤ 〈∇ϕ(xn), xn − x〉 .

We consider the auxiliary function Φ : H× G → R defined by

Φ(x, y) = g(x) + ϕ(x) + h∗(y)− 〈y,Kx〉 .

By the inequalities above, we have, for arbitrary x ∈ H, y ∈ G and n ≥ 0,

Φ(xn+1, yn+1)− Φ(x, y)
= g(xn+1)− g(x) + ϕ(xn+1)− ϕ(x) + h∗(yn+1)− h∗(y) + 〈y,Kx〉 − 〈yn+1,Kxn+1〉

≤ 1
γn
〈xn − xn+1, xn+1 − x〉+ 1

µn
〈yn − yn+1, yn+1 − y〉+ 1

2β ‖xn − xn+1‖2

+ 〈K(x− xn+1), y − yn〉 . (11)

Furthermore, for any n ≥ 0,

Φ(xn+1, yn)− Φ(xn, yn) = g(xn+1) + ϕ(xn+1)− g(xn)− ϕ(xn) +〈K∗yn, xn − xn+1〉

≤
( 1

2β −
1
γn

)
‖xn − xn+1‖2 , (12)

Φ(xn+1, yn+1)− Φ(xn+1, yn) = h∗(yn+1)− h∗(yn) + 〈yn − yn+1,Kxn+1〉

≤ − 1
µn
‖yn − yn+1‖2 . (13)

The last two inequalities give rise to the following statement.

Proposition 2. For each n ≥ 0, we have

Φ(xn+1, yn+1) ≤ Φ(xn+1, yn) ≤ Φ(xn, yn),

provided that 0 < γn ≤ 2β.
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Proposition 3. Let

0 < inf
n≥0

γn ≤ sup
n≥0

γn < 2β and 0 < inf
n≥0

µn ≤ sup
n≥0

µn < +∞. (14)

Furthermore, let inf {g(x) + ϕ(x)− h(Kx) |x ∈ H} > −∞. Then,∑
n≥0
‖xn − xn+1‖2 < +∞ and

∑
n≥0
‖yn − yn+1‖2 < +∞.

Proof. Let N ≥ 1 be an integer. Sum up (12) and (13) for n = 0, . . . , N − 1 and obtain

Φ(xN , yN )− Φ(x0, y0) ≤
N−1∑
n=0

( 1
2β −

1
γn

)
‖xn − xn+1‖2 −

N−1∑
n=0

1
µn
‖yn − yn+1‖2 .

By assumption, the expression on the left-hand side is bounded from below by a fixed
real number M for any N ≥ 1, and so is the right-hand side. The numbers

(
1
γn
− 1

2β

)
and 1

µn
are bounded from below by a positive number, say ε > 0, so

N−1∑
n=0
‖xn − xn+1‖2 +

N−1∑
n=0
‖yn − yn+1‖2 ≤ −

M

ε
.

Since N is arbitrary, the series converge.

Proposition 4. Let inf {g(x) + ϕ(x)− h(Kx) |x ∈ H} > −∞ and (14) be satisfied. If
(xn)n≥0 and (yn)n≥0 are bounded, then

1. every cluster point of (xn)n≥0 is a critical point of (2),

2. every cluster point of (yn)n≥0 is a critical point of (3) and

3. every cluster point of (xn, yn)n≥0 is a critical point of (4).

Proof. Let x̄ be a cluster point of (xn)n≥0. Let (xnk)k≥0 be a subsequence of (xn)n≥0
such that xnk → x̄. By another transition to a subsequence, we can guarantee ynk → ȳ
for some ȳ ∈ H, since (ynk)k≥0 is bounded. By (9) and (10), we obtain, for every k ≥ 0,

xnk − xnk+1
γnk

+K∗ynk −∇ϕ(xnk) ∈ ∂g(xnk+1)

and ynk − ynk+1
µnk

+Kxnk+1 ∈ ∂h∗(ynk+1),

respectively. By Proposition 3, the first summands on the left-hand side of the above
inclusions tend to zero as k → ∞. Using the continuity of ∇ϕ and the closedness of
the graphs of ∂g and ∂h∗ and passing to the limit, we get K∗ȳ − ∇ϕ(x̄) ∈ ∂g(x̄) and
Kx̄ ∈ ∂h∗(ȳ), which means that (x̄, ȳ) is a critical point of Φ. The first statement follows
by considering Remark 1. For the second statement, one has to choose x̄ and ȳ in reverse
order, for the third one, they are chosen at the same time.
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Remark 2. It is clear that one cannot expect the cluster points to be minima, since it
is easy to see that (x̄, ȳ) is a fixed point of the iteration (9)–(10) if and only if (5) and
(6) are satisfied, i.e., if and only if (x̄, ȳ) is a critical point for Φ (independent of the
choice of the parameters (γn)n≥0 and (µn)n≥0).

Remark 3. One should notice that the iterative scheme given by (9) and (10) does
not use any subgradients, but only proxmial points and gradients, which are continuous
with respect to the input. In contrast, the DCA and its variants use the subgradients of
at least one of the involved functions. The performance might therefore depend on the
subgradient oracle, whereas our algorithm is determined by the choice of the starting
points and the stepsize sequences alone. This is especially an issue when dealing with
nonsmooth functions like the `1 norm.

Example 1. Consider the problem given in [22, Example 4]. The primal problem

min
x∈R

{1
2x

2 −max {−x, 0}
}

and its Toland dual
min

y∈[−1,0]

{
−1

2y
2
}

have the two primal-dual stationary points (x, y) = (0, 0) and (x, y) = (−1,−1), but
only the latter is a local minimum for any of these problems. On the other hand, the
classical DCA might converge to the former stationary point for an unfavourable choice
of the subgradients. The same might happen to the double-proximal d.c. algorithm, see
Figure 1. A possible solution to the problem of getting stuck in stationary points which
are not local minima is the use of inertial techniques according to Polyak [23], which are
already well-established in proximal algorithms for convex and nonconvex problems, see
e.g. [10, 21].

Proposition 5. Let (14) be satisfied. For any n ≥ 0, the following statements are
equivalent:

1. (xn, yn) is a critical point of Φ;

2. (xn+1, yn+1) = (xn, yn);

3. Φ(xn+1, yn+1) = Φ(xn, yn).

Proof. It is easily seen by the formula (1) that the first two statements are equivalent.
The equivalence of the latter two follows by (12) and (13).

Next, we summarise the convergence properties of the prox-prox algorithm. To this
end, we denote by ω(x0, y0) the set of cluster points of the iteration generated by (9)
and (10) with the initial points x0 and y0. See also [9, Lemma 5] for an analogous result
for a nonconvex forward-backward scheme.
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x

y

Figure 1: Regions of convergence for Example 1.
The horizontal and vertical axes indicate the primal and dual starting points,

respectively. For points in the blue region, the method converges to the stationary
point (0, 0), which is not a local minimum, and for points in the red region it converges
to the global minimum (−1,−1). The stationary points are highlighted with circles.
Light colours mean fewer iterations for converence than darker colours. The stepsize

sequences are chosen to be constant: γn = µn = 0.1 for all n ≥ 0.
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Lemma 1. Let H and G be two real finite-dimensional Hilbert spaces, let g : H → R
and h : G → R be proper, convex, and lower semicontinuous functions. Let ϕ : H → R
be a convex, Fréchet differentiable function with a 1

β -Lipschitz continuous gradient, for
some β > 0, and let K : H → G be a linear mapping. Let the sequences (γn)n≥0 and
(µn)n≥0 satisfy (14). Moreover, assume that the sequence (xn, yn)n≥0 generated by (9)
and (10) is bounded. Then the following assertions hold:

1. ∅ 6= ω(x0, y0) ⊆ critΦ ⊆ crit(g + ϕ− h ◦K)× crit(h∗ − (g + ϕ)∗ ◦K∗),

2. limn→∞ dist((xn, yn), ω(x0, y0)) = 0,

3. if the common optimal value of the problems (2), (3), and (4) is > −∞, then
ω(x0, y0) is a nonempty, compact, and connected set, and so are the sets of the
limit points of the sequences (xn)n≥0 and (yn)n≥0,

4. the objective function Φ is finite and constant on ω(x0, y0) provided that the optimal
value is finite.

Proof. 1. It is clear that the set of cluster points of a bounded sequence is nonempty.
That every cluster point is critical for Φ, is the statement of Proposition 4. The
last inclusion is discussed in Remark 1.

2. Assume that the assertion does not hold. In this case, there exists an ε > 0 and a
subsequence (xnk , ynk)k≥0 of (xn, yn)n≥0 with dist((xnk , ynk), ω(x0, y0)) > ε for all
k ≥ 0. The subsequence is bounded, so it has a cluster point, which is a cluster
point of the original sequence (xn, yn)n≥0 as well, thus an element of ω(x0, y0).
This contradicts the assumption dist((xnk , ynk), ω(x0, y0)) > ε for all k ≥ 0.

3. Since the sequence (xn, yn)n≥0 is bounded, the sets

Ωk := cl

⋃
n≥k
{(xn, yn)}


are bounded and closed, hence compact for any k ≥ 0. Their intersection

⋂
n≥0 Ωn,

which equals the set of cluster points of (xn, yn)n≥0, is therefore compact, too. The
connectedness follows from the property given by Proposition 3, and the proof is
completely analogous to the one of [9, Lemma 5 (iii)].

4. According to Proposition 2, the function values Φ(xn, yn) are monotonically de-
creasing, thus convergent, say Φ(xn, yn)→ `. Let (x̄, ȳ) be an arbitrary limit point
of the sequence (xn, yn)n≥0, and let (xnk , ynk)k≥0 be a subsequence converging to
(x̄, ȳ) as k →∞. By lower semicontinuity, we have Φ(x̄, ȳ) ≤ limk→∞Φ(xnk , ynk) =
`. On the other hand, consider (11) with x = x̄ and y = ȳ. The right-hand
side converges to 0 as we let n → ∞ along the subsequence (nk)k≥0, so ` =
limn→∞Φ(xn, yn) ≤ Φ(x̄, ȳ).

Remark 4. To guarantee the boundedness of the iterates, one could assume that the
objective function of the primal-dual minimisation problem (4) is coercive, i.e., the lower
level sets are bounded.
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4 Convergence under Kurdyka–Łojasiewicz assumptions
In the next step, we shall assume the Kurdyka–Łojasiewicz property for the functions
involved. Let us recall the definition and some basic properties. By Θη, for η ∈ (0,+∞],
we denote the set of all concave and continuous functions ϑ : [0, η)→ R with the following
properties:

1. ϑ(0) = 0,

2. ϑ is continuously differentiable on (0, η) and continuous at 0,

3. ϑ′(s) > 0 for all s ∈ (0, η).

Definition 2. Let H be a real finite-dimensional Hilbert space, and let Φ : H → R
be a proper and lower semicontinuous function. We say that Φ satisfies the Kurdyka–
Łojasiewicz property at x̄ ∈ dom ∂LΦ := {x ∈ H | ∂LΦ(x) 6= ∅} if there exists some η ∈
(0,+∞], a neighbourhood U of x̄ and a function ϑ ∈ Θη such that for all

x ∈ U ∩ {x ∈ H |Φ(x̄) < Φ(x) < Φ(x̄) + η}

the following inequality holds:

ϑ′(Φ(x)− Φ(x̄)) · dist(0, ∂LΦ(x)) ≥ 1.

We call Φ a KŁ function if it satisfies the Kurdyka–Łojasiewicz property at each point
x̄ ∈ dom ∂LΦ.

The following uniform KŁ property is according to [9, Lemma 6].

Lemma 2. Let Ω be a compact set, and let Φ : H → R be a proper and lower semicon-
tinuous function. Assume that Φ is constant on Ω and satisfies the KŁ property at each
point of Ω. Then there exist ε > 0, η > 0, and ϑ ∈ Θη such that for all ū ∈ Ω and all u
in the intersection

{u ∈ H | dist(u,Ω) < ε} ∩ {u ∈ H |Φ(ū) < Φ(u) < Φ(ū) + η} (15)

one has
ϑ′(Φ(u)− Φ(ū)) · dist(0, ∂LΦ(u)) ≥ 1.

In the KŁ property, we need the distance of a subgradient from zero. In our algorithm,
we have the following result.

Lemma 3. For each n ≥ 1 with γn−1 < 2β, there exist (x∗n, y∗n) ∈ H×G with (x∗n, y∗n) ∈
∂LΦ(xn, yn) and

‖x∗n‖ ≤ ‖K‖ ‖yn−1 − yn‖+ 1
γn−1

‖xn−1 − xn‖ ,

‖y∗n‖ ≤
1

µn−1
‖yn−1 − yn‖ .

12



Proof. From the definition of the algorithm, we have, for each n ≥ 1,

xn−1 − xn
γn−1

+K∗yn−1 −∇ϕ(xn−1) ∈ ∂g(xn),

yn−1 − yn
µn−1

+Kxn ∈ ∂h∗(yn).

Consider the function Φ̃ : H × G → R, Φ̃(x, y) := g(x) + ϕ(x) + h∗(y). By the usual
calculus of the convex subdifferential and [25, Proposition 8.12], for each n ≥ 1

∂LΦ̃(xn, yn) = (∂g(xn) +∇ϕ(xn))× ∂h∗(yn).

By [25, Exercise 8.8], we have for each n ≥ 1

∂LΦ(xn, yn) = ∂LΦ̃(xn, yn)− (K∗yn,Kxn)
= (∂g(xn) +∇ϕ(xn)−K∗yn)× (∂h∗(yn)−Kxn), (16)

thus, (
x∗n
y∗n

)
:=
(xn−1−xn

γn−1
+∇ϕ(xn)−∇ϕ(xn−1) +K∗(yn−1 − yn)

yn−1−yn
µn−1

)
∈ ∂LΦ(xn, yn).

Now, we estimate for each n ≥ 1

‖x∗n‖ ≤ ‖K‖ ‖yn−1 − yn‖+ 1
γn−1

‖(Id− γn−1∇ϕ)(xn−1)− (Id− γn−1∇ϕ)(xn)‖ .

By the Baillon–Haddad theorem [6, Corollary 18.16], ∇ϕ is β-cocoercive. By [6, Propo-
sition 4.33], Id − γn−1∇ϕ is nonexpansive for γn−1 < 2β, which leads to the desired
conclusion.

4.1 The case when Φ is a KŁ function
Theorem 1. Let

0 < γ := inf
n≥0

γn ≤ γ := sup
n≥0

γn < β,

0 < µ := inf
n≥0

µn ≤ µ := sup
n≥0

µn < +∞.

Suppose that Φ is in addition a KŁ function bounded from below. Then (xn, yn)n≥0 is a
Cauchy sequence, thus convergent to a critical point of Φ.

Proof. Let Ω := ω(x0, y0), and let ` ∈ R be the value of Φ on Ω (see item 4 of Lemma
1). If Φ(xn, yn) = ` for some n ≥ 0, then, by (12) and (13), xn+1 = xn and yn+1 = yn,
and the assertion holds. Therefore, we assume Φ(xn, yn) > ` for all n ≥ 0.
Let ε > 0, η > 0 and ϑ ∈ Θη be as provided by Lemma 2. Since Φ(xn, yn) → ` as

n→ +∞, we find n1 ≥ 0 with Φ(xn, yn) < `+ η for n ≥ n1. Since dist((xn, yn),Ω)→ 0
as n→ +∞, we find n2 ≥ 0 with dist((xn, yn),Ω) < ε for n ≥ n2.
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In the following, fix an arbitrary n ≥ n0 := max {n1, n2, 1}. Then (xn, yn) is an
element of the intersection (15). Consequently,

ϑ′(Φ(xn, yn)− Φ(x̄, ȳ)) · dist((0, 0), ∂LΦ(xn, yn)) ≥ 1. (17)
By the concavity of ϑ, we get, for all s ∈ (0, η),
ϑ(s)− ϑ(Φ(xn, yn)− Φ(x̄, ȳ)) ≤ ϑ′(Φ(xn, yn)− Φ(x̄, ȳ)) · (s− Φ(xn, yn) + Φ(x̄, ȳ)),

so, setting in particular s := Φ(xn+1, yn+1)− Φ(x̄, ȳ) ∈ (0, η),
(ϑ(Φ(xn, yn)− Φ(x̄, ȳ))− ϑ(Φ(xn+1, yn+1)− Φ(x̄, ȳ))) · ‖(x∗n, y∗n)‖

≥ ϑ′(Φ(xn, yn)− Φ(x̄, ȳ)) · (Φ(xn, yn)− Φ(xn+1, yn+1)) · ‖(x∗n, y∗n)‖
≥ ϑ′(Φ(xn, yn)− Φ(x̄, ȳ)) · (Φ(xn, yn)− Φ(xn+1, yn+1)) · dist((0, 0), ∂LΦ(xn, yn))
≥ (Φ(xn, yn)− Φ(xn+1, yn+1)).

Moreover, by (12) and (13),

Φ(xn, yn)− Φ(xn+1, yn+1) ≥
( 1
γn
− 1

2β

)
‖xn − xn+1‖2 + 1

µn
‖yn − yn+1‖2 .

Let us define the following shorthands:

δn :=
√( 1

γn
− 1

2β

)
‖xn − xn+1‖2 + 1

µn
‖yn − yn+1‖2,

εn := ϑ(Φ(xn, yn)− Φ(x̄, ȳ))
for n ≥ n0 to obtain the inequality

(εn − εn+1) · ‖(x∗n, y∗n)‖ ≥ δ2
n.

By the arithmetic-geometric inequality, for any r > 0 and n ≥ n0

δn ≤
√

(r ‖(x∗n, y∗n)‖) ·
(1
r

(εn − εn+1)
)

≤ 1
2

(
r ‖(x∗n, y∗n)‖+ 1

r
(εn − εn+1)

)
≤ r ‖(x∗n, y∗n)‖+ 1

r
(εn − εn+1) (18)

(recall that, by Proposition 2 and the properties of ϑ, the sequence (εn)n≥n0
is decreasing,

so εn − εn+1 ≥ 0). On the other hand, by Lemma 3 and the inequality 2ab ≤ a2 + b2

(a, b ≥ 0), for any n ≥ n0

‖(x∗n, y∗n)‖2 ≤
(
‖K‖2 + 1

µ2
n−1

)
‖yn−1 − yn‖2 + 1

γ2
n−1
‖xn−1 − xn‖2 +

+ 2 ‖K‖
γn−1

‖xn−1 − xn‖ ‖yn−1 − yn‖

≤
(

2 ‖K‖2 + 1
µ2
n−1

)
‖yn−1 − yn‖2 + 2

γ2
n−1
‖xn−1 − xn‖2

≤C2
nδ

2
n−1, (19)
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with

Cn :=

√√√√√max


2

γ2
n−1

1
γn−1

− 1
2β
,
2 ‖K‖2 + 1

µ2
n−1

1
µn−1


=

√√√√max
{

4β
γn−1(2β − γn−1) ,

1 + 2 ‖K‖2 µ2
n−1

µn−1

}
.

For all n ≥ n0,

Cn ≤ C0 :=

√√√√max
{

4β
γ(2β − γ) ,

1 + 2 ‖K‖2 µ2

µ

}
.

Combined with (18), we obtain

δn ≤ rC0δn−1 + 1
r

(εn − εn+1). (20)

For any k ≥ n0 + 1, we have, by iteration,

δk ≤ (rC0)k−n0δn0 +
k−n0−1∑
n=0

(rC0)n

r
(εk−n − εk−n+1),

therefore, for any N ≥ n0 + 1 and 0 < r < 1
C0

,

N∑
k=n0+1

δk ≤
N∑

k=n0+1

(rC0)k−n0δn0 +
k−n0−1∑
n=0

(rC0)n

r
(εk−n − εk−n+1)


=

N−n0−1∑
k=0

(rC0)k+1δn0 +
N−n0−1∑
k=0

k∑
n=0

(rC0)n

r
(εk+n0−n+1 − εk+n0−n+2)

≤ rC0δn0

1− rC0
+
N−n0−1∑
n=0

(rC0)n

r

N−n0−1∑
k=n

(εk+n0−n+1 − εk+n0−n+2)

≤ rC0δn0

1− rC0
+
N−n0−1∑
n=0

(rC0)n

r
εn0+1

≤ rC0δn0

1− rC0
+ εn0+1
r(1− rC0) .

The last right-hand side does not depend on N , thus, we conclude that
∑∞
k=n0+1 δk is

finite, and so are
∑∞
k=n0+1 ‖xn − xn+1‖ and

∑∞
k=n0+1 ‖yn − yn+1‖.

4.2 Convergence rates
Lemma 4. Assume that Φ is a KŁ function with ϑ(t) = Mt1−θ for some M > 0 and
0 ≤ θ < 1. Let x̄ and ȳ the limit points of the sequences (xn)n≥0 and (yn)n≥0, respectively
(which exist due to Theorem 1). Then the following convergence rates are guaranteed:
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1. if θ = 0, then there exists n0 ≥ 0, such that xn = xn0 and yn = yn0 for n ≥ n0;

2. if 0 < θ ≤ 1
2 , then there exist c > 0 and 0 ≤ q < 1 such that

‖xn − x̄‖ ≤ cqn and ‖yn − ȳ‖ ≤ cqn

for all n ≥ 0;

3. if 1
2 < θ < 1, then there exists c > 0 such that

‖xn − x̄‖ ≤ cn−
1−θ

2θ−1 and ‖yn − ȳ‖ ≤ cn−
1−θ

2θ−1

for all n ≥ 0.

Proof. 1. First, let θ = 0. Assume to the contrary (see Proposition 5) that for any
n ≥ 0, (xn+1, yn+1) 6= (xn, yn). We have ϑ′(t) = M for all t > 0 and thus, by (17),

M · ‖(x∗n, y∗n)‖ ≥ 1 for any n ≥ 1,

which contradicts either Lemma 3 or Proposition 3.
Before considering the other cases, assume from now on that (xn, yn) is not a critical

point of Φ for any n ≥ 0. Notice that ϑ′(t) = (1− θ)Mt−θ. In the proof of Theorem 1,
we have shown that for 0 < r < 1

C0

∞∑
k=n0+1

δk ≤
rC0δn0

1− rC0
+ εn0+1
r(1− rC0)

= rC0δn0

1− rC0
+ M(Φ(xn0+1, yn0+1)− Φ(x̄, ȳ))1−θ

r(1− rC0)

= rC0δn0

1− rC0
+ M1+ 1−θ

θ (1− θ)
1−θ
θ

r(1− rC0)ϑ′(Φ(xn0+1, yn0+1)− Φ(x̄, ȳ))
1−θ
θ

≤ rC0δn0

1− rC0
+
M

1
θ (1− θ)

1−θ
θ
∥∥(x∗n0+1, y

∗
n0+1

)∥∥ 1−θ
θ

r(1− rC0) ,

where the last inequality follows from the KŁ property (notice that Φ(xn0+1, yn0+1) −
Φ(x̄, ȳ) > 0 because we assumed that (xn0+1, yn0+1) is not a critical point of Φ). We can
repeat this calculation for any n ≥ n0 + 1 instead of n0 + 1, because such an n would
meet the criteria according to which we chose n0 + 1. Thus, we obtain from (19), for
n ≥ n0 + 1,

∞∑
k=n+1

δk ≤
rC0δn

1− rC0
+ M

1
θ (1− θ)

1−θ
θ (C0δn)

1−θ
θ

r(1− rC0) . (21)

The rest of the proof follows in the lines of [3, Theorem 2]:
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2. Let 0 < θ ≤ 1
2 . Then 1 ≤ 1−θ

θ < +∞, so δn → 0 as n → ∞ implies that the
first term on the right-hand side of (21) is the dominant one. Therefore, we find
n1 ≥ n0 + 1 and C1 > 0 such that

∞∑
k=n+1

δk ≤ C1δn = C1

 ∞∑
k=n

δk −
∞∑

k=n+1
δk


for any n ≥ n1. Thus, for any n ≥ n1,

∞∑
k=n+1

δk ≤
C1

1 + C1

∞∑
k=n

δk.

By induction, for any n ≥ n1 + 1,

δn ≤
∞∑
k=n

δk ≤
(

C1
1 + C1

)n−n1 ∞∑
k=n1

δk,

which proves the assertion.

3. Let 1
2 < θ < 1. Then 0 < 1−θ

θ < 1, so δn → 0 as n → ∞ implies that the
second term on the right-hand side of (21) is the dominant one. Therefore, we find
n1 ≥ n0 + 1 and C1 > 0 such that

∞∑
k=n+1

δk ≤ C1δ
1−θ
θ

n

for any n ≥ n1. Then, for any n ≥ n1, ∞∑
k=n+1

δk

 θ
1−θ

≤ C
θ

1−θ
1

 ∞∑
k=n

δk −
∞∑

k=n+1
δk

.
We define h : (0,+∞) → R, h(s) = s−

θ
1−θ and notice that h is monotonically

decreasing as is the sequence (
∑∞
k=n δk)n≥n1

. Therefore, for any n ≥ n1,

1 ≤ C
θ

1−θ
1 h

 ∞∑
k=n+1

δk

 ∞∑
k=n

δk −
∞∑

k=n+1
δk


≤ C

θ
1−θ
1

∫ ∑∞
k=n δk∑∞
k=n+1 δk

h(s) ds

= −C
θ

1−θ
1

1− θ
2θ − 1

( ∞∑
k=n

δk

)− 2θ−1
1−θ

−

 ∞∑
k=n+1

δk

−
2θ−1
1−θ

.
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Thus, by induction, for any n ≥ n1 + 1,

( ∞∑
k=n

δk

)− 2θ−1
1−θ

+ (2θ − 1)(n− n1)

C
θ

1−θ
1 (1− θ)

≤

 ∞∑
k=n1

δk

−
2θ−1
1−θ

.

The assertion follows by

δn ≤
∞∑
k=n

δk ≤


 ∞∑
k=n1

δk

−
2θ−1
1−θ

+ (2θ − 1)(n− n1)
C1(1− θ)


− 1−θ

2θ−1

for any n ≥ n1+1.

5 Application to image processing
Consider an image of the size m × n pixels. (For the sake of simplicity, we consider
gray-scale pictures only.) It can be represented by a vector x ∈ H := Rmn of size mn
with entries in [0, 1] (where 0 represents pure black and 1 represents pure white).

The original image x ∈ H is assumed to be blurred by a linear operator L : H → H
(e.g. the camera is out of focus or in movement during the exposure). Furthermore, it
is corrupted with a noise ν, so that only the result b = Lx+ ν is known to us. We want
to reconstruct the original image x by considering the minimisation problem

min
x∈H

(
µ

2 ‖Lx− b‖
2 + J(Dx)

)
,

where we denote by ‖·‖ the usual Euclidean norm, µ > 0 is a regularisation parameter,
D : Rmn → R2mn is the discrete gradient operator given by Dx = (K1x,K2x), where

K1 : H → H, (K1x)i,j :=
{
xi+1,j − xi,j , i = 1, . . . ,m− 1; j = 1, . . . , n;
0, i = m; j = 1, . . . , n

K2 : H → H, (K2x)i,j :=
{
xi,j+1 − xi,j , i = 1, . . . ,m; j = 1, . . . , n− 1;
0, i = 1, . . . ,m; j = n,

and J : H → R is a regularising functional penalising noisy images. We want to compare
several choices of the functional J proposed by [14, 18], all of which have in common
that they want to induce sparsity of Dx, i.e., having many components equal to zero.
The Zhang penalty [32] is defined by

Zhangα(z) =
2mn∑
j=1

gα(zj),
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where α > 0 and

gα(zj) =
{ 1
α |zj | if |zj | < α,

1 if |zj | ≥ α.

= 1
α
|zj | −

{
0 if |zj | < α,
1
α(|zj | − α) if |zj | ≥ α.

Denoting the part after the curly brace as ha(zj) and hα(z) :=
∑2mn
j=1 hα(zj), we have

Proxγh∗α (z) =



− 1
α if z ≤ − 1

α − γα,
z + γα if − 1

α − γα ≤ z ≤ −γα,
0 if − γα ≤ z ≤ γα,
z − γa if γα ≤ z ≤ 1

α + γα,
1
α if z ≥ 1

α + γα.

The LZOX penalty [18] is defined by

LZOXα(z) = ‖Dx‖`1 − α ‖Dx‖× ,

where ‖·‖`1 denotes (as usual) the sum of the absolute values and

‖(u, v)‖× :=
m∑
i=1

n∑
j=1

√
u2
i,j + v2

i,j ,

where y = (u, v) is the splitting according to the definition of D. The algorithm (9)–(10)
can now be applied to any of the models described above, since the models are written
as d.c. problems and the components are easily accessible for computation, with the
exception of the function ‖·‖`1 ◦D, see [11]. For the latter, see the following section.

5.1 The proximal point of the anisotropic total variation
In order to apply Algorithm (9)–(10) to any of the problems, we have to calculate the
proximal point of the anisotropic total variation by solving the optimisation problem

inf
{ 1

2γ ‖x− b‖
2 + ‖Dx‖`1

∣∣∣∣x ∈ H} (22)

for some γ > 0 and b ∈ H in each step. The Fenchel dual problem [6, Chapter 19] is
given by

inf
{
γ

2 ‖D
∗x∗‖2 − 〈b,D∗x∗〉

∣∣∣∣x∗ ∈ G, ‖x∗‖`∞ ≤ 1
}
. (23)

Instead of solving (22), we could also solve (23) (see [8]), as the following result shows.

Lemma 5. Let x∗ ∈ G be a solution of (23). Then x = b− γD∗x∗ is a solution of (22).
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Proof. See [6, Example 19.7]. In short:

0 ∈ D(γD∗x∗ − b) + ∂ ‖·‖∗`1 (x∗) =⇒ D∗x∗ ∈ D∗∂ ‖·‖`1 (D(b− γD∗x∗))

=⇒ 1
γ

(b− x) ∈ D∗∂ ‖·‖`1 (Dx)

⇐⇒ 0 ∈ ∂
( 1

2γ ‖(·)− b‖
2 + ‖D(·)‖`1

)
(x).

To the formulation (23), the accelerated forward-backward algorithm of Beck and
Teboulle [7] can be applied, since the objective function is differentiable and the feasible
set is easy to project on.

5.2 Numerical results
We implemented the FBDC algorithm applied to the model described above and tested
the MATLAB code on a PC with Intel Core i5 4670S (4× 3.10GHz) and 8GB DDR3
RAM (1600MHz). Our implementation used the method described in Section 5.1 until
the `∞ distance between two iterations was smaller than 10−4. Both stepsizes were
chosen as µn = γn = 1

8µ for all n ≥ 0. As initial value, we chose x0 = b and picked
v0 ∈ ∂h(Kx0).

We picked the image texmos3 from http://sipi.usc.edu/database/database.php?
volume=textures&image=64 and convolved it with a Gaussian kernel with 9 pixels stan-
dard devitation. Afterwards we added white noise with standard deviation 50/255, pro-
jected the pixels back to the range [0, 1] and saved the image in TIFF format, rounding
the brightness values to multiples of 1/255. See Figure 3 for original, blurry, and recon-
structed image.
The improvement in signal-to-noise ratio or ISNR value of a reconstruction is given

by

ISNR(xk) = 10 log10

(
‖x− b‖2

‖x− xk‖2

)
,

where x is the (usually unknown) original, b is the known blurry and noisy and xk is the
reconstructed image. For the ISNR values after 50 iterations, see Tables 1 and 2. The
development of the ISNR values over the iterations is shown in Figure 2.
We see that the nonconvex models provide reasonable reconstructions of the original

image and the best numerical performance for this particular choice of the stepsizes and
the number of iterations is not achieved for the convex model (LZOX with α = 0), but
for the nonconvex models.
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µ α = 0.00 α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1.0

1.0 −3.0288 −4.2266 −3.7637 −3.6569 −3.5150 −4.3590 −13.701
10.0 5.9227 6.26615 6.414791 6.44871 6.45780 6.28863 4.301090
20.0 6.76613 6.90005 6.93064 6.917926 6.88018 6.61521 5.305623
50.0 6.81752 6.78308 6.65411 6.4923 6.36250 5.780558 4.741993

100.0 5.29597 5.23264 5.05189 4.91247 4.739717 4.287092 3.696120
200.0 3.088196 3.060511 2.985871 2.930448 2.863122 2.693096 2.477708
500.0 1.317390 1.312168 1.298834 1.288983 1.277010 1.246724 1.208036

1000.0 0.692487 0.691049 0.687585 0.685057 0.682000 0.674272 0.664401

Table 1: LZOX after 50 iterations

µ α = 0.01 α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0

1.0 −43.708 −33.711 −23.148 −13.846 −3.0288 2.4922
10.0 −18.781 −9.9406 −3.2070 2.5442 5.9227 6.97777
20.0 −11.270 −4.8428 0.43533 4.7768 6.76613 6.57299
50.0 −4.8333 −1.05553 2.63959 6.46109 6.81752 3.952101

100.0 −1.7546 −0.14560 3.16532 6.90202 5.29597 2.129705
200.0 −0.41418 0.0619477 2.98543 6.38513 3.088196 1.110186
500.0 0.0077144 0.121807 2.101321 3.816813 1.317390 0.482406

1000.0 0.0528014 0.127592 1.423684 2.070959 0.692487 0.271777

Table 2: Zhang after 50 iterations
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Figure 2: Improvement in signal-to-noise ratio vs. iterations
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(a) Original image (b) Blurry image (c) LZOX, µ = 20, α = 0.4

(d) LZOX, µ = 20, α = 1 (e) LZOX, µ = 50, α = 0 (f) Zhang, µ = 10, α = 3

(g) Zhang, µ = 20, α = 1 (h) Zhang, µ = 100, α = 0.1

Figure 3: Original image, blurry and noisy image and reconstructions.
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