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Abstract. We propose two numerical algorithms in the fully nonconvex setting for the minimization
of the sum of a smooth function and the composition of a nonsmooth function with a linear operator.
The iterative schemes are formulated in the spirit of the proximal alternating direction method of mul-
tipliers and its linearized variant, respectively. The proximal terms are introduced via variable metrics,
a fact which allows us to derive new proximal splitting algorithms for nonconvex structured optimiza-
tion problems, as particular instances of the general schemes. Under mild conditions on the sequence
of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has
the Kurdyka- Lojasiewicz property, we prove that the iterates converge to a KKT point of the objective
function. By assuming that the augmented Lagrangian has the  Lojasiewicz property, we also derive
convergence rates for both the augmented Lagrangian and the iterates.
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1 Introduction

1.1 Problem formulation and motivation

In this paper we are interested in solving optimization problems of the form

min
xPRn

tg pAxq ` h pxqu , (1)

where g : Rm Ñ R Y t`8u is a proper and lower semicontinuous function, h : Rn Ñ R is a Fréchet
differentiable function with L-Lipschitz continuous gradient and A : Rn Ñ Rm is a linear operator. The
spaces Rn and Rm are equipped with Euclidean inner products x¨, ¨y and associated norms ‖¨‖ “

a

x¨, ¨y,
which are both denoted in the same way, as there is no risk of confusion.

We start by briefly describing the Alternating Direction Method of Multipliers (ADMM) designed to
solve optimization problems of the form

min
xPRn

tf pxq ` g pAxq ` h pxqu , (2)

where g and h are assumed to be also convex and f : Rn Ñ R Y t`8u is another proper, convex and
lower semicontinuous function. By introducing an auxiliary variable, one can rewrite problem (2) as

min
px,zqPRnˆRm
Ax´z“0

tf pxq ` g pzq ` h pxqu . (3)
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For a fixed real number r ą 0, the augmented Lagrangian associated with problem (3) reads

Lr : Rn ˆ Rm ˆ Rm Ñ RY t`8u , Lr px, z, yq “ fpxq ` g pzq ` h pxq ` xy,Ax´ zy `
r

2
‖Ax´ z‖2 .

Given a starting vector
`

x0, z0, y0
˘

P Rn ˆ Rm ˆ Rm and tMk
1ukě0 Ď Rnˆn,

 

Mk
2

(

kě0
Ď Rmˆm, two

sequences of symmetric and positive semidefinite matrices, the following proximal ADMM algorithm
formulated in the presence of a smooth function and involving variable metrics has been proposed and
investigated in [5]: generate the sequence tpxk, zk, ykqukě0 for every k ě 0 as

xk`1 P arg min
xPRn

#

f pxq ` xx´ xk,∇hpxkqy ` r

2

∥∥∥∥Ax´ zk ` 1

r
yk

∥∥∥∥2

`
1

2

›

›x´ xk
›

›

2

Mk
1

+

, (4a)

zk`1 “ arg min
zPRm

#

g pzq `
r

2

∥∥∥∥Axk`1 ´ z `
1

r
yk

∥∥∥∥2

`
1

2

›

›z ´ zk
›

›

2

Mk
2

+

, (4b)

yk`1 “ yk ` ρr
`

Axk`1 ´ zk`1
˘

. (4c)

It has been proved in [5] that, if ρ “ 1 and the set of the saddle points of the Lagrangian associated
with (3) (which is nothing else than Lr when r “ 0) is nonempty, and the two matrix sequences and the
operator A fulfill mild additional assumptions, then the sequence tpxk, zk, ykqukě0 converges to a saddle
point of the Lagrangian associated with problem (3) and provides in this way both an optimal solution
of (1) and an optimal solution of its Fenchel dual problem. Furthermore, an ergodic primal-dual gap
convergence rate result has been proved.

In case h “ 0, the above iterative scheme encompasses as special cases different numerical algorithms
considered in the literature. If Mk

1 “ Mk
2 “ 0 for all k ě 0, then (4a)-(4c) becomes the classical ADMM

algorithm ([17, 24, 26, 27]), which lately gained a huge popularity in the optimization community, despite
its poor implementation properties caused by the fact that, in general, the calculation of the sequence of
primal variables

 

xk
(

kě0
does not correspond to a proximal step. For an inertial version of the classical

ADMM algorithm we refer the reader to [12]. On the other hand, if Mk
1 “ M1 and Mk

2 “ M2 for all
k ě 0, then (4a)-(4c) recovers the proximal ADMM algorithm investigated by Shefi and Teboulle in [43]
(see also [22, 23]). It has been pointed out in [43] that, for suitable choices of the matrices M1 and
M2, the proximal ADMM algorithm becomes a primal-dual splitting algorithm in the sense of those
considered in [15, 18, 21, 45], and which, due to its full splitting character, overcomes the drawbacks of
the classical ADMM algorithm. Recently, in [14] it has been shown that, if f is strongly convex, then
suitable choices of the non-constant sequences

 

Mk
1

(

kě0
and

 

Mk
2

(

kě0
lead to a rate of convergence of

O p1{kq for the sequence of primal iterates.
In this paper, we propose a proximal ADMM (P-ADMM) algorithm and a proximal linearized ADMM

(PL-ADMM) algorithm for solving the optimization problem (1) and carry out a convergence analysis
for both algorithms. We first prove, under not very restrictive assumptions on the problem data, that
the sequence of generated iterates tpxk, zk, ykqukě0 is bounded. Given these premises we show that the
cluster points of tpxk, zk, ykqukě0 are KKT points of the problem (1). Provided that a regularization
of the augmented Lagrangian satisfies the Kurdyka- Lojasiewicz property, we show global convergence of
the generated sequence of iterates. Provided this regularization of the augmented Lagrangian has the
 Lojasiewicz property, we derive rates of convergence for the sequence of iterates. To the best of our
knowledge, these are the first results in the literature that deal with convergence rates for the nonconvex
ADMM.

In the following we will comment on previous works addressing the ADMM algorithm in the non-
convex setting. None of the papers which have addressed nonconvex optimization problems involving
compositions with linear operators propose and investigate iterative schemes designed in the spirit of
full splitting algorithms. In [34], the convergence of the ADMM algorithm for solving the problem (1)
is studied under the assumption that h is twice continuously differentiable with bounded Hessian. In
[30], the ADMM algorithm is used to minimize the sum of finitely many smooth nonconvex functions
and a nonsmooth convex function, by rewriting it as an general consensus problem. No linear operator
occurs in the formulation of the optimization problem under investigation. In [1], the ADMM algorithm
is used to solve a DC optimization problem over the unit ball which occurs in the penalized zero-variance
linear discriminant analysis. In [46], a nonconvex ADMM algorithm involving proximal terms induced
via Bregman distances is introduced and investigated, however, without addressing the question of the
boundedness of the generated iterates. On the other hand, in [28], in order to guarantee boundedness of
the iterates a strong assumption on g is made, which is proved to hold for the normed-squared function.
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In [47], a lot of efforts are made to guarantee boundedness for the generated iterates of the nonconvex
ADMM algorithm, which is an essential component of the convergence analysis, however, this is done
by assuming that the objective function is continuous and coercive over the feasible set, while its non-
smooth part is either restricted prox-regular or piecewise linear. Similar ingredients are used in [36] in
the convergence analysis of a nonconvex linearized ADMM algorithm.

Recently, Bolte, Sabach and Teboulle have proposed in [11] a generic iterative scheme for solving
a general optimization problem of the form (1), but by replacing the linear operator A with a general
continuously differentiable operator. A global convergence analysis relying on the use of the Kurdyka-
 Lojasiewicz property is carried out. It is also shown that the generic iterative scheme encompasses several
Lagrangian based algorithms, including the proximal alternating direction method of multipliers and the
proximal alternating linearized minimization method. The latter is analysed into detail in the particular
case when g is composed with a linear operator, which coincides with the one in this paper. The two
algorithms we propose in this paper are formulated in the same spirit, however, they lead for some
particular choices of the variable metrics to full splitting algorithms. In addition, we carefully address
the issue of the boundedness of the sequence of generated iterates and complement the convergence
analysis with the derivation of convergence rates.

The major strengths of our paper are:

1. We prove under quite general assumptions that the sequence tpxk, zk, ykqukě0 is bounded. In the
nonconvex setting, the boundedness of the sequence of generated iterates plays a central role in the
convergence analysis. In fact, the reason, why we assume in this paper that the function g is smooth,
is exclusively given by the fact that only in this setting we can prove boundedness of this sequence
under general assumptions.

2. We prove convergence for relaxed variants of the nonconvex ADMM algorithms, which allow to chose
in the update of the dual sequence ρ P p0, 2q. We notice that ρ “ 1 is the standard choice in
the literature ([1, 5, 14, 34, 43, 47]). Gabay and Mercier proved in [27] in the convex setting that
ρ may be chosen in p0, 2q, however, the majority of the extensions of the convex relaxed ADMM

algorithm assume that ρ P
´

0, 1`
?

5
2

¯

(see [22, 23, 26, 44, 48, 49]) or ask for a particular choice of ρ,

which is interpreted as a step size (see [31]). In [49], an alternating minimization algorithm for the
minimization of the sum of a simple nonsmooth function and a smooth function in the nonconvex
setting, which allows for a parameter ρ different from 1, has been proposed.

3. By appropriate choices of the matrix sequences, we derive from the proposed iterative schemes full
splitting algorithms for solving the nonconvex complexly structured optimization problem (1). More
precisely, (P-ADMM) gives rise to an iterative scheme formulated only in terms of proximal steps
for the functions g and h and of forward evaluations of the matrix A, while (PL-ADMM) gives rise
to an iterative scheme in which the function h is performed via a gradient step. Exact formulas for
proximal operators are available not only for large classes of convex functions ([6, 20]), but also of
nonconvex functions ([3, 29, 33]). The fruitful idea to linearize the step involving the smooth term
has been used in the past in the context of ADMM algorithms mostly in the convex setting (see
[35, 40, 41, 48, 50]), but also in the nonconvex setting (see [11, 36]).

1.2 Notations and preliminaries

Let N be a strictly positive integer. We denote by 1 :“ p1, . . . , 1q P RN and write for x :“ px1, . . . , xN q,
y :“ py1, . . . , yN q P RN

x ă y if and only if xi ă yi @i “ 1, . . . , N.

We endow the Cartesian product RN1ˆRN2ˆ. . .ˆRNp , where p is a strictly positive integer, with inner
product and associated norm defined for u :“ pu1, . . . , upq , u

1 :“
`

u11, . . . , u
1
p

˘

P RN1 ˆ RN2 ˆ . . . ˆ RNp
by

⟪u, u1⟫ “
p
ÿ

i“1

@

ui, u
1
i

D

and |||u||| “

g

f

f

e

p
ÿ

i“1

‖ui‖2,

respectively. For every u :“ pu1, . . . , upq , u
1 :“

`

u11, . . . , u
1
p

˘

P RN1 ˆ RN2 ˆ . . .ˆ RNp we have

1
?
p

p
ÿ

i“1

‖ui‖ ď |||u||| “

g

f

f

e

p
ÿ

i“1

‖ui‖2 ď
p
ÿ

i“1

‖ui‖ . (5)
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We denote by SN` the family of symmetric and positive semidefinite matrices M P RNˆN . Every
M P SN` induces a semi-norm defined by

‖x‖2M :“ xMx, xy @x P RN .

The Loewner partial ordering on SN` is defined for M,M 1 P SN` as

M ě M 1 ô ‖x‖2M ě ‖x‖2M 1 @x P RN .

Thus M P SN` is nothing else than M ě 0. For α ą 0 we set

PNα :“
 

M P SN` : M ě αId
(

,

where Id denotes the identity matrix in RNˆN . If M P PNα , then the semi-norm ‖¨‖M becomes a norm.
The linear operator A is surjective if and only if its associated matrix has full row rank. This

assumption is further equivalent to the fact that the matrix associated to AA˚, where A˚ denotes the
adjoint operator of A, is positively definite. Since

λmin pAA
˚q ‖y‖2 ď ‖y‖2AA˚ “ xAA

˚y, yy “ ‖A˚y‖2 @y P Rm,

this is further equivalent to λmin pAA
˚q ą 0 (and AA˚ P PnλminpAA˚q

), where λminp¨q denotes the smallest

eigenvalue of a matrix. Similarly, A is injective if and only if λmin pA
˚Aq ą 0 (and A˚A P PmλminpA˚Aq

).

Proposition 1. Let Ψ: RN Ñ R be Fréchet differentiable such that its gradient is Lipschitz continuous
with constant L ą 0. Then the following statements are true:

1. For every x, y P RN and every z P rx, ys “ tp1´ tqx` ty : t P r0, 1su it holds

Ψ pyq ď Ψ pxq ` x∇Ψ pzq , y ´ xy `
L

2
‖y ´ x‖2 ; (6)

2. If Ψ is bounded from below, then for every σ ą 0 it holds

inf
xPRN

"

Ψ pxq ´

ˆ

1

σ
´

L

2σ2

˙

‖∇Ψ pxq‖2
*

ą ´8.

Proof. 1. Let be x, y P RN and z :“ p1´ tqx` ty for t P r0, 1s. By the fundamental theorem for line
integrals we have

Ψ pyq ´Ψ pxq “

ż 1

0

x∇Ψ pp1´ sqx` syq , y ´ xy ds

“

ż 1

0

x∇Ψ pp1´ sqx` syq ´∇Ψ pzq , y ´ xy ds` x∇Ψ pzq , y ´ xy . (7)

Since ∣∣∣∣ż 1

0

x∇Ψ pp1´ sqx` syq ´∇Ψ pzq , y ´ xy ds

∣∣∣∣
ď

ż 1

0

‖∇Ψ pp1´ sqx` syq ´∇Ψ pzq‖ ¨ ‖y ´ x‖ ds ď L ‖x´ y‖2
ż 1

0

|s´ t| ds

“ L ‖x´ y‖2
ˆ
ż t

0

p´s` tq ds`

ż 1

t

ps´ tq ds

˙

“ L

ˆ

1

2
´ t p1´ tq

˙

‖x´ y‖2 . (8)

The inequality in (6) follows by combining (7) and (8) and by using that 0 ď t ď 1.

2. The inequality in (6) gives for every x P RN

´8 ă inf
yPRN

Ψ pyq ď Ψ

ˆ

x´
1

σ
∇Ψ pxq

˙

ď Ψ pxq `

Bˆ

x´
1

σ
∇Ψ pxq

˙

´ x,∇Ψ pxq

F

`
L

2

∥∥∥∥ˆx´ 1

σ
∇Ψ pxq

˙

´ x

∥∥∥∥2

“ Ψ pxq ´

ˆ

1

σ
´

L

2σ2

˙

‖∇Ψ pxq‖2 ,

which leads to the desired conclusion.
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Remark 1. The so-called Descent Lemma, which says that for a Fréchet differentiable function Ψ: RN Ñ
R having Lipschitz continuous gradient with constant L ą 0 it holds

Ψ pyq ď Ψ pxq ` x∇Ψ pxq , y ´ xy `
L

2
‖y ´ x‖2 @x, y P RN ,

follows from statement (i) of the above proposition for z :“ x.
Moreover, for z :“ y we have that

Ψ pxq ě Ψ pyq ` x∇Ψ pyq , x´ yy ´
L

2
‖x´ y‖2 @x, y P RN ,

which is equivalent to the fact that Ψ`
L

2
‖¨‖2 is a convex function, in other words, Ψ is a L-semiconvex

function ([9]). It follows from the previous result that a Fréchet differentiable function with L-Lipschitz
continuous gradient is L-semiconvex.

The limiting subdifferential will play an important role in the convergence analysis we are going
to carry out for the nonconvex ADMM algorithm. Let Ψ: RN Ñ R Y t`8u be a proper and lower
semicontinuous function. For x P domΨ :“

 

x P RN : Ψ pxq ă `8
(

, the Fréchet (viscosity) subdifferential
of Ψ at x is

pBΨ pxq :“

"

d P RN : lim inf
yÑx

Ψ pyq ´Ψ pxq ´ xd, y ´ xy

‖y ´ x‖
ě 0

*

and the limiting (Mordukhovich) subdifferential of Ψ at x is

BΨ pxq :“ td P RN : exist sequences xk Ñ x and dk Ñ d as k Ñ `8

such that Ψ
`

xk
˘

Ñ Ψ pxq as k Ñ `8 and dk P pBΨ
`

xk
˘

for all k ě 0u.

For x R dom pΨq, we set pBΨ pxq “ BΨ pxq :“ H.

The inclusion pBΨ pxq Ď Ψ pxq holds for every x P RN . If Ψ is convex,then these two subdifferentials
coincide with the convex subdifferential, in other words

pBΨ pxq “ BΨ pxq “
 

d P RN : Ψ pyq ě Ψ pxq ` xd, y ´ xy @y P RN
(

for all x P domΨ.

If x P RN is a local minimum of Ψ, then 0 P BΨ pxq. We denote by critpΨq “ tx P RN : 0 P BΨ pxqu
the set of critical points of Ψ. The limiting subdifferential fulfills the closedness criterion: if

 

xk
(

kě0

and tdkukě0 are sequence in RN such that dk P BΨ
`

xk
˘

for all k ě 0, and
`

xk, dk
˘

Ñ px, dq and

Ψ
`

xk
˘

Ñ Ψ pxq as k Ñ `8, then d P BΨ pxq. We have the following subdifferential sum rule holds
([38, Proposition 1.107], [42, Exercise 8.8]): if Φ: RN Ñ R is a continuously differentiable function, then
B pΨ` Φq pxq “ BΨ pxq`∇Φ pxq for all x P RN ; and the following subdifferential rule for the composition
with a linear operator A : RN 1 Ñ RN ([38, Proposition 1.112], [42, Exercise 10.7]): if x P domΨ and A is
injective, then B pΨ ˝Aq pxq “ A˚BΨ pAxq.

We close this section by presenting two convergence results for real sequences that will be used in
the sequel in the convergence analysis. The next lemma is often used in the literature when proving
convergence of numerical algorithms relying on Fejér monotonicity techniques (see, for instance, [13,
Lemma 2.2], [16, Lemma 2]).

Lemma 2. Let tbkukě0 be a sequence in R and tξkukě0 a sequence in R`. Assume that tbkukě0 is
bounded from below and that for every k ě 0

bk`1 ` ξk ď bk.

Then the following statements hold:

1. the sequence tξkukě0 is summable, namely
ÿ

kě0

ξk ă `8;

2. the sequence tbkukě0 is monotonically decreasing and convergent.

The following lemma, which is an extension of [13, Lemma 2.3] (see, also [16, Lemma 3]), is of interest
by its own.
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Lemma 3. Let
 

ak :“
`

ak1 , a
k
2 , . . . , a

k
N

˘(

kě0
be a sequence in RN` and tδkukě0 a sequence in R such that

@

1, ak`1
D

ď
@

c0, a
k
D

`
@

c1, a
k´1

D

`
@

c2, a
k´2

D

` δk @k ě 2, (9)

where c0 :“ pc0,1, c0,2, . . . , c0,N q P RN , c1 :“ pc1,1, c1,2, . . . , c1,N q P RN` and c2 :“ pc2,1, c2,2, . . . , c2,N q P

RN` fulfill c0 ` c1 ` c2 ă 1. Assume further that there exists sδ ě 0 such that for every K ě K ě 2

K
ÿ

k“K

δk ď sδ.

Then, for every i “ 1, . . . , N , it holds
ÿ

kě0

aki ă `8.

In particular, for every i “ 1, . . . , N and every K ě K ě 2, it holds

K
ÿ

k“K

aki ď

N
ÿ

j“1

”

p1´ c0,j ´ c1,jq a
K
j ` p1´ c0,jq a

K`1
j ` a

K`2
j

ı

` sδ

1´ c0,i ´ c1,i ´ c2,i
. (10)

Proof. Fix K ě K ě 2. If K “ K or K “ K ` 1, then (10) holds automatically. Assume now that
K ě K ` 2. Summing up the inequality in (9) for k “ K ` 2, ¨ ¨ ¨ ,K, we obtain

C

1,
K
ÿ

k“K`2

ak`1

G

ď

C

c0,
K
ÿ

k“K`2

ak

G

`

C

c1,
K
ÿ

k“K`2

ak´1

G

`

C

c2,
K
ÿ

k“K`2

ak´2

G

`

K
ÿ

k“K`2

δk. (11)

Since

K
ÿ

k“K`2

ak`1 “

K`1
ÿ

k“K`3

ak “
K
ÿ

k“K

ak ` aK`1 ´ aK ´ aK`1 ´ aK`2

K
ÿ

k“K`2

ak “
K
ÿ

k“K

ak ´
`

aK ` aK`1
˘

K
ÿ

k“K`2

ak´1 “

K´1
ÿ

k“K`1

ak “
K
ÿ

k“K

ak ´
´

aK ` aK
¯

K
ÿ

k“K`2

ak´2 “

K´2
ÿ

k“K

ak “
K
ÿ

k“K

ak ´
´

aK´1 ` aK
¯

,

the inequality in (11) can be rewritten as

C

1,
K
ÿ

k“K

ak

G

`

A

1, aK`1 ´ aK ´ aK`1 ´ aK`2
E

ď

C

c0,
K
ÿ

k“K

ak

G

´
@

c0, a
K ` aK`1

D

`

C

c1,
K
ÿ

k“K

ak

G

´

A

c1, a
K ` aK

E

`

C

c2,
K
ÿ

k“K

ak

G

´

A

c2, a
K´1 ` aK

E

`

K
ÿ

k“K`2

δk,

which further implies

N
ÿ

j“1

»

–p1´ c0,j ´ c1,j ´ c2,jq
K
ÿ

k“K

akj

fi

fl “

C

1´ c0 ´ c1 ´ c2,
K
ÿ

k“K

ak

G

ď
@

1´ c0 ´ c1, a
K
D

`
@

1´ c0, a
K`1

D

`
@

1, aK`2
D

`

K
ÿ

k“K`2

δk

“

N
ÿ

j“1

”

p1´ c0,j ´ c1,jq a
K
j ` p1´ c0,jq a

K`1
j ` a

K`2
j

ı

`

K
ÿ

k“K`2

δk.
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Hence, for every i “ 1, . . . , N , it holds

p1´ c0,i ´ c1,i ´ c2,iq
K
ÿ

k“K

aki ď
N
ÿ

j“1

”

p1´ c0,j ´ c1,jq a
K
j ` p1´ c0,jq a

K`1
j ` a

K`2
j

ı

` sδ

and the conclusion follows by taking into consideration that c0 ` c1 ` c2 ă 1.

2 A proximal ADMM algorithm and a proximal linearized ADMM
algorithm in the nonconvex setting

In this section we propose two proximal ADMM algorithms for solving the optimization problem (1) and
study their convergence behaviour. A central role will be played by the augmented Lagrangian associated
with problem (1), which is defined for every r ą 0 as

Lr : Rn ˆ Rm ˆ Rm Ñ RY t`8u , Lr px, z, yq “ g pzq ` h pxq ` xy,Ax´ zy `
r

2
‖Ax´ z‖2 .

2.1 General formulations and full proximal splitting algorithms as particular
instances

Algorithm 1. Let be the matrix sequences
 

Mk
1

(

kě0
P Sn` ,

 

Mk
2

(

kě0
P Sm` , r ą 0 and 0 ă ρ ă 2. For

a given starting vector
`

x0, z0, y0
˘

P Rn ˆ Rm ˆ Rm, generate the sequence
 `

xk, zk, yk
˘(

kě0
for every

k ě 0 as:

zk`1 P arg min
zPRm

"

Lr
`

xk, z, yk
˘

`
1

2

∥∥z ´ zk∥∥2

Mk
2

*

“ arg min
zPRm

"

g pzq `
@

yk, Axk ´ z
D

`
r

2

∥∥Axk ´ z∥∥2
`

1

2

∥∥z ´ zk∥∥2

Mk
2

*

,

(12a)

xk`1 P arg min
xPRn

"

Lr
`

x, zk`1, yk
˘

`
1

2

∥∥x´ xk∥∥2

Mk
1

*

“ arg min
xPRn

"

h pxq `
@

yk, Ax´ zk`1
D

`
r

2

∥∥Ax´ zk`1
∥∥2
`

1

2

∥∥x´ xk∥∥2

Mk
1

*

,

(12b)

yk`1 :“ yk ` ρr
`

Axk`1 ´ zk`1
˘

. (12c)

Let ttkukě0 be a sequence of positive real numbers such that tk ě r ‖A‖2, and Mk
1 :“ tkId ´ rA˚A

and Mk
2 :“ 0 for every k ě 0. In this particular case Algorithm 1 becomes an iterative scheme which

generates a sequence
 `

xk, zk, yk
˘(

kě0
for every k ě 0 as:

zk`1 P arg min
zPRm

#

g pzq `
r

2

∥∥∥∥z ´Axk ´ 1

r
yk

∥∥∥∥2
+

,

xk`1 P arg min
xPRn

#

h pxq `
tk
2

∥∥∥∥x´ xk ` 1

tk
A˚

“

yk ` r
`

Axk ´ zk`1
˘‰

∥∥∥∥2
+

,

yk`1 :“ yk ` ρr
`

Axk`1 ´ zk`1
˘

.

Recall that the proximal point operator with parameter γ ą 0 of a proper and lower semicontinuous
function Ψ: RN Ñ RY t`8u is the set-valued operator defined as ([39])

proxγΨ : RN ÞÑ 2R
N

, proxγΨ pxq “ arg min
yPRN

"

Ψ pyq `
1

2γ
‖x´ y‖2

*

.

The above particular instance of Algorithm 1 is an iterative scheme formulated in the spirit of full
splitting numerical methods; in other words, the functions g and h are evaluated by their proximal
operators, while the linear operator A and its adjoint operator are evaluated by simple forward steps.
Exact formulas for the proximal operator are available not only for large classes of convex functions
([6, 20]), but also for many nonconvex functions occurring in applications ([3, 29, 33]).

The second algorithm that we propose in this paper replaces for every k ě 0 the function h in the
definition of xk`1 by its linearization at xk.
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Algorithm 2. Let be the matrix sequences
 

Mk
1

(

kě0
P Sn` ,

 

Mk
2

(

kě0
P Sm` , r ą 0 and 0 ă ρ ă 2. For

a given starting vector
`

x0, z0, y0
˘

P Rn ˆ Rm ˆ Rm, generate the sequence
 `

xk, zk, yk
˘(

kě0
for every

k ě 0 as:

zk`1 P arg min
zPRm

"

g pzq `
@

yk, Axk ´ z
D

`
r

2

∥∥Axk ´ z∥∥2
`

1

2

∥∥z ´ zk∥∥2

Mk
2

*

, (13a)

xk`1 P arg min
xPRn

"

@

x´ xk,∇h
`

xk
˘D

`
@

yk, Ax´ zk`1
D

`
r

2

∥∥Ax´ zk`1
∥∥2
`

1

2

∥∥x´ xk∥∥2

Mk
1

*

, (13b)

yk`1 :“ yk ` ρr
`

Axk`1 ´ zk`1
˘

. (13c)

Due to the presence of the variable metric inducing matrix sequences, Algorithm 2 represents a
unifying scheme for several linearized ADMM algorithms from the literature (see [35, 36, 40, 41, 48, 50]).

By choosing as above Mk
1 :“ tkId´ rA

˚A, where tk is positive such that tk ě r ‖A‖2, and Mk
2 :“ 0, for

every k ě 0, Algorithm 2 translates for every k ě 0 into:

zk`1 P arg min
zPRm

#

g pzq `
r

2

∥∥∥∥z ´Axk ´ 1

r
yk

∥∥∥∥2
+

,

xk`1 :“ xk ´
1

tk

`

∇h
`

xk
˘

`A˚
“

yk ` r
`

Axk ´ zk`1
˘‰˘

,

yk`1 :“ yk ` ρr
`

Axk`1 ´ zk`1
˘

.

In this iterative scheme the smooth term is evaluated via a gradient step, which is an improvement with
respect to other nonconvex ADMM algorithms, such as [47, 49], where the smooth function is involved
in a subproblem, which may be difficult to solve, unless it can be reformulated as a proximal step (see
[34]).

We will carry out a parallel convergence analysis for Algorithm 1 and Algorithm 2 in the following
setting.

Assumption 1. We assume that

1. g and h are bounded from below;

2. A is surjective and thus the constant

T0 :“

$

’

&

’

%

1

λminpAA˚qρ
, if 0 ă ρ ď 1,

ρ

λminpAA˚q p2´ ρq
2 , if 1 ă ρ ă 2,

is well-defined;

3. µ1 :“ sup
kě0

∥∥Mk
1

∥∥ ă `8 and µ2 :“ sup
kě0

∥∥Mk
2

∥∥ ă `8;

4. r ą 0, ρ P p0, 2q and µ1 ě 0 are such that

r ě 4T0L ą 0 (14)

and

2Mk
1 ` rA

˚A ě

ˆ

L`
CM

r

˙

Id @k ě 0, (15)

where

CM :“

$

&

%

´

6µ2
1 ` 4 pL` µ1q

2
¯

T0, for Algorithm 1,
´

4µ2
1 ` 6 pL` µ1q

2
¯

T0, for Algorithm 2.

Remark 2. 1. It has been noticed also by other authors (see, for instance, [11]) that the surjectivity
of the linear operator is an assumption which at this moment cannot be omitted when aiming to
prove convergence for nonconvex Lagrangian based algorithms.

2. In the following we discuss possible choices of the matrix sequence
 

Mk
1

(

kě0
which fulfil Assumption

1:
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(a) If sup
kě0

∥∥Mk
1

∥∥ “ µ1 ą
L

2
, then, for every

r ě max

"

4T0L,
CM

2µ1 ´ L

*

ą 0,

there exists α1 ą 0 such that

µ1 ě α1 ě
1

2

ˆ

L`
CM

r

˙

ą 0.

The inequality in (15) is ensured for Mk
1 chosen such that

µ1Id ě Mk
1 ě α1Id @k ě 0.

(b) If A is assumed to be also injective, then λmin pA
˚Aq ą 0. By choosing

r ě max

#

4T0L,
L`

a

L2 ` 4λmin pA˚AqCM

2λmin pA˚Aq

+

ą 0,

it follows that r2λmin pA
˚Aq ´ rL´ CM ě 0. Thus,

rA˚A´
`

L` r´1CM

˘

Id ě 0,

and (15) holds for an arbitrary sequence of symmetric and positive semidefinite matrices
 

Mk
1

(

kě0
. A possible choice is Mk

1 “ 0, which, together Mk
2 “ 0, for every k ě 0, allows

us to recover the classical ADMM algorithm and the linearized ADMM algorithm as particular
instances of our iterative schemes.

(c) For t ą 0, we take Mk
1 :“ tId´ rA˚A for every k ě 0 (see also Section 6.3 in [11]). Then

µ1 “ ‖tId´ rA˚A‖ “ λmax ptId´ rA
˚Aq “ t´ rλmin pA

˚Aq .

Condition (15) is equivalent to

2t´ r ‖A‖2 ´
ˆ

L`
CM

r

˙

ě 0

and is guaranteed for both algorithms when

2t´ r ‖A‖2 ´

¨

˝L`

´

4µ2
1 ` 6 pL` µ1q

2
¯

T0

r

˛

‚ě 0

or, equivalently,

10T0µ
2
1 ´ 2 pr ´ 6T0Lqµ1 ` 6T0L

2 ` r2
´

‖A‖2 ´ 2λmin pA
˚Aq

¯

´ Lr ď 0.

This quadratic inequality in µ1 ě 0 has nonnegative solutions if, for instance, r ě 6T0L (thus
(14) holds) and the reduced discriminant

∆ :“pr ´ 6T0Lq
2
´ 60T 2

0L
2 ´ 10T0r

2
´

‖A‖2 ´ 2λmin pA
˚Aq

¯

` 10T0Lr

“

”

1` 10T0

´

2λmin pA
˚Aq ´ ‖A‖2

¯ı

r2 ´ 2T0Lr ´ 24T 2
0L

2

is nonnegative. This holds true if the condition number of the matrix A˚A fulfils

κ pA˚Aq :“
λmax pA

˚Aq

λmin pA˚Aq
“

‖A‖2

λmin pA˚Aq
ď 2.

In conclusions, if the latter is given, then we can chose an arbitrary

r ě 6T0L

and t such that

rλmin pA
˚Aq ď t ď rλmin pA

˚Aq `
1

10T0

´

r ´ 6T0L`
?

∆
¯

.

For a similar choice for the

9



3. When proving convergence and deriving convergence rates for variable metric algorithms designed
for convex optimization problems one usually assumes monotonicity for the matrix sequences induc-
ing the variable metrics (see, for instance, [19, 5, 14]). It is worth to mention that the convergence
analysis for both Algorithm 1 and Algorithm 2 does not require monotonicity assumptions on
 

Mk
1

(

kě0
or

 

Mk
2

(

kě0
.

2.2 Preliminaries of the convergence analysis

Within the setting of Assumption 1 we will make use of the following constants:

C0 :“

$

’

&

’

%

L`
4T0 pL` µ1q

2

r
, for Algorithm 1,

L`
4T0µ

2
1

r
, for Algorithm 2,

C1 :“

$

’

&

’

%

4T0µ
2
1

r
, for Algorithm 1,

4T0 pL` µ1q
2

r
, for Algorithm 2,

and

T1 :“

$

’

&

’

%

1´ ρ

λminpAA˚qρ2r
, if 0 ă ρ ď 1,

ρ´ 1

λminpAA˚q p2´ ρq ρr
, if 1 ă ρ ă 2,

and we will denote for every k ě 0

Mk
3 :“ 2Mk

1 ` rA
˚A´ C0Id.

The following monotonicity result will play a fundamental role in our convergence analysis.

Lemma 4. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2. Then for every k ě 1 it holds:

Lr
`

xk`1, zk`1, yk`1
˘

` T1

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
`

1

2

∥∥xk`1 ´ xk
∥∥2

Mk
3
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2

ď Lr
`

xk, zk, yk
˘

` T1

∥∥A˚ `yk ´ yk´1
˘
∥∥2
`
C1

2

∥∥xk ´ xk´1
∥∥2
. (16)

Proof. Let k ě 1 be fixed. In both cases the proof builds on showing that the following inequality

Lr
`

xk`1, zk`1, yk`1
˘

`
1

2

∥∥xk`1 ´ xk
∥∥2

2Mk
1`rA

˚A
´
L

2

∥∥xk`1 ´ xk
∥∥2
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2

ď Lr
`

xk, zk, yk
˘

`
1

ρr

∥∥yk`1 ´ yk
∥∥2

(17)

is true and on providing afterwards an upper bound for
1

ρr

∥∥yk`1 ´ yk
∥∥2

.

1. For Algorithm 1: From (12a) we have

g
`

zk`1
˘

`
@

yk, Axk ´ zk`1
D

`
r

2

∥∥Axk ´ zk`1
∥∥2
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2

ď g
`

zk
˘

`
@

yk, Axk ´ zk
D

`
r

2

∥∥Axk ´ zk∥∥2
. (18)

The optimality criterion of (12b) is

∇h
`

xk`1
˘

“ ´A˚yk ´ rA˚
`

Axk`1 ´ zk`1
˘

`Mk
1

`

xk ´ xk`1
˘

. (19)

From (6) (applied for z :“ xk`1) we get

h
`

xk`1
˘

ď h
`

xk
˘

`
@

yk, Axk ´Axk`1
D

` r
@

Axk`1 ´ zk`1, Axk ´Axk`1
D

´
∥∥xk`1 ´ xk

∥∥2

Mk
1
`
L

2

∥∥xk`1 ´ xk
∥∥2
. (20)

By combining (12c), (18) and (20), after some rearrangements, we obtain (17).

By using the notation
ul1 :“ ´∇h

`

xl
˘

`Ml´1
1

`

xl´1 ´ xl
˘

@l ě 1 (21)

and by taking into consideration (12c), we can rewrite (19) as

A˚yl`1 “ ρul`1
1 ` p1´ ρqA˚yl @l ě 0. (22)
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• The case 0 ă ρ ď 1. We have

A˚
`

yk`1 ´ yk
˘

“ ρ
`

uk`1
1 ´ uk1

˘

` p1´ ρqA˚
`

yk ´ yk´1
˘

.

Since 0 ă ρ ď 1, the convexity of ‖¨‖2 gives∥∥A˚ `yk`1 ´ yk
˘
∥∥2
ď ρ

∥∥uk`1
1 ´ uk1

∥∥2
` p1´ ρq

∥∥A˚ `yk ´ yk´1
˘
∥∥2

and from here we get

λminpAA
˚qρ

∥∥yk`1 ´ yk
∥∥2
ď ρ

∥∥A˚ `yk`1 ´ yk
˘
∥∥2

ď ρ
∥∥uk`1

1 ´ uk1
∥∥2
` p1´ ρq

∥∥A˚ `yk ´ yk´1
˘∥∥2

´ p1´ ρq
∥∥A˚ `yk`1 ´ yk

˘∥∥2
. (23)

By using the Lipschitz continuity of ∇h we have∥∥uk`1
1 ´ uk1

∥∥ ď pL` µ1q
∥∥xk`1 ´ xk

∥∥` µ1

∥∥xk ´ xk´1
∥∥ , (24)

thus ∥∥uk`1
1 ´ uk1

∥∥2
ď 2 pL` µ1q

2 ∥∥xk`1 ´ xk
∥∥2
` 2µ2

1

∥∥xk ´ xk´1
∥∥2
. (25)

After plugging (25) into (23) we get

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď

2 pL` µ1q
2

λminpAA˚qρr

∥∥xk`1 ´ xk
∥∥2
`

2µ2
1

λminpAA˚qρr

∥∥xk ´ xk´1
∥∥2

`
p1´ ρq

λminpAA˚qρ2r

∥∥A˚ `yk ´ yk´1
˘
∥∥2
´

p1´ ρq

λminpAA˚qρ2r

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
,

(26)

which, combined with (17), provides (16).

• The case 1 ă ρ ă 2. This time we have from (22) that

A˚
`

yk`1 ´ yk
˘

“ p2´ ρq
ρ

2´ ρ

`

uk`1
1 ´ uk1

˘

` pρ´ 1qA˚
`

yk´1 ´ yk
˘

.

As 1 ă ρ ă 2, the convexity of ‖¨‖2 gives

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
ď

ρ2

2´ ρ

∥∥uk`1
1 ´ uk1

∥∥2
` pρ´ 1q

∥∥A˚ `yk ´ yk´1
˘
∥∥2

and from here it follows

λminpAA
˚q p2´ ρq

∥∥yk`1 ´ yk
∥∥2
ď p2´ ρq

∥∥A˚ `yk`1 ´ yk
˘∥∥2

ď
ρ2

2´ ρ

∥∥uk`1
1 ´ uk1

∥∥2
` pρ´ 1q

∥∥A˚ `yk ´ yk´1
˘
∥∥2
´ pρ´ 1q

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
. (27)

After plugging (25) into (27) we get

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď

2ρ pL` µ1q
2

λminpAA˚q p2´ ρq
2
r

∥∥xk`1 ´ xk
∥∥2
`

2ρµ2
1

λminpAA˚q p2´ ρq
2
r

∥∥xk ´ xk´1
∥∥2

`
pρ´ 1q

λminpAA˚q p2´ ρq ρr

∥∥A˚ `yk ´ yk´1
˘
∥∥2

´
pρ´ 1q

λminpAA˚q p2´ ρq ρr

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
, (28)

which, combined with (17), provides (16).

2. For Algorithm 2: The optimality criterion of (13b) is

∇h
`

xk
˘

“ ´A˚yk ´ rA˚
`

Axk`1 ´ zk`1
˘

`Mk
1

`

xk ´ xk`1
˘

. (29)
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From (6) (applied for z :“ xk) we get

h
`

xk`1
˘

ď h
`

xk
˘

`
@

yk, Axk ´Axk`1
D

` r
@

Axk`1 ´ zk`1, Axk ´Axk`1
D

´
∥∥xk`1 ´ xk

∥∥2

Mk
1
`
L

2

∥∥xk`1 ´ xk
∥∥2
. (30)

Since the definition of zk`1 in (13a) leads also to (18), by combining this inequality with (30) and
(13c), after some rearrangments, (17) follows. By using this time the notation

ul2 :“ ´∇h
`

xl´1
˘

`Ml´1
1

`

xl´1 ´ xl
˘

@l ě 1 (31)

and by taking into consideration (13c), we can rewrite (29) as

A˚yl`1 “ ρul`1
2 ` p1´ ρqA˚yl @l ě 0. (32)

• The case 0 ă ρ ď 1. As in (23) we obtain

λminpAA
˚qρ

∥∥yk`1 ´ yk
∥∥2
ď ρ

∥∥A˚ `yk`1 ´ yk
˘
∥∥2

ď ρ
∥∥uk`1

2 ´ uk2
∥∥2
` p1´ ρq

∥∥A˚ `yk ´ yk´1
˘∥∥2

´ p1´ ρq
∥∥A˚ `yk`1 ´ yk

˘∥∥2
. (33)

By using the Lipschitz continuity of ∇h we have∥∥uk`1
2 ´ uk2

∥∥ ď µ1

∥∥xk`1 ´ xk
∥∥` pL` µ1q

∥∥xk ´ xk´1
∥∥ , (34)

thus ∥∥uk`1
2 ´ uk2

∥∥2
ď 2µ2

1

∥∥xk`1 ´ xk
∥∥2
` 2 pL` µ1q

2 ∥∥xk ´ xk´1
∥∥2
. (35)

After plugging (35) into (33) it follows

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď

2µ2
1

λminpAA˚qρr

∥∥xk`1 ´ xk
∥∥2
`

2 pL` µ1q
2

λminpAA˚qρr

∥∥xk ´ xk´1
∥∥2

`
p1´ ρq

λminpAA˚qρ2r

∥∥A˚ `yk ´ yk´1
˘
∥∥2
´

p1´ ρq

λminpAA˚qρ2r

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
,

(36)

which, combined with (17), provides (16).

• The case 1 ă ρ ă 2. As in (27) we obtain

λminpAA
˚q p2´ ρq

∥∥yk`1 ´ yk
∥∥2
ď p2´ ρq

∥∥A˚ `yk`1 ´ yk
˘
∥∥2

ď
ρ2

2´ ρ

∥∥uk`1
2 ´ uk2

∥∥2
` pρ´ 1q

∥∥A˚ `yk ´ yk´1
˘
∥∥2
´ pρ´ 1q

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
. (37)

After plugging (35) into (37) it follows

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď

2ρµ2
1

λminpAA˚q p2´ ρq
2
r

∥∥xk`1 ´ xk
∥∥2
`

2ρ pL` µ1q
2

λminpAA˚q p2´ ρq
2
r

∥∥xk ´ xk´1
∥∥2

`
pρ´ 1q

λminpAA˚q p2´ ρq ρr

∥∥A˚ `yk ´ yk´1
˘
∥∥2

´
pρ´ 1q

λminpAA˚q p2´ ρq ρr

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
. (38)

which, combined with (17), provides (16).

This concludes the proof.

The following three estimates will be useful in the sequel.

Lemma 5. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2. Then the following statements are true:
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(i) for every k ě 1∥∥zk`1 ´ zk
∥∥ ď ‖A‖ ¨ ∥∥xk`1 ´ xk

∥∥` ∥∥Axk`1 ´ zk`1
∥∥` ∥∥Axk ´ zk∥∥

“ ‖A‖ ¨
∥∥xk`1 ´ xk

∥∥` 1

ρr

∥∥yk`1 ´ yk
∥∥` 1

ρr

∥∥yk ´ yk´1
∥∥ ; (39)

(ii) for every k ě 0

1

2r

∥∥yk`1
∥∥2
ď
T1

2

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
`
T0

r

∥∥∇h `xk`1
˘
∥∥2
`
C1

4

∥∥xk`1 ´ xk
∥∥2

; (40)

(iii) for every k ě 1∥∥yk`1 ´ yk
∥∥ ď C3

∥∥xk`1 ´ xk
∥∥` C4

∥∥xk ´ xk´1
∥∥` T2

`
∥∥A˚ `yk ´ yk´1

˘
∥∥´ ∥∥A˚ `yk`1 ´ yk

˘
∥∥˘ ,

(41)

where

C3 :“

$

’

’

’

’

&

’

’

’

’

%

ρ pL` µ1q
a

λminpAA˚q p1´ |1´ ρ|q
, for Algorithm 1,

ρµ1
a

λminpAA˚q p1´ |1´ ρ|q
, for Algorithm 2,

C4 :“

$

’

’

’

’

&

’

’

’

’

%

ρµ1
a

λminpAA˚q p1´ |1´ ρ|q
, for Algorithm 1,

ρ pL` µ1q
a

λminpAA˚q p1´ |1´ ρ|q
, for Algorithm 2,

T2 :“
|1´ ρ|

a

λminpAA˚q p1´ |1´ ρ|q
.

Proof. The statement in (39) is straightforward.
From (22) and (32) we have for every k ě 0

A˚yk`1 “ ρuk`1 ` p1´ ρqA˚yk

or, equivalently,
ρA˚yk`1 “ ρuk`1 ` p1´ ρqA˚

`

yk ´ yk`1
˘

,

where uk`1 is defined as being equal to uk`1
1 in (21), for Algorithm 1, and, respectively, to uk`1

2 in (31),
for Algorithm 2.

For 0 ă ρ ď 1 we have

λminpAA
˚qρ2

∥∥yk`1
∥∥2
ď ρ2

∥∥A˚yk`1
∥∥2
ď ρ

∥∥uk`1
∥∥2
` p1´ ρq

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
, (42)

while, for 1 ă ρ ă 2, we have

λminpAA
˚qρ2

∥∥yk`1
∥∥2
ď ρ2

∥∥A˚yk`1
∥∥2
ď

ρ2

2´ ρ

∥∥uk`1
∥∥2
` pρ´ 1q

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
. (43)

Notice further that for 1 ă ρ ă 2 we have
1

ρ
ă 1 and 1 ă

ρ

2´ ρ
.

In case uk`1 is defined as in (21) it holds∥∥uk`1
∥∥2
“

∥∥uk`1
1

∥∥2
ď 2

∥∥∇h `xk`1
˘
∥∥2
` 2µ2

1

∥∥xk`1 ´ xk
∥∥2
@k ě 0, (44)

while, in case uk`1
2 is defined as in (31), it holds∥∥uk`1

∥∥2
“

∥∥uk`1
2

∥∥2
ď 2

∥∥∇h `xk`1
˘
∥∥2
` 2 pL` µ1q

2 ∥∥xk`1 ´ xk
∥∥2
@k ě 0. (45)
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We divide (42) and (43) by 2λminpAA
˚qρ2r ą 0 and plug (44) and, respectively, (45) into the resulting

inequalities. This gives us (40).
Finally, in order to prove (41), we notice that for every k ě 1 it holds∥∥A˚ `yk`1 ´ yk

˘
∥∥ ď ρ

∥∥uk`1 ´ uk
∥∥` |1´ ρ|∥∥A˚ `yk ´ yk´1

˘
∥∥ ,

so,
a

λminpAA˚q p1´ |1´ ρ|q
∥∥yk`1 ´ yk

∥∥ ď p1´ |1´ ρ|q∥∥A˚ `yk`1 ´ yk
˘
∥∥

ď ρ
∥∥uk`1 ´ uk

∥∥` |1´ ρ|∥∥A˚ `yk ´ yk´1
˘
∥∥´ |1´ ρ|∥∥A˚ `yk`1 ´ yk

˘
∥∥ . (46)

We plug into (46) the estimates for
∥∥uk`1 ´ uk

∥∥ derived in (24) and, respectively, (34) and divide the

resulting inequality by
a

λminpAA˚q p1´ |1´ ρ|q ą 0. This furnishes the desired statement.

The following regularization of the augmented Lagrangian will play an important role in the conver-
gence analysis of the nonconvex proximal ADMM algorithms

Fr : Rn ˆ Rm ˆ Rm ˆ Rn ˆ Rm Ñ RY t`8u ,

Frpx, z, y, x1, y1q “ Lr px, z, yq ` T1

∥∥A˚ `y ´ y1˘∥∥2
`
C1

2

∥∥x´ x1∥∥2
,

where T1 and C1 are defined in Assumption 1. For every k ě 1 we denote

Fk :“ Fr
`

xk, zk, yk, xk´1, yk´1
˘

“ Lr
`

xk, zk, yk
˘

` T1

∥∥A˚ `yk ´ yk´1
˘∥∥2

`
C1

2

∥∥xk ´ xk´1
∥∥2
. (47)

Since the convergence analysis will rely on the fact that the set of cluster points of the sequence
 `

xk, zk, yk
˘(

kě0
is nonempty, we will present first two situations which guarantee that this sequence

is bounded. They make use of standard coercivity assumptions for the functions g and h, respectively.
Recall that a function Ψ : RN Ñ RY t`8u is called coercive, if lim

‖x‖Ñ`8
Ψ pxq “ `8.

Theorem 6. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2. Suppose that one of the following conditions holds:

(B-I) A is invertible and g is coercive;

(B-II) h is coercive.

Then the sequence
 `

xk, zk, yk
˘(

kě0
is bounded.

Proof. From Lemma 4 we have that for every k ě 1

Fk`1 `
1

2

∥∥xk`1 ´ xk
∥∥2

Mk
3´C1Id

`
1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2
ď Fk (48)

which shows, according to (15), that tFkukě1 is monotonically decreasing. Consequently, for every k ě 1
we have

F1 ě Fk`1 `
1

2

∥∥xk`1 ´ xk
∥∥2

Mk
3´C1Id

`
1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2

“ h
`

xk`1
˘

` g
`

zk`1
˘

´
1

2r

∥∥yk`1
∥∥2
`
r

2

∥∥∥∥Axk`1 ´ zk`1 `
1

r
yk`1

∥∥∥∥2

` T1

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
`

1

2

∥∥xk`1 ´ xk
∥∥2

Mk
3´C0Id

`
1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2
`
C1

2
}xk`1 ´ xk},

which, thanks to (40), leads to

F1 ě h
`

xk`1
˘

` g
`

zk`1
˘

´
T0

r

∥∥∇h `xk`1
˘
∥∥2
`
r

2

∥∥∥∥Axk`1 ´ zk`1 `
1

r
yk`1

∥∥∥∥2

`
T1

2

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
`

1

2

∥∥xk`1 ´ xk
∥∥2

Mk
3´C1Id

`
1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2
`
C1

4
}xk`1 ´ xk}2. (49)

Next we will prove the boundedness of
 `

xk, zk, yk
˘(

kě0
under each of the two scenarios.
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(B-I) Since r ě 4T0L, there exists σ ą 0 such that

1

σ
´

L

2σ2
“
T0

r
.

From Proposition 1 and the relation (49) we see that for every k ě 1

g
`

zk`1
˘

`
r

2

∥∥∥∥Axk`1 ´ zk`1 `
1

r
yk`1

∥∥∥∥2

`
C1

4
}xk`1 ´ xk}2

ď F1 ´ inf
xPRn

"

h pxq ´
T0

r
‖∇h pxq‖2

*

ă `8.

Since g is coercive, it follows that the sequence
 

zk
(

kě0
is bounded. On the other hand, since g is bounded

from below, it follows that the sequences
 

Axk ´ zk ` r´1yk
(

kě0
and

 

xk`1 ´ xk
(

kě0
are bounded as

well. In addition, since for every k ě 0 it holds∥∥A `

xk`1 ´ xk
˘

´
`

zk`1 ´ zk
˘
∥∥ ď ‖A‖ ¨ ∥∥xk`1 ´ xk

∥∥` ∥∥zk`1
∥∥` ∥∥zk∥∥

it follows that
 

A
`

xk`1 ´ xk
˘

´
`

zk`1 ´ zk
˘(

kě0
is bounded, thus

 

r´1
`

yk`1 ´ yk
˘(

kě0
is bounded.

According to the third update in the iterative scheme we obtain that
 

Axk ´ zk
(

kě0
is bounded and

from here that
 

yk
(

kě0
is also bounded. This implies the boundedness of

 

Axk
(

kě0
and, finally, since

A is invertible, the boundedness of
 

xk
(

kě0
.

(B-II) Again thanks to (14) there exists σ ą 0 such that

1

σ
´

L

2σ2
“

3T0

2r
.

We assume first that ρ ‰ 1 or, equivalently, T1 ‰ 0. From Proposition 1 and (49) we see that for every
k ě 1

1

2
h
`

xk`1
˘

`
T0

4r

∥∥∇h `xk`1
˘
∥∥2
`
r

2

∥∥∥∥Axk`1 ´ zk`1 `
1

r
yk`1

∥∥∥∥2

`
T1

2

∥∥A˚ `yk`1 ´ yk
˘
∥∥

ď F1 ´ inf
zPRm

g pzq ´
1

2
inf
xPRn

"

h pxq ´
3T0

2r
‖∇h pxq‖2

*

ă `8.

Since h is coercive and bounded from below, we obtain that
 

xk
(

kě0
,
 

Axk ´ zk ` r´1yk
(

kě0
and

 

A˚
`

yk`1 ´ yk
˘(

kě0
are bounded. For every k ě 0 we have that

λmin pA
˚Aq ρ2r2

∥∥Axk`1 ´ zk`1
∥∥2
“ λmin pA

˚Aq
∥∥yk`1 ´ yk

∥∥2
ď

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
,

thus
 

Axk ´ zk
(

kě0
is bounded. Consequently,

 

yk
(

kě0
and

 

zk
(

kě0
are bounded.

In case ρ “ 1 or, equivalently, T1 “ 0, we have that for every k ě 1

1

2
h
`

xk`1
˘

`
T0

4r

∥∥∇h `xk`1
˘
∥∥2
`
r

2

∥∥∥∥Axk`1 ´ zk`1 `
1

r
yk`1

∥∥∥∥2

ď F1 ´ inf
zPRm

g pzq ´
1

2
inf
xPRn

"

h pxq ´
3T0

2r
‖∇h pxq‖2

*

ă `8

from which we deduce that
 

xk
(

kě0
and

 

Axk ´ zk ` r´1yk
(

kě0
are bounded. From Lemma 5 (iii),

which now reads ∥∥yk`1 ´ yk
∥∥ ď C3

∥∥xk`1 ´ xk
∥∥` C4

∥∥xk ´ xk´1
∥∥ @k ě 1,

it yields that
 

yk`1 ´ yk
(

kě0
is bounded, thus,

 

Axk ´ zk
(

kě0
is bounded. Consequently,

 

yk
(

kě0
and

 

zk
(

kě0
are bounded.

Both considered scenarios lead to the conclusion that the sequence
 `

xk, zk, yk
˘(

kě0
is bounded.

We state now the first convergence result of this paper.

Theorem 7. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2, which is assumed to be bounded. The following statements are true:
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(i) for every k ě 1 it holds

Fk`1 `
C1

4

∥∥xk`1 ´ xk
∥∥2
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2
ď Fk; (50)

(ii) the sequence tFkukě0 is bounded from below and convergent. In addition,

xk`1 ´ xk Ñ 0, zk`1 ´ zk Ñ 0 and yk`1 ´ yk Ñ 0 as k Ñ `8; (51)

(iii) the sequences tFkukě0,
 

Lr
`

xk, zk, yk
˘(

kě0
and

 

h
`

xk
˘

` g
`

zk
˘(

kě0
have the same limit, which

we denote by F˚ P R.

Proof. (i) According to (15) we have that Mk
3 ´ C1Id P PnC1

2

and thus (48) implies (50).

(ii) We will show that
 

Lr
`

xk, zk, yk
˘(

kě0
is bounded from below, which will imply that tFkukě0 is

bounded from below as well. Assuming the contrary, as
 `

xk, zk, yk
˘(

kě0
is bounded, there exists

a subsequence
 `

xkq , zkq , ykq
˘(

qě0
converging to an element ppx, pz, pyq P Rn ˆ Rm ˆ Rm such that

 

Lr
`

xkq , zkq , ykq
˘(

qě0
converges to ´8 as q Ñ `8. However, using the lower semicontinuity of g

and the continuity of h, we obtain

lim inf
qÑ`8

Lr
`

xkq , zkq , ykq
˘

ě h ppxq ` g ppzq ` xpy,Apx´ pzy `
r

2
‖Apx´ pz‖2 ,

which leads to a contradiction. From Lemma 2 we conclude that tFkukě1 is convergent and

ÿ

kě0

∥∥xk`1 ´ xk
∥∥2
ă `8,

thus xk`1 ´ xk Ñ 0 as k Ñ `8.

We proved in (26), (28), (36) and (38) that for every k ě 1

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď
C0 ´ L

2

∥∥xk`1 ´ xk
∥∥2
`
C1

2

∥∥xk ´ xk´1
∥∥2

` T1

∥∥A˚ `yk ´ yk´1
˘
∥∥2
´ T1

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
.

Summing up the above inequality for k “ 1, . . . ,K, for K ą 1, we get

1

ρr

K
ÿ

k“1

∥∥yk`1 ´ yk
∥∥2
ď
C0 ´ L

2

K
ÿ

k“1

∥∥xk`1 ´ xk
∥∥2
`
C1

2

K
ÿ

k“1

∥∥xk ´ xk´1
∥∥2

` T1

∥∥A˚ `y1 ´ y0
˘
∥∥2
´ T1

∥∥A˚ `yK`1 ´ yK
˘
∥∥2

ď
C0 ´ L

2

K
ÿ

k“1

∥∥xk`1 ´ xk
∥∥2
`
C1

2

K
ÿ

k“1

∥∥xk ´ xk´1
∥∥2
` T1

∥∥A˚ `y1 ´ y0
˘
∥∥2
.

We let K converge to `8 and conclude

ρr
ÿ

kě0

∥∥Axk`1 ´ zk`1
∥∥2
“

1

ρr

ÿ

kě0

∥∥yk`1 ´ yk
∥∥2
ă `8,

thus Axk`1 ´ zk`1 Ñ 0 and yk`1 ´ yk Ñ 0 as k Ñ `8. Since xk`1 ´ xk Ñ 0 as k Ñ `8, it
follows that zk`1 ´ zk Ñ 0 as k Ñ `8.

(iii) By using (51) and the fact that
 

yk
(

kě0
is bounded, it follows

F˚ “ lim
kÑ`8

Fk “ lim
kÑ`8

Lr
`

xk, zk, yk
˘

“ lim
kÑ`8

 

h
`

xk
˘

` g
`

zk
˘(

,

which is the desired statement.

The following lemmas provides upper estimates in terms of the iterates for limiting subgradients of
the augmented Lagrangian and the regularized augmented Lagrangian Fr, respectively.
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Lemma 8. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2. For every k ě 0 we have

dk`1 :“
`

dk`1
x , dk`1

z , dk`1
y

˘

P BLr
`

xk`1, zk`1, yk`1
˘

, (52)

where

dk`1
x :“ C2

`

∇h
`

xk`1
˘

´∇h
`

xk
˘˘

`A˚
`

yk`1 ´ yk
˘

`Mk
1

`

xk ´ xk`1
˘

, (53a)

dk`1
z :“ yk ´ yk`1 ` rA

`

xk ´ xk`1
˘

`Mk
2

`

zk ´ zk`1
˘

, (53b)

dk`1
y :“

1

ρr

`

yk`1 ´ yk
˘

. (53c)

and

C2 :“

#

0, for Algorithm 1,

1, for Algorithm 2.

Moreover, for every k ě 0 it holds

|||dk`1||| ď C5

∥∥xk`1 ´ xk
∥∥` C6

∥∥zk`1 ´ zk
∥∥` C7

∥∥yk`1 ´ yk
∥∥ , (54)

where

C5 :“ C2L` µ1 ` r ‖A‖ , C6 :“ µ2, C7 :“ 1` ‖A‖` 1

ρr
.

Proof. Let k ě 0 be fixed. Applying the calculus rules of the limiting subdifferential, we obtain

∇xLr
`

xk`1, zk`1, yk`1
˘

“ ∇h
`

xk`1
˘

`A˚yk`1 ` rA˚
`

Axk`1 ´ zk`1
˘

, (55a)

BzLr
`

xk`1, zk`1, yk`1
˘

“ Bg
`

zk`1
˘

´ yk`1 ´ r
`

Axk`1 ´ zk`1
˘

, (55b)

∇yLr
`

xk`1, zk`1, yk`1
˘

“ Axk`1 ´ zk`1. (55c)

Then (53c) follows directly from (55c) and (12c), respectively, (13c), while (53b) follows from

yk ` rpAxk ´ zk`1q `Mk
2

`

zk ´ zk`1
˘

P Bg
`

zk`1
˘

,

which is a consequence of the optimality criterion of (12a) and (13a), respectively. In order to derive
(53a), let us notice that for Algorithm 1 we have (see (19))

´A˚yk `Mk
1

`

xk ´ xk`1
˘

“ ∇h
`

xk`1
˘

` rA˚
`

Axk`1 ´ zk`1
˘

, (56)

while for Algorithm 2 we have (see (29))

´∇h
`

xk
˘

´A˚yk `Mk
1

`

xk ´ xk`1
˘

“ rA˚
`

Axk`1 ´ zk`1
˘

. (57)

By using (55a) we get the desired statement.
Relation (54) follows by combining the inequalities∥∥dk`1

x

∥∥ ď pC2L` µ1q
∥∥xk`1 ´ xk

∥∥` ‖A‖ ¨ ∥∥yk`1 ´ yk
∥∥ ,∥∥dk`1

z

∥∥ ď ∥∥yk ´ yk`1
∥∥` r ‖A‖ ¨ ∥∥xk`1 ´ xk

∥∥` µ2

∥∥zk`1 ´ zk
∥∥

and (5).

Lemma 9. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2. For every k ě 0 we have

Dk`1 :“
´

Dk`1
x , Dk`1

z , Dk`1
y , Dk`1

x1 , Dk`1
y1

¯

P BFr
`

xk`1, zk`1, yk`1, xk, yk
˘

(58)

where

Dk`1
x :“ dk`1

x ` C1

`

xk`1 ´ xk
˘

, Dk`1
z :“ dk`1

z , Dk`1
y :“ dk`1

y ` 2T1AA
˚
`

yk`1 ´ yk
˘

,

Dk`1
x1 :“ ´C1

`

xk`1 ´ xk
˘

, Dk`1
y1 :“ ´2T1AA

˚
`

yk`1 ´ yk
˘

. (59)

Moreover, for every k ě 0 it holds

|||Dk`1||| ď C8

∥∥xk`1 ´ xk
∥∥` C9

∥∥zk`1 ´ zk
∥∥` C10

∥∥yk`1 ´ yk
∥∥ , (60)

where
C8 :“ 2C1 ` C5, C9 :“ C6, C10 :“ C7 ` 4T1 ‖A‖2 .
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Proof. Let k ě 0 be fixed. Applying the calculus rules of the limiting subdifferential it follows

∇xFr
`

xk`1, zk`1, yk`1, xk, yk
˘

:“ ∇xLr
`

xk`1, zk`1, yk`1
˘

` C1

`

xk`1 ´ xk
˘

, (61a)

BzFr
`

xk`1, zk`1, yk`1, xk, yk
˘

:“ BzLr
`

xk`1, zk`1, yk`1
˘

(61b)

∇yFr
`

xk`1, zk`1, yk`1, xk, yk
˘

:“ ∇yLr
`

xk`1, zk`1, yk`1
˘

` 2T1AA
˚
`

yk`1 ´ yk
˘

, (61c)

∇x1Fr
`

xk`1, zk`1, yk`1, xk, yk
˘

:“ ´C1

`

xk`1 ´ xk
˘

, (61d)

∇y1Fr
`

xk`1, zk`1, yk`1, xk, yk
˘

:“ ´2T1AA
˚
`

yk`1 ´ yk
˘

. (61e)

Then (58) follows directly from the above relations and (52). Inequality (60) follows by combining∥∥Dk`1
x

∥∥ ď ∥∥dk`1
x

∥∥` C1

∥∥xk`1 ´ xk
∥∥ ,∥∥Dk`1

y

∥∥ ď ∥∥dk`1
y

∥∥` 2T1 ‖A‖2 ¨
∥∥yk`1 ´ yk

∥∥ .
and (5).

The following result is a straightforward consequence of Lemma 5 and Lemma 9.

Corollary 10. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated

by Algorithm 1 or Algorithm 2. Then the norm of the element Dk`1 P BFr
`

xk`1, zk`1, yk`1, xk, yk
˘

defined in the previous lemma verifies for every k ě 2 the following estimate

|||Dk`1||| ď C11

`
∥∥xk`1 ´ xk

∥∥` ∥∥xk ´ xk´1
∥∥` ∥∥xk´1 ´ xk´2

∥∥˘
` C12

`
∥∥A˚ `yk ´ yk´1

˘
∥∥´ ∥∥A˚ `yk`1 ´ yk

˘
∥∥˘

` C13

`
∥∥A˚ `yk´1 ´ yk´2

˘
∥∥´ ∥∥A˚ `yk ´ yk´1

˘
∥∥˘ , (62)

where

C11 :“ max

"

C8 ` C9 ‖A‖` C3C10 `
C3C9

ρr
, C4C10 `

C3C9

ρr
,
C4C9

ρr

*

,

C12 :“

ˆ

C10 `
C9

ρr

˙

T2, C13 :“
C9T2

ρr
.

In the following, we denote by ω
´

 

uk
(

kě0

¯

the set of cluster points of the sequence
 

uk
(

kě0
Ď RN .

Lemma 11. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2, which is assumed to be bounded. The following statements are true:

(i) if
 

pxkq , zkq , ykq q
(

qě0
is a subsequence of

 `

xk, zk, yk
˘(

kě0
which converges to ppx, pz, pyq as q Ñ `8,

then
lim
qÑ8

Lr
`

xkq , zkq , ykq
˘

“ Lr ppx, pz, pyq ;

(ii) it holds

ω
´

 `

xk, zk, yk
˘(

kě0

¯

Ď crit pLrq

Ď tppx, pz, pyq P Rn ˆ Rm ˆ Rm : ´A˚py “ ∇h ppxq , py P Bg ppzq , pz “ Apxu ;

(iii) we have lim
kÑ`8

dist
”

`

xk, zk, yk
˘

, ω
´

 `

xk, zk, yk
˘(

kě0

¯ı

“ 0;

(iv) the set ω
´

 `

xk, zk, yk
˘(

kě0

¯

is nonempty, connected and compact;

(v) the function Lr takes on ω
´

 `

xk, zk, yk
˘(

kě0

¯

the value F˚ “ limkÑ`8 Lr
`

xk, zk, yk
˘

, as the

objective function g ˝ A` h does on the projection of the set ω
´

 `

xk, zk, yk
˘(

kě0

¯

onto the space

Rn corresponding to the first component.

Proof. Let ppx, pz, pyq P ω
´

 `

xk, zk, yk
˘(

kě0

¯

and
 `

xkq , zkq , ykq
˘(

qě0
be a subsequence of

 

xk, zk, yk
(

kě0

converging to ppx, pz, pyq as q Ñ `8.
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(i) From either (12a) or (13a) we obtain for every q ě 1

g
`

zkq
˘

`
@

ykq´1, Axkq´1 ´ zkq
D

`
r

2

∥∥Axkq´1 ´ zkq
∥∥2
`

1

2

∥∥zkq ´ zkq´1
∥∥2

M
kq´1

2

ď g ppzq `
@

ykq´1, Axkq´1 ´ pz
D

`
r

2

∥∥Axkq´1 ´ pz
∥∥2
`

1

2

∥∥
pz ´ zkq´1

∥∥2

M
kq´1

2
.

Taking the limit superior on both sides of the above inequalities we get

lim sup
qÑ`8

g
`

zkq
˘

ď g ppzq ,

which, combined with the lower semicontinuity of g, leads to

lim
qÑ`8

g
`

zkq
˘

“ g ppzq .

Since h is continuous, we further obtain

lim
qÑ`8

Lr
`

xkq , zkq , ykq
˘

“ lim
qÑ`8

”

g
`

zkq
˘

` h
`

xkq
˘

`
@

ykq , Axkq ´ zkq
D

`
r

2

∥∥Axkq ´ zkq∥∥2
ı

“ g ppzq ` h ppxq ` xpy,Apx´ pzy `
r

2
‖Apx´ pz‖2 “ Lr ppx, pz, pyq .

(ii) For the sequence
 

dk
(

kě0
defined in (53a)-(53c) we have that dkq P BLrpxkq , zkq , ykq q for every q ě 1

and dkq Ñ 0 as q Ñ `8, while
`

xkq , zkq , ykq
˘

Ñ ppx, pz, pyq and Lr
`

xkq , zkq , ykq
˘

Ñ Lr ppx, pz, pyq as q Ñ `8.
The closedness criterion of the limiting subdifferential guarantees that 0 P BLr ppx, pz, pyq or, in other words,
ppx, pz, pyq P crit pLrq. Choosing now an element ppx, pz, pyq P crit pLrq it holds

0 “ ∇h ppxq `A˚py ` rA˚ pApx´ pzq

0 P Bg ppzq ´ py ´ r pApx´ pzq

0 “ Apx´ pz,

which is further equivalent to

´A˚py “ ∇h ppxq , py P Bg ppzq , pz “ Apx.

(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [10], also by taking into
consideration [10, Remark 5], according to which the properties in (iii) and (iv) are generic for sequences
satisfying

`

xk`1, zk`1, yk`1
˘

´
`

xk, zk, yk
˘

Ñ 0 as k Ñ `8, which is indeed the case due to (51).

(v) The conclusion follows according to the first two statements of this theorem and of the third statement
of Theorem 7.

Remark 3. An element ppx, pz, pyq P Rn ˆ Rm ˆ Rm fulfilling

´A˚py “ ∇h ppxq , py P Bg ppzq , pz “ Apx

is a so-called KKT point of the optimization problem (1). For such a KKT point we have

0 “ A˚Bg pApxq `∇h ppxq . (63)

When A is injective this is further equivalent to

0 P Bpg ˝Aqppxq `∇h ppxq “ B pg ˝A` hq ppxq , (64)

in other words, px is a critical point of the optimization problem (1).
If the functions g and h are convex, then (63) and (64) are equivalent, which means that px is a

global optimal solution of the optimization problem (1). In this case, py is a global optimal solution of the
Fenchel dual problem of (1).

By combining Lemma 9, Theorem 7 and Lemma 11, one obtains the following result.

Lemma 12. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2, which is assumed to be bounded. Let Ω :“ ω
´

 `

xk, zk, yk, xk´1, yk´1
˘(

kě1

¯

.

The following statements are true:
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(i) it holds
Ω Ď tppx, pz, py, px, pyq P Rn ˆ Rm ˆ Rm ˆ Rn ˆ Rm : ppx, pz, pyq P crit pLrqu ;

(ii) we have
lim

kÑ`8
dist

“`

xk, zk, yk, xk´1, yk´1
˘

,Ω
‰

“ 0;

(iii) the set Ω is nonempty, connected and compact;

(iv) the regularized augmented Lagrangian Fr takes on Ω the value F˚ “ limkÑ`8 Fk, as the objective
function g ˝A` h does on the projection of the set Ω onto the space Rn corresponding to the first
component.

2.3 Convergence analysis under Kurdyka- Lojasiewicz assumptions

In this subsection we will prove global convergence for the sequence
 `

xk, zk, yk
˘(

kě0
generated by the

two nonconvex proximal ADMM algorithms in the context of K L property. The origins of this notion
go back to the pioneering work of Kurdyka who introduced in [32] a general form of the  Lojasiewicz
inequality (see [37]). A further extension to the nonsmooth setting has been proposed and studied in
[7, 8, 9].

We recall that the distance function of a given set Ω Ď RN is defined for every x by dist px,Ωq :“
inf t‖x´ y‖ : y P Ωu.

Definition 1. Let η P p0,`8s. We denote by Φη the set of all concave and continuous functions
ϕ : r0, ηq Ñ r0,`8q which satisfy the following conditions:

1. ϕ p0q “ 0;

2. ϕ is C1 on p0, ηq and continuous at 0;

3. for all s P p0, ηq : ϕ1 psq ą 0.

Definition 2. Let Ψ: RN Ñ RY t`8u be proper and lower semicontinuous.

1. The function Ψ is said to have the Kurdyka- Lojasiewicz (K L) property at a point pu P domBΨ :“
 

u P RN : BΨ puq ‰ H
(

, if there exists η P p0,`8s, a neighborhood U of pu and a function ϕ P Φη
such that for every

u P U X rΨ ppuq ă Ψ puq ă Ψ ppuq ` ηs

it holds
ϕ1 pΨ puq ´Ψ ppuqq ¨ dist p0, BΨ puqq ě 1.

2. If Ψ satisfies the K L property at each point of domBΨ, then Ψ is called K L function.

The functions ϕ belonging to the set Φη for η P p0,`8s are called desingularization functions. The
K L property reveals the possibility to reparameterize the values of Ψ in order to avoid flatness around
the critical points. To the class of K L functions belong semialgebraic, real subanalytic, uniformly convex
functions and convex functions satisfying a growth condition. We refer the reader to [2, 3, 4, 7, 8, 9, 10]
and to the references therein for more properties of K L functions and illustrating examples.

The following result, taken from [10, Lemma 6], will be crucial in our convergence analysis.

Lemma 13. (Uniformized K L property) Let Ω be a compact set and Ψ: RN Ñ RYt`8u be a proper
and lower semicontinuous function. Assume that Ψ is constant on Ω and satisfies the K L property at
each point of Ω. Then there exist ε ą 0, η ą 0 and ϕ P Φη such that for every pu P Ω and every element
u in the intersection

 

u P RN : dist pu,Ωq ă ε
(

X rΨ ppuq ă Ψ puq ă Ψ ppuq ` ηs

it holds
ϕ1 pΨ puq ´Ψ ppuqq ¨ dist p0, BΨ puqq ě 1.
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Working in the hypotheses of Lemma 12 we define for every k ě 1

Ek :“ F
`

xk, zk, yk, xk´1, yk´1
˘

´ F˚ “ Fk ´ F˚ ě 0,

where F˚ is the limit of tFkukě1 as k Ñ `8. The sequence tEkukě1 is monotonically decreasing and it
converges to 0 as k Ñ `8.

The next result shows that, if the regularization of the augmented Lagrangian Fr is a K L function,
then the sequence

 `

xk, zk, yk
˘(

kě0
converges to a KKT point of the optimization problem (1).

Theorem 14. Suppose that Assumption 1 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2, which is assumed to be bounded. If Fr is a K L function, then the following
statements are true:

(i) the sequence
 `

xk, zk, yk
˘(

kě0
has finite length, namely,

ÿ

kě0

∥∥xk`1 ´ xk
∥∥ ă `8, ÿ

kě0

∥∥zk`1 ´ zk
∥∥ ă `8, ÿ

kě0

∥∥yk`1 ´ yk
∥∥ ă `8; (65)

(ii) the sequence
 `

xk, zk, yk
˘(

kě0
converges to a KKT point of the optimization problem (1).

Proof. As in Lemma 12, we denote by Ω :“ ω
´

 `

xk, zk, yk, xk´1, yk´1
˘(

kě1

¯

, which is a nonempty set.

Let be ppx, pz, py, px, pyq P Ω, thus Fr ppx, pz, py, px, pyq “ F˚. We have seen that tEk “ Fk ´ F˚ukě1 converges to
0 as k Ñ `8 and will consider, consequently, two cases.

We assume first that there exists an integer k1 ě 0 such that Ek1 “ 0 or, equivalently, Fk1 “ F˚. Due
to the monotonicity of tEkukě1 it follows that Ek “ 0 or, equivalently, Fk “ F˚ for all k ě k1. Combining

the inequality in (50) with Lemma 5, it yields that xk`1´xk “ 0 for all k ě k1` 1. Using Lemma 5 (iii)

and telescoping sum arguments, it yields
ÿ

kě0

∥∥yk`1 ´ yk
∥∥ ă `8. Finally, by using Lemma 5 (i), we

obtain that
ÿ

kě0

∥∥zk`1 ´ zk
∥∥ ă `8.

Consider now the case when Ek ą 0 or, equivalently, Fk ą F˚ for every k ě 1. According to Lemma
13, there exist ε ą 0, η ą 0 and a desingularization function ϕ such that for every element u in the
intersection

tu P Rn ˆ Rm ˆ Rm ˆ Rn ˆ Rm : dist pu,Ωq ă εu X

tu P Rn ˆ Rm ˆ Rm ˆ Rn ˆ Rm : F˚ ă Fr puq ă F˚ ` ηu (66)

it holds
ϕ1 pFr puq ´ F˚q ¨ dist p0, BFr puqq ě 1.

Let be k1 ě 1 such that for every k ě k1

F˚ ă Fk ă F˚ ` η.

Since lim
kÑ`8

dist
“`

xk, zk, yk, xk´1, yk´1
˘

,Ω
‰

“ 0, see Lemma 12 (ii), there exists k2 ě 1 such that for

every k ě k2

dist
“`

xk, zk, yk, xk´1, yk´1
˘

,Ω
‰

ă ε.

Thus,
`

xk, zk, yk, xk´1, yk´1
˘

belongs to the intersection in (66) for every k ě k0 :“ max tk1, k2, 3u,
which further implies

ϕ1 pFk ´ F˚q ¨ dist
`

0, BFr
`

xk, zk, yk, xk´1, yk´1
˘˘

“ ϕ1 pEkq ¨ dist
`

0, BFr
`

xk, zk, yk, xk´1, yk´1
˘˘

ě 1.
(67)

Define for two arbitrary nonnegative integers p and q

∆p,q :“ ϕ pFp ´ F˚q ´ ϕ pFq ´ F˚q “ ϕ pEpq ´ ϕ pEqq .

For every K ě k0 ě 1 it holds

K
ÿ

k“k0

∆k,k`1 “ ∆k0,K`1 “ ϕ pEk0q ´ ϕ pEK`1q ď ϕ pEk0q ,
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from which we get
ÿ

kě1

∆k,k`1 ă `8.

By combining Theorem 7 (i) with the concavity of ϕ we obtain for every k ě 1

∆k,k`1 “ ϕ pEkq ´ ϕ pEk`1q ě ϕ1 pEkq rEk ´ Ek`1s “ ϕ1 pEkq rFk ´ Fk`1s ě ϕ1 pEkq
C1

4

∥∥xk`1 ´ xk
∥∥2
.

(68)
The last relation combined with (67) imply∥∥xk`1 ´ xk

∥∥2
ď ϕ1 pEkq ¨ dist

`

0, BFr
`

xk, zk, yk, xk´1, yk´1
˘˘

∥∥xk`1 ´ xk
∥∥2

ď
4

C1
∆k,k`1 ¨ dist

`

0, BFr
`

xk, zk, yk, xk´1, yk´1
˘˘

@k ě k0.

By the arithmetic mean-geometric mean inequality and Corollary 10 we have that for every k ě k0

and every β ą 0

∥∥xk`1 ´ xk
∥∥ ďc

4

C1
∆k,k`1 ¨ dist p0, BFr pxk, zk, yk, xk´1, yk´1qq

ď
β

C1
∆k,k`1 `

1

β
dist

`

0, BFr
`

xk, zk, yk, xk´1, yk´1
˘˘

ď
β

C1
∆k,k`1 `

C11

β

`
∥∥xk ´ xk´1

∥∥` ∥∥xk´1 ´ xk´2
∥∥` ∥∥xk´2 ´ xk´3

∥∥˘
`
C12

β

`
∥∥A˚ `yk´1 ´ yk´2

˘
∥∥´ ∥∥A˚ `yk ´ yk´1

˘
∥∥˘

`
C13

β

`
∥∥A˚ `yk´2 ´ yk´3

˘
∥∥´ ∥∥A˚ `yk´1 ´ yk´2

˘
∥∥˘ . (69)

We denote for every k ě 3

ak :“
∥∥xk ´ xk´1

∥∥ ě 0,

δk :“
β

C1
∆k,k`1 `

C12

β

`
∥∥A˚ `yk´1 ´ yk´2

˘
∥∥´ ∥∥A˚ `yk ´ yk´1

˘
∥∥˘

`
C13

β

`
∥∥A˚ `yk´2 ´ yk´3

˘
∥∥´ ∥∥A˚ `yk´1 ´ yk´2

˘
∥∥˘ .

The inequality (69) is nothing than (9) with c0 “ c1 “ c2 :“
C11

β
. Observe that for every K ě k0 we

have
K
ÿ

k“k0

δk ď
β

C1
ϕ pEk0q `

C12

β

∥∥A˚ `yk0´1 ´ yk0´2
˘
∥∥` C13

β

∥∥A˚ `yk0´2 ´ yk0´3
˘
∥∥

and thus, by choosing β ą 3C11, we can use Lemma 3 to conclude that

ÿ

kě0

∥∥xk`1 ´ xk
∥∥ ă `8.

The other two statements in (65) follow from Lemma 5. This means that the sequence
 `

xk, zk, yk
˘(

kě0

is Cauchy, thus it converges to an element ppx, pz, pyq which is, according to Lemmas 11, a KKT point of
the optimization problem (1).

Remark 4. The function Fr is a K L function if, for instance, the objective function of (1) is semi-
algebraic, which is the case when the functions g and h are semi-algebraic.

3 Convergence rates under  Lojasiewicz assumptions

In this section we derive convergence rates for the sequence
 `

xk, zk, yk
˘(

kě0
generated by Algorithm

1 or Algorithm 2 as well as for the regularized augmented Lagrangian function Fr along this sequence,
provided that the latter satisfies the  Lojasiewicz property.
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3.1  Lojasiewicz property and a technical lemma

We recall the following definition from [2] (see, also, [37]).

Definition 3. Let Ψ: RN Ñ R Y t`8u be proper and lower semicontinuous. Then Ψ satisfies the
 Lojasiewicz property if for any critical point pu of Ψ, there exists CL ą 0, θ P r0, 1q and ε ą 0 such that

|Ψ puq ´Ψ ppuq|θ ď CL ¨ distp0, BΨpuqq @u P Ball ppu, εq ,

where Ball ppu, εq denotes the open ball with centre pu and radius ε.

If Assumption 1 is fulfilled and
 `

xk, zk, yk
˘(

kě0
is the sequence generated by Algorithm 1 or

Algorithm 2, assumed to be bounded, then, as seen in Lemma 12, the set of cluster points Ω “

ω
´

 `

xk, zk, yk, xk´1, yk´1
˘(

kě0

¯

is nonempty, compact and connected and Fr takes on Ω the value

F˚; in addition, for every ppx, pz, py, px, pyq P Ω, ppx, pz, pyq belongs to crit pLrq. According to [2, Lemma 1], if
Fr has the  Lojasiewicz property, then there exist CL ą 0, θ P r0, 1q and ε ą 0 such that for every

`

x, z, y, x1, y1
˘

P tu P Rn ˆ Rm ˆ Rm: dist pu,Ωq ă εu

it holds ∣∣Fr `x, z, y, x1, y1˘´ F˚∣∣θ ď CL ¨ dist
`

0, BFr
`

x, z, y, x1, y1
˘˘

.

Obviously, Fr is a K L function with desingularization function ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ, which, according to Theorem 14, means that Ω contains a single element ppx, pz, py, px, pyq,

namely, the limit of
 `

xk, zk, yk, xk´1, yk´1
˘(

kě0
as k Ñ `8. In other words, if Fr has the  Lojasiewicz

property, then there exist CL ą 0, θ P r0, 1q and ε ą 0 such that∣∣Fr `x, z, y, x1, y1˘´ F˚∣∣θ ď CL ¨ dist
`

0, BFr
`

x, z, y, x1, y1
˘˘

@
`

x, z, y, x1, y1
˘

P Ball pppx, pz, py, px, pyq , εq .
(70)

In this case, Fr is said to satisfy the  Lojasiewicz property with  Lojasiewicz constant CL ą 0 and
 Lojasiewicz exponent θ P r0, 1q.

The following lemma will convergence rates for a particular class of monotonically decreasing se-
quences converging to 0.

Lemma 15. Let tekukě0 be a monotonically decreasing sequence in R` converging 0. Assume further
that there exists natural numbers k0 ě l0 ě 1 such that for every k ě k0

ek´l0 ´ ek ě Cee
2θ
k , (71)

where Ce ą 0 is some constant and θ P r0, 1q. Then following statements are true:

(i) if θ “ 0, then tekukě0 converges in finite time;

(ii) if θ P p0, 1{2s, then there exists Ce,0 ą 0 and Q P r0, 1q such that for every k ě k0

0 ď ek ď Ce,0Q
k;

(iii) if θ P p1{2, 1q, then there exists Ce,1 ą 0 such that for every k ě k0 ` l0

0 ď ek ď Ce,1 pk ´ l0 ` 1q
´ 1

2θ´1 .

Proof. Fix an integer k ě k0. Since k0 ě l0 ě 0, the recurrence inequality (71) is well defined for every
k ě k0.

(i) The case when θ “ 0. We assume that ek ą 0 for every k ě 0. From (71) we get

ek´l0 ´ ek ě Ce ą 0

for every k ě k0, which actually contradicts the fact that tekukě0 converges to 0 as k Ñ `8. Conse-
quently, there exists k1 ě 0 such that ek1 “ 0 for every k ě k1 and thus the conclusion follows.

For the proof of (ii) and (iii) we can assume that ek ą 0 for every k ě 0. Otherwise, as tekukě0 is
monotonically decreasing and convergent to 0, the sequence is constant beginning with a given index,
which means that both statements are true.
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(ii) The case when θ P p0, 1{2s. We have ek ď e0, which leads to ek´l0 ´ ek ě Cee
2θ
k ě Cee

2θ´1
0 ek for

every k ě k0. Therefore,

ek ď

ˆ

1

Cee
2θ´1
0 ` 1

˙
k
l0
´
k0
l0
´1

e0 “ e0

`

Cee
2θ´1
0 ` 1

˘

k0
l0
`1

¨

˝

1

l0

b

Cee
2θ´1
0 ` 1

˛

‚

k

.

(iii) The case when θ P p1{2, 1q. From (71) we get

Ce ď pek´l0 ´ ekq e
´2θ
k . (72)

Define ζ : p0,`8q Ñ R, ζpsq “ s´2θ. We have that

d

ds

ˆ

1

1´ 2θ
s1´2θ

˙

“ s´2θ “ ζ psq and ζ 1 psq “ ´2θs´2θ´1 ă 0 @s P p0,`8q.

Consequently, ζ pek´l0q ď ζ psq for all s P rek, ek´l0s.

• Assume that ζ pekq ď 2ζ pek´l0q. Then (72) gives

Ce ď 2ζ pek´l0q

ż ek´l0

ek

1ds ď 2

ż ek´l0

ek

ζ psq ds “
2

2θ ´ 1

`

e1´2θ
k ´ e1´2θ

k´l0

˘

or, equivalently,

e1´2θ
k ´ e1´2θ

k´l0
ě C 11, where C 11 :“

p2θ ´ 1qCe
2

ą 0. (73)

• Assume that ζ pekq ą 2ζ pek´l0q. For ν :“ 2´
1
2θ P p0, 1q this is equivalent to

`

ν1´2θ ´ 1
˘

e1´2θ
k´l0

ď

e1´2θ
k ´ e1´2θ

k´l0
, thus,

e1´2θ
k ´ e1´2θ

k´l0
ě
`

ν1´2θ ´ 1
˘

e1´2θ
k´l0

ě C 12, where C 12 :“
`

ν1´2θ ´ 1
˘

e2θ´1
0 ą 0. (74)

In both situations we get for every i ě k0

e1´2θ
i ´ e1´2θ

i´l0
ě C 1 :“ min

 

C 11, C
1
2

(

ą 0, (75)

where C 11 and C 12 are defined as in (73) and (74), respectively. For every k ě k0 ` 2l0, by summing up
the inequalities (75) for i “ k0 ` l0, ¨ ¨ ¨ , k, we get

l0´1
ÿ

j“0

´

e1´2θ
k´j ´ e

1´2θ
k0`j

¯

ě pk ´ k0 ´ l0 ` 1qC 1 ą 0.

Since

l0
`

e1´2θ
k ´ e1´2θ

k0

˘

ě

l0´1
ÿ

j“0

´

e1´2θ
k´j ´ e

1´2θ
k0`j

¯

ě pk ´ k0 ´ l0 ` 1qC 1,

we have

e1´2θ
k ě e1´2θ

k0
`
k ´ k0 ´ l0 ` 1

l0
C 1. (76)

We obtain from (75) that

e1´2θ
k0

ě

Z

k0 ` l0
l0

^

C 1 ě

ˆ

k0 ` l0
l0

´ 1

˙

C 1 “
k0

l0
C 1, (77)

where tpu denotes the greatest integer that is less than or equal to the real number p. By plugging (77)
into (76) we obtain

e1´2θ
k ě

k ´ l0 ` 1

l0
C 1,

which implies

ek ď

ˆ

C 1

l0

˙´ 1
2θ´1

pk ´ l0 ` 1q
´ 1

2θ´1 . (78)

This concludes the proof.
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Remark 5. The inequality in Lemma 15 (iii) can be writen for k large enough in terms of k instead of

k ´ l0 ` 1. If, for instance, k ě 2 pl0 ` 1q, then k ´ l0 ` 1 ě
1

2
k and thus from (78) we get

ek ď

ˆ

C 1

l0

˙´ 1
2θ´1

pk ´ l0 ` 1q
´ 1

2θ´1 ď

ˆ

C 1

2l0

˙´ 1
2θ´1

k´
1

2θ´1 .

3.2 Convergence rates

In this subsection we will address convergence rates for Algorithm 1 and Algorithm 2 in the context of
an assumption which is slightly more restricitve than Assumption 1.

Assumption 2. We work in the hypotheses of Assumption 1 except for (15) which is replaced by

2Mk
1 ` rA

˚A ě

ˆ

L`
C 1M
r

˙

Id @k ě 0, (79)

where

C 1M :“

$

&

%

´

10µ2
1 ` 8 pL` µ1q

2
¯

T0, for Algorithm 1,
´

8µ2
1 ` 10 pL` µ1q

2
¯

T0, for Algorithm 2.

The condition (79) is nothing else than (15) after replacing CM by the bigger constant C 1M.
The examples in Remark 2 can be all adapted to the new setting and one can provide different

settings which guarantee Assumption 2. The scenarios which ensure Assumption 2 evidently satisfy
Assumption 1, too, therefore the results investigated in Section 2 remain valid in this setting. As follows
we will provide improvements of the statements used in the convergence analysis which follow thanks to
Assumption 2.

Lemma 16. Suppose that Assumption 2 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2. Then for every k ě 1 it holds

Lr
`

xk`1, zk`1, yk`1
˘

` 2T1

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
`

1

2

∥∥xk`1 ´ xk
∥∥2

Mk
3
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2

`
1

ρr

∥∥yk`1 ´ yk
∥∥2

ď Lr
`

xk, zk, yk
˘

` 2T1

∥∥A˚ `yk ´ yk´1
˘
∥∥2
` C1

∥∥xk ´ xk´1
∥∥2
. (80)

Proof. Let k ě 1 be fixed. By the same arguments as in Lemma 4, we have that (see (17))

Lr
`

xk`1, zk`1, yk`1
˘

`
1

2

∥∥xk`1 ´ xk
∥∥2

2Mk
1`rA

˚A
´
L

2

∥∥xk`1 ´ xk
∥∥2
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2

ď Lr
`

xk, zk, yk
˘

`
1

ρr

∥∥yk`1 ´ yk
∥∥2
. (81)

From (26), (28), (36) and (38) it follows that

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď
C0 ´ L

2

∥∥xk`1 ´ xk
∥∥2
`
C1

2

∥∥xk ´ xk´1
∥∥2
`

T1

∥∥A˚ `yk ´ yk´1
˘
∥∥2
´ T1

∥∥A˚ `yk`1 ´ yk
˘
∥∥2
. (82)

By multiplying (82) by 2 and by adding the resulting inequality to (81) we obtain (80).

We replace T1 with 2T1 in the definition of the regularized augmented Lagrangian Fr, thus, the
sequence tFkukě1 in (47) becomes

Fk :“ Lr
`

xk, zk, yk
˘

` 2T1

∥∥A˚ `yk ´ yk´1
˘
∥∥2
` C1

∥∥xk ´ xk´1
∥∥2
@k ě 1.

In this new context the inequality (80) reads for every k ě 1

Fk`1 `
C1

4

∥∥xk`1 ´ xk
∥∥2
`

1

2

∥∥zk`1 ´ zk
∥∥2

Mk
2
`

1

ρr

∥∥yk`1 ´ yk
∥∥2
ď Fk (83)
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and provides an inequality which is tighter than relation (50) in Theorem 7. Furthermore, for a subgra-
dient Dk`1 of Fr at pxk`1, zk`1, yk`1, xk, zkq defined as in (59) (again by replacing T1 by 2T1) we obtain
for every k ě 2 the following estimate, which is simpler than (62) in Corollary 10

|||Dk`1||| ď C14

∥∥xk`1 ´ xk
∥∥` C15

∥∥yk`1 ´ yk
∥∥` C16

∥∥yk ´ yk´1
∥∥ ,

where

C14 :“ C8 ` C9 ‖A‖ , C15 :“ C10 `
C9

ρr
, C16 :“

C9

ρr
.

This improvement provides, instead of inequality (68) in the proof of Theorem 14, the following very
useful estimate

∆k,k`1 “ ϕ pEkq ´ ϕ pEk`1q ě ϕ1 pEkqmin

"

C1

4
,

1

ρr

*

´∥∥xk`1 ´ xk
∥∥2
`
∥∥yk`1 ´ yk

∥∥2
¯

ě C17ϕ
1 pEkq

`
∥∥xk`1 ´ xk

∥∥` ∥∥yk`1 ´ yk
∥∥˘2

,

where

C17 :“
1

2
min

"

C1

4
,

1

ρr

*

.

The last relation together with (67) imply that for every k ě k0

`
∥∥xk`1 ´ xk

∥∥` ∥∥yk`1 ´ yk
∥∥˘2

ď
∆k,k`1

C17
¨ dist

`

0, BFr
`

xk, zk, yk, xk´1, yk´1
˘˘

and from here, for arbitrary β ą 0,∥∥xk`1 ´ xk
∥∥` ∥∥yk`1 ´ yk

∥∥
ď
β∆k,k`1

4C17
`

max tC14, C15u

β

`
∥∥xk ´ xk´1

∥∥` ∥∥yk ´ yk´1
∥∥` ∥∥yk´1 ´ yk´2

∥∥˘ . (84)

By denoting

ak :“
`
∥∥xk ´ xk´1

∥∥ ,∥∥yk ´ yk´1
∥∥˘ P R2

` and δk :“
β∆k,k`1

4C17
,

inequality (84) can be rewritten for every k ě k0 as
@

1, ak`1
D

ď
@

c0, a
k
D

`
@

c1, a
k´1

D

` δk, (85)

where

c0 :“
max tC14, C15u

β
p1, 1q and c1 :“

max tC14, C15u

β
p0, 1q .

Choosing β ą 2 max tC14, C15u, Lemma 3 and Lemma 5 imply that
 `

xk, zk, yk
˘(

kě0
has finite length

(see (65)).
Next we prove a recurrence inequality for the sequence tEkukě0.

Lemma 17. Suppose that Assumption 2 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated by

Algorithm 1 or Algorithm 2, which is assumed to be bounded. If Fr satisfies the  Lojasiewicz property
with  Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent θ P r0, 1q, then there exists k0 ě 1 such that
the following estimate holds for every k ě k0

Ek´1 ´ Ek`1 ě C19E2θ
k`1, where C19 :“

min

"

C1

4
,

1

ρr

*

3C2
L max tC14, C15u

2 . (86)

Proof. For every k ě 2 we obtain from (83)

Ek´1 ´ Ek`1 “ Fk´1 ´ Fk ` Fk ´ Fk`1

ě min

"

C1

4
,

1

ρr

*

´∥∥xk`1 ´ xk
∥∥2
`
∥∥yk`1 ´ yk

∥∥2
`
∥∥yk ´ yk´1

∥∥2
¯

ě
1

3
min

"

C1

4
,

1

ρr

*

`
∥∥xk`1 ´ xk

∥∥` ∥∥yk`1 ´ yk
∥∥` ∥∥yk ´ yk´1

∥∥˘2

ě C19C
2
L|||D

k`1|||
2
.

Let ε ą 0 be such that (70) is fulfilled and choose k0 ě 1 such that
`

xk`1, zk`1, yk`1
˘

belongs to
Ball pppx, pz, pyq , εq for every k ě k0. Then (70) implies (86) for every k ě k0.
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The following convergence rates follow by combining Lemma 15 with Lemma 17.

Theorem 18. Suppose that Assumption 2 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated

by Algorithm 1 or Algorithm 2, which is assumed to be bounded. If Fr satisfies the  Lojasiewicz property
with  Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent θ P r0, 1q, then the following statements are
true:

(i) if θ “ 0, then tFkukě1 converges in finite time;

(ii) if θ P p0, 1{2s, then there exist k0 ě 1, pC0 ą 0 and Q P r0, 1q such that for every k ě k0

0 ď Fk ´ F˚ ď pC0Q
k;

(iii) if θ P p1{2, 1q, then there exist k0 ě 3 and pC1 ą 0 such that for every k ě k0

0 ď Fk ´ F˚ ď pC1 pk ´ 1q
´ 1

2θ´1 .

The next lemma will play an importat role when transferring the convergence rates for tFkukě0 to

the sequence of iterates
 `

xk, zk, yk
˘(

kě0
(see [25] for a similar statement).

Lemma 19. Suppose that Assumption 2 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated

by Algorithm 1 or Algorithm 2, which is assumed to be bounded. Suppose further that Fr satisfies the
 Lojasiewicz property with  Lojasiewicz constant CL ą 0,  Lojasiewicz exponent θ P r0, 1q and desingular-

ization function ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ. Let ppx, pz, pyq be the KKT point of the

optimization problem (1) to which
 `

xk, zk, yk
˘(

kě0
converges as k Ñ `8. Then there exists k0 ě 2

such that the following estimates hold for every k ě k0∥∥xk ´ px
∥∥ ď C20 max

!

a

Ek, ϕ pEkq
)

, where C20 :“
7

?
C17

`
1

C17
, (87a)∥∥yk ´ py

∥∥ ď C21 max
!

a

Ek, ϕ pEkq
)

, where C21 :“
7

2
?
C17

`
1

2C17
, (87b)∥∥zk ´ pz

∥∥ ď C22 max
!

a

Ek´1, ϕ pEk´1q

)

, where C22 :“ C20 ‖A‖`
2C21

ρr
. (87c)

Proof. We assume that Ek ą 0 for every k ě 0. Otherwise, beginning with a given index, the sequence
 `

xk, zk, yk
˘(

kě0
becomes identical to ppx, pz, pyq and the conclusion follows as in the proof of Theorem 14.

Let ε ą 0 be such that (70) is fulfilled and k0 ě 2 such that
`

xk`1, zk`1, yk`1
˘

belongs to Ball pppx, pz, pyq , εq
for every k ě k0. We fix k ě k0. One can easily notice that∥∥xk ´ px

∥∥ ď ∥∥xk`1 ´ xk
∥∥` ∥∥xk`1 ´ px

∥∥ ď ¨ ¨ ¨ ď ÿ

lěk

∥∥xl`1 ´ xl
∥∥ (88a)

and, similarly, ∥∥zk ´ pz
∥∥ ď ÿ

lěk

∥∥zl`1 ´ zl
∥∥ and

∥∥yk ´ py
∥∥ ď ÿ

lěk

∥∥yl`1 ´ yl
∥∥ . (88b)

Recall that the inequality (84) can be rewritten as (85). For β :“ 3 max tC14, C15u ą 2 max tC14, C15u,
thanks to Lemma 3 and the estimate (83), we have that

ÿ

lěk

∥∥xl`1 ´ xl
∥∥ “ ÿ

lěk

al`1
1 “

ÿ

lěk`1

al1

ď
∥∥xk`1 ´ xk

∥∥` 2
∥∥xk`2 ´ xk`1

∥∥` 3
∥∥xk`3 ´ xk`2

∥∥` 2
∥∥yk`1 ´ yk

∥∥
` 2

∥∥yk`2 ´ yk`1
∥∥` 3

∥∥yk`3 ´ yk`2
∥∥` ϕ pEkq

C17

ď
2

?
C17

a

Fk ´ Fk`1 `
2

?
C17

a

Fk`1 ´ Fk`2 `
3

?
C17

a

Fk`2 ´ Fk`3 `
ϕ pEkq
C17

ď
2

?
C17

a

Ek `
2

?
C17

a

Ek`1 `
3

?
C17

a

Ek`2 `
ϕ pEkq
C17
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and, similarly,

ÿ

lěk

∥∥yl`1 ´ yl
∥∥ ď 1

?
C17

a

Ek `
1

?
C17

a

Ek`1 `
3

2
?
C17

a

Ek`2 `
ϕ pEkq
2C17

.

By taking into account the relations above, (88a)-(88b) as well as

a

Ek`2 ď
a

Ek`1 ď
a

Ek and ϕ pEk`1q ď ϕ pEkq @k ě 1,

the estimates (87a) and (87b) follow. Statement (87c) follows from Lemma 5 and by considering (88b).

We provide now convergence rates for the sequence
 `

xk, zk, yk
˘(

kě0
.

Theorem 20. Suppose that Assumption 2 holds true and let
 `

xk, zk, yk
˘(

kě0
be a sequence generated

by Algorithm 1 or Algorithm 2, which is assumed to be bounded. Suppose further that Fr satisfies the
 Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent θ P r0, 1q. Let ppx, pz, pyq
be the KKT point of the optimization problem (1) to which

 `

xk, zk, yk
˘(

kě0
converges as k Ñ `8.

Then the following statements are true:

(i) if θ “ 0, then the algorithms converge in finite time;

(ii) if θ P p0, 1{2s, then there exist k0 ě 1, pC0,1, pC0,2, pC0,3 ą 0 and pQ P r0, 1q such that for every k ě k0∥∥xk ´ px
∥∥ ď pC0,1

pQk,
∥∥yk ´ py

∥∥ ď pC0,2
pQk,

∥∥zk ´ pz
∥∥ ď pC0,3

pQk;

(iii) if θ P p1{2, 1q, then there exist k0 ě 3 and pC1,1, pC1,2, pC1,3 ą 0 such that for every k ě k0∥∥xk ´ px
∥∥ ď pC1,1 pk ´ 1q

´
1´θ
2θ´1 ,

∥∥yk ´ py
∥∥ ď pC1,2 pk ´ 1q

´
1´θ
2θ´1 ,

∥∥zk ´ pz
∥∥ ď pC1,3 pk ´ 2q

´
1´θ
2θ´1 .

Proof. By denoting ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ, the desingularization function,

there exist k10 ě 2 such that for every k ě k10 the inequalities (87a)-(87c) in Lemma 19 and Ek ď
ˆ

1

1´ θ
CL

˙
2

2θ´1

hold.

(i) If θ “ 0, then tFkukě1 converges in finite time. According to (83), the sequences
 `

xk
˘(

kě0
and

 `

yk
˘(

kě0
converge also in finite time. Further, by Lemma 5, it follows that

 `

zk
˘(

kě0
converges in

finite time, too. In other words, starting from a given index, the sequence
 `

xk, zk, yk
˘(

kě0
becomes

identical to ppx, pz, pyq and the conclusion follows.

(ii) If θ P p0, 1{2s, then
1

1´ θ
CLE1´θ

k ď
?
Ek, for every k ě k10, which implies that max

 ?
Ek, ϕ pEkq

(

“

?
Ek. By Theorem 18, there exist k20 ě 1, pC0 ą 0 and Q P r0, 1q such that for pQ :“ Q

1
2 and every k ě k20

it holds
a

Ek ď
b

pC0Q
k
2 “

b

pC0
pQk.

The conclusion follows from Lemma 19 for k0 :“ maxtk10, k
2
0u, by noticing that

a

Ek´1 ď

b

pC0Q
k´1
2 “

d

pC0

Q
pQk and

a

Ek´2 ď

b

pC0Q
k´2
2 “

b

pC0

Q
pQk@k ě k0.

(iii) If θ P p1{2, 1q, then E
1
2

k ď
1

1´ θ
CLE1´θ

k , for every k ě k10, which implies that max
 ?
Ek, ϕ pEkq

(

“

ϕpEkq “
1

1´ θ
CLE1´θ

k . By Theorem 18, there exist k20 ě 3 and pC1 ą 0 such that for all k ě k20

1

1´ θ
CLE1´θ

k ď
1

1´ θ
CL pC1´θ

1 pk ´ 2q
´

1´θ
2θ´1 .

The conclusion follows again for k0 :“ maxtk10, k
2
0u from Lemma 19.
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Remark 6. For ρ “ 1 the same convergence rates can be obtained under the original Assumption 1.
Indeed, when ρ “ 1 we have that T1 “ 0 and, as a consequence, the sequence tFkukě1 defined in (47)
becomes

Fk “ Lr
`

xk, zk, yk
˘

` C1

∥∥xk ´ xk´1
∥∥2
@k ě 1.

In addition, the inequality (41) simplifies to∥∥yk`1 ´ yk
∥∥ ď C3

∥∥xk`1 ´ xk
∥∥` C4

∥∥xk ´ xk´1
∥∥ @k ě 1,

as T2 is equal to 0. Combining this inequality with (39) and, by taking into account Lemma 9, we obtain
(instead of (62))

|||Dk`1||| ď C11

`
∥∥xk`1 ´ xk

∥∥` ∥∥xk ´ xk´1
∥∥` ∥∥xk´1 ´ xk´2

∥∥˘ @k ě 2.

Consequently, for every k ě 3 we have that

Ek´2 ´ Ek`1 “ Fk´2 ´ Fk´1 ` Fk´1 ´ Fk ` Fk ´ Fk`1

ě
C1

4

´∥∥xk´1 ´ xk´2
∥∥2
`
∥∥xk ´ xk´1

∥∥2
`
∥∥xk`1 ´ xk

∥∥2
¯

ě
C1

12

`
∥∥xk´1 ´ xk´2

∥∥` ∥∥xk ´ xk´1
∥∥` ∥∥xk`1 ´ xk

∥∥˘2

ě
C1

12C2
11

|||Dk`1|||
2
.

Let ε ą 0 be such that (70) is fulfilled and k0 ě 3 such that
`

xk`1, zk`1, yk`1
˘

belongs to the open
ball Ball pppx, pz, pyq , εq for every k ě k0. Then (70) implies that for every k ě k0

Ek´2 ´ Ek`1 ě C23Ek`1, where C23 :“
C1

12C2
LC

2
11

,

which is the key inequality for deriving convergence rates, as we have seen above.
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