
Variable smoothing for convex optimization
problems using stochastic gradients

Radu Ioan Boţ∗ Axel Böhm†

October 2, 2020

We aim to solve a structured convex optimization problem, where a non-
smooth function is composed with a linear operator. When opting for full
splitting schemes, usually, primal-dual type methods are employed as they
are effective and also well studied. However, under the additional assumption
of Lipschitz continuity of the nonsmooth function which is composed with the
linear operator we can derive novel algorithms through regularization via the
Moreau envelope. Furthermore, we tackle large scale problems by means of
stochastic oracle calls, very similar to stochastic gradient techniques. Appli-
cations to total variational denoising and deblurring, and matrix factorization
are provided.

Keywords. structured convex optimization problem, variable smoothing
algorithm, convergence rate, stochastic gradients
AMS Subject Classification. 90C25, 90C15, 65Y20

1 Introduction

The problem at hand is the following structured convex optimization problem

min
x∈H

f(x) + g(Kx), (1)

for real Hilbert spaces H and G, f : H → R := R ∪ {±∞} a proper, convex and lower
semicontinuous function, g : G → R a, possibly nonsmooth, convex and Lipschitz con-
tinuous function, and K : H → G a linear continuous operator.

∗Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, e-
mail: radu.bot@univie.ac.at. Research partially supported by FWF (Austrian Science Fund), project
I 2419-N32.

†Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, e-
mail: axel.boehm@univie.ac.at. Research supported by the doctoral programme Vienna Graduate
School on Computational Optimization (VGSCO), FWF (Austrian Science Fund), project W 1260.

1

Our aim will be to devise an algorithm for solving (1) following the full splitting
paradigm (see [5, 6, 8, 9, 15, 17, 29]). In other words, we allow only proximal evaluations
for simple nonsmooth functions, but no proximal evaluations for compositions with linear
continuous operators, like, for instance, for g ◦K.

We will accomplish this feat by the means of a smoothing strategy, which, for the
purpose of this paper, means, making use of the Moreau-Yosida approximation. The
approach can be described as follows: we “smooth” g, i.e. we replace it by its Moreau en-
velope, and solve the resulting optimization problem by an accelerated proximal-gradient
algorithm (see [3,13,21]). This approach is similar to the those in [7,10,11,20,22], where

a convergence rate of O
´

log(k)
k

¯

is proved. However, our techniques (for the determinis-

tic case) resemble more the ones in [28], where an improved rate of O(1k) is shown, with
the most notable difference to our work is that we use a simpler stepsize and treat the
stochastic case.

The only other family of methods able to solve problems of type (1) are the so called
primal-dual algorithms, first and foremost the primal-dual hybrid gradient (PDHG) in-
troduced in [15]. In comparison, this method does not need the Lipschitz continuity of g
in order to proof convergence. However, in this very general case, convergence rates can
only be shown for the so-called restricted primal-dual gap function. In order to derive
from here convergence rates for the primal objective function, either Lipschitz continu-
ity of g or finite dimensionality of the problem plus the condition that g must have full
domain are necessary (see, for instance, [5, Theorem 9]). This means, that for infinite
dimensional problems the assumptions required by both, PDHG and our method, for
deriving convergence rates for the primal objective function are in fact equal, but for
finite dimensional problems the assumption of PDHG are weaker. In either case, how-
ever, we are able to proof these rates for the sequence of iterates (xk)k≥1 itself whereas

PDHG only has them for the sequence of so-called ergodic iterates, i.e. (1k
∑k

i=1 xi)k≥1,
which is naturally undesirable as the averaging slows the convergence down. Further-
more, we do not show any convergence for the iterates as these are notoriously hard to
obtain for accelerated method whereas PDHG gets these in the strongly convex setting
via standard fixed point arguments (see e.g. [29]).

Furthermore, we will also consider the case where only a stochastic oracle of the
proximal operator of g is available to us. This setup corresponds e.g. to the case where
the objective function is given as

min
x∈H

f(x) +
m∑
i=1

gi(Kix), (2)

where, for i = 1, . . . ,m, Gi are real Hilbert spaces, gi : Gi → R are convex and Lipschitz
continuous functions and Ki : H → Gi are linear continuous operators, but the number
of summands being large we wish to not compute all proximal operators of all gi, i =
1, . . . ,m, for purpose of making iterations cheaper to compute.

For the finite sum case (2), there exist algorithms of similar spirit such as those
in [14, 24]. Some algorithms do in fact deal with a similar setup of stochastic gradient
like evaluations, see [26], but only for smooth terms in the objective function.

2

In Section 2 we will cover the preliminaries about the Moreau-Yosida envelope as well
as useful identities and estimates connected to it. In Section 3 we will deal with the
deterministic case and prove a convergence rate of O(1k) for the function values at the
iterates. Next up, in Section 4, we will consider the stochastic case as described above

and prove a convergence rate of O
´

log(k)
?
k

¯

. Last but not least, we will look at some

numerical examples in image processing in Section 5.
It is important to note that the proof for the deterministic setting differs surprisingly

from the one for the stochastic setting. The technique for the stochastic setting is less
refined in the sense that there is no coupling between the smoothing parameter and the
extrapolation parameter. Where as this technique works also works for the deterministic

setting it gives a worse convergence rate of O
´

log k
k

¯

. The tight coupling of the two

sequences of parameters, however does not work in the proof of the stochastic algorithm
as it does not allow for the particular choice of the smoothing parameters needed there.

2 Preliminaries

In the main problem (1), the nonsmooth function regularizer g is supposed to be Lips-
chitz continuous. This assumption is necessary to ensure our main convergence results,
however, many of the preliminary lemmata of this section hold true similarly if the
function is only assumed to be lower semicontinuous. We will point this out in every
statement of this section individually.

Definition 2.1. For a proper, convex and lower semicontinuous function g : H → R,
its convex conjugate is denoted by g∗ defined as a function from H to R, given by

g∗(x) := sup
p∈H
{〈x, p〉 − g(p)} ∀x ∈ H.

As mentioned in the introduction, we want to smooth a nonsmooth function by con-
sidering its Moreau envelope. The next definition will clarify exactly what object we are
talking about.

Definition 2.2. For a proper, convex and lower semicontinuous function g : H → R, its
Moreau envelope with the parameter µ ≥ 0 is defined as a function from H to R, given
by

µg(·) :=
´

g∗ +
µ

2
‖·‖2

¯∗
(·) = sup

p∈H

{
〈·, p〉 − g∗(p)− µ

2
‖p‖2

}
.

From this definition, however, it is not completely evident that the Moreau envelope
indeed fulfills its purpose in being a smooth representation of the original function. The
next lemma will remedy this fact.

Lemma 2.1 (see [2, Proposition 12.29]). Let g : H → R be a proper, convex and lower
semicontinuous function and µ > 0. Then its Moreau envelope is Fréchet differentiable
on H. In particular, the gradient itself is given by

∇(µg)(x) =
1

µ

`

x− proxµg pxq
˘

= prox 1
µ
g∗

ˆ

x

µ

˙

∀x ∈ H

3

and is µ−1-Lipschitz continuous.

In particular, for all µ > 0, a gradient step with respect to the Moreau envelope
corresponds to a proximal step

x− µ∇(µg)(x) = proxµg pxq ∀x ∈ H.

The previous lemma establishes two things. Not only does it clarify the smoothness of
the Moreau envelope, but it also gives a way of computing its gradient. Obviously, a
smooth representation whose gradient we would not be able to compute would not be
any good.

As mentioned in the introduction, we want to smooth the nonsmooth summand of the
objective function which is composed with the linear operator as this can be considered
the crux of problem (1). The function g ◦ K will be smoothed via considering instead
µg ◦K : H → R. Clearly, by the chain rule, this function is continuously differentiable
with gradient given for every x ∈ H by

∇ pµg ◦Kq (x) = K∗∇ pµgq (Kx) =
1

µ
K∗

`

Kx− proxµg pKxq
˘

= K∗ prox 1
µ
g∗

ˆ

Kx

µ

˙

,

and is thus Lipschitz continuous with Lipschitz constant ‖K‖
2

µ , where ‖K‖ denotes the
operator norm of K.

Lipschitz continuity will play an integral role in our investigations, as can be seen by
the following lemmas.

Lemma 2.2 (see [4, Proposition 4.4.6]). Let g : H → R be a convex and Lg-Lipschitz
continuous function. Then, the domain of its Fenchel conjugate is bounded, i.e.

dom g∗ ⊆ B(0, Lg),

where B(0, Lg) denotes the open ball with radius Lg around the origin.

The Moreau envelope even preserves the Lipschitzness of the original function.

Lemma 2.3 (see [18, Lemma 2.1]). Let g : H → R be a convex and Lg-Lipschitz
continuous function. Then its Moreau envelope µg is Lg-Lipschitz as well, i.e.

|µg(x)− µg(y)| ≤ Lg‖x− y‖ ∀x, y ∈ H.

Proof. We observe that for all x ∈ H

∇µg(x) ∈ ∂g(proxµg pxq).

Therefore we can bound the gradient norm

‖∇µg(x)‖ ≤ sup{‖v‖ : y ∈ H, v ∈ ∂g(y)} ≤ Lg ∀x ∈ H, (3)

where we used in the last step that the Lipschitz continuity of g. The statement follows
from the mean-value theorem.

4

The following lemmata are not new, but we provide proofs anyways in order to remain
self-contained and to shed insight on how to use the Moreau envelope for the interested
reader.

Lemma 2.4 (see [28, Lemma 10 (a)]). Let g : H → R be proper, convex and lower semi-
continuous. The maximizing argument in the definition of the Moreau-Yosida envelope
is given by its gradient, i.e. for µ > 0 it holds that

arg max
p∈H

{
〈·, p〉 − g∗(p)− µ

2
‖p‖2

}
= ∇µg(·).

Proof. Let x ∈ H be fixed. It holds

arg max
p∈H

{
〈x, p〉 − g∗(p)− µ

2
‖p‖2

}
= arg max

p∈H

{
− 1

2µ
‖x‖2 + 〈x, p〉 − µ

2
‖p‖2 − g∗(p)

}
= arg max

p∈H

{
−µ

2

∥∥∥∥xµ − p
∥∥∥∥2 − g∗(p)

}

= arg min
p∈H

{
g∗(p) +

µ

2

∥∥∥∥xµ − p
∥∥∥∥2
}

= prox 1
µ
g∗

ˆ

x

µ

˙

and the conclusion follows by using Lemma 2.1.

Lemma 2.5 (see [28, Lemma 10 (a)]). For a proper, convex and lower semicontinuous
function g : H → R and every x ∈ H we can consider the mapping from (0,+∞) to R
given by

µ 7→ µg(x). (4)

This mapping is convex and differentiable and its derivative is given by

∂

∂µ
µg(x) = −1

2
‖∇µg(x)‖2 ∀x ∈ H ∀µ ∈ (0,+∞).

Proof. Let x ∈ H be fixed. From the definition of the Moreau-Yosida envelope we can see
that the mapping given in (4) is a pointwise supremum of functions which are linear in
µ. It is therefore convex. Furthermore, since the objective function is strongly concave,
this supremum is uniquely attained at ∇µg(x) = arg maxp∈H

{
〈x, p〉 − g∗(p)− µ

2‖p‖2
}

.
According to the Danskin Theorem, the function µ 7→ µg(x) is differentiable and its
gradient is given by

∂

∂µ
µg(x) =

∂

∂µ
sup
p∈H

{
〈x, p〉 − g∗(p)− µ

2
‖p‖2

}
=− 1

2
‖∇µg(x)‖2 ∀µ ∈ (0,+∞).

5

Lemma 2.6 ([28, Lemma 10 (b)]). Let g : H → R be proper, convex and lower semi-
continuous. For µ1, µ2 > 0 and every x ∈ H it holds

µ1g(x) ≤ µ2g(x) + (µ2 − µ1)
1

2
‖∇µ1g(x)‖2. (5)

If g is additionally Lg-Lipschitz and if µ2 ≥ µ1 > 0, then

µ2g(x) ≤ µ1g(x) ≤ µ2g(x) + (µ2 − µ1)
L2
g

2
. (6)

Proof. Let x ∈ H be fixed. Via Lemma 2.5 we know that the map µ 7→ µg(x) is convex
and differentiable. We can therefore use the gradient inequality to deduce that

µ2g(x) ≥ µ1g(x) + (µ2 − µ1)
ˆ

∂

∂µ
µg(x)

ˇ

ˇ

ˇ

µ=µ1

˙

= µ1g(x)− (µ2 − µ1)
1

2
‖∇µ1g(x)‖2,

which is exactly the first statement of the lemma. The first inequality of (6) follows
directly from the definition of the Moreau envelope and the second one from (5) and
(3).

By applying a limiting argument it is easy to see that (6) implies that for any µ > 0

µg(x) ≤ g(x) ≤ µg(x) + µ
L2
g

2
, (7)

which shows that the Moreau envelope is always a lower approximation the original
function.

Lemma 2.7 (see [28, Lemma 10 (c)]). Let g : H → R be proper, convex and lower
semicontinuous. Then, for µ > 0 and every x, y ∈ H we have that

µg(x) + 〈∇µg(x), y − x〉 ≤ g(y)− µ

2
‖∇µg(x)‖2.

Proof. Using Lemma 2.4 and the definition of the Moreau-Yosida envelope we get that

µg(x) + 〈∇µg(x), y − x〉 = 〈x,∇µg(x)〉 − g∗(∇µg(x))− µ

2
‖∇µg(x)‖2 + 〈∇µg(x), y − x〉

= 〈∇µg(x), y〉 − g∗(∇µg(x))− µ

2
‖∇µg(x)‖2

≤ sup
p∈H
{〈p, y〉 − g∗(p)} − µ

2
‖∇µg(x)‖2

= g(y)− µ

2
‖∇µg(x)‖2.

6

In the convergence proof of Lemma 3.3 we will need the inequality in the above lemma
at the points Kx and Ky, namely

g(Ky)− µ

2
‖∇µg(Kx)‖2 ≥ µg(Kx) + 〈∇µg(Kx),Ky −Kx〉

= µg(Kx) + 〈K∗∇µg(Kx), y − x〉
= µg(Kx) + 〈∇(µg ◦K)(x), y − x〉 ∀x, y ∈ H.

(8)

The following lemma is a standard result for convex and Fréchet differentiable functions.

Lemma 2.8 (see [23]). For a convex and Fréchet differentiable function h : H → R with
Lh-Lipschitz continuous gradient we have that

h(x) + 〈∇h(x), y − x〉 ≤ h(y)− 1

2Lh
‖∇h(x)−∇h(y)‖2 ∀x, y ∈ H.

By applying Lemma 2.8 with µg, Kx and Ky instead of h, x and y respectively, we
obtain

µg(Kx)+〈∇(µg ◦K)(x), y − x〉 ≤ µg(Ky)−µ
2
‖∇µg(Kx)−∇µg(Ky)‖2 ∀x, y ∈ H. (9)

The following technical result will be used in the proof of the convergence statement.

Lemma 2.9. For α ∈ (0, 1) and every x, y ∈ H we have that

(1− α)‖x− y‖2 + α‖y‖2 ≥ α(1− α)‖x‖2.

3 Deterministic Method

Problem 3.1. The problem at hand reads

min
x∈H

F (x) := f(x) + g(Kx),

for a proper, convex and lower semicontinuous function f : H → R, a convex and Lg-
Lipschitz continuous (Lg > 0) function g : G → R, and a nonzero linear continuous
operator K : H → G.

The idea of the algorithm which we propose to solve (1) is to smooth g and then to
solve the resulting problem by means of an accelerated proximal-gradient.

Algorithm 3.1 (Variable Accelerated SmooThing (VAST)). Let y0 = x0 ∈ H, (µk)k≥0⊆
(0,+∞), and (tk)k≥1 a sequence of real numbers with t1 = 1 and tk ≥ 1 for every k ≥ 2.
Consider the following iterative scheme

(∀k ≥ 1)


Lk = ‖K‖2

µk
γk = 1

Lk

xk = proxγkf

ˆ

yk−1 − γkK∗ prox 1
µk
g∗

´

Kyk−1

µk

¯

˙

yk = xk + tk−1
tk+1

(xk − xk−1).

7

Remark 3.1. The assumption t1 = 1 can be removed but guarantees easier computation
and is also in line with classical choices of (tk)k≥1 in [13,21].

Remark 3.2. The sequence (uk)k≥1 given by

uk := xk−1 + tk(xk − xk−1) ∀k ≥ 1,

despite not appearing in the algorithm, will feature a prominent role in the convergence
proof. Due to the convention t1 = 1 we have that

u1 := x0 + t1(x1 − x0) = x1.

We also denote
F k = f + µkg ◦K ∀k ≥ 0.

The next theorem is the main result of this section and it will play a fundamental role
when proving a convergence rate of O(1k) for the sequence (F (xk))k≥0.

Theorem 3.1. Consider the setup of Problem 3.1 and let (xk)k≥0 and (yk)k≥0 be the
sequences generated by Algorithm 3.1. Assume that for every k ≥ 1

µk − µk+1 −
µk+1

tk+1
≤ 0

and
ˆ

1− 1

tk+1

˙

γk+1t
2
k+1 = γkt

2
k.

Then, for every optimal solution x∗ of Problem 3.1, it holds

F (xN)− F (x∗) ≤ ‖x0 − x
∗‖2

2γN t2N
+ µN

L2
g

2
∀N ≥ 1.

The proof of this result relies on several partial results which we will prove as follows.

Lemma 3.1. The following statement holds for every z ∈ H and every k ≥ 0

F k+1(xk+1) +
1

2γk+1
‖xk+1 − z‖2 ≤

f(z) + µk+1g(Kyk) + 〈∇(µk+1g ◦K)(yk), z − yk〉+
1

2γk+1
‖z − yk‖2.

Proof. Let k ≥ 0 be fixed. Since, by the definition of the proximal map, xk+1 is the
minimizer of a 1

γk+1
-strongly convex function we know that for every z ∈ H

f(xk+1) + µk+1g(Kyk) + 〈∇(µk+1g ◦K)(yk), xk+1 − yk〉+
1

2γk+1
‖xk+1 − yk‖2+

1

2γk+1
‖xk+1 − z‖2 ≤

f(z) + µk+1g(Kyk) + 〈∇(µk+1g ◦K)(yk), z − yk〉+
1

2γk+1
‖z − yk‖2.

8

Next we use the Lk+1-smoothness of µk+1g ◦K and the fact that 1
γk+1

= Lk+1 to deduce

f(xk+1) + µk+1g(Kxk+1) +
1

2γk+1
‖xk+1 − z‖2 ≤

f(z) + µk+1g(Kyk) + 〈∇(µk+1g ◦K)(yk), z − yk〉+
1

2γk+1
‖z − yk‖2.

Lemma 3.2. Let x∗ be an optimal solution of Problem 3.1. Then it holds

γ1(F
1(x1)− F (x∗)) +

1

2
‖u1 − x∗‖2 ≤

1

2
‖x∗ − x0‖2.

Proof. We use the gradient inequality to deduce that for every z ∈ H and every k ≥ 0

µk+1g(Kyk) + 〈∇(µk+1g ◦K)(yk), z − yk〉 ≤ µk+1g(Kz) ≤ g(Kz)

and plug this into the statement of Lemma 3.1 to conclude that

F k+1(xk+1) +
1

2γk+1
‖xk+1 − z‖2 ≤ F (z) +

1

2γk+1
‖z − yk‖2.

For k = 0 we get that

F 1(x1) +
1

2γ1
‖x1 − x∗‖2 ≤ F (x∗) +

1

2γ1
‖x∗ − y0‖2.

Now we us the fact that u1 = x1 and y0 = x0 to obtain the conclusion.

Lemma 3.3. Let x∗ be an optimal solution of Problem 3.1. The following descent-type
inequality holds for every k ≥ 0

F k+1(xk+1)− F (x∗) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

´

F k(xk)− F (x∗)
¯

+
‖uk − x∗‖2
2γk+1t

2
k+1

+

ˆ

1− 1

tk+1

˙ˆ

µk − µk+1 −
µk+1

tk+1

˙

‖∇µk+1g(Kxk)‖2.

Proof. Let k ≥ 0 be fixed. We apply Lemma 3.1 with z :=
´

1− 1
tk+1

¯

xk + 1
tk+1

x∗ to

deduce that

F k+1(xk+1) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤ f
ˆˆ

1− 1

tk+1

˙

xk +
1

tk+1
x∗
˙

+ µk+1g(Kyk)

+

ˆ

1− 1

tk+1

˙

〈∇(µk+1g ◦K)(yk), xk − yk〉

+
1

tk+1
〈∇(µk+1g ◦K)(yk), x

∗ − yk〉+
1

2γk+1t
2
k+1

‖uk − x∗‖2.

9

Using the convexity of f gives

F k+1(xk+1) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

f(xk) +
1

tk+1
f(x∗)

+

ˆ

1− 1

tk+1

˙

µk+1g(Kyk) +

ˆ

1− 1

tk+1

˙

〈∇(µk+1g ◦K)(yk), xk − yk〉

+
1

tk+1

µk+1g(Kyk) +
1

tk+1
〈∇(µk+1g ◦K)(yk), x

∗ − yk〉+
‖uk − x∗‖2
2γk+1t

2
k+1

.

(10)

Now, we use (8) to deduce that

1

tk+1

µk+1g(Kyk) +
1

tk+1
〈∇(µk+1g ◦K)(yk), x

∗ − yk〉 ≤
1

tk+1
g(Kx∗)− 1

tk+1

µk+1

2
‖∇µk+1g(Kyk)‖2

(11)

and (9) to conclude that
ˆ

1− 1

tk+1

˙

µk+1g(Kyk) +

ˆ

1− 1

tk+1

˙

〈∇(µk+1g ◦K)(yk), xk − yk〉 ≤
ˆ

1− 1

tk+1

˙

µk+1g(Kxk)−
ˆ

1− 1

tk+1

˙

µk+1

2
‖∇µk+1g(Kyk)−∇µk+1g(Kxk)‖2.

(12)

Combining (10), (11) and (12) gives

F k+1(xk+1) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

µk+1g(Kxk) +

ˆ

1− 1

tk+1

˙

f(xk)

+
1

tk+1
g(Kx∗) +

1

tk+1
f(x∗)

−
ˆ

1− 1

tk+1

˙

µk+1

2
‖∇µk+1g(Kyk)−∇µk+1g(Kxk)‖2

− 1

tk+1

µk+1

2
‖∇µk+1g(Kyk)‖2 +

‖uk − x∗‖2
2γk+1t

2
k+1

.

The first term on the right hand side is µk+1g(Kxk) but we would like it to be µkg(Kxk).
Therefore we use Lemma 2.6 to deduce that

F k+1(xk+1) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

µkg(Kxk) +

ˆ

1− 1

tk+1

˙

f(xk)

+
1

tk+1
g(Kx∗) +

1

tk+1
f(x∗) +

ˆ

1− 1

tk+1

˙

(µk − µk+1)
1

2
‖∇µk+1g(Kxk)‖2

−
ˆ

1− 1

tk+1

˙

µk+1

2
‖∇µk+1g(Kyk)−∇µk+1g(Kxk)‖2

− 1

tk+1

µk+1

2
‖∇µk+1g(Kyk)‖2 +

‖uk − x∗‖2
2γk+1t

2
k+1

.

(13)

10

Next up we want to estimate all the norms of gradients by using Lemma 2.9 which says
that

ˆ

1− 1

tk+1

˙

‖∇µk+1g(Kyk)−∇µk+1g(Kxk)‖2 +
1

tk+1
‖∇µk+1g(Kyk)‖2 ≥

ˆ

1− 1

tk+1

˙

1

tk+1
‖∇µk+1g(Kxk)‖2.

(14)

Combining (13) and (14) gives

F k+1(xk+1) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

µkg(Kxk) +

ˆ

1− 1

tk+1

˙

f(xk)

+
1

tk+1
g(Kx∗) +

1

tk+1
f(x∗) +

ˆ

1− 1

tk+1

˙

(µk − µk+1)
1

2
‖∇µk+1g(Kxk)‖2

− µk+1

2

ˆ

1− 1

tk+1

˙

1

tk+1
‖∇µk+1g(Kxk)‖2 +

‖uk − x∗‖2
2γk+1t

2
k+1

.

Now we combine the two terms containing ‖∇µk+1g(Kxk)‖2 and get that

F k+1(xk+1) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

µkg(Kxk) +

ˆ

1− 1

tk+1

˙

f(xk)

+
1

tk+1
g(Kx∗) +

1

tk+1
f(x∗) +

‖uk − x∗‖2
2γk+1t

2
k+1

+

ˆ

1− 1

tk+1

˙ˆ

µk − µk+1 −
µk+1

tk+1

˙

1

2
‖∇µk+1g(Kxk)‖2.

By subtracting F (x∗) = f(x∗) + g(Kx∗) on both sides we finally obtain

F k+1(xk+1)− F (x∗) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

´

F k(xk)− F (x∗)
¯

+
‖uk − x∗‖2
2γk+1t

2
k+1

+

ˆ

1− 1

tk+1

˙ˆ

µk − µk+1 −
µk+1

tk+1

˙

1

2
‖∇µk+1g(Kxk)‖2.

Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1. We start with the statement of Lemma 3.3 and use the assump-
tion that

µk − µk+1 −
µk+1

tk+1
≤ 0

to make the last term in the inequality disappear for every k ≥ 0

F k+1(xk+1)− F (x∗) +
‖uk+1 − x∗‖2

2γk+1t
2
k+1

≤
ˆ

1− 1

tk+1

˙

´

F k(xk)− F (x∗)
¯

+
‖uk − x∗‖2
2γk+1t

2
k+1

.

11

Now we use the assumption that

ˆ

1− 1

tk+1

˙

γk+1t
2
k+1 = γkt

2
k

to get that for every k ≥ 0

γk+1t
2
k+1(F

k+1(xk+1)− F (x∗)) +
‖uk+1 − x∗‖2

2
≤ γkt2k(F k(xk)− F (x∗)) +

‖uk − x∗‖2
2

.

(15)
Let N ≥ 2. Summing (15) from k = 1 to N − 1 and getting rid of the nonnegative term
‖uN − x∗‖2 gives

γN t
2
N (FN (xN)− F (x∗)) ≤ γ1(F 1(x1)− F (x∗)) +

‖u1 − x∗‖2
2

∀N ≥ 2.

Since t1 = 1, the above inequality is fulfilled also for N = 1. Using Lemma 3.2 shows
that

FN (xN)− F (x∗) ≤ ‖x0 − x
∗‖2

γN t2N
∀N ≥ 1.

The above inequality, however, is still in terms of the smoothed objective function. In
order to go to the actual objective function we apply (7) and deduce that

F (xN)− F (x∗) ≤ FN (xN)− F (x∗) + µN
L2
g

2
≤ ‖x0 − x

∗‖2
2γN t2N

+ µN
L2
g

2
∀N ≥ 1.

Corollary 3.1. By choosing the parameters (µk)k≥1, (tk)k≥1, (γk)k≥1 in the following
way,

t1 = 1, µ1 = b‖K‖2, for b > 0,

and for every k ≥ 1

tk+1 :=
b

t2k + 2tk, µk+1 := µk
t2k

t2k+1 − tk+1
, γk :=

µk
‖K‖2 , (16)

they fulfill

µk − µk+1 −
µk+1

tk+1
≤ 0 (17)

and
ˆ

1− 1

tk+1

˙

γk+1t
2
k+1 = γkt

2
k (18)

For this choice of the parameters we have that

F (xN)− F (x∗) ≤ ‖x0 − x
∗‖2

b(N + 1)
+
bL2

g‖K‖2
(N + 1)

exp

ˆ

4π2

6

˙

∀N ≥ 1.

12

Proof. Since γk and µk are a scalar multiple of each other (18) is equivalent to

ˆ

1− 1

tk+1

˙

µk+1t
2
k+1 = µkt

2
k ∀k ≥ 1

and further to (by taking into account that tk+1 > 1 for every k ≥ 1)

µk+1 = µk
t2k
t2k+1

tk+1

tk+1 − 1
= µk

t2k
t2k+1 − tk+1

∀k ≥ 1. (19)

Our update choice in (16) for the sequence (µk)k≥1 is exactly chosen in such a way that
it satisfies this. Plugging (19) into (17) gives for every k ≥ 1 the condition

1 ≤
ˆ

1 +
1

tk+1

˙

t2k
t2k+1

tk+1

tk+1 − 1
=

t2k
t2k+1

tk+1 + 1

tk+1 − 1
,

which is equivalent to
0 ≥ t3k+1 − t2k+1 − t2ktk+1 − t2k

and further to
t2k+1 + t2k ≥ tk+1

`

t2k+1 − t2k
˘

.

Plugging in tk+1 =
b

t2k + 2tk we get that this equivalent to

t2k+1 + t2k ≥ tk+12tk ∀k ≥ 1,

which is evidently fulfilled. Thus, the choices in (16) are indeed feasible for our algorithm.
Now we want to prove the claimed convergence rates. Via induction we show that

k + 1

2
≤ tk ≤ k ∀k ≥ 1. (20)

Evidently, this holds for t1 = 1. Assuming that (20) holds for k ≥ 1, we easily see that

tk+1 =
b

t2k + 2tk ≤
a

k2 + 2k ≤
a

k2 + 2k + 1 = k + 1

and, on the other hand,

tk+1 =
b

t2k + 2tk ≥

d

(k + 1)2

4
+ k + 1 =

1

2

a

k2 + 6k + 5 ≥ 1

2

a

k2 + 4k + 4 =
k + 2

2
.

In the following we prove a similar estimate for the sequence (µk)k≥1. To this end we
show, again by induction, the following recursion for every k ≥ 2

µk = µ1

∏k−1
j=1 tj∏k

j=2(tj − 1)

1

tk
. (21)

13

For k = 2 this follows from the definition (19). Assume now that (21) holds for k ≥ 2.
From here we have that

µk+1 = µk
t2k

tk+1(tk+1 − 1)
= µ1

∏k−1
j=1 tj∏k

j=2(tj − 1)

1

tk

t2k
tk+1(tk+1 − 1)

= µ1

∏k
j=1 tj∏k+1

j=2(tj − 1)

1

tk+1
.

Using (21) together with (20) we can check that for every k ≥ 1

µk+1 = µ1

∏k
j=1 tj∏k+1

j=2(tj − 1)

1

tk+1
=

µ1
tk+1

k∏
j=1

tj
(tj+1 − 1)

≥ µ1
tk+1

= b‖K‖2 1

tk+1
, (22)

where we used in the last step the fact that tk+1 ≤ tk + 1.
The last thing to check is the fact that µk goes to zero like 1

k . First we check that for
every k ≥ 1

tk
tk+1 − 1

≤ 1 +
1

tk+1(tk+1 − 1)
. (23)

This can be seen via

(tk + 1)tk+1 ≤ (tk + 1)2 = t2k+1 + 1 ∀k ≥ 1.

By bringing tk+1 to the other side we get that

tk+1tk ≤ t2k+1 − tk+1 + 1,

from which we can deduce (23) by dividing by t2k+1 − tk+1.
We plug in the estimate (23) in (21) and get for every k ≥ 2

µk = µ1

∏k−1
j=1 tj∏k−1

j=1(tj+1 − 1)

1

tk

≤ µ1
k−1∏
j=1

ˆ

1 +
1

tj+1(tj+1 − 1)

˙

1

tk
≤ µ1

k−1∏
j=1

ˆ

1 +
4

(j + 2)j

˙

1

tk

≤ µ1
k−1∏
j=1

ˆ

1 +
4

j2

˙

1

tk
≤ µ1 exp

ˆ

π24

6

˙

1

tk
= b‖K‖2 exp

ˆ

π24

6

˙

1

tk
.

With the above inequalities we can to deduce the claimed convergence rates. First note
that from Theorem 3.1 we have

F (xN)− F (x∗) ≤ ‖x0 − x
∗‖2

2γN t2N
+ µN

L2
g

2
∀N ≥ 1.

Now, in order to obtain the desired conclusion, we used the above estimates and deduce
for every N ≥ 1

‖x0 − x∗‖2
2γN t2N

+ µN
L2
g

2
≤ ‖x0 − x

∗‖2
2btN

+
bL2

g‖K‖2
2tN

exp

ˆ

4π2

6

˙

≤ ‖x0 − x
∗‖2

b(N + 1)
+
bL2

g‖K‖2
(N + 1)

exp

ˆ

4π2

6

˙

,

14

where we used that

γN tN =
µN tN
‖K‖2 ≥ b,

as shown in (22).

Remark 3.3. Consider the choice (see [21])

t1 = 1, tk+1 =
1 +

b

1 + 4t2k

2
∀k ≥ 1

and
µ1 = b‖K‖2, for b > 0.

Since
t2k = t2k+1 − tk+1 ∀k ≥ 1,

we see that in this setting we have to choose

µk = b‖K‖2 and γk = b ∀k ≥ 1.

Thus, the sequence of optimal function values (F (xN))N≥1 approaches a b‖K‖2Lg2 -

approximation of the optimal objective value F (x∗) with a convergence rate of O(1
N2),

i.e.

F (xN)− F (x∗) ≤ 2
‖x0 − x∗‖2
b(N + 1)2

+ b
‖K‖2L2

g

2
∀N ≥ 1.

4 Stochastic Method

Problem 4.1. The problem is the same as in the deterministic case

min
x∈H

f(x) + g(Kx)

other than the fact that at each iteration we are only given a stochastic estimator of the
quantity

∇(µkg ◦K)(·) = K∗ prox 1
µk
g∗

ˆ

1

µk
K·

˙

∀k ≥ 1.

Remark 4.1. See Algorithm 4.3 for a setting where such an estimator is easily computed.

For the stochastic quantities arising in this section we will use the following notation.
For every k ≥ 0, we denote by σ(x0, . . . , xk) the smallest σ-algebra generated by the fam-
ily of random variables {x0, . . . , xk} and by Ek(·) := E(·|σ(x0, . . . , xk)) the conditional
expectation with respect to this σ-algebra.

Algorithm 4.1 (stochastic Variable Accelerated SmooThing (sVAST)). Let y0 = x0 ∈
H, (µk)k≥1 a sequence of positive and nonincreasing real numbers, and (tk)k≥1 a sequence

15

of real numbers with t1 = 1 and tk ≥ 1 for every k ≥ 2. Consider the following iterative
scheme

(∀k ≥ 1)


Lk = ‖K‖2

µk
γk = 1

Lk
xk = proxγkf pyk−1 − γkξk−1q

yk = xk + tk−1
tk+1

(xk − xk−1),
where we make the standard assumptions about our gradient estimator of being unbiased,
i.e.

Ek(ξk) = ∇(µk+1g ◦K)(yk),

and having bounded variance

Ek
`

‖ξk −∇(µk+1g ◦K)(yk)‖2
˘

≤ σ2

for every k ≥ 0.

Note that we use the same notations as in the deterministic case

uk := xk−1 + tk(xk − xk−1) and F k(·) := f + µkg ◦K ∀k ≥ 1.

Lemma 4.1. The following statement holds for every (deterministic) z ∈ H and every
k ≥ 0

Ek
ˆ

F k+1(xk+1) +
‖xk+1 − z‖2

2γk+1

˙

≤ F k+1(z) +
‖z − yk‖2

2γk+1

+ γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

Proof. Here we have to proceed a little bit different from Lemma 3.1. Namely, we have
to treat the gradient step and the proximal step differently. For this purpose we define
the auxiliary variable

zk := yk−1 − γkξk−1 ∀k ≥ 1.

Let k ≥ 1 be fixed. From the gradient step we get

‖z − zk‖2 = ‖yk−1 − γkξk−1 − z‖2

= ‖yk−1 − z‖2 − 2γk 〈ξk−1, yk−1 − z〉+ γ2k‖ξk−1‖2.

Taking the conditional expectation gives

Ek−1
`

‖z − zk‖2
˘

= ‖yk−1 − z‖2− 2γk 〈∇(µkg ◦K)(yk−1), yk−1 − z〉+ γ2kEk−1
`

‖ξk−1‖2
˘

.

Using the gradient inequality we deduce

Ek−1
`

‖z − zk‖2
˘

≤ ‖yk−1 − z‖2 − 2γk((
µkg ◦K)(yk−1)− (µkg ◦K)(z))

+ γ2kEk−1
`

‖ξk−1‖2
˘

16

and therefore

γk(
µkg ◦K)(yk−1) +

1

2
Ek−1

`

‖z − zk‖2
˘

≤ 1

2
‖yk−1 − z‖2 + γk(

µkg ◦K)(z)

+
γ2k
2
Ek−1

`

‖ξk−1‖2
˘

.

(24)

Also from the smoothness of (µkg ◦K) we deduce via the Descent Lemma that

µkg(Kzk) ≤ µkg(Kyk−1) + 〈∇(µkg ◦K)(yk−1), zk − yk−1〉+
Lk
2
‖zk − yk−1‖2.

Plugging in the definition of zk and using the fact that Lk = 1
γk

we get

µkg(Kzk) ≤ µkg(Kyk−1)− γk 〈∇(µkg ◦K)(yk−1), ξk−1〉+
γk
2
‖ξk−1‖2.

Now we take the conditional expectation to deduce that

Ek−1(µkg(Kzk)) ≤ µkg(Kyk−1)− γk ‖∇(µkg ◦K)(yk−1)‖2 +
γk
2
Ek−1

`

‖ξk−1‖2
˘

. (25)

Multiplying (25) by γk and adding it to (24) gives

γkEk−1 pµkg(Kzk)q +
1

2
Ek−1

`

‖z − zk‖2
˘

≤

γk
µkg(Kz) +

1

2
‖yk−1 − z‖2 − γ2k ‖∇(µkg ◦K)(yk−1)‖2 + γ2kEk−1

`

‖ξk−1‖2
˘

.

Now we use the assumption about the bounded variance to deduce that

γkEk−1 pµkg(Kzk)q +
1

2
Ek−1

`

‖z − zk‖2
˘

≤ γkµkg(Kz) +
1

2
‖yk−1 − z‖2 + γ2kσ

2. (26)

Next up for the proximal step we deduce

f(xk) +
1

2γk
‖xk − zk‖2 +

1

2γk
‖xk − z‖2 ≤ f(z) +

1

2γk
‖z − zk‖2. (27)

Taking the conditional expectation and combining (26) and (27) we get

Ek−1
ˆ

γk(
µkg(Kzk) + f(xk)) +

1

2
‖xk − zk‖2 +

1

2
‖xk − z‖2

˙

≤

γkF
k(z) +

1

2
‖yk−1 − z‖2 + γ2kσ

2.

From here, using now Lemma 2.3, we get that

Ek−1
ˆ

γkF
k(xk)− γkLg‖K‖‖xk − zk‖+

1

2
‖xk − zk‖2 +

1

2
‖xk − z‖2

˙

≤

γkF
k(z) +

1

2
‖yk−1 − z‖2 + γ2kσ

2.

17

Now we use

−1

2
γ2kL

2
g‖K‖2 ≤

1

2
‖xk − zk‖2 − γkLg‖K‖‖xk − zk‖

to obtain that

Ek−1
ˆ

γkF
k(xk) +

1

2
‖xk − z‖2

˙

≤

γkF
k(z) +

1

2
‖yk−1 − z‖2 + γ2kσ

2 +
1

2
γ2kL

2
g‖K‖2.

Lemma 4.2. Let x∗ be an optimal solution of Problem 4.1. Then it holds

E
`

γ1(F
1(x1)− F 1(x∗))

˘

+
1

2
‖u1 − x∗‖2 ≤

1

2
‖x0 − x∗‖2 + γ21σ

2 +
1

2
γ21L

2
g‖K‖2.

Proof. Applying the previous lemma with k = 0 and z = x∗, we get that

E
ˆ

γ1F
1(x1) +

1

2
‖x1 − x∗‖2

˙

≤γ1F 1(x∗) +
1

2
‖y0 − x∗‖2 + γ21σ

2 +
1

2
γ21L

2
g‖K‖2.

Therefore, using the fact that y0 = x0 and u1 = x1,

E
ˆ

γ1(F
1(x1)− F 1(x∗)) +

1

2
‖u1 − x∗‖2

˙

≤ 1

2
‖x0 − x∗‖2 + γ21σ

2 +
1

2
γ21L

2
g‖K‖2,

which finishes the proof.

Theorem 4.1. Consider the setup of Problem 4.1 and let (xk)k≥0 and (yk)k≥0 denote
the sequences generated by Algorithm 4.1. Assume that for all k ≥ 1

ρk+1 := t2k − t2k+1 + tk+1 ≥ 0.

Then, for every optimal solution x∗ of Problem 4.1, it holds

E pF (xN)− F (x∗)q ≤ 1

γN t2N

1

2
‖x0 − x∗‖2 +

1

γN t2N

‖K‖2L2
g

2

N∑
k=1

γ2k(tk + ρk)

+
1

γN t2N

˜

σ2 +
‖K‖2L2

g

2

¸

N∑
k=1

t2kγ
2
k ∀N ≥ 1.

Proof of Theorem 4.1. Let k ≥ 0 be fixed. Lemma 4.1 for z :=
´

1− 1
tk+1

¯

xk + 1
tk+1

x∗

gives

Ek

˜

F k+1(xk+1) +
1

2γk+1

∥∥∥∥ 1

tk+1
uk+1 −

1

tk+1
x∗
∥∥∥∥2
¸

≤

F k+1

ˆˆ

1− 1

tk+1

˙

xk +
1

tk+1
x∗
˙

+
1

2γk+1

∥∥∥∥ 1

tk+1
x∗ − 1

tk+1
uk

∥∥∥∥2
+γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

18

From here and from the convexity of F k+1 follows

Ek
´

F k+1(xk+1)− F k+1(x∗)
¯

−
ˆ

1− 1

tk+1

˙

(F k+1(xk)− F k+1(x∗)) ≤

‖uk − x∗‖2
2γk+1t

2
k+1

− Ek

˜

‖uk+1 − x∗‖2
2γk+1t

2
k+1

¸

+ γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

Now, by multiplying both sides with by t2k+1, we deduce

Ek
´

t2k+1(F
k+1(xk+1)− F k+1(x∗))

¯

+ (tk+1 − t2k+1)(F
k+1(xk)− F k+1(x∗)) ≤

1

2γk+1

`

‖uk − x∗‖2 − Ek
`

‖uk+1 − x∗‖2
˘˘

+ t2k+1γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.
(28)

Next, by adding t2k(F
k+1(xk)− F k+1(x∗)) on both sides of (28), gives

Ek
´

t2k+1(F
k+1(xk+1)− F k+1(x∗))

¯

+ ρk+1(F
k+1(xk)− F k+1(x∗)) ≤

t2k(F
k+1(xk)− F k+1(x∗)) +

1

2γk+1

`

‖uk − x∗‖2 − Ek
`

‖uk+1 − x∗‖2
˘˘

+t2k+1γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

Utilizing (6) together with the assumption that (µk)k≥1 is nonincreasing leads to

Ek
´

t2k+1(F
k+1(xk+1)− F k+1(x∗))

¯

+ ρk+1(F
k+1(xk)− F k+1(x∗)) ≤

t2k(F
k(xk)− F k(x∗)) +

1

2γk+1

`

‖uk − x∗‖2 − Ek
`

‖uk+1 − x∗‖2
˘˘

+ t2k(µk − µk+1)
L2
g

2

+t2k+1γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

Now, using that t2k ≥ t2k+1 − tk+1, we get

Ek
´

t2k+1(F
k+1(xk+1)− F k+1(x∗))

¯

+ ρk+1(F
k+1(xk)− F k+1(x∗)) ≤

t2k(F
k(xk)− F k(x∗)) +

1

2γk+1
(‖uk − x∗‖2 − Ek

`

‖uk+1 − x∗‖2)
˘

+t2kµk
L2
g

2
− t2k+1µk+1

L2
g

2
+ tk+1µk+1

L2
g

2

+t2k+1γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

19

Multiplying both sides with γk+1 and putting all terms on the correct sides yields

Ek

˜

γk+1t
2
k+1

˜

F k+1(xk+1)− F k+1(x∗) + µk+1

L2
g

2

¸

+
1

2
‖uk+1 − x∗‖2

¸

+

γk+1ρk+1(F
k+1(xk)− F k+1(x∗)) ≤

γk+1t
2
k

˜

F k(xk)− F k(x∗) + µk
L2
g

2

¸

+
1

2
‖uk − x∗‖2+

+γk+1tk+1µk+1

L2
g

2
+ t2k+1γ

2
k+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

(29)

At this point we would like to discard the term γk+1ρk+1(F
k+1(xk) − F k+1(x∗)) which

we currently cannot as the positivity of F k+1(xk)−F k+1(x∗) is not ensured. So we add

γk+1ρk+1µk+1
L2
g

2 on both sides of (29) and get

Ek

˜

γk+1t
2
k+1

˜

F k+1(xk+1)− F k+1(x∗) + µk+1

L2
g

2

¸

+
1

2
‖uk+1 − x∗‖2

¸

+

γk+1ρk+1

˜

F k+1(xk)− F k+1(x∗) + µk+1

L2
g

2

¸

≤

γk+1t
2
k

˜

F k(xk)− F k(x∗) + µk
L2
g

2

¸

+
1

2
‖uk − x∗‖2+

+γk+1µk+1

L2
g

2
(tk+1 + ρk+1) + t2k+1γ

2
k+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

(30)

Using again (6) to deduce that

γk+1ρk+1

˜

F k+1(xk)− F k+1(x∗) + µk+1

L2
g

2

¸

≥ γk+1ρk+1(F (xk)− F (x∗)) ≥ 0

we can now discard said term from (30), giving

Ek

˜

γk+1t
2
k+1

˜

F k+1(xk+1)− F k+1(x∗) + µk+1

L2
g

2

¸

+
1

2
‖uk+1 − x∗‖2

¸

≤

γk+1t
2
k

˜

F k(xk)− F k(x∗) + µk
L2
g

2

¸

+
1

2
‖uk − x∗‖2

+γk+1µk+1

L2
g

2
(tk+1 + ρk+1) + t2k+1γ

2
k+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

(31)

Last but not least we use the that F k(xk) − F k(x∗) + µk
L2
g

2 ≥ F (xk) − F (x∗) ≥ 0 and

20

γk+1 ≤ γk to follow that

γk+1t
2
k

˜

F k(xk)− F k(x∗) + µk
L2
g

2

¸

≤ γkt2k

˜

F k(xk)− F k(x∗) + µk
L2
g

2

¸

. (32)

Combining (31) and (32) yields

Ek

˜

γk+1t
2
k+1

˜

F k+1(xk+1)− F k+1(x∗) + µk+1

L2
g

2

¸

+
1

2
‖uk+1 − x∗‖2

¸

≤

γkt
2
k

˜

F k(xk)− F k(x∗) + µk
L2
g

2

¸

+
1

2
‖uk − x∗‖2

+γk+1µk+1

L2
g

2
(tk+1 + ρk+1) + t2k+1γ

2
k+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

(33)

Let N ≥ 2. We take the expected value on both sides (33) and sum from k = 1 to N−1.
Getting rid of the non-negative terms ‖uN − x∗‖2 gives

E

˜

γN t
2
N

˜

FN (xN)− FN (x∗) + µN
L2
g

2

¸¸

≤

E

˜

γ1

˜

F 1(x1)− F 1(x∗) + µ1
L2
g

2

¸¸

+
1

2
‖u1 − x∗‖2 +

N∑
k=2

γkµk
Lg
2

(tk + ρk)

+
N∑
k=2

t2kγ
2
k

˜

σ2 +
‖K‖2L2

g

2

¸

.

Since t1 = 1, the above inequality holds also for N = 1. Now, using Lemma 4.2 we get
that for every N ≥ 1

E

˜

γN t
2
N

˜

FN (xN)− FN (x∗) + µN
L2
g

2

¸¸

≤ 1

2
‖x0 − x∗‖2 +

N∑
k=1

γkµk
L2
g

2
(tk + ρk)

+
N∑
k=1

t2kγ
2
k

ˆ

σ2 +
‖K‖2

2

˙

.

From (7) we follow that

γN t
2
N pF (xN)− F (x∗)q ≤ γN t2N

˜

FN (xN)− FN (x∗) + µN
L2
g

2

¸

,

therefore, for every N ≥ 1

E
`

γN t
2
N

`

FN (xN)− FN (x∗)
˘˘

≤ 1

2
‖x0 − x∗‖2 +

N∑
k=1

γkµk
L2
g

2
(tk + ρk)

+

N∑
k=1

t2kγ
2
k

˜

σ2 +
‖K‖2L2

g

2

¸

.

21

By using the fact that µk = γk‖K‖2 for every k ≥ 1 gives

E
`

γN t
2
N (F (xN)− F (x∗))

˘

≤ 1

2
‖x0 − x∗‖2 +

‖K‖2L2
g

2

N∑
k=1

γ2k(tk + ρk)

+

˜

σ2 +
‖K‖2L2

g

2

¸

N∑
k=1

t2kγ
2
k ∀N ≥ 1.

Thus,

E pF (xN)− F (x∗)q ≤ 1

γN t2N

1

2
‖x0 − x∗‖2 +

1

γN t2N

‖K‖2L2
g

2

N∑
k=1

γ2k(tk + ρk)

+
1

γN t2N

˜

σ2 +
‖K‖2L2

g

2

¸

N∑
k=1

t2kγ
2
k ∀N ≥ 1.

Corollary 4.1. Let

t1 = 1, tk+1 =
1 +

b

1 + 4t2k

2
∀k ≥ 1,

and, for b > 0,

µk =
b

k
3
2

‖K‖2, and γk =
b

k
3
2

∀k ≥ 1.

Then,

E pF (xN)− F (x∗)q ≤ 2
‖x0 − x∗‖2
b
?
N

+ b‖K‖2L2
g

π2

3

1
?
N

+ 2b
`

2σ2 + ‖K‖2L2
g

˘ 1 + log(N)
?
N

∀N ≥ 1.

Furthermore, we have that F (xN) converges almost surely to F (x∗) as N → +∞.

Proof. First we notice that the choice of tk+1 =
1+

?
1+4t2k
2 fulfills that

ρk+1 = t2k − t2k+1 + tk+1 = 0 ∀k ≥ 1.

Now we derive the stated convergence result by first showing via induction that

1

k
≤ 1

tk
≤ 2

k
∀k ≥ 1.

Assuming that this holds for k ≥ 1, we have that

tk+1 =
1 +

b

1 + 4t2k

2
≤ 1 +

?
1 + 4k2

2
≤ 1 +

?
1 + 4k + 4k2

2
= k + 1

22

and

tk+1 =
1 +

b

1 + 4t2k

2
≥

1 +

b

1 + 4(k2)
2

2
≥ 1 +

?
k2

2
≥ k + 1

2
.

Furthermore, for every N ≥ 1 we have that

1

γN t2N

‖K‖2L2
g

2

N∑
k=1

γ2k(tk + ρk) ≤
4

b
?
N

‖K‖2L2
g

2

N∑
k=1

b2

k3
k =

2b‖K‖2L2
g

?
N

N∑
k=1

k−2

≤
2b‖K‖2L2

g
?
N

∞∑
k=1

k−2 = b‖K‖2L2
g

π2

3

1
?
N
.

(34)

The statement of the convergence rate in expectation follows now by plugging in our pa-
rameter choices into the statement of Theorem 4.1, using the estimate (34) and checking
that

N∑
k=1

t2kγ
2
k ≤ b2

N∑
k=1

1

k
≤ b2(1 + log(N)) ∀N ≥ 1.

The almost sure convergence of (F (xN))N≥1 can be deduced by looking at (33) and

dividing by γk+1t
2
k+1 and using that γk+1t

2
k+1 ≥ γkt

2
k as well as ρk = 0, which gives for

every k ≥ 0

Ek

˜

F k+1(xk+1)− F k+1(x∗) + µk+1

L2
g

2
+

1

2γk+1t
2
k+1

‖uk+1 − x∗‖2
¸

≤

F k(xk)− F k(x∗) + µk
L2
g

2
+

1

2γkt
2
k

‖uk − x∗‖2 +
µk+1

tk+1

L2
g

2
+ γk+1

˜

σ2 +
‖K‖2L2

g

2

¸

.

Plugging in our choice of parameters gives for every k ≥ 0

Ek

˜

F k+1(xk+1)− F k+1(x∗) + µk+1

L2
g

2
+

1

2γk+1t
2
k+1

‖uk+1 − x∗‖2
¸

≤

F k(xk)− F k(x∗) + µk
L2
g

2
+

1

2γkt
2
k

‖uk − x∗‖2 +
C

k
3
2

,

where C > 0.
Thus, by the famous Robbins-Siegmund Theorem (see [25, Theorem 1]) we get that

(F k+1(xk+1)− F k+1(x∗) + µk+1
L2
g

2)
k≥0 converges almost surely. In particular, from the

convergence to 0 in expectation we know that the almost sure limit must also be the
constant zero.

Finite Sum. The formulation of the previous section can be used to deal e.g. with
problems of the form

min
x∈H

f(x) +

m∑
i=1

gi(Kix) (35)

23

for f : H → R a proper, convex and lower semicontinuous function, gi : Gi → R convex
and Lgi-Lipschitz continuous functions and Ki : H → Gi linear continuous operators for
i = 1, . . . ,m.

Clearly one could consider

K :=

{
H →Śm

i=1 Gi
x 7→Śm

i=1Kix

with ‖K‖2= ∑m
i=1‖Ki‖2 and

g :=

{
Śm

i=1 Gi → R
Śm

i=1 yi 7→
∑m

i=1 gi(yi).

in order to reformulate the problem as

min
x∈H

f(x) + g(Kx)

and use Algorithm 3.1 together with the parameter choices described in Corollary 3.1
on this. This results in the following algorithm.

Algorithm 4.2. Let y0 = x0 ∈ H, µ1 = b‖K‖, for b > 0, and t1 = 1. Consider the
following iterative scheme

(∀k ≥ 1)



γk =
∑m
i=1‖Ki‖2
µk

xk = proxγkf

ˆ

yk−1 − γk
∑m

i=1K
∗
i prox 1

µk
g∗i

´

Kiyk−1

µk

¯

˙

tk+1 =
b

t2k + 2tk

yk = xk + tk−1
tk+1

(xk − xk−1)
µk+1 = µk

t2k
t2k+1−tk+1

.

However, problem (35) also lends itself to be tackled via the stochastic version of our
method, Algorithm 4.1, by randomly choosing a subset of the summands. Together with
the parameter choices described in Corollary 4.1 which results in the following scheme.

Algorithm 4.3. Let y0 = x0 ∈ H, b > 0, and t1 = 1. Consider the following iterative
scheme

(∀k ≥ 1)



µk = b
∑m

i=1‖Ki‖2k−
3
2

γk = bk−
3
2

xk = proxγkf

ˆ

yk−1 − γk εi,kpi
∑m

i=1K
∗
i prox 1

µk
g∗i

´

Kiyk−1

µk

¯

˙

tk+1 =
1+

?
1+4t2k
2

yk = xk + tk−1
tk+1

(xk − xk−1),

with εk := (ε1,k, ε2,k, . . . , εm,k) a sequence of i.i.d., {0, 1}m random variables and pi =
P[εi,1 = 1].

24

Since the above two methods were not explicitly developed for this separable case and
can therefore not make use of more refined estimation of the constant ‖K‖, as it is done
in e.g. [14]. However, in the stochastic case, this fact is remedied due to the scaling of
the stepsize with respect to the i-th component by p−1i .

Remark 4.2. In theory Algorithm 4.1 could be used to treat more general stochastic
problems than finite sums like (35), but in the former case it is not clear anymore how
a gradient estimator can be found, so we do not discuss it here.

5 Numerical Examples

We will focus our numerical experiments on image processing problems. The examples
are implemented in python using the operator discretization library (ODL) [1]. We define
the discrete gradient operators D1 and D2 representing the discretized derivative in the
first and second coordinate respectively, which we will need for the numerical examples.
Both map from Rm×n to Rm×n and are defined by

(D1u)i,j :=

{
ui+1,j − ui,j 1 ≤ i < m,

0 else,

and

(D2u)i,j :=

{
ui,j+1 − ui,j 1 ≤ j < m,

0 else.

The operator norm of D1 and D2, respectively, is 2 (where we equipped Rm×n with the
Frobenius norm). This yields an operator norm of

?
8 for the total gradient D := D1×D2

as a map from Rm×n to Rm×n × Rm×n, see also [12].
We will compare our methods, i.e. the Variable Accelerated SmooThing (VAST) and

its stochastic counterpart (sVAST) to the Primal Dual Hybrid Gradient (PDHG) of [15]
as well as its stochastic version (sPDHG) from [14]. Furthermore, we will illustrate
another competitor, the method by Pesquet and Repetti, see [24], which is another a
stochastic version of PDHG (see also [29]).

In all examples we choose the parameters in accordance with [14]:

• for PDHG and Pesquet&Repetti: τ = σi = γ
‖K‖

• for sPDHG: σi = γ
‖K‖ and τ = γ

nmaxi‖Ki‖ ,

where γ = 0.99.

5.1 Total Variation Denoising

The task at hand is to reconstruct an image from its noisy observation. We do this by
solving

min
x∈Rm×n

α‖x− b‖2 + ‖D1x‖1 + ‖D2x‖1,

25

(a) Groundtruth (b) Data (c) Approximate solution

Figure 1: TV denoising. Images used. The approximate solution is computed by running
PDHG for 7000 iterations.

100 101 102 103

iterations [epochs]

100

101

102

p
ri
m
al

d
is
ta
n
ce

PDHG

sPDHG

VAST b=0.1

sVAST b=0.1

(a) Distance to the solution.

100 101 102 103

iterations [epochs]

10−5

10−4

10−3

10−2

10−1

100

re
la
ti
ve

ob
je
ct
iv
e

PDHG

sPDHG

VAST b=0.1

sVAST b=0.1

(b) Relative objective F (xk)−F (x∗)
F (x0)−F (x∗) .

Figure 2: TV denoising. Plots.

with α > 0 as regularization parameter, in the following setting: f = α‖· − b‖2, g1 =
g2 = ‖·‖1,K1 = D1,K2 = D2.

Figure 1 illustrates the images (of dimension m = 442 and n = 331) used in for this
example. These include the groundtruth, i.e. the uncorrupted image, as well as the data
for the optimization problem b, which visualizes the level of noise. In Figure 2 we can
see that for the deterministic setting our method is as good as PDHG. For the objective
function values, Subfigure 2b, this is not too surprising as both algorithms share the
same convergence rate. For the distance to a solution however we completely lack a
convergence result. Nevertheless in Subfigure 2a we can see that our method performs
also well with respect to this measure.

In the stochastic setting we can see in Figure 2 that, while sPDHG provides some
benefit over its deterministic counterpart, the stochastic version of our method, although
significantly increasing the variance, provides great benefit, at least for the objective
function values.

Furthermore, Figure 3, shows the reconstructions of sPDHG and our method which
are, despite the different objective function values, quite comparable.

26

(a) sVAST (b) sPDHG

Figure 3: TV Denoising. A comparison of the reconstruction for the stochastic variable
smoothing method and the stochastic PDHG.

5.2 Total Variation Deblurring

For this example we want to reconstruct an image from a blurred and noisy image. We
assume to know the blurring operator C : Rm×n → Rm×n. This is done by solving

min
x∈Rm×n

α‖Cx− b‖2 + ‖D1x‖1 + ‖D2x‖1, (36)

for α > 0 as regularization parameter, in the following setting: f = 0, g1 = α‖·−b‖2, g2 =
g3 = ‖·‖1,K1 = C,K2 = D1,K2 = D2.

(a) Groundtruth (b) Data (c) Approximate solution

Figure 4: TV Deblurring. The approximate solution is computed by running PDHG for
3000 iterations.

Figure 4 shows the images used to set up the optimization problem (36), in particular
Subfigure 4b which corresponds to b in said problem.

In Figure 5 we see that while PDGH performs better in the deterministic setting, in
particular in the later iteration, the stochastic variable smoothing method provides a
significant improvement where sPDHG method seems not to converge. It is interesting
to note that in this setting even the deterministic version of our algorithm exhibits a
slightly chaotic behaviour. Although neither of the two methods is monotone in the
primal objective function PDHG seems here much more stable.

27

100 101 102

iterations [epochs]

101

102

103
p
ri
m
al

d
is
ta
n
ce

PDHG

SPDHG

Pesquet&Repetti

VAST b=0.2

sVAST b=0.2

(a) Distance to the solution.

100 101 102

iterations [epochs]

10−3

10−2

10−1

100

re
la
ti
ve

ob
je
ct
iv
e

PDHG

SPDHG

Pesquet&Repetti

VAST b=0.2

sVAST b=0.2

(b) Relative objective F (xk)−F (x∗)
F (x0)−F (x∗) .

Figure 5: TV deblurring. Plots.

5.3 Matrix Factorization

In this section we want to solve a nonconvex and nonsmooth optimization problem
of completely positive matrix factorization, see [16, 19, 27]. For an observed matrix
A ∈ Rd×d we want to find a completely positive low rank factorization, meaning we are
looking for x ∈ Rr×d≥0 with r � d such that xTx = A. This can be formulated as the
following optimization problem

min
x∈Rr×d≥0

‖xTx−A‖1, (37)

where xT denotes the transpose of the matrix x. The more natural approach might be
to use a smooth formulation where ‖·‖22 is used instead of the 1-Norm we are suggesting.
However, the former choice of distance measure, albeit smooth, comes with its own set
of problems (mainly a non-Lipschitz gradient).

The so called Prox-Linear method presented in [18] solves the above problem (37), by
linearizing the smooth (Rd×d-valued) function x 7→ xTx inside the nonsmooth distance
function. In particular for the problem

min
x
g(c(x)),

for a smooth vector valued function c and a convex and Lipschitz function g, [18] proposes
to iteratively solve the subproblem

xk+1 = arg min
x

{
g(c(xk) +∇c(xk)(x− xk)) +

1

2t
‖x− xk‖22

}
∀k ≥ 0, (38)

for a stepsize t ≤ (LgLD∇c)
−1. For our particular problem described in (37) the sub-

problem looks as follows

xk+1 = arg min
x∈Rr×d≥0

{
‖xTk x−A‖1+

1

2
‖x− xk‖22

}
, (39)

28

(a) Random starting point. (b) Starting point close to the solution.

Figure 6: Comparison of the evolutions of the objective function values for different
starting points. We run 40 epochs with 5 iterations each. For each epoch
we choose the last iterate of the previous epoch as the linearization. For the
stochastic methods we fix the number of rows (batchsize) which are randomly
chosen in each update a priori and count d divided by this number as one
iteration. For the randomly chosen initial point we use a batchsize of 3 (to
allow for more exploration) and for the one close to the solution we use 5 in
order to give a more accuracy. The parameter b in the variable smoothing
method was chosen with minimal tuning to be 0.1 for both the deterministic
and the stochastic version.

and therefore fits our general setup described in (1) with the identification f = ‖· −
xk‖22+δRr×d≥0

(x), g = ‖·‖1 and K = xTk . Moreover, due to its separable structure, the

subproblem (39) fits the special case described in (35) and can therefore be tackled
by the stochastic version of our algorithm presented in Algorithm 4.3. In particular
reformulating (38) for the stochastic finite sum setting we interpret the subproblem as

xk+1 = arg min
x∈Rr×d≥0

{
d∑
i=1

∥∥xTk [i, :]x−A[i, :]
∥∥
1

+
1

2
‖x− xk‖22

}
,

where A[i, :] denotes the i-th row of the matrix A.
In comparison to Section 5.1 and Section 5.2 a new aspect becomes important when

evaluating methods for solving (38). Now, it is not only relevant how well subprob-
lem (39) is solved, but also the trajectory taken in doing so as different paths might lead
to different local minima. This can be seen in Figure 6 where PDHG gets stuck early on
in bad local minima. The variable smoothing method (especially the stochastic version)
is able to move further from the starting point and find better local minima. Note that
in general the methods have a difficulty in finding the global minimum xtrue ∈ R3×60

(with optimal objective function value zero, as constructed A := xTtruextrue ∈ R60×60 in
all examples).

29

Acknowledgements. The authors are thankful to two anonymous reviewers for
comments and remarks which improved the quality of the presentation and led to the
numerical experiment on matrix factorization.

References

[1] Jonas Adler, Holger Kohr, and Ozan Öktem. Operator Discretization Library,
https://odlgroup.github.io/odl/, 2017.

[2] Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Op-
erator Theory in Hilbert spaces, Springer, New York, 2011.

[3] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[4] Jonathan M Borwein and Jon D Vanderwerff. Convex Functions: Constructions,
Characterizations and Counterexamples, Cambridge University Press, Cambridge,
2010.

[5] Radu I Boţ and Ernö R Csetnek. On the convergence rate of a forward-backward
type primal-dual splitting algorithm for convex optimization problems. Optimiza-
tion, 64(1):5–23, 2015.

[6] Radu I Boţ, Ernö R Csetnek, André Heinrich, and Christopher Hendrich. On
the convergence rate improvement of a primal-dual splitting algorithm for solving
monotone inclusion problems. Mathematical Programming, 150(2):251–279, 2015.

[7] Radu I Boţ and Christopher Hendrich. A double smoothing technique for solv-
ing unconstrained nondifferentiable convex optimization problems. Computational
Optimization and Applications, 54(2):239–262, 2013.

[8] Radu I Boţ and Christopher Hendrich. A Douglas–Rachford type primal-dual
method for solving inclusions with mixtures of composite and parallel-sum type
monotone operators. SIAM Journal on Optimization, 23(4):2541–2565, 2013.

[9] Radu I Boţ and Christopher Hendrich. Convergence analysis for a primal-dual
monotone+ skew splitting algorithm with applications to total variation minimiza-
tion. Journal of Mathematical Imaging and Vision, 49(3):551–568, 2014.

[10] Radu I Boţ and Christopher Hendrich. On the acceleration of the double smooth-
ing technique for unconstrained convex optimization problems. Optimization,
64(2):265–288, 2015.

[11] Radu I Boţ and Christopher Hendrich. A variable smoothing algorithm for solving
convex optimization problems. TOP, 23(1):124–150, 2015.

[12] Antonin Chambolle. An algorithm for total variation minimization and applications.
Journal of Mathematical Imaging and Vision, 20(1-2):89–97, 2004.

30

[13] Antonin Chambolle and Charles Dossal. On the convergence of the iterates of the
“Fast Iterative Shrinkage/Thresholding Algorithm”. Journal of Optimization theory
and Applications, 166(3):968–982, 2015.

[14] Antonin Chambolle, Matthias J Ehrhardt, Peter Richtárik, and Carola-Bibiane
Schönlieb. Stochastic primal-dual hybrid gradient algorithm with arbitrary sam-
pling and imaging applications. SIAM Journal on Optimization, 28(4):2783–2808,
2018.

[15] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of Mathematical Imaging
and Vision, 40(1):120–145, 2011.

[16] Chen Chen, Ting Kei Pong, Lulin Tan, and Liaoyuan Zeng. A difference-of-convex
approach for split feasibility with applications to matrix factorizations and outlier
detection. Journal of Global Optimization, DOI: 10.1007/s10898-020-00899-8, 2020.

[17] Laurent Condat. A primal–dual splitting method for convex optimization involv-
ing Lipschitzian, proximable and linear composite terms. Journal of Optimization
Theory and Applications, 158(2):460–479, 2013.

[18] Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing composi-
tions of convex functions and smooth maps. Mathematical Programming, 178:1–56,
2019.

[19] Patrick Groetzner and Mirjam Dür. A factorization method for completely positive
matrices. Linear Algebra and its Applications, 591:1–24, 2020.

[20] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127–152, 2005.

[21] Yurii Nesterov. A method for unconstrained convex minimization problem with the
rate of convergence O(1/k2). Doklady Akademija Nauk USSR, 269:543–547, 1983.

[22] Yurii Nesterov. Smoothing technique and its applications in semidefinite optimiza-
tion. Mathematical Programming, 110(2):245–259, 2007.

[23] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,
Springer Science & Business Media, New York, 2013.

[24] Jean-Christophe Pesquet and Audrey Repetti. A class of randomized primal-dual
algorithms for distributed optimization. Journal of Nonlinear and Convex Analysis,
16(12):2453–2490, 2015.

[25] Herbert Robbins and David Siegmund. A convergence theorem for non negative
almost supermartingales and some applications. In: Optimizing Methods in Statis-
tics, Proceedings of a Symposium Held at the Center for Tomorrow, Ohio State
University, June 14–16, 1971, pages 233–257, Elsevier, 1971.

31

[26] Lorenzo Rosasco, Silvia Villa, and Băng C Vũ. A first-order stochastic primal-dual
algorithm with correction step. Numerical Functional Analysis and Optimization,
38(5):602–626, 2017.

[27] Qingjiang Shi, Haoran Sun, Songtao Lu, Mingyi Hong, and Meisam Razaviyayn.
Inexact block coordinate descent methods for symmetric nonnegative matrix fac-
torization. IEEE Transactions on Signal Processing, 65(22): 5995–6008, 2017.

[28] Quoc Tran-Dinh, Olivier Fercoq, and Volkan Cevher. A smooth primal-dual opti-
mization framework for nonsmooth composite convex minimization. SIAM Journal
on Optimization, 28(1):96–134, 2018.

[29] Băng C Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive
operators. Advances in Computational Mathematics, 38(3):667–681, 2013.

32

