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Abstract

In this paper we aim to minimize the sum of two nonsmooth (possibly also nonconvex) functions
in separate variables connected by a smooth coupling function. To tackle this problem we choose
a continuous forward-backward approach and introduce a dynamical system which is formulated
by means of the partial gradients of the smooth coupling function and the proximal point operator
of the two nonsmooth functions. Moreover, we consider variable rates of implicity of the resulting
system. We discuss the existence and uniqueness of a solution and carry out the asymptotic analysis
of its convergence behaviour to a critical point of the optimization problem, when a regularization
of the objective function fulfills the Kurdyka-Łojasiewicz property. We further provide convergence
rates for the solution trajectory in terms of the Łojasiewicz exponent. We conclude this work with
numerical simulations which confirm and validate the analytical results.
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1 Introduction
We consider a block-structured optimization problem of the form

min
(x,y)∈Rn×Rm

Ψ(x, y) := f(x) + g(y) +H(x, y), (1)

where the following general assumptions on the functions f , g and H are made:

Assumption 1. • f : Rn → R and g : Rm → R are proper and lower semicontinuous functions,
where we denote R := R ∪ {+∞}, with infRn f > −∞ and infRm g > −∞;

• H ∈ C1(Rn × Rm), ∇H is Lipschitz continuous with constant L, and infRn×Rm H > −∞.
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We approach the solving the optimization problem (1) by associating to it the dynamical system
ẋ(t) + x(t) ∈ prox 1

γ1L
f

(
x(t)− 1

γ1L
∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))

)
ẏ(t) + y(t) ∈ prox 1

γ2L
g

(
y(t)− 1

γ2L
∇yH((1− λ)(ẋ(t) + x(t)) + λx(t)), y(t))

)
(x(0), y(0)) = (x0, y0),

(2)

where λ, µ ∈ [0, 1].
The choice of these parameters have a crucial influence on the structure of the dynamical system

(2) since they decide weather it is of explicit or implicit nature. Even more, their values decide how
strong the derivatives ẋ and ẏ are involved on the right hand side of (2). For the extreme values we
have on one hand a fully explicit system of ordinary differential inclusions if λ = µ = 1, while for
λ = µ = 0 it is implicit. They have a major impact on the analysis, which will be explained throughout
Section3 and Section4, and displayed by numerical simulations in Section5. In the following, we will
refer to them as rates of implicity.

Further, the proximal map proxαh : Rd → P(Rd) for a proper and lower semicontinuous function
h : Rd → R̄ and α > 0 is defined as (see [31, Definition 1.22])

proxαh(u) := argminv∈Rd

{
h(v) + 1

2α‖v − u‖
2
}
.

We chose the stepsizes 1
γ1L

and 1
γ2L

in dependence of the Lipschitz constant of the gradient of H for
some suitable γ1, γ2 > 0.

In [14], Bolte, Sabach and Teboulle established the PALM (proximal alternating linearized mini-
mization) algorithm for minimizing optimization problems of the form (1). This work served as key
motivation to study (2), since an explicit time discretization for the case µ = 1 and λ = 0 provides
a direct correspondence between the ODE system and the PALM algorithm. In this special case the
system (2) is of the form

ẋ(t) + x(t) ∈ prox 1
γ1L

f

(
x(t)− 1

γ1L
∇xH(x(t), y(t))

)
ẏ(t) + y(t) ∈ prox 1

γ2L
g

(
y(t)− 1

γ2L
∇yH(ẋ(t) + x(t), y(t))

)
(x(0), y(0)) = (x0, y0).

(3)

Explicit time discretization of the first component of (3) has the form

xk+1 ∈ prox 1
γ1L

f

(
xk − 1

γ1L
∇xH(xk, yk)

)
∀k ≥ 0, (4)

where the time stepsize was set equal to one. On the other hand, explicit time discretization of the
second component with stepsize one gives

yk+1 ∈ prox 1
γ2L

g

(
yk − 1

γ2L
∇yH(xk+1, yk)

)
∀k ≥ 0. (5)

Therefore, we obtain the PALM algorithm for starting point (x0, y0) := (x0, y0) from the ODE system
(3). In [14] it was proved that the limit points of (xk, yk)k≥0 are critical points of the optimization
problem (1). In addition, if the objective function satisfies the Kurdyka-Łojasiewicz property and
(xk, yk)k≥0 is bounded, then the sequence converges to a critical point of (1).

In case µ = λ = 1, explicit time discretization with stepsize one gets

xk+1 ∈ prox 1
γ1L

f

(
xk − 1

γ1L
∇xH(xk, yk)

)
, yk+1 ∈ prox 1

γ2L
g

(
yk − 1

γ2L
∇yH(xk, yk)

)
∀k ≥ 0,
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which is the the preconditioned forward-backward algorithm for solving (1). The forward-backward
algorithm has been investigated in the fully nonconvex setting in [6, 17].

The approach of convex optimization problems and monotone inclusions from the perspective of
dynamical systems has a long tradition, starting with the contributions of Crandall and Pazy [23]
as well as Baillon, Brézis [9], [21], and Bruck [22]. In these works dynamical systems formulated as
monotone inclusions and governed by subdifferential operators or, more general, maximal monotone
operators in Hilbert spaces are investigated. The question of existence and uniqueness of trajectories
generated by these dynamical systems is usually investigated in the framework of the Cauchy-Lipschitz
Theorem, while the asymptotic convergence behavior of solutions to a minimizer of the convex opti-
mization problem or a zero point of the governing maximal monotone operator builds on Lyapunov
analysis.

In the last years, dynamical systems of implicit type approaching monotone inclusions/convex
optimization problems, namely, defined by means of resolvent/proximal operators have enjoyed much
attention. Here, the pioneering works are by by Antipin [4], Bolte [12], and Abbas, Attouch and
Svaiter [1, 2, 8]. A general approach for addressing implicit dynamical systems was considered in
[15], a dynamical system of forward-backward-forward type was matter of investigation in [10], one of
Douglas-Rachford type in [24], while a primal-dual dynamical system approaching structured convex
minimization problems was recently introduced in [19].

In what concerns nonconvex optimization problems, we want to mention that the problem of
minimizing a general smooth function has been approached form the perspective of first-order and
second-order gradient type dynamical systems in Simon [32], Haraux and Jendoubi [27], and Alvarez,
Attouch, Bolte and Redont [3]. In addition, proximal-gradient type dynamical systems of first-order
and second-order have been investigated in [16] and [18], respectively, in relation to the minimization
of the sum of a proper, convex and lower semicontinuous function and a general smooth function.

The outline of this paper is the following: after some preliminaries, we will address in Section
3 the question of existence and uniqueness of strong global solutions to (2), which will be provided
for the case µ = 1 and f and g are convex functions and in the framework of the global Picard-
Lindelöf Theorem. Section (4) is dedicated to the asymptotic analysis of the trajectories of the general
system (2) towards a critical point of the objective function of (1), expressed as a zero of the limiting
subdifferential. To this end we will use three main ingredients (see [6, 14] for a similar approach in
discrete and [3, 16] in continuous time): (1) we will prove sufficient decrease of a regularized objective
function along the trajectories; (2) we will show existence of a subgradient lower bound of the solution
trajectories; (3) we will obtain convergence of the solution by taking use of the Kurdyka-Łojasiewicz
(KL) property of a regularization of the objective function. Functions satisfying the KL property build
a large class of functions and include semi-algebraic functions and functions having analytic features.
We close our investigations by establishing convergence rates for the trajectories expressed in terms
of the Łojasiewicz exponent of the regularized objective function. We will conclude by confirming and
validating the analytical results through numerical simulations.

2 Preliminaries
For d ≥ 1, we consider on Rd the Euclidean scalar product and the induced norm. These are denoted
by 〈·, ·〉 and ‖ · ‖, respectively, independently from the value of d, since confusion is not possible.

Let h : Rd → R be a given function. Its effective domain is defined as dom h := {x ∈ Rd : h(x) <
+∞} and we say that h is proper, if dom h 6= ∅.

Definition 1. • Let h : Rd → R be proper and lower semicontinuous. The Fréchet subdifferential
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of h at x ∈ dom h is defined as

∂Fh(x) :=
{
ξ ∈ Rd : lim inf

z→x
h(z)− h(x)− 〈ξ, z − x〉

‖z − x‖
≥ 0

}
.

For x /∈ dom h, we set by convention ∂Fh(x) := ∅.

• The limiting (Mordukhovich) subdifferential of h at x ∈ dom h (see [30]) is then defined as the
sequential closure of ∂Fh(x) in the following way

∂h(x) :=
{
ξ ∈ Rd; ∃xk → x, h(xk)→ h(x) and ∂Fh(xk) 3 ξk → ξ, as k →∞

}
.

For x /∈ dom h, we set by convention ∂h(x) := ∅. We denote by dom ∂h := {x ∈ Rd : ∂h(x) 6= ∅}
the domain of the limiting subdifferential ∂h.

Remark 1. i) From the definition it follows that for all x ∈ Rd it holds ∂Fh(x) ⊆ ∂h(x). While
∂h(x) is closed, ∂Fh(x) is convex and closed ([31, Theorem 8.6]).

ii) With crit(h) := {x ∈ Rd : 0 ∈ ∂h(x)} we denote the set of (limiting-)critical points of h. Also
in our nonsmooth setting Fermat’s theorem holds, i.e. if x ∈ Rd is a local minimizer of h, then
0 ∈ ∂h(x), i.e. x ∈ crit(h).

iii) If h is continuously differentiable at x ∈ Rn, then we have ∂h(x) = {∇h(x)}.

iv) For the sum of a proper and lower semicontinuous function h : Rd → R and a continuously
differentiable function k : Rd → R it holds ∂(h+ k)(x) = ∂h(x) +∇k(x) for every x ∈ Rd ([31]).

Remark 2. i) The proximal operator of a nonconvex function is in general a set-valued map. For
a proper and lower semicontinuous function h : Rd → R with inf h > −∞ we have that for every
α > 0 and every x ∈ Rn the set proxαf (x) is nonempty and compact.

ii) In our considerations below, we will use the following property connecting the proximal map
with the limiting subdifferential. For every proper and lower semicontinuous function h : Rd → R
and constant α > 0 it holds

p ∈ proxαh(x)⇒ 1
α

(x− p) ∈ ∂h(p) ∀x ∈ Rd. (6)

Since we will have to deal with locally absolutely continuous solution trajectories of (2), we recall
the following definition.

Definition 2. A function x : [0,+∞)→ Rn is called locally absolutely continuous if x : [0, T ]→ Rn is
absolutely continuous for all T > 0, namely, there exists an integrable function y : [0, T ] → Rn such
that

x(t) = x(0) +
∫ t

0
y(s) ds ∀t ∈ [0, T ].

We point out two important properties of absolute continuous trajectories, which will be of much
use later on.

Remark 3. i) An absolutely continuous function is almost everywhere (a.e.) differentiable, its
derivative coincides a.e. with its distribution derivative, and by the above integration formula it
is possible to recover the function from its derivative.
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ii) For an absolutely continuous function x : [0, T ]→ Rd, where T > 0, and a Lipschitz continuous
function K with Lipschitz constant β ≥ 0, the composition z := K ◦ x is also absolutely contin-
uous. Furthermore, z is differentiable a.e. in [0, T ] and the inequality ‖ż(t)‖ ≤ β‖ẋ(t)‖ holds for
a.e. t ∈ [0, T ].

Next, we introduce the notion of solution we will mostly deal with.

Definition 3. We say that z := (x, y) : [0,+∞) → Rn × Rm is a strong global solution of (2), if it
satisfies the following properties:

a) the functions x and y are locally absolutely continuous;

b)
ẋ(t) + x(t) ∈ prox 1

γ1L
f

(
x(t)− 1

γ1L
∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))

)
and

ẏ(t) + y(t) ∈ prox 1
γ2L

g

(
y(t)− 1

γ2L
∇yH((1− λ)(ẋ(t) + x(t)) + λx(t)), y(t))

)
for a.e. t ∈ [0,+∞);

c) the functions t 7→ f(ẋ(t) + x(t)) and t 7→ g(ẏ(t) + y(t)) are locally absolutely continuous;

d) (x(0), y(0)) = (x0, y0).

Also the following two results for locally absolutely continuous functions will be crucial for the
asymptotic analysis of the trajectories of (2) (see for example [2]).

Lemma 1. Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded from below.
Furthermore, assume that ∃ G ∈ L1([0,+∞); R) such that for a.e. t ∈ [0,+∞)

d
dtF (t) ≤ G(t).

Then ∃ limt→+∞ F (t) ∈ R.

Lemma 2. If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is locally absolutely continuous,
F ∈ Lp([0,+∞); R), G ∈ Lr([0,+∞); R) and for a.e. t ∈ [0,+∞)

d
dtF (t) ≤ G(t)

holds, then limt→+∞ F (t) = 0.

3 Existence and uniqueness of a trajectory
The aim of this section is to provide a setting in which the existence and uniqueness of a trajectory
of the the dynamical system (2) is guaranteed. To this end:

• we ask the nonsmooth functions f and g to be in addition convex. We recall that the proximal op-
erator of a proper, convex and lower semicontinuous function is single-valued and non-expansive
(see, e.g. [11, Proposition 12.28]).
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• we consider the following two constellations of the rates of implicity: µ = 1, while λ ∈ [0, 1]
remains general, or λ = 1, while µ ∈ [0, 1].

The above setting allows us to rewrite the dynamical system (2) in an explicit form as
ẋ(t) + x(t) = prox 1

γ1L
f

(
x(t)− 1

γ1L
∇xH(x(t), y(t))

)
ẏ(t) + y(t) = prox 1

γ2L
g

(
y(t)− 1

γ2L
∇yH((1− λ)(ẋ(t) + x(t)) + λx(t)), y(t))

)
(x(0), y(0)) = (x0, y0),

(7)

for the case µ = 1, and as
ẋ(t) + x(t) = prox 1

γ1L
f

(
x(t)− 1

γ1L
∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))

)
ẏ(t) + y(t) = prox 1

γ2L
g

(
y(t)− 1

γ2L
∇yH(x(t)), y(t))

)
(x(0), y(0)) = (x0, y0),

(8)

for the case λ = 1.

Theorem 3. Let f , g and H fulfill Assumption (1) and let further f and g be convex. Then for every
starting point (x0, y0) ∈ Rn × Rm the dynamical system (2) for the cases µ = 1 and λ ∈ [0, 1] as well
as λ = 1 and µ ∈ [0, 1] has a unique strong global solution z = (x, y) : [0,+∞) → Rn × Rm, which is
in addition continuously differentiable.

Proof. We will prove the statement only for the case µ = 1 and λ ∈ [0, 1], since for λ = 1 and µ ∈ [0, 1]
the proof follows analogously.

To this end we denote z(t) = (x(t), y(t) and notice that (7) can be equivalently written as{
ż(t) = Γ(z(t))
z(0) = (x0, y0),

where Γ : Rn × Rm → Rn × Rm is defined as(
Γ1(x, y)
Γ2(x, y)

)
:=

 prox 1
γ1L

f

(
x− 1

γ1L
∇xH(x, y)

)
− x

prox 1
γ2L

g

(
y − 1

γ2L
∇yH((1− λ)(Γ1(x, y) + x) + λx, y)

)
− y

 .
We will show that the operator Γ is Lipschitz continuous. Let therefore (x, y), (x̃, ỹ) ∈ Rn × Rm be
arbitrarily chosen. We denote (Γ1,Γ2) := Γ(x, y), (Γ̃1, Γ̃2) := Γ(x̃, ỹ), and estimate

∥∥∥Γ1 − Γ̃1
∥∥∥2

=
∥∥∥∥prox 1

γ1L
f

(
x− 1

γ1L
∇xH(x, y)

)
− x− prox 1

γ1L
f

(
x̃− 1

γ1L
∇xH(x̃, ỹ)

)
+ x̃

∥∥∥∥2

≤ 2 ‖x− x̃‖2 + 2
∥∥∥∥x− 1

γ1L
∇xH(x, y) + 1

γ1L
∇xH(x̃, ỹ)− x̃

∥∥∥∥2

≤ 6 ‖x− x̃‖2 + 4
γ2

1L
2 ‖∇xH(x, y)−∇xH(x̃, ỹ)‖2

≤ 6 ‖x− x̃‖2 + 4
γ2

1

(
‖x− x̃‖2 + ‖y − ỹ‖2

)
=
(

6 + 4
γ2

1

)
‖x− x̃‖2 + 4

γ2
1
‖y − ỹ‖2 ,
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where we first used the non-expansiveness (i.e. 1-Lipschitz continuity) of the proximal operator, while
the last inequality is due to the L-Lipschitz continuity of ∇H. Similarly we obtain∥∥∥Γ2 − Γ̃2

∥∥∥2

≤ 2 ‖y − ỹ‖2 + 2
∥∥∥∥y − 1

γ2L
∇yH((1− λ)(Γ1 + x) + λx, y) + 1

γ2L
∇yH((1− λ)(Γ̃1 + x̃) + λx̃, ỹ) + ỹ

∥∥∥∥2

≤ 6 ‖y − ỹ‖2 + 4
γ2

2L
2

∥∥∥∇yH((1− λ)(Γ1 + x) + λx, y)−∇yH((1− λ)(Γ̃1 + x̃) + λx̃, ỹ)
∥∥∥2

≤ 6 ‖y − ỹ‖2 + 4
γ2

2

(
‖(1− λ)[(Γ1 + x)− (Γ̃1 + x̃)] + λ(x− x̃)‖2 + ‖y − ỹ‖2

)
≤ 6 ‖y − ỹ‖2 + 4

γ2
2

(
(1− λ)2‖Γ1 − Γ̃1‖2 + ‖x− x̃‖2 + ‖y − ỹ‖2

)
= 4
γ2

2
(1− λ)2‖Γ1 − Γ̃1‖2 + 4

γ2
2
‖x− x̃‖2 +

(
6 + 4

γ2
2

)
‖y − ỹ‖2 .

Putting the estimates for ‖Γ1 − Γ̃1‖ and ‖Γ2 − Γ̃2‖ together we obtain

‖Γ(x, y)− Γ(x̃, ỹ)‖2 = ‖Γ1 − Γ̃1‖2 + ‖Γ2 − Γ̃2‖2

≤
[
6 + 4

γ2
1

+ 4
γ2

2
+ 16(1− λ)2

γ2
1γ

2
2

+ 24(1− λ)2

γ2
2

]
‖x− x̃‖2 +

[
6 + 4

γ2
1

+ 4
γ2

2
+ 16(1− λ)2

γ2
1γ

2
2

]
‖y − ỹ‖2

≤ β(λ, γ1, γ2)2‖(x, y)− (x̃, ỹ)‖2,

where

β(λ, γ1, γ2) :=
(

6 + 4
γ2

1
+ 4 + 24(1− λ)2

γ2
2

+ 16(1− λ)2

γ2
1γ

2
2

) 1
2

.

The Lipschitz continuity of Γ guarantees, according to the global version of the Picard-Lindelöf The-
orem (see, e.g. ([33, Theorem 2.2]), the existence of a unique continuously differentiable strong global
solution z = (x, y) : [0,+∞) → Rn × Rm to (7). This means that the statements a), b), and d) in
Definition 3 are true.

From here we have that for a.e. t ≥ 0

−γ1Lẋ(t)−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t)) ∈ ∂f(ẋ(t) + x(t)), (9)
−γ2Lẏ(t)−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t)) ∈ ∂g(ẏ(t) + y(t)), (10)

thus ẋ(t) + x(t) ∈ dom f and ẏ(t) + y(t) ∈ dom g.
By using again that Γ is β(λ, γ1, γ2)-Lipschitz continuous, from Remark 3 ii) it follows that the first

derivative ż = (ẋ, ẏ) is locally absolutely continuous, the second derivatives of the partial trajectories
exist for a.e. t ∈ [0,+∞), and

‖(ẍ(t), ÿ(t))‖ ≤ β(λ, γ1, γ2)‖(ẋ(t), ẏ(t))‖ for a.e. t ∈ [0,+∞). (11)

Let T > 0. Then we have ẋ + x, ẍ + ẋ ∈ L2([0, T ],Rn) and ẏ + y, ÿ + ẏ ∈ L2([0, T ],Rm). Using that
H is continuously differentiable, it yields that −γ1Lẋ−∇xH(x, (1− µ)(ẏ + y) + µy) ∈ L2([0, T ],Rn)
and −γ2Lẏ − ∇yH((1 − λ)(ẋ + x) + λx, y) ∈ L2([0, T ],Rm). Thus, according to [21, Lemma 3.3],
the functions t 7→ f(ẋ(t) + x(t)) and t 7→ g(ẏ(t) + y(t)) are locally absolutely continuous. Thus the
statement is proved.
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Before closing the proof, we want to mention that in case λ = 1 and µ ∈ [0, 1] the constant which
appears in the estimate (11) of the second derivatives of the partial trajectories reads

β(µ, γ1, γ2) :=
(

6 + 4
γ2

2
+ 4 + 24(1− µ)2

γ2
1

+ 16(1− µ)2

γ2
1γ

2
2

) 1
2

.

4 Asymptotic analysis

4.1 A preparatory result

In order to prove convergence of trajectories of (2), we follow the general approach that consists of
several steps. In the first step, we will find a Lyapunov functional with sufficient decrease of its
time derivative, while in the second step we search for subgradient lower bounds for the derivative of
the trajectory. With standard arguments from [26] one can show that the set of limit points of the
trajectory is nonempty, compact and connected. Finally, global convergence of a trajectory of (2) to
a critical point will be established, by requiring that a regularization of the objective function fulfills
the Kurdyka-Łojasiewicz property.

We again have to require additional assumptions on the involved functions. Since the required
additional assumptions on the involved functions do not necessarily include, or are not as strong as
the ones from the previous section, existence of a solution trajectory to (2) itself will be presupposed.
For performing asymptotic analysis it suffices to require less regularity of the solution to (2) than we
where able to obtain in Theorem 3 for the special system (7). More precisely, we just have to require
the existence of a strong global solution to the dynamical system as defined in Definition 3.

Assumption 2. There exists a locally absolutely continuous solution z = (x, y) to the dynamical
system (2) with absolutely continuous derivative and an almost everywhere existing second derivative
fulfilling the estimate ‖(ẍ(t), ÿ(t)‖ ≤ β(λ, γ1, γ2)‖(ẋ(t), ẏ(t))‖ for a.e. t ∈ [0,+∞) and some constant
β > 0, possibly depending on λ and the stepsizes γ1, γ2.

Remark 4. The statement of Assumption 2 is true for the cases when f and g are convex and λ = 1
or µ = 1, as it was shown in the previous section. Nevertheless, as we will see as follows, the analysis
of the asymptotic behavior of the trajectory can be carried out in a more general setting, provided
that the trajectory exists.

The first ingredient of the asymptotic analysis will be a sufficient decrease property of the derivative
of the trajectory. For obtaining it, we need to control the time derivative of f and g along trajectories
and therefore to assume that f and g admit a chain rule.

Definition 4. Let h : Rd → R be a proper and lower semicontinuous function. We say that h admits
the chain rule if, for every locally absolutely continuous arc z : [0,+∞)→ Rd fulfilling z(t) ∈ dom ∂h
for a.e. t ≥ 0 and such that t 7→ h(z(t)) is locally absolutely continuous, it holds for a.e. t ≥ 0

d
dth(z(t)) = 〈ξ, ż(t)〉 for all ξ ∈ ∂h(z(t)). (12)

Remark 5. • If h is, in addition, convex, then it admits the chain rule (see [21, Lemma 3.3], [7]).
Notice that if z : [0,+∞) → Rd is a locally absolutely continuous arc such that z(t) ∈ dom h
and there exists ξ(t) ∈ ∂h(z(t)) for a.e. t ≥ 0, and for every T > 0 it holds z ∈ L2([0, T ],Rd),
ż ∈ L2([0, T ],Rd) and ξ ∈ L2([0, T ],Rd), then t 7→ h(z(t)) is locally absolutely continuous.
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• A locally Lipschitz function h : Rd → R that is subdifferentially regular admits a chain rule (see
[25, Lemma 5.4]). We recall that a locally Lipschitz function h : Rd → R is called subdifferentially
regular at a point u ∈ Rd, if for all ξ ∈ ∂h(u) the inequality

h(v) ≥ h(u) + 〈ξ, v − u〉+ o(‖v − u‖)

holds as v → u.
Notice that in this case, if z : [0,+∞) → Rd is a locally absolutely continuous arc, then t 7→
h(z(t)) is locally absolutely continuous, too, and the limiting subdifferential of h is nothing else
than Clarke’s subdifferential of h.

• A locally Lipschitz function h : Rd → R, which is Whitney C1-stratifiable, admits a chain rule
(see [25, Theorem 5.8]). A function h : Rd → R is called Whitney Cp-stratifiable, if its graph
admits a Whitney Cp-stratification. A Whitney Cp-stratification A of a set Q ⊆ Rd is a partition
of Q into finitely many nonempty Cp smooth manifolds, called strata, satisfying the following
two conditions:

– For any two strata L,M ∈ A it holds:

L ∩ cl(M) 6= ∅ =⇒ L ⊂ cl(M).

– For any sequence (uk)k≥0 in a stratum M converging to a point u in a stratum L, if the
corresponding normal vectors vk ∈ NM (uk) converge to a vector v, then v ∈ NL(u) holds.

A set M ⊆ Rd is a Cp smooth manifold if there is an integer r ∈ N such that around any point
u ∈M , there is a neighborhood U and a Cp-smooth map F : U → Rd−r with ∇F (u) of full rank
and satisfying M ∩ U = {y ∈ U : F (y) = 0}. Then the tangent space TM (u) to M at u is the
null space of ∇F (u), and the normal space NM (u) to M at u is the orthogonal space to TM (u).
Functions having as graphs semialgebraic, subanalytic or even sets that are definable in an
o-minimal structure are Withney C∞-stratifiable.

Theorem 4. Let f , g and H fulfill Assumption 1 and f , g admit a chain rule. Let further z = (x, y) :
[0,+∞) → Rn × Rm be a strong global solution of the dynamical system (2) fulfilling Assumption 2,
where the constants are chosen such that

min{γ1, γ2} > β(λ, γ1, γ2) max
{

(1 + λ+ µ+ λ2), (1 + λ+ µ+ µ2)
}

+ λ+ µ

2 . (13)

Then the following statements are true:

1. ż ∈ L2([0,+∞); Rn × Rm]) and limt→+∞ ż(t) = 0;

2. ∃ limt→+∞Ψ(ż(t) + z(t)) ∈ R.

Proof. Using the characterization (6) of the proximal map in the system (2), we obtain that (9)-(10)
hold for a.e. t ≥ 0. Since f and g admit a chain rule (12), it holds

d
dtf(ẋ(t) + x(t)) = −

〈
ẍ(t) + ẋ(t), γ1Lẋ(t) +∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))

〉
d
dtg(ẏ(t) + y(t)) = −

〈
ÿ(t) + ẏ(t), γ2Lẏ(t) +∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))

〉

9



for a.e. t ≥ 0. Using the identity
d
dtH(ẋ(t) + x(t), ẏ(t) + y(t))

=
〈
∇xH(ẋ(t) + x(t), ẏ(t) + y(t)), ẍ(t) + ẋ(t)

〉
+
〈
∇yH(ẋ(t) + x(t), ẏ(t) + y(t)), ÿ(t) + ẏ(t)

〉
,

we can compute
d
dtΨ(ẋ(t) + x(t), ẏ(t) + y(t))

= d
dtH(ẋ(t) + x(t), ẏ(t) + y(t)) + d

dtf(ẋ(t) + x(t)) + d
dtg(ẏ(t) + y(t))

=
〈
ẍ(t) + ẋ(t), −γ1Lẋ(t)−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t)) +∇xH(ẋ(t) + x(t), ẏ(t) + y(t))

〉
+
〈
ÿ(t) + ẏ(t), −γ2Lẏ(t)−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t)) +∇yH(ẋ(t) + x(t), ẏ(t) + y(t))

〉
for a.e. t ≥ 0. After first factorizing out the components of the inner product and then using the
Cauchy-Schwarz inequality, we obtain

d
dtΨ(ẋ(t) + x(t), ẏ(t) + y(t))

=− γ1L‖ẋ(t)‖2 − γ2L‖ẏ(t)‖2 − γ1L
〈
ẍ(t), ẋ(t)

〉
− γ2L

〈
ÿ(t), ẏ(t)

〉
+
〈
ẍ(t) + ẋ(t), ∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))

〉
+
〈
ÿ(t) + ẏ(t), ∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))

〉
≤− γ1L‖ẋ(t)‖2 − γ2L‖ẏ(t)‖2 − γ1L

2
d
dt‖ẋ(t)‖2 − γ2L

2
d
dt‖ẏ(t)‖2

+ ‖ẍ(t) + ẋ(t)‖‖∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))‖
+ ‖ÿ(t) + ẏ(t)‖‖∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))‖

for a.e. t ≥ 0. In the next step we apply the Lipschitz continuity of the gradient of H, which yields
d
dtΨ(ẋ(t) + x(t), ẏ(t) + y(t))

≤− γ1L‖ẋ(t)‖2 − γ2L‖ẏ(t)‖2 − γ1L

2
d
dt‖ẋ(t)‖2 − γ2L

2
d
dt‖ẏ(t)‖2

+ L(‖ẋ(t)‖+ µ‖ẏ(t)‖)‖ẍ(t) + ẋ(t)‖+ L(λ‖ẋ(t)‖+ ‖ẏ(t)‖)‖ÿ(t) + ẏ(t)‖

≤ − γ1L‖ẋ(t)‖2 − γ2L‖ẏ(t)‖2 − γ1L

2
d
dt‖ẋ(t)‖2 − γ2L

2
d
dt‖ẏ(t)‖2

+ L(‖ẋ(t)‖+ µ‖ẏ(t)‖)‖ẍ(t)‖+ L(λ‖ẋ(t)‖+ ‖ẏ(t)‖)‖ÿ(t)‖
+ L(‖ẋ(t)‖+ µ‖ẏ(t)‖)‖ẋ(t)‖+ L(λ‖ẋ(t)‖+ ‖ẏ(t)‖)‖ẏ(t)‖

for a.e. t ≥ 0. Further, we have

L(‖ẋ(t)‖+ µ‖ẏ(t)‖)‖ẍ(t)‖+ L(λ‖ẋ(t)‖+ ‖ẏ(t)‖)‖ÿ(t)‖

≤ L
√
‖ẍ(t)‖2 + ‖ÿ(t)‖2

√
(‖ẋ(t)‖+ µ‖ẏ(t)‖)2 + (λ‖ẋ(t)‖+ ‖ẏ(t)‖)2 (14)

= L‖(ẍ(t), ÿ(t))‖
√

(1 + λ2)‖ẋ(t)‖2 + (1 + µ2)‖ẏ(t)‖2 + 2(λ+ µ)‖ẋ(t)‖‖ẏ(t)‖

≤ Lβ(λ, γ1, γ2)‖(ẋ(t), ẏ(t))‖
√

(1 + λ+ µ+ λ2)‖ẋ(t)‖2 + (1 + λ+ µ+ µ2)‖ẏ(t)‖2,
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for a.e. t ≥ 0, where in the last inequality we used Assumption 2. By defining

Mλ,µ := max
{

(1 + λ+ µ+ λ2)
1
2 , (1 + λ+ µ+ µ2)

1
2

}
,

we can write

L
(
‖ẋ(t)‖+ µ‖ẏ(t)‖

)
‖ẍ(t)‖+ L

(
λ‖ẋ(t)‖+ ‖ẏ(t)‖

)
‖ÿ(t)‖ ≤ Lβ(λ, γ1, γ2)Mλ,µ

(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
for a.e. t ≥ 0. On the other hand, it holds

L
(
‖ẋ(t)‖+ µ‖ẏ(t)‖

)
‖ẋ(t)‖+ L

(
λ‖ẋ(t)‖+ ‖ẏ(t)‖

)
‖ẏ(t)‖

= L
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
+ L(λ+ µ)‖ẋ(t)‖‖ẏ(t)‖

≤ L

(
1 + λ+ µ

2

)(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
for a.e. t ≥ 0. Combining the estimates above we obtain for a.e. t ≥ 0 the following inequality

d
dtΨ(ẋ(t) + x(t), ẏ(t) + y(t))

≤− γ1L

2
d
dt‖ẋ(t)‖2 − γ2L

2
d
dt‖ẏ(t)‖2

− L
(
γ1 − β(λ, γ1, γ2)Mλ,µ −

λ+ µ

2

)
‖ẋ(t)‖2 − L

(
γ2 − β(λ, γ1, γ2)Mλ,µ −

λ+ µ

2

)
‖ẏ(t)‖2

or, equivalently,

d
dt

(
Ψ(ẋ(t) + x(t), ẏ(t) + y(t)) + 1

2
∥∥∥(√γ1Lẋ(t),

√
γ2Lẏ(t)

)∥∥∥2
)

≤− L
(
γ1 − β(λ, γ1, γ2)Mλ,µ −

λ+ µ

2

)
‖ẋ(t)‖2 − L

(
γ2 − β(λ, γ1, γ2)Mλ,µ −

λ+ µ

2

)
‖ẏ(t)‖2 ≤ 0,

(15)

where we used that the stepsizes γ1 and γ2 fulfill (13). We will use the following notation for the
positive constants in the above inequality

m1 := L

(
γ1 − β(λ, γ1, γ2)Mλ,µ −

λ+ µ

2

)
and m2 := L

(
γ2 − β(λ, γ1, γ2)Mλ,µ −

λ+ µ

2

)
.

The decreasing property (15) serves as inspiration for the definition of the Lyapunov functional, which
will be used in the next subsection to show convergence of the trajectory. Integrating (15) from 0 to
T , with T > 0 fixed, yields

Ψ(ẋ(T ) + x(T ), ẏ(T ) + y(T )) + 1
2
∥∥∥(√γ1Lẋ(T ),

√
γ2Lẏ(T )

)∥∥∥2
+
∫ T

0

[
m1‖ẋ(t)‖2 +m2‖ẏ(t)‖2

]
dt

≤ Ψ(ẋ(0) + x0, ẏ(0) + y0) + 1
2
∥∥∥(√γ1Lẋ(0),

√
γ2Lẏ(0)

)∥∥∥2
. (16)

By letting T converge to +∞, we can easily deduce that ẋ ∈ L2([0,+∞); Rn), ẏ ∈ L2([0,+∞); Rm),
and therefore

ż = (ẋ, ẏ) ∈ L2([0,+∞); Rn × Rm]),
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as well as
d
dt

(
Ψ(ẋ(t) + x(t), ẏ(t) + y(t)) + 1

2
∥∥∥(√γ1Lẋ(t),

√
γ2Lẏ(t)

)∥∥∥2
)
≤ 0 for a.e. t ≥ 0. (17)

Due to Assumption 2, we also obtain z̈ ∈ L2([0,+∞); Rn × Rm]). Since for a.e. t ∈ [0,∞)
d
dt‖ż(t)‖

2 = 2(〈ẋ(t), ẍ(t)〉+ 〈ẏ(t), ÿ(t)〉) ≤ ‖ẋ(t)‖2 + ‖ẍ(t)‖2 + ‖ẏ(t)‖2 + ‖ÿ‖2,

it follows from Lemma 2 that

lim
t→+∞

ż(t) = 0 and therefore also lim
t→+∞

ẋ(t) = 0 and lim
t→+∞

ẏ(t) = 0.

From (17) and Lemma 1 we can also conclude that

∃ lim
t→+∞

Ψ(ẋ(t) + x(t), ẏ(t) + y(t)) ∈ R.

4.2 A Lyapunov functional

The major aim of this subsection is to prove that the limit set of the solution trajectory is a subset
of the set of critical points of the objective function Ψ. We recall that the limit set of a trajectory
z : [0,+∞)→ Rm × Rn of the dynamical system (2) is defined as

ω(z) := {z̄ ∈ Rm × Rn : ∃tk → +∞ such that z(tk)→ z̄ as k →∞}.

The main tool in our analysis is the following Lyapunov functional H : Rm × Rn × Rm × Rn 7→ R̄,

H
[
(x, y), (u, v)

]
:= Ψ(x, y) + 1

2
∥∥∥(√γ1L(x− u),

√
γ2L(y − v)

)∥∥∥2
, (18)

the definition of which is obviously inspired by (17). Note that

∂H
[
(x, y), (u, v)

]
=
(
∂Ψ(x, y) + L (γ1(x− u), γ2(y − v))

)
×
{
− L

(
γ1(x− u), γ2(y − v)

)}
for every (x, y), (u, v) ∈ Rm × Rn, thus

∂H
[
(ẋ(t) + x(t), ẏ(t) + y(t)), (x(t), y(t))

]
=
(
∂Ψ((ẋ(t) + x(t), ẏ(t) + y(t)) + L (γ1ẋ(t), γ2ẏ(t))

)
×
{
− L

(
γ1ẋ(t), γ2ẏ(t)

)}
for a.e. t ≥ 0.

Instead of investigating the trajectory z itself, we go over to (ż + z, z). We can prove the following
properties of the Lyapunov functional H.

Theorem 5. Let f , g and H fulfill Assumption 1 and f , g admit a chain rule. Let further z = (x, y) :
[0,+∞) → Rn × Rm be a strong global solution of the dynamical system (2) fulfilling Assumption 2,
where the constants are chosen such that (13) holds. Then the following statements are true:

(i) decrease of H: for a.e. t ≥ 0 it holds

d
dtH

[(
ẋ(t) + x(t), ẏ(t) + y(t)

)
,
(
x(t), y(t)

)]
≤ −min {m1,m2}‖(ẋ(t), ẏ(t))‖2 ≤ 0, (19)

as well as

∃ lim
t→∞
H
[
(ẋ(t) + x(t), ẏ(t) + y(t)), (x(t), y(t))

]
∈ R. (20)
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(ii) subgradient lower bound: for a.e. t ≥ 0 it holds((
∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))
∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))

)
, −L

(
γ1ẋ(t)
γ2ẏ(t)

))
∈ ∂H

[
(ẋ(t) + x(t), ẏ(t) + y(t)), (x(t) + y(t))

]
(21)

and∥∥∥∥(
(
∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))
∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))

)
, −L

(
γ1ẋ(t)
γ2ẏ(t)

))∥∥∥∥
≤ L

√
max

{
(1 + γ2

1 + λ2), (1 + γ2
2 + µ2)

}
‖(ẋ(t), ẏ(t))‖. (22)

(iii) convergence to a critical point: it

ω(z) ⊂ crit(Ψ) (23)

and for every z̄ = (x̄, ȳ) ∈ ω(z) and tk → +∞ such that z(tk) = (x(tk), y(tk))→ z̄ as k → +∞,
we have

H
[
(ẋ(tk) + x(tk), ẏ(tk) + y(tk)), (x(tk), y(tk))

]
→ H

[
(x̄, ȳ), (x̄, ȳ)

]
as k → +∞. (24)

Proof. (i) decrease of H: Relation (19) follows directly from (15), while (20) can be deduced from
Theorem 4 (2).

(ii) subgradient lower bound: Adding ∇xH(ẋ(t) + x(t), ẏ(t) + y(t)) to (9) and
∇yH(ẋ(t) + x(t), ẏ(t) + y(t)) to (10) one obtains for a.e. t ≥ 0

− γ1Lẋ(t) +∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))
∈ ∂x(f̃ +H)(ẋ(t) + x(t), ẏ(t) + y(t)) (25)

and, respectively,

−γ2Lẏ(t) +∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))
∈ ∂y(g̃ +H)(ẋ(t) + x(t), ẏ(t) + y(t)), (26)

where f̃ : Rn × Rm → R, f̃(x, y) := f(x) and g̃ : Rn × Rm → R, g̃(x, y) := g(y). Since we have

∂Ψ(z) =
(
∂x(f̃ +H)(z), ∂y(g̃ +H)(z)

)
for all z ∈ Rm × Rn,

we can conclude(
∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))
∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))

)

∈ ∂Ψ
(
ẋ(t) + x(t)
ẏ(t) + y(t)

)
+ L

(
γ1ẋ(t)
γ2ẏ(t)

)
for a.e. t ≥ 0,

13



which is equivalent to (21). Furthermore, we can estimate the subgradient using the Lipschitz-
continuity of ∇H and obtain for a.e. t ≥ 0∥∥∥∥∥

((
∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))
∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))

)
, −

(
γ1Lẋ(t)
γ2Lẏ(t)

))∥∥∥∥∥
2

= ‖∇xH(ẋ(t) + x(t), ẏ(t) + y(t))−∇xH(x(t), (1− µ)(ẏ(t) + y(t)) + µy(t))‖2

+ ‖∇yH(ẋ(t) + x(t), ẏ(t) + y(t))−∇yH((1− λ)(ẋ(t) + x(t)) + λx(t), y(t))‖2

+ γ2
1L

2‖ẋ(t)‖2 + γ2
2L

2‖ẏ(t))‖2

≤ L2(1 + γ2
1 + λ2)‖ẋ(t)‖2 + L2(1 + γ2

2 + µ2)‖ẏ(t)‖2,

from which statement (22) follows.
(iii) convergence to a critical point: Let (x̄, ȳ) ∈ ω(x, y) and (tk)k≥0 be such that (x(tk), y(tk))

converges to (x̄, ȳ) as k → +∞. Due to Theorem 4 it also holds limk→+∞(ẋ(tk), ẏ(tk)) = (0, 0). We
claim that

lim
k→+∞

(f̃ +H)(ẋ(tk) + x(tk), ẏ(tk) + y(tk)) = (f̃ +H)(x̄, ȳ)

and
lim

k→+∞
(g̃ +H)(ẋ(tk) + x(tk), ẏ(tk) + y(tk)) = (g̃ +H)(x̄, ȳ).

In fact, since f and g are assumed to be lower semicontinuous, we have

lim inf
k→+∞

f(ẋ(tk) + x(tk)) ≥ f(x̄)

and
lim inf
k→+∞

g(ẏ(tk) + y(tk)) ≥ g(ȳ).

On the other hand, we can conclude from the definition of the dynamical system (2) that for any k ≥ 0

ẋ(tk) + x(tk)

∈ argminu∈Rn

{
f(u) + γ1L

2 ‖u− x(tk)‖2 +
〈
u− x(tk),∇xH(x(tk), (1− µ)(ẏ(tk) + y(tk)) + µy(tk))

〉}
and

ẏ(tk) + y(tk)

∈ argminv∈Rm

{
g(v) + γ2L

2 ‖v − y(tk)‖2 +
〈
v − y(tk),∇yH((1− λ)(ẋ(tk) + x(tk)) + λx(tk), y(tk))

〉}
,

which implies

f(ẋ(tk) + x(tk)) + γ1L

2 ‖ẋ(tk)‖2 +
〈
ẋ(tk),∇xH(x(tk), (1− µ)(ẏ(tk) + y(tk)) + µy(tk))

〉
≤ f(x̄) + γ1L

2 ‖x̄− x(tk)‖2 +
〈
x̄− x(tk),∇xH(x(tk), (1− µ)(ẏ(tk) + y(tk)) + µy(tk))

〉
,

and

g(ẏ(tk) + y(tk)) + γ2L

2 ‖ẏ(tk)‖2 +
〈
ẏ(tk),∇yH(ẋ(tk) + x(tk), y(tk))

〉
≤ g(ȳ) + γ2L

2 ‖ȳ − y(tk)‖2 +
〈
ȳ − y(tk),∇yH((1− λ)(ẋ(tk) + x(tk)) + λx(tk), y(tk))

〉
.
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Therefore we can conclude under consideration of the continuity of ∇H

lim sup
k→∞

f(ẋ(tk) + x(tk)) ≤ f(x̄)

as well as
lim sup
k→∞

g(ẏ(tk) + y(tk)) ≤ g(ȳ),

from which the claim follows. Using again continuity of ∇H we obtain for k → +∞

−γ1Lẋ(tk) +∇xH(ẋ(tk) + x(tk), ẏ(tk) + y(tk))−∇xH(x(tk), (1− µ)(ẏ(tk) + y(tk)) + µy(tk))→ 0,
−γ2Lẏ(tk) +∇yH(ẋ(tk) + x(tk), ẏ(tk) + y(tk))−∇yH((1− λ)(ẋ(tk) + x(tk)) + λx(tk), y(tk))→ 0.

Using (25) and (26), and the closedness of the graph of the limiting subdifferential, it yields

0 ∈ ∂x(f̃ +H)(x̄, ȳ) and 0 ∈ ∂y(g̃ +H)(x̄, ȳ),

which is equivalent to
0 ∈ ∂Ψ(x̄, ȳ)

and (23) is proven. The statement in (24) follows immediately.

Remark 6. The limit set ω(z) of the trajectory z is not empty if z(t), t ∈ [0,+∞)), is bounded. This
follows, for example, if the objective function Ψ is coercive, i.e.

lim
‖z‖→+∞

Ψ(z) = +∞.

Furthermore, in this case it also follows that Ψ is bounded from below, the infimum is attained and
all its sublevel sets are bounded. Furthermore, from (16), again with the notation z(t) = (x(t), y(t)),
we have for all T > 0

Ψ(ẋ(T ) + x(T ), ẏ(T ) + y(T )) ≤ Ψ(ẋ(0) + x0, ẏ(0) + y0) + 1
2
∥∥∥(√γ1Lẋ(0),

√
γ2Lẏ(0)

)∥∥∥2
.

Due to the boundedness of the sublevel sets of Ψ, we can conclude from the above estimate that ż+ z
is bounded. Since limt→∞ ż(t) = 0, it follows that z is bounded.

Corollary 6. Let f , g and H fulfill Assumption 1 and f , g admit a chain rule. Let further z = (x, y) :
[0,+∞) → Rn × Rm be a strong global solution of the dynamical system (2) assumed to be bounded
and fulfilling Assumption 2, where the constants are chosen such that (13) holds. Then the following
statements are true:

1. ω(ż + z, z) ⊆ crit(H) = {(u, u) ∈ Rm × Rn × Rm × Rn : u ∈ crit(Ψ)};

2. limt→+∞ dist
(
(ż(t) + z(t), z(t)), ω(ż + z, z)

)
= 0;

3. the set ω(ż + z, z) is nonempty, compact and connected;

4. H is finite and constant on ω(ż + z, z).

Proof. The statements 1., 2. and 4. are direct consequences of Theorem 5. For the proof of statement
3. we refer the reader to [3, Theorem 4.1.], where it is shown that the non-emptiness, compactness
and connectedness of the limit set of a trajectory is a generic property for bounded trajectories, whose
derivatives converge to 0 for t→ +∞.
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Remark 7. In the special case when µ = λ = 0 one can prove that the statements in Theorem 4,
Theorem 5 and also in Corollary 6 remain true under the weaker assumption on ∇H that its partial
gradients ∇xH(·, y) and ∇yH(x, ·) are Lipschitz continuous with global constants Lx and Ly in y,
respectively, in x. This allows us to choose in the in the two inclusions of the dynamical system (2)
as stepsizes γ1Lx and γ2Ly, respectively. This means that the dynamical system is of the form

ẋ(t) + x(t) ∈ prox 1
γ1Lx

f

(
x(t)− 1

γ1Lx
∇xH(x(t), ẏ(t) + y(t))

)
,

ẏ(t) + y(t) ∈ prox 1
γ2Ly

g

(
y(t)− 1

γ2Ly
∇yH(ẋ(t) + x(t), y(t))

)
,

(x(0), y(0)) = (x0, y0).

(27)

and has as discrete counterpart the PALM algorithm from [14].
The essential ingredient in the asymptotic analysis is proof of a decreasing property for the function

t 7→ d
dtΨ(ẋ(t) + x(t), ẏ(t) + y(t)). While in the proof of Theorem 4 we used to this end the Lipschitz

continuity of the full gradient ∇H when estimating the time derivative of Ψ along the trajectory
(x(t) + ẋ(t), y(t) + ẏ(t)), we now obtain

d
dtΨ(ẋ(t) + x(t), ẏ(t) + y(t)) ≤− γ1Lx‖ẋ(t)‖2 − γ2Ly‖ẏ(t)‖2 − γ1Lx

2
d
dt‖ẋ(t)‖2 − γ2Ly

2
d
dt‖ẏ(t)‖2

+ Lx‖ẋ(t)‖‖ẍ(t) + ẋ(t)‖+ Ly‖ẏ(t)‖‖ÿ(t) + ẏ(t)‖ for a.e. t ≥ 0.

Therefore, (14) simplifies to

Lx‖ẋ(t)‖‖ẍ(t) + ẋ(t)‖+ Ly‖ẏ(t)‖‖ÿ(t) + ẏ(t)‖ ≤
√
‖ẍ(t)‖2 + ‖ÿ(t)‖2

√
L2
x‖ẋ(t)‖2 + L2

y‖ẏ(t)‖2

= max {Lx, Ly}‖(ẍ(t), ÿ(t))‖‖(ẋ(t), ẏ(t)‖
≤ β(λ, γ1, γ2) max {Lx, Ly}‖(ẋ(t), ẏ(t))‖2 for a.e. t ≥ 0,

where β(λ, γ1, γ2) describes the constant from Assumption 2. Proceeding in the same way as in the
proof of Theorem 4, we obtain, instead of (15), the following decreasing property for a.e. t ≥ 0

d
dt

(
Ψ(ẋ(t) + x(t), ẏ(t) + y(t)) + 1

2
∥∥∥(√γ1Lxẋ(t),

√
γ2Lyẏ(t)

)∥∥∥2)
≤ − (Lxγ1 −max {Lx, Ly}β) ‖ẋ(t)‖2 − (Lyγ2 −max {Lx, Ly}β) ‖ẏ(t)‖2 (28)
≤ 0,

for γ1 and γ2 chosen such that

γ1 >
max {Lx, Ly}β(λ, γ1, γ2)

Lx
and γ2 >

max {Lx, Ly}β(λ, γ1, γ2)
Ly

.

4.3 Global convergence through the KL property

In this subsection we will show that if the Lyapunov function satisfies the Kurdyka-Łojasiewicz (KL)
property, then one can establishes global convergence of the trajectory to a critical point of Ψ.

To recall the definition of the KL property, let us denote by Θη, for η ∈ [0,+∞], the set of all
concave and continuous functions ϕ : [0, η)→ R, which satisfy the following properties:

• ϕ(0) = 0;

• ϕ ∈ C1((0, η)) and ϕ is continuous at 0;
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• ∀s ∈ (0, η) : ϕ′(s) > 0.

Definition 5 (Kurdyka-Łojasiewicz property). Let h : Rd → R be proper and lower semicontinuous.

1. The function h is said to satisfy the Kurdyka-Łojasiewicz (KL) property at a point ū ∈ dom ∂h,
if there exist η ∈ (0,+∞], a neighborhood U of ū and a function ϕ ∈ Θη such that for every

u ∈ U ∩ {u ∈ Rd : h(ū) < h(u) < h(ū) + η}

the inequality
ϕ′
(
h(u)− h(ū)

)
dist

(
0, ∂h(u)

)
≥ 1

holds. The function ϕ is called desingularizing function for h at point ū.

2. If h satisfies the KL property at every point in dom ∂h, then h is said to be a KL function.

To the class of KL functions belong semi-algebraic, real sub-analytic, semiconvex, uniformly convex
and convex functions satisfying a growth condition, see [6, 13, 14]. However, for our analysis we will
make use of the uniform KL property, which follows directly from the above definition, see [14, Lemma
3.6].

Lemma 7. Let Ω ⊂ Rd be a compact set and h : Rd → R a proper and lower semicontinuous function.
Assume that h is constant on Ω and it satisfies the KL property at each point of Ω. Then there exist
ε, η > 0 and ϕ ∈ Θη such that for every ū ∈ Ω and every u in the intersection

{u ∈ Rd : dist(u,Ω) < ε} ∩ {u ∈ Rd : h(ū) < h(u) < h(ū) + η}

the inequality
ϕ′
(
h(u)− h(ū)

)
dist

(
0, ∂h(u)

)
≥ 1

holds.

With these preparations we are now ready to state the main result:

Theorem 8. Let f , g and H fulfill Assumption 1 and f , g admit a chain rule. Let further z = (x, y) :
[0,+∞)→ Rn×Rm be a strong global solution of the dynamical system (2) assumed to be bounded and
fulfilling Assumption 2, where the constants are chosen such that (13) holds. Moreover, suppose that
the Lyapunov function H, defined as in (18), is a KL function. Then the following statements hold:

1. ż = (ẋ, ẏ) ∈ L1([0,∞); Rn × Rm);

2. there exists z̄ = (x̄, ȳ) ∈ crit(Ψ) such that limt→+∞ z(t) = limt→+∞(x(t), y(t)) = (x̄, ȳ) = z̄.

Proof. Choose z̄ ∈ crit (Ψ) such that (z̄, z̄) ∈ ω(ż + z, z). From Theorem 5 and Corollary 6 we also
have limt→+∞H[ż(t) + z(t), z(t)] = H[z̄, z̄] and z̄ ∈ crit (Ψ). We distinguish between two cases:

Case I: ∃t̄ ≥ 0 such that H[ż(t̄) + z(t̄), z(t̄)] = H[z̄, z̄].
Since from Theorem 5 (i) we have that H is non-increasing along trajectories, we obtain for all
t ≥ t̄

H[ż(t) + z(t), z(t)] ≤ H[ż(t̄) + z(t̄), z(t̄)] = H[z̄, z̄],
and therefore

t 7→ H[ż(t) + z(t), z(t)]
is constant on [t̄,+∞). Due to the subgradient estimate in Theorem 5 (ii), we obtain for a.e.
t ∈ [t̄,+∞) that ż(t) = (ẋ(t), ẏ(t)) = 0 and, hence, z(t) = (x(t), y(t)) is constant on [t̄,+∞),
from which the conclusion follows.
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Case II: ∀t ≥ 0 : H[ż(t) + z(t), z(t)] > H[z̄, z̄].
We use Lemma 7 for Ω := ω(ż + z, z) and h := H. According to it, there exist ε, η > 0 and
ϕ ∈ Θη such that for all (z̄, z̄) ∈ ω(ż + z, z) and all (v, w) in the intersection

A :={(v, w) ∈ Rn × Rm × Rn × Rm : dist((v, w), ω(ż + z, z)) < ε} ∩
{(v, w) ∈ Rn × Rm × Rn × Rm : H[z̄, z̄] < H[v, w] < H[z̄, z̄] + η}

one has

ϕ′
(
H[v, w]−H[z̄, z̄]

)
dist

(
(0, 0), ∂H[v, w]

)
≥ 1.

On one hand, since
lim

t→+∞
H[ż(t) + z(t), z(t)] = H[z̄, z̄],

there exists t1 ≥ 0 such that
H[z̄, z̄] < H[v, w] < H[z̄, z̄] + η

for every t ≥ t1. On the other hand, from

lim
t→+∞

dist
(
(ż(t) + z(t), z(t)), ω(ż + z, z)

)
= 0,

there exist t2 ≥ 0 such that

dist
(
(ż(t) + z(t), z(t)), ω(ż + z, z)

)
< ε.

Therefore, for a.e. t ≥ T := max {t1, t2} it holds(
ż(t) + z(t), z(t)

)
∈ A,

and hence
ϕ′
(
H[ż(t) + z(t), z(t)]−H[z̄, z̄]

)
dist

(
(0, 0), ∂H[ż(t) + z(t), z(t)]

)
≥ 1.

From here we can conclude using (21) and (22) that

1 ≤ ϕ′
(
H[ż(t) + z(t), z(t)]−H[z̄, z̄]

)
L
√

max
{
(1 + γ2

1 + λ2), (1 + γ2
2 + µ2)

}
‖(ż(t)‖ for a.e. t ≥ T.

(29)

This yields the following estimation for the time derivative

d
dtϕ

(
H[ż(t) + z(t), z(t)]−H[z̄, z̄]

)
= ϕ′

(
H[ż(t) + z(t), z(t)]−H[z̄, z̄]

) d
dtH[ż(t) + z(t), z(t)] (30)

≤min {m1,m2}
(
L
√

max
{
(1 + γ2

1 + λ2), (1 + γ2
2 + µ2)

})−1
‖ż(t)‖ ≤ 0 for a.e. t ≥ T,

which is due to the decreasing property (19) of the Lyapunov-function H and inequality (29). After
integration, since ϕ is bounded from below, we can deduce

ż ∈ L1([0,∞); Rn × Rm).

This yields that the limit limt→+∞ z(t) exists, from which the conclusion follows.
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4.4 Convergence rates

This subsection is dedicated to the derivation convergence rates of the trajectory of the dynamical
system (2) to a critical point of Ψ. Convergece rate results (see [5]) can be achieved considering a KL
function, which satisfies Definition 5 with desingularizing function

ϕ(s) = 1
c
s1−θ, θ ∈ [0, 1), c > 0. (31)

Definition 6 (Łojasiewicz property). Let h : Rd → R be proper and lower semicontinuous.

1. The function h is said to satisfy the Łojasiewicz property at a point ū ∈ dom ∂h, if there exist
η ∈ (0,+∞], a neighborhood U of ū, c > 0 and θ ∈ [0, 1) such that for every

u ∈ U ∩ {u ∈ Rd : h(ū) < h(u) < h(ū) + η}

it holds
|h(u)− h(ū)|θ ≤ c‖ξ‖ for every ξ ∈ ∂h(u).

The exponent θ is called the Łojasiewicz exponent.

2. If h has the KL property and has the same Łojasiewicz exponent θ at every point in dom ∂h,
then we say that h is a Łojasiewicz function with an exponent of θ.

It is known that analytic functions and proper lower semicontinuous semi-algebraic functions have
the Łojasiewicz property (see [6, 29]). Calculus rules for the Łojasiewicz exponent have been developed
in [28].

Theorem 9. Let f , g and H fulfill Assumption 1 and f , g admit a chain rule. Let further z = (x, y) :
[0,+∞) → Rn × Rm be a strong global solution of the dynamical system (2) assumed to be bounded
and fulfilling Assumption 2, where the constants are chosen such that (13) holds. Moreover, suppose
that the Lyapunov function H, defined as in (18), has the Łojasiewicz property. Then there exists
z̄ = (x̄, ȳ) ∈ crit (Ψ) such that limt→+∞ z(t) = limt→+∞(x(t), y(t)) = (x̄, ȳ) = z̄. Let θ ∈ [0, 1) be
the Łojasiewicz exponent of H at (z̄, z̄). Then there exist α, β, γ, δ > 0 and a time T ≥ 0 such the
following statements are true:

1. if θ ∈
[
0, 1

2

)
, then z = (x, y) converges in finite time;

2. if θ = 1
2 , then ‖z(t)− z̄‖ ≤ αe−βt ∀t ≥ T ;

3. if θ ∈
(

1
2 , 1
)
, then ‖z(t)− z̄‖ ≤ (γt+ δ)−

1−θ
2θ−1 ∀t ≥ T .

Proof. If there exists t̄ ≥ 0 such that H[ż(t̄) + z(t̄), z(t̄)] = H[z̄, z̄], then the trajectory converges in
finite time, as we saw in the first case of the proof of Theorem 8.

Let us therefore assume that for all t ≥ 0 the inequality H[ż(t) + z(t), z(t)] > H[z̄, z̄] holds. We
define the arc-length of the trajectory z from time t ≥ 0 on by

σ(t) :=
∫ +∞

t
‖ż(s)‖ ds.

We immediately obtain

‖ż(t)‖ = −σ̇(t) for a.e. t ≥ 0, (32)
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and by calculating for some time τ ≥ t

‖z(t)− z̄‖ =
∥∥∥∥z(τ)− z̄ −

∫ τ

t
ż(s) ds

∥∥∥∥ ≤ ‖z(τ)− z̄‖+
∫ τ

t
‖ż(s)‖ ds,

and then taking the limit τ → +∞, we obtain the following estimate for the distance of the trajectory
to its limit point z̄

‖z(t)− z̄‖ ≤ σ(t) for all t ≥ 0.

From the considerations in (30) in the proof of Theorem 8, while taking into account the special shape
of the desingularizing function (31), we get that there exists T > 0 such that for a.e t ≥ T

M1‖ż(t)‖+ c
d

dt

(
H[ż(t) + z(t), z(t)]−H[z̄, z̄]

)1−θ
≤ 0,

where we define

M1 := min {m1,m2}
(
L
√

max
{
(1 + γ2

1 + λ2), (1 + γ2
2 + µ2)

})−1
.

Integration from t to T̃ , where T̃ ≥ T , yields

M1

∫ T̃

t
‖ż(s)‖ ds+ c

(
H[ż(T̃ ) + z(T̃ ), z(T̃ )]−H[z̄, z̄]

)1−θ
≤ c (H[ż(t) + z(t), z(t)]−H[z̄, z̄])1−θ ,

which, after letting T̃ → +∞, produces the estimate

M1σ(t) ≤ c
(
H[ż(t) + z(t), z(t)]−H[z̄, z̄]

)1−θ
(33)

for a.e t ≥ T . In Theorem 5 (ii) we provided an element (ξ(t), η(t)) ∈ ∂H[ż(t) + z(t), z(t)] such that

‖(ξ(t), η(t))‖ ≤M2‖ż(t)‖ for a.e. t ≥ 0,

where we defined
M2 := L

√
max

{
(1 + γ2

1 + λ2), (1 + γ2
2 + µ2)

}
.

Using that H has the Łojasiewicz property θ at (z̄, z̄) we further have that for a.e. t ≥ T (after
potentially increasing T in order to guarantee that (ż(t) + z(t), z(t)) is in the neighborhood on which
the Łojasiewicz property is fulfilled)(

H[ż(t) + z(t), z(t)]−H[z̄, z̄]
)θ
≤ c‖(ξ(t), η(t))‖ ≤ cM2‖ż(t)‖.

Combining this with estimate (33) gives

M1σ(t) ≤ c
1
θM

1−θ
θ

2 ‖ż(t)‖
1−θ
θ for a.e. t ≥ T.

Taking into account (32), we are able to conclude

σ̇(t) ≤ −Cσ(t)
θ

1−θ for a.e. t ≥ T, (34)

where we denote

C := M
θ

1−θ
1

c
1

1−θM2
> 0.

From (34) we now can deduce the speed of convergence of the trajectory. To this end we distinguish
between different values for the Łojasiewicz exponent θ.
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• If θ = 1
2 , then (34) simplifies to

σ̇(t) ≤ −Cσ(t),

from which exponential convergence

‖z(t)− z̄‖ ≤ σ(t) ≤ αe−βt for a.e. t ≥ T,

with α = σ(T ) and β = C, follows by using Gronwall’s inequality.

• If θ ∈
[
0, 1

2

)
, then (34) yields

d

dt
σ(t)

1−2θ
1−θ = 1− 2θ

1− θ σ(t)−
θ

1−θ σ̇(t) ≤ −C 1− 2θ
1− θ for a.e. t ≥ T.

After integration we obtain

σ(t)
1−2θ
1−θ ≤ −c1t+ c2 for all t ≥ T,

for some constants c1, c2 > 0. This means that there has to exists some T > 0 such that σ(t) = 0
for all t ≥ T , which implies that z(t) has to be constant on [T ,+∞).

• Last, we investigate the case θ ∈
(

1
2 , 1
)
. Since 1−2θ

1−θ < 0 we obtain similarly to the calculation
above

d

dt
σ(t)

1−2θ
1−θ ≥ C 2θ − 1

1− θ for a.e. t ≥ T.

Again, by integrating the inequality above we obtain for some constants γ, δ ∈ R

σ(t) ≤ (γt+ δ)
1−2θ
1−θ for all t ≥ T.

5 Numerical experiments
In this last section we aim to illustrate the analytical results with some numerical simulations. Es-
pecially, we want to focus on the effect the parameters λ as well the stepsizes γ1 and γ2 have on the
asymptotic behavior of the solution trajectories. As in Section 3, we consider the case µ = 1, where
the dynamical system can be written in the explicit form (7). The simulations were carried out in
Matlab, where we used the function ode15s.

Example 1. In the first experiment, we investigated the optimization problem

min
(x,y)∈R×R

Ψ(x, y) := |x|+ |y|+ (1− x− y)2, (35)

which corresponds to problem (1) in the special setting f, g : R→ R, f = g = | · |, and H : R×R→ R,
H(x, y) = (1− x− y)2. The critical points of Ψ are given by the set

crit(Ψ) =
{

(x̄, ȳ) ∈ R+ × R+ : x̄+ ȳ = 1
2

}
,

where all elements of this set are optimal solutions for (35). We chose (x0, y0) =
(
1, 1

2

)
as starting

point.
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Figure 1: For c1 = c2 = 1 and (x0, y0) =
(
1, 1

2

)
the limits of the trajectory change according to the

choice of λ. While for λ ∈ [0, 0.3) (rather implicit regime), the solution converges to the critical point
(0, 1

2), for λ ∈ [0.3, 1] the trajectory approaches other points further down the line of crit(Ψ). The
points are plotted after 100 time steps.

The first observation was that the rate of implicity, which is given by the value of λ in the second
component of the system (7), plays a crucial role in determining to which critical point the solution
trajectory converges, provided to be in a setting where the stepsizes

c1 := γ1L and c2 := γ2L

are chosen such that (13) is fulfilled for all λ ∈ [0, 1] (see Figure 2). One should also remark that the
rate of implicity seems to influence the stability of convergence also in dependence of the shape of the
problem. Here, for higher values of λ, this means for more explicit systems, the trajectory converges
faster, while for more implicit systems, which arise when λ is close to 0, the trajectory first moves
away from the limit set until the convergence starts, as one can see as a peak in the functions for the
x-coordinates. For an overview over the limit points the different trajectories converge to we refer to
Figure 1.

In addition to the above observations we further investigated the problem (35) in higher dimensions,
namely

min
(x,y)∈R2×R2

Ψ(x, y) := ‖x‖1 + ‖y‖1 + (1− x1 − x2 − y1 − y2)2, (36)

in order to emphasize the different convergence behavior of the solution trajectories with respect to
the parameter λ. Here,f, g : R2 → R are both given by the 1-norm and H : R4 → R is of the form
H(x, y) = (1 − x1 − x2 − y1 − y2)2, where x = (x1, x2), y = (y1, y2). The set of critical points of Ψ
are given by the set

crit(Ψ) =
{

(x̄, ȳ) ∈ R2
+ × R2

+ : x̄1 + x̄2 + ȳ1 + ȳ2 = 1
2

}
,

where all elements of this set are optimal solutions for (36). We chose as starting value (x0, y0) =(
−1, −2, −1

2 ,−4
)
. Again, we were able to observe that for c1 = c2 = 5, which is a setting in which
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Figure 2: For c1 = c2 = 1 and (x0, y0) =
(
1, 1

2

)
, three different solution trajectories approaching

three different critical values are plotted. On the left: for λ = 0.1, the x-coordinate of the solution
(x(t), y(t)) converges to x̄ = 0 (black solid), for λ = 0.5, to x̄ = 0.223 (black dashed) and, for λ = 0.9,
to x̄ = 0.3533 (black dotted). On the right: for for λ = 0.1, y(t) converges to ȳ = 0.5 (blue solid), for
λ = 0.5, to ȳ = 0.277, (blue dashed) and, for λ = 0.9, to ȳ = 0.1467 (blue dotted).

(13) is fulfilled for all λ ∈ [0, 1], the limit points of the trajectory are determined by the choice of λ.
This behaviour can be seen in Figure 3. Once more one can notice that also here the more explicit
the system is (i.e. the closer λ is to 1), the more stable the trajectory converges to a limit point.

Moreover, we could observe that the validity of inequality (13), which in our special setting is of
the form

min{c1L, c2L} >
(

6 + 4
c2

1L
2 + 4 + 24(1− λ)2

c2
2L

2 + 16(1− λ)2

c2
1c

2
2L

4

) 1
2

(1 + λ+ λ2) + λ

2 ,

is essential for the solution trajectory to converge. The plots of Figure 4 show that the smaller λ is
chosen, the bigger the stepsizes have to be: c1 = c2 = 0.5 just provide convergence for λ ∈ [0.3, 1],
while for the very implicit system, i.e. for λ ∈ [0, 0.3) it fails. Bigger stepsizes c1 = c2 = 0.9 assure
convergence for a wider range of implicity, i.e. for λ ∈ [0.1, 1], while choosing c1 = c2 = 1 guarantees
convergence for all λ ∈ [0, 1].

Example 2. In the second numerical experiment we considered the minimization problem

min
(x,y)∈R×R

Ψ(x, y) := |x|+ L2(y)− 1
5(1− x− y)2,

where, for α > 0,

Lα : R→ R, Lα(y) :=
{
y2

2 , |y| ≤ α
α|y| − α2

2 otherwise,

defines the Huber function. Taking f : R → R, f(x) := |x|, and g : R → R, g(y) := L2(y), as well as
H : R× R→ R, H(x, y) := (1− x− y)2, we are again in the setting of problem (7). The set of critical
points of Ψ is given by

crit(Ψ) =
{(
−1

2 , 1
)

;
(

0, −2
3

)
;
(5

2 , 1
)}

,

while
(
0, −2

3

)
is the optimal solution.
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Figure 3: On the left: x(t) ∈ R2 converges to x̄ = (0.5, 0), for λ = 0.1 (black), to x̄ = (0.3333, 0), for
λ = 0.5 (blue), and to (0.0612, 0), for λ = 0.9 (red). On the right: y(t) ∈ R2 converges to ȳ = (0, 0),
for λ = 0.1 (black), to ȳ = (0.1666, 0), for λ = 0.5 (blue), and to ȳ = (0.4388, 0) for λ = 0.9 (red).

In Figure 5 again the x- and y-solution trajectories for three dynamical systems with different rates
of implicity are plotted. As starting value (x0, y0) = (1, −1) was chosen. The Lipschitz constant of H
allows to choose as stepsizes c1 = c2 = 0.3 in order to verify (13). One can observe that the values of λ
do not affect the convergence of the x-trajectories at all, while for the y-trajectories the implicity has
influence on the stability of convergence. For the relatively explicit system with λ = 0.9 one can see
that the solution first moves away from the limit point, before the convergence starts. The trajectory
corresponding to λ = 0.5 reaches the limit point the fastest.

6 Conclusion and further perspectives
In this paper we presented a way to tackle the minimization of the sum of two nonsmooth, possibly
also nonconvex, functions in separate variables coupled by a smooth function via a continuous time
approach of forward-backward type. The associated dynamical system was defined in a general way
by leaving the rate of implicity in both components of the system variable.

We first aimed to show existence of a unique solution, which we could achieve in the setting of asking
convexity for the nonsmooth part of the objective function as well as assuming that one of the two
components of the system is of explicit structure. Further, we were able to show the convergence of the
solution trajectory - assuming it exists - in a more general setting, where convexity of the nonsmooth
part of the objective function is not needed. We could further weaken the assumptions on the rates
of implicity of the dynamical system in the sense that they, together with the stepsizes, have to fulfill
technical but not unreasonable inequalities, which were arising in order to obtain sufficient decrease
of a Lyapunov functional, which had the role of being the key ingredient in proving convergence of
the trajectory to a critical point of the objective function. Another not less important tool for the
asymptotic analysis was the Kurdyka-Łojasiewicz (KL) property, which we asked a regularization of
the just mentioned Lyapunov functional to have. This allowed us also to prove global convergence
for the trajectories, but also convergence rates in the case where the Lyapunov functional is KL
with a desingularization function of exponential structure. These convergence rates can be computed
explicitly depending on the Łojasiewicz exponent. Numerical simulations of the last section underlay
the analytical results and further give evidence of the necessity of the above mentioned inequalities
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Figure 4: Top row: on the left, (x(t), y(t)) moves periodically between the critical points (0, 0.5)
and (0.5, 0) for c1 = c2 = 0.5 and λ = 0.2. On the right one can see the trajectory converging
for c1 = c2 = 0.5 and λ = 0.3. Bottom row: on the left, (x(t), y(t)) shows periodic behavior for
c1 = c2 = 0.9 and λ = 0.05, while on the right, for λ = 0.1, the trajectory converges.

involving the stepsizes and the rate of implicty to be valid.
We want to notice that several results, including those which state that the limit points of the

trajectory are critical points of the objective function, are valid also in infinite dimensional Hilbert
spaces. It is the use of the KL property for the proof of the global convergence and the derivation of
the convergence rates which makes it important to work in finite dimensional spaces.

This work describes a first step in solving minimization problems of this special structure (1) via
the approach of analyzing a system of differential inclusions using the special shape of the objective
function. Above summary of results, achieved in this general setting, naturally leaves some further
directions, which can be addressed in future investigation.

We already observed in the introduction that for specific choices of implicity we can reconstruct,
by performing explicit time-discretization with time-stepsize one, the PALM algorithm [14], which
originally served as key motivation to study this problem. Considering other configurations of param-
eters as well as different types of discretization methods of ODEs could give rise to new numerical
algorithms, maybe with improved performance to already existing schemes. Interesting applications
resulting in an optimization problem of structure (1) are usually matrix factorization problems, where
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Figure 5: On the left: x(t) converges to x̄ = 0, for λ = 0.1, λ = 0.5, λ = 0.9. On the right: y(t)
converges to ȳ = −2

3 with different convergence behavior, for λ = 0.1, λ = 0.5, λ = 0.9

in [14] numerical simulations were performed.
Further, the question of improving the convergence and of generating a mechanism for detecting

different minimizers by adding inertia to the system would be a clear next step, which would result
in investigating a second order system of differential inclusions. Another natural extension of our
above analysis would be to develop a continuous time approach and to derive from here new iterative
schemes for problems of type (1) with additional structure. Recently, in [20], a full splitting algorithm
was investigated in the fully nonconvex setting for such a problem, where one of the nonsmooth
components consists of a composition of a nonsmooth function with a linear operator.
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