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Abstract. We investigate the techniques and ideas used in [R. Shefi, M. Teboulle, Rate of
convergence analysis of decomposition methods based on the proximal method of multipliers for
convex minimization, SIAM Journal on Optimization 24(1), 269–297, 2014] in the convergence
analysis of two proximal ADMM algorithms for solving convex optimization problems involving
compositions with linear operators. Besides this, we formulate a variant of the ADMM algorithm
that is able to handle convex optimization problems involving an additional smooth function in
its objective, and which is evaluated through its gradient. Moreover, in each iteration we allow
the use of variable metrics, while the investigations are carried out in the setting of infinite
dimensional Hilbert spaces. This algorithmic scheme is investigated from the point of view of
its convergence properties.
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1 Introduction

One of the most popular numerical algorithms for solving optimization problems of the form

inf
x∈Rn
{f(x) + g(Ax)}, (1)

where f : Rn → R := R ∪ {±∞} and g : Rm → R are proper, convex, lower semicontinuous
functions and A : Rn → Rm is a linear operator, is the alternating direction method of multipliers
(ADMM). Here, the spaces Rn and Rm are equipped with their usual inner products and induced
norms, which we both denote by 〈·, ·〉 and ‖ · ‖, respectively, as there is no risk of confusion.

∗Lund University, Faculty of Engineering (LTH), Department of Automatic Control, Box 118, 221 00 Lund,
Sweden, email: sebastian.banert@control.lth.se. Research supported by FWF (Austrian Science Fund), project I
2419-N32, and by Wallenberg AI, Autonomous Systems and Software Program (WASP).
†University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria, email:

radu.bot@univie.ac.at. Research partially supported by FWF (Austrian Science Fund), project I 2419-N32.
‡University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria, email:

ernoe.robert.csetnek@univie.ac.at. Research supported by FWF (Austrian Science Fund), projects M 1682-N25
and P 29809-N32.

1



By introducing an auxiliary variable z one can rewrite (1) as

inf
(x,z)∈Rn×Rm

Ax−z=0

{f(x) + g(z)}. (2)

The Lagrangian associated with problem (2) is

l : Rn × Rm × Rm → R, l(x, z, y) = f(x) + g(z) + 〈y,Ax− z〉,

and we say that (x∗, z∗, y∗) ∈ Rn × Rm × Rm is a saddle point of the Lagrangian, if

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x, z, y∗) ∀(x, z, y) ∈ Rn × Rm × Rm. (3)

It is known that (x∗, z∗, y∗) is a saddle point of l if and only if z∗ = Ax∗, (x∗, z∗) is an optimal
solution of (2), y∗ is an optimal solution of the Fenchel-Rockafellar dual problem (see [3–5,20,30])
to (1)

sup
y∈Rm

{−f∗(−AT y)− g∗(y)}, (4)

and the optimal objective values of (1) and (4) coincide. Notice that f∗ and g∗ are the conjugates
of f and g, defined by f∗(u) = supx∈Rn{〈u, x〉−f(x)} for all u ∈ Rn and g∗(y) = supz∈Rm{〈y, z〉−
g(z)} for all y ∈ Rm, respectively.

If (1) has an optimal solution and A(ri(dom f))∩ ri dom g 6= ∅, then the set of saddle points
of l is nonempty. Here, we denote by ri(S) the relative interior of a convex set S, which is the
interior of S relative to its affine hull.

For a fixed real number c > 0 we further consider the augmented Lagrangian associated with
problem (2), which is defined as

Lc : Rn × Rm × Rm → R, Lc(x, z, y) = f(x) + g(z) + 〈y,Ax− z〉+
c

2
‖Ax− z‖2.

The ADMM algorithm reads:

Algorithm 1 Choose (x0, z0, y0) ∈ Rn × Rm × Rm and c > 0. For all k ≥ 0 generate the
sequence (xk, zk, yk)k≥0 as follows:

xk+1 ∈ argmin
x∈Rn

Lc(x, z
k, yk) = argmin

x∈Rn

{
f(x) +

c

2
‖Ax− zk + c−1yk‖2

}
(5)

zk+1 = argmin
z∈Rm

Lc(x
k+1, z, yk) = argmin

z∈Rm

{
g(z) +

c

2
‖Axk+1 − z + c−1yk‖2

}
(6)

yk+1 = yk + c(Axk+1 − zk+1). (7)

If A has full column rank, then the set of minimizers in (5) is a singleton, as is the set of
minimizers in (6) without any further assumption, and the sequence (xk, zk, yk)k≥0 generated
by Algorithm 1 converges to a saddle point of the Lagrangian l (see, for instance, [19]). The
alternating direction method of multipliers was first introduced in [25] and [23]. Gabay has
shown in [24] (see also [19]) that ADMM is nothing else than the Douglas-Rachford algorithm
applied to the monotone inclusion problem

0 ∈ ∂(f∗ ◦ (−AT ))(y) + ∂g∗(y)
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For a function k : Rn → R, the set-valued operator defined by ∂k(x) := {u ∈ Rn : k(t)− k(x) ≥
〈u, t−x〉 ∀t ∈ Rn}, for k(x) ∈ R, and ∂k(x) := ∅, otherwise, denotes its (convex) subdifferential.

One of the limitations of the ADMM algorithm comes from the presence of the term Ax
in the update rule of xk+1 (we refer to [14] for an approach to circumvent the limitations of
ADMM). While in (6) a proximal step for the function g is taken, in (5) the function f and the
operator A are not evaluated independently, which makes the ADMM algorithm less attractive
for implementations than the primal-dual splitting algorithms (see, for instance, [8–10, 12, 13,
16, 29]). Despite of this fact, the ADMM algorithm has been widely used for solving convex
optimization problems arising in real-life applications (see, for instance, [11, 21]). For a version
of the ADMM algorithm with inertial and memory effects we refer the reader to [7].

In order to overcome the above-mentioned drawback of the classical ADMM method and to
increase its flexibility, the following so-called proximal alternating direction proximal method of
multipliers has been considered in [28] (see also [22,26]):

Algorithm 2 Choose (x0, z0, y0) ∈ Rn × Rm × Rm and c > 0. For all k ≥ 0 generate the
sequence (xk, zk, yk)k≥0 as follows:

xk+1 ∈ argmin
x∈Rn

{
f(x) +

c

2
‖Ax− zk + c−1yk‖2 +

1

2
‖x− xk‖2M1

}
(8)

zk+1 = argmin
z∈Rm

{
g(z) +

c

2
‖Axk+1 − z + c−1yk‖2 +

1

2
‖z − zk‖2M2

}
(9)

yk+1 = yk + c(Axk+1 − zk+1). (10)

Here, M1 ∈ Rn×n and M2 ∈ Rm×m are symmetric positive semidefinite matrices and ‖u‖2Mi
=

〈u,Miu〉 denotes the squared seminorm induced by Mi, for i ∈ {1, 2}.
Indeed, for M1 = M2 = 0, Algorithm 2 becomes the classical ADMM method, while for

M1 = µ1 Id and M2 = µ2 Id with µ1, µ2 > 0 and Id denoting the corresponding matrix, it
becomes the algorithm proposed and investigated in [18]. Furthermore, if M1 = τ−1 Id−cATA
with τ > 0 such that cτ‖A‖2 < 1 and M2 = 0, then one can show that Algorithm 2 is equivalent
to one of the primal-dual algorithms formulated in [16].

The sequence (zk)k≥0 generated in Algorithm 2 is uniquely determined due to the fact that
the objective function in (9) is lower semicontinuous and strongly convex. On the other hand,
the set of minimizers in (8) is in general not a singleton and it can be even empty. However, if
one imposes that M1 +A∗A is positive definite, then (xk)k≥0 will be uniquely determined, too.

Shefi and Teboulle provide in [28] in connection to Algorithm 2 an ergodic convergence rate
result for a primal-dual gap function formulated in terms of the Lagrangian l, from which they
deduce a global convergence rate result for the sequence of function values (f(xk)+g(Axk))k≥0 to
the optimal objective value of (1), when g is Lipschitz continuous. Furthermore, they formulate a
global convergence rate result for the sequence (‖Axk−zk‖)k≥0 to 0. Finally, Shefi and Teboulle
prove the convergence of the sequence (xk, zk, yk)k≥0 to a saddle point of the Lagrangian l,
provided that either M1 = 0 and A has full column rank or M1 is positive definite.

Algorithm 2 from [28] represents the starting point of our investigations. More precisely, in
this paper:
• we point out some flaws in the proof of a statement in [28], which is fundamental for the

derivation of the global convergence rate of (‖Axk − zk‖)k≥0 to 0 and of the convergence of the
sequence (xk, zk, yk)k≥0;
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• we show how the statement in cause can be proved by using different techniques;
• we formulate a variant of Algorithm 2 for solving convex optimization problems in infinite

dimensional Hilbert spaces involving an additional smooth function in their objective, that we
evaluate through its gradient, and which allows in each iteration the use of variable metrics;
• we prove an ergodic convergence rate result for this algorithm involving a primal-dual gap

function formulated in terms of the associated Lagrangian l and a convergence result for the
sequence of iterates to a saddle point of l.

2 Fixing some results from [28] related to the convergence anal-
ysis for Algorithm 2

In this section we point out several flaws that have been made in [28] when deriving a funda-
mental result for both the rate of convergence of the sequence (‖Axk − zk‖)k≥0 to 0 and the
convergence of the sequence (xk, zk, yk)k≥0 to a saddle point of the Lagrangian l. We also show
how these arguments can be fixed by relying on some of the building blocks of the analysis we
will carry out in Section 3.

To proceed, we first recall some results from [28]. We start with a statement that follows
from the variational characterization of the minimizers of (8)-(9).

Lemma 3 (see [28, Lemma 4.2]) Let (xk, zk, yk)k≥0 be a sequence generated by Algorithm 2.
Then for all k ≥ 0 and for all (x, z, y) ∈ Rn × Rm × Rm it holds

l(xk+1, zk+1, y) ≤ l(x, z, yk+1) + c〈zk+1 − zk, A(x− xk+1)〉+

+
1

2

(
‖x− xk‖2M1

− ‖x− xk+1‖2M1
+ ‖z − zk‖2M2

− ‖z − zk+1‖2M2

)
+

1

2

(
c−1‖y − yk‖2 − c−1‖y − yk+1‖2

)
−1

2

(
‖xk+1 − xk‖2M1

+ ‖zk+1 − zk‖2M2
+ c−1‖yk+1 − yk‖2

)
.

Furthermore, by invoking the monotonicity of the convex subdifferential of g, in [28] the
following estimation is derived.

Lemma 4 (see [28, Proposition 5.3(b)]) Let (xk, zk, yk)k≥0 be a sequence generated by Algorithm
2. Then for all k ≥ 1 and for all (x, z) ∈ Rn × Rm it holds

c〈zk+1 − zk, A(x− xk+1)〉 ≤ c
2

(
‖z − zk‖2 − ‖z − zk+1‖2 + ‖Ax− z‖2

)
+

1

2

(
‖zk−1 − zk‖2M2

− ‖zk − zk+1‖2M2

)
.

By taking (x, z, y) := (x∗, z∗, y∗) in Lemma 3, where (x∗, z∗, y∗) is a saddle point of the
Lagrangian l, and by using the inequality (see (3))

l(xk+1, zk+1, y∗) ≥ l(x∗, z∗, yk+1) ∀k ≥ 0,

and the estimation in Lemma 4, one easily obtains the following result.
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Lemma 5 Let (x∗, z∗, y∗) be a saddle point of the Lagrangian l associated with (1), M1,M2 be
symmetric positive semidefinite matrices and c > 0. Let (xk, zk, yk)k≥0 be a sequence generated
by Algorithm 2. Then for all k ≥ 1 the following inequality holds

‖xk+1 − xk‖2M1
+ ‖zk+1 − zk‖2M2

+ c−1‖yk+1 − yk‖2+ (11)

‖x∗ − xk+1‖2M1
+ ‖z∗ − zk+1‖2M2+cIm + c−1‖y∗ − yk+1‖2 + ‖zk+1 − zk‖2M2

(12)

≤ ‖x∗ − xk‖2M1
+ ‖z∗ − zk‖2M2+cIm + c−1‖y∗ − yk‖2 + ‖zk − zk−1‖2M2

. (13)

By using the notations from [28, Section 5.3], namely

vk+1 := ‖xk+1 − xk‖2M1
+ ‖zk+1 − zk‖2M2+c Id + c−1‖yk+1 − yk‖2 ∀k ≥ 0

and

uk := ‖x∗ − xk‖2M1
+ ‖z∗ − zk‖2M2+c Id + c−1‖y∗ − yk‖2 + ‖zk − zk−1‖2M2

∀k ≥ 1,

the inequality in Lemma 5 can be equivalently written as

vk+1 − c‖zk+1 − zk‖2 ≤ uk − uk+1 ∀k ≥ 1. (14)

In [28, Lemma 5.1, (5.37)], instead of (14), it is stated that

vk+1 ≤ uk − uk+1 ∀k ≥ 1, (15)

however, its proof, which follows the argument that goes through Lemma 3, Lemma 4 and
Lemma 5, is not correct, since it leads to (14) instead of (15).

Since the sequence (vk)k≥0 is monotonically decreasing, statement (15), in combination with
straightforward telescoping arguments, leads to the fact that (vk)k≥0 converges to zero with
a rate of convergence of O(1/k). This implies that (‖Axk − zk‖)k≥0 converges to zero with a
rate of convergence of O(1/

√
k) (see [28, Theorem 5.4]). In addition, statement (15) is used

in [28, Theorem 5.6] to prove the convergence of the sequence (xk, zk, yk)k≥0 to a saddle point of
the Lagrangian l. However, the techniques used in [28], involving function values and the saddle
point inequality, do not lead to (15), but to the weaker inequalitiy (14).

In the following we will show that one can in fact derive (15), however, to this end one needs
to use different techniques. These are described in detail in the next section; here we will just
show how do they lead to (15). We would like to notice that, differently from [28], in our analysis
we will only use properties related to the fact that the convex subdifferential of a proper, convex
and lower semicontinuous function is a maximally monotone set-valued operator.

We start our analysis with relation (40), which in case h = 0, L = 0, Mk
1 = M1 < 0 and

Mk
2 = M2 < 0 for all k ≥ 0 (see the setting of Section 3) reads

c‖zk −Axk+1‖2 + ‖xk − xk+1‖2M1
+ ‖zk − zk+1‖2M2

≤

‖xk − x∗‖2M1
+ ‖zk −Ax∗‖2M2+c Id +

1

c
‖yk − y∗‖2

−
(
‖xk+1 − x∗‖2M1

+ ‖zk+1 −Ax∗‖2M2+c Id +
1

c
‖yk+1 − y∗‖2

)
. (16)
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for all k ≥ 0. Using that

c‖zk −Axk+1‖2 = c

∥∥∥∥zk − zk+1 − 1

c
(yk+1 − yk)

∥∥∥∥2
= c‖zk − zk+1‖2 +

1

c
‖yk+1 − yk‖2 + 2〈zk+1 − zk, yk+1 − yk〉,

we obtain from (16) that

2〈zk+1 − zk, yk+1 − yk〉+ ‖xk − xk+1‖2M1
+ ‖zk − zk+1‖2M2+c Id +

1

c
‖yk+1 − yk‖2 ≤

‖xk − x∗‖2M1
+ ‖zk −Ax∗‖2M2+c Id +

1

c
‖yk − y∗‖2

−
(
‖xk+1 − x∗‖2M1

+ ‖zk+1 −Ax∗‖2M2+c Id +
1

c
‖yk+1 − y∗‖2

)
(17)

for all k ≥ 0. By taking into account that, according to (54),

〈zk+1 − zk, yk+1 − yk〉 ≥ 1

2
‖zk+1 − zk‖2M2

− 1

2
‖zk − zk−1‖2M2

for all k ≥ 1, it yields

‖xk − xk+1‖2M1
+ ‖zk − zk+1‖2M2+c Id +

1

c
‖yk+1 − yk‖2 ≤

‖xk − x∗‖2M1
+ ‖zk −Ax∗‖2M2+c Id +

1

c
‖yk − y∗‖2 + ‖zk − zk−1‖2M2

−
(
‖xk+1 − x∗‖2M1

+ ‖zk+1 −Ax∗‖2M2+c Id +
1

c
‖yk+1 − y∗‖2 + ‖zk+1 − zk‖2M2

)
,

which is nothing else than (15).
From here, by using that vk+1 ≤ vk for all k ≥ 0 and straightforward telescoping arguments,

it follows immediately that (‖Axk − zk‖)k≥0 converges to zero with a rate of O(1/
√
k).

We will see in the following section that the inequality (40) will play an essential role also
in the convergence analysis of the sequence of iterates. When applied to the particular context
of the optimization problem (1) and Algorithm 2, Theorem 15 provides a rigorous formulation
and a correct and clear proof of the convergence result stated in [28, Theorem 5.6].

3 A variant of the ADMM algorithm in the presence of a smooth
function and by involving variable metrics

In this section we propose an extension of the ADMM algorithm considered in [28] that we
also investigate from the perspective of its convergence properties. This extension is twofold:
on the one hand, we consider an additional convex differentiable function in the objective of
the optimization problem (1), which is evaluated in the algorithm through its gradient, and on
the other hand, instead of fixed matrices M1,M2, we use different matrices in each iteration.
Furthermore, we change the setting to infinite dimensional Hilbert spaces. We start by describing
the problem under investigation:

6



Problem 6 Let H and G be real Hilbert spaces, f : H → R, g : G → R be proper, convex and
lower semicontinuous functions, h : H → R a convex and Fréchet differentiable function with
L-Lipschitz continuous gradient (where L ≥ 0) and A : H → G a linear continuous operator.
The Lagrangian associated with the convex optimization problem

inf
x∈H
{f(x) + h(x) + g(Ax)} (18)

is
l : H× G × G → R, l(x, z, y) = f(x) + h(x) + g(z) + 〈y,Ax− z〉.

We say that (x∗, z∗, y∗) ∈ H × G × G is a saddle point of the Lagrangian l, if the following
inequalities hold

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x, z, y∗) ∀(x, z, y) ∈ H × G × G. (19)

Notice that (x∗, z∗, y∗) is a saddle point if and only if z∗ = Ax∗, x∗ is an optimal solution of
(18), y∗ is an optimal solution of the Fenchel-Rockafellar dual problem to (18)

(D′) sup
y∈G
{−(f∗�h∗)(−A∗y)− g∗(y)}, (20)

and the optimal objective values of (18) and (20) coincide, where A∗ : G → H is the adjoint
operator defined by 〈A∗v, x〉 = 〈v,Ax〉 for all (v, x) ∈ G ×H. The infimal convolution f∗�h∗ :
H → R is defined by (f∗�h∗)(x) = infu∈H{f∗(u) + h∗(x− u)} for all x ∈ H.

For the reader’s convenience, we discuss some situations which lead to the existence of saddle
points. This is for instance the case when (18) has an optimal solution and the Attouch-Brézis
qualification condition

0 ∈ sri(dom g −A(dom f)) (21)

holds. Here, for a convex set S ⊆ G, we denote by

sriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of G}

its strong relative interior. Notice that the classical interior is contained in the strong relative
interior: intS ⊆ sriS, however, in general this inclusion may be strict. If G is finite-dimensional,
then for a nonempty and convex set S ⊆ G, one has sriS = riS. Considering again the infinite
dimensional setting, we remark that condition (21) is fulfilled if there exists x′ ∈ dom f such
that Ax′ ∈ dom g and g is continuous at Ax′.

The optimality conditions for the primal-dual pair of optimization problems (18)-(20) read

−A∗y −∇h(x) ∈ ∂f(x) and y ∈ ∂g(Ax). (22)

This means that if (18) has an optimal solution x∗ ∈ H and the qualification condition (21)
is fulfilled, then there exists y∗ ∈ G, an optimal solution of (20), such that (22) holds and
(x∗, Ax∗, y∗) is a saddle point of the Lagrangian l. Conversely, if the pair (x∗, y∗) ∈ H × G
satisfies relation (22), then x∗ is an optimal solution to (18), y∗ is an optimal solution to (20)
and (x∗, Ax∗, y∗) is a saddle point of the Lagrangian l. For further considerations on convex
duality we invite the reader to consult [3–5,20,30].
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Furthermore, we discuss some conditions ensuring that (18) has an optimal solution. Suppose
that (18) is feasible, which means that its optimal objective value is not +∞. The existence of
optimal solutions to (18) is guaranteed if, for instance, f + h is coercive (that is lim‖x‖→∞(f +
h)(x) = +∞) and g is bounded from below. Indeed, under these circumstances, the objective
function of (18) is coercive and the statement follows via [3, Corollary 11.15]. On the other
hand, if f + h is strongly convex, then the objective function of (18) is strongly convex, too,
thus (18) has a unique optimal solution (see [3, Corollary 11.16]).

Some more notations are in order before we state the algorithm for solving Problem 6. We
denote by S+(H) the family of operators U : H → H which are linear, continuous, self-adjoint
and positive semidefinite. For U ∈ S+(H) we consider the semi-norm defined by

‖x‖2U = 〈x, Ux〉 ∀x ∈ H.

We also make use of the Loewner partial ordering defined for U1, U2 ∈ S+(H) by

U1 < U2 ⇔ ‖x‖2U1
≥ ‖x‖2U2

∀x ∈ H.

Finally, for α > 0, we set
Pα(H) = {U ∈ S+(H) : U < α Id}.

Algorithm 7 Let Mk
1 ∈ S+(H) and Mk

2 ∈ S+(G) for all k ≥ 0. Choose (x0, z0, y0) ∈ H×G×G
and c > 0. For all k ≥ 0 generate the sequence (xk, zk, yk)k≥0 as follows:

xk+1 ∈ argmin
x∈H

{
f(x) + 〈x− xk,∇h(xk)〉+

c

2
‖Ax− zk + c−1yk‖2 +

1

2
‖x− xk‖2

Mk
1

}
(23)

zk+1 = argmin
z∈G

{
g(z) +

c

2
‖Axk+1 − z + c−1yk‖2 +

1

2
‖z − zk‖2

Mk
2

}
(24)

yk+1 = yk + c(Axk+1 − zk+1). (25)

Remark 8 (i) If h = 0 and Mk
1 = M1, M

k
2 = M2 are constant in each iteration, then Algorithm

7 becomes Algorithm 2, which has been investigated in [28].
(ii) In order to ensure that the sequence (xk)k≥0 is uniquely determined one can assume that

for all k ≥ 0 there exists αk1 > 0 such that Mk
1 + cA∗A ∈ Pαk

1
(H).

This is in particular the case when

∃α > 0 such that A∗A ∈ Pα(H). (26)

Relying on [3, Fact 2.19], on can see that (26) holds if and only if A is injective and ranA∗ is
closed. Hence, in finite dimensional spaces, namely, if H = Rn and G = Rm, with m ≥ n ≥ 1,
(26) is nothing else than saying that A has full column rank.

(iii) One of the pioneering works addressing proximal ADMM algorithms in Hilbert spaces,
in the particular case when h = 0 and Mk

1 and Mk
2 are equal for all k ≥ 0 to the corresponding

identity operators, is the paper by Attouch and Soueycatt [2]. We also refer the reader to [22,26]
for versions of the proximal ADMM algorithm stated in finite-dimensional spaces and with
proximal terms induced by constant linear operators.
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Remark 9 We show that the particular choices Mk
1 = 1

τk
Id−cA∗A, for τk > 0, and Mk

2 = 0
for all k ≥ 0 lead to a primal-dual algorithm introduced in [16]. Here Id : H → H denotes the
identity operator on H. Let k ≥ 0 be fixed. The optimality condition for (23) reads (for xk+2):

0 ∈ ∂f(xk+2) + cA∗(Axk+2 − zk+1 + c−1yk+1) +Mk+1
1 (xk+2 − xk+1) +∇h(xk+1)

= ∂f(xk+2) + (cA∗A+Mk+1
1 )xk+2 + cA∗(−zk+1 + c−1yk+1)−Mk+1

1 xk+1 +∇h(xk+1).

From (25) we have

cA∗(−zk+1 + c−1yk+1) = A∗(2yk+1 − yk)− cA∗Axk+1,

hence

0 ∈ ∂f(xk+2) + (cA∗A+Mk+1
1 )(xk+2 − xk+1) +A∗(2yk+1 − yk) +∇h(xk+1). (27)

By taking into account the special choice of Mk
1 we obtain

0 ∈ ∂f(xk+2) +
1

τk+1

(
xk+2 − xk+1

)
+A∗(2yk+1 − yk) +∇h(xk+1),

thus,

xk+2 = (Id +τk+1∂f)−1
(
xk+1 − τk+1∇h(xk+1)− τk+1A

∗(2yk+1 − yk)
)

= argmin
x∈H

{
f(x) +

1

2τk+1

∥∥∥x− (xk+1 − τk+1∇h(xk+1)− τk+1A
∗(2yk+1 − yk)

)∥∥∥2} .(28)

Furthermore, from the optimality condition for (24) we obtain

c(Axk+1 − zk+1 + c−1yk) +Mk
2 (zk − zk+1) ∈ ∂g(zk+1), (29)

which combined with (25) gives

yk+1 +Mk
2 (zk − zk+1) ∈ ∂g(zk+1). (30)

Using that Mk
2 = 0 and again (25), it further follows

0 ∈ ∂g∗(yk+1)− zk+1

= ∂g∗(yk+1) + c−1(yk+1 − yk − cAxk+1),

which is equivalent to

yk+1 = (Id +c∂g∗)−1
(
yk + cAxk+1

)
= argmin

z∈G

{
g∗(z) +

1

2c

∥∥∥z − (yk + cAxk+1
)∥∥∥2} . (31)

The iterative scheme obtained in (31) and (28) generates, for a given starting point (x1, y0) ∈
H × G and c > 0, the sequence (xk, yk)k≥1 for all k ≥ 0 as follows

yk+1 = argmin
z∈G

{
g∗(z) +

1

2c

∥∥∥z − (yk + cAxk+1
)∥∥∥2}

xk+2 = argmin
x∈H

{
f(x) +

1

2τk+1

∥∥∥x− (xk+1 − τk+1∇h(xk+1)− τk+1A
∗(2yk+1 − yk)

)∥∥∥2} .
9



For τk = τ > 0 for all k ≥ 1 one recovers a primal-dual algorithm from [16] that has been
investigated under the assumption 1

τ − c‖A‖
2 > L

2 (see Algorithm 3.2 and Theorem 3.1 in [16]).
We invite the reader to consult [8, 9, 13, 29] for more insights into primal-dual algorithms and
their highlights. Primal-dual algorithms with dynamic step sizes have been investigated in [13]
and [9], where it has been shown that clever strategies in the choice of the step sizes can improve
the convergence behavior.

3.1 Ergodic convergence rates for the primal-dual gap

In this section we will provide a convergence rate result for a primal-dual gap function formulated
in terms of the associated Lagrangian l. We start by proving a technical statement (see also [28]).

Lemma 10 In the context of Problem 6, let (xk, zk, yk)k≥0 be a sequence generated by Algorithm
7. Then for all k ≥ 0 and all (x, z, y) ∈ H × G × G the following inequality holds

l(xk+1, zk+1, y) ≤ l(x, z, yk+1) + c〈zk+1 − zk, A(x− xk+1)〉

+
1

2

(
‖x− xk‖2

Mk
1

+ ‖z − zk‖2
Mk

2
+ c−1‖y − yk‖2

)
− 1

2

(
‖x− xk+1‖2

Mk
1

+ ‖z − zk+1‖2
Mk

2
+ c−1‖y − yk+1‖2

)
− 1

2

(
‖xk+1 − xk‖2

Mk
1
− L‖xk+1 − xk‖2 + ‖zk+1 − zk‖2

Mk
2

+ c−1‖yk+1 − yk‖2
)
.

Moreover, we have for all k ≥ 0

c〈zk+1 − zk, A(x− xk+1)〉 ≤ c

2

(
‖Ax− zk‖2 − ‖Ax− zk+1‖2

)
+

1

2c
‖yk+1 − yk‖2.

Proof. We fix k ≥ 0 and (x, z, y) ∈ H × G × G. Writing the optimality conditions for (23) we
obtain

−∇h(xk) + cA∗(zk − c−1yk −Axk+1) +Mk
1 (xk − xk+1) ∈ ∂f(xk+1). (32)

From the definition of the convex subdifferential we derive

f(xk+1)− f(x) ≤ 〈∇h(xk) + cA∗(−zk + c−1yk +Axk+1) +Mk
1 (−xk + xk+1), x− xk+1〉

= 〈∇h(xk), x− xk+1〉+ 〈yk+1, A(x− xk+1)〉 − c〈zk − zk+1, A(x− xk+1)〉
+〈Mk

1 (xk+1 − xk), x− xk+1〉, (33)

where for the last equality we used (25).
Furthermore, we claim that

h(xk+1)− h(x) ≤ −〈∇h(xk), x− xk+1〉+
L

2
‖xk+1 − xk‖2. (34)

Indeed, this follows by applying the convexity of h and the descent lemma (see [3, Theorem
18.15 (iii)]):

h(x)− h(xk+1)− 〈∇h(xk), x− xk+1〉 ≥
h(xk) + 〈∇h(xk), x− xk〉 − h(xk+1)− 〈∇h(xk), x− xk+1〉 =

h(xk)− h(xk+1) + 〈∇h(xk), xk+1 − xk〉 ≥ −L
2
‖xk+1 − xk‖2.

10



By combining (33) and (34) we obtain

(f + h)(xk+1) ≤ (f + h)(x) + 〈yk+1, A(x− xk+1)〉 − c〈zk − zk+1, A(x− xk+1)〉

+
1

2
‖x− xk‖2

Mk
1
− 1

2
‖x− xk+1‖2

Mk
1
− 1

2
‖xk+1 − xk‖2

Mk
1

+
L

2
‖xk+1 − xk‖2.

(35)

From the optimality condition for (24) we obtain

c(Axk+1 − zk+1 + c−1yk) +Mk
2 (zk − zk+1) ∈ ∂g(zk+1), (36)

which, combined with (25), gives

yk+1 +Mk
2 (zk − zk+1) ∈ ∂g(zk+1). (37)

From here we derive the inequality

g(zk+1)− g(z) ≤ 〈−yk+1 +Mk
2 (zk+1 − zk), z − zk+1〉

=− 〈yk+1, z − zk+1〉+
1

2
‖z − zk‖2

Mk
2
− 1

2
‖z − zk+1‖2

Mk
2
− 1

2
‖zk+1 − zk‖2

Mk
2
.

(38)

The first statement of the lemma follows by combining the inequalities (35) and (38) with the
identity (see (25))

〈y,Axk+1 − zk+1〉 = 〈yk+1, Axk+1 − zk+1〉+
1

2c

(
‖y − yk‖2 − ‖y − yk+1‖2 − ‖yk+1 − yk‖2

)
.

The second statement follows easily from the arithmetic-geometric mean inequality in Hilbert
spaces (see [28, Proposition 5.3(a)]). �

A direct consequence of the two inequalities in Lemma 10 is the following result.

Lemma 11 In the context of Problem 6, assume that Mk
1 − L Id ∈ S+(H),Mk

1 <M
k+1
1 , Mk

2 ∈
S+(G),Mk

2 <M
k+1
2 for all k ≥ 0, and let (xk, zk, yk)k≥0 be the sequence generated by Algorithm

7. Then for all k ≥ 0 and all (x, z, y) ∈ H × G × G the following inequality holds

l(xk+1, zk+1, y) ≤ l(x, z, yk+1) +
c

2

(
‖Ax− zk‖2 − ‖Ax− zk+1‖2

)
+

1

2

(
‖x− xk‖2

Mk
1
− ‖x− xk+1‖2

Mk+1
1

+ ‖z − zk‖2
Mk

2
− ‖z − zk+1‖2

Mk+1
2

)
+

1

2c

(
‖y − yk‖2 − ‖y − yk+1‖2

)
.

We can now state the main result of this subsection.

Theorem 12 In the context of Problem 6, assume that Mk
1 − L Id ∈ S+(H),Mk

1 < Mk+1
1 ,

Mk
2 ∈ S+(G),Mk

2 < Mk+1
2 for all k ≥ 0, and let (xk, zk, yk)k≥0 be the sequence generated by

Algorithm 7. For all k ≥ 1 define the ergodic sequences

xk :=
1

k

k∑
i=1

xi, zk :=
1

k

k∑
i=1

zi, yk :=
1

k

k∑
i=1

yi.

11



Then for all k ≥ 1 and all (x, z, y) ∈ H × G × G it holds

l(xk, zk, y)− l(x, z, yk) ≤ γ(x, z, y)

k
,

where γ(x, z, y) := c
2‖Ax− z

0‖2 + 1
2

(
‖x− x0‖2

M0
1

+ ‖z − z0‖2
M0

2

)
+ 1

2c‖y − y
0‖2.

Proof. We fix k ≥ 1 and (x, z, y) ∈ H×G × G. Summing up the inequalities in Lemma 11 for
i = 0, ..., k − 1 and using classical arguments for telescoping sums, we obtain

k−1∑
i=0

l(xk+1, zk+1, y) ≤
k−1∑
i=0

l(x, z, yk+1) + γ(x, z, y).

Since l is convex in (x, z) and linear in y, the conclusion follows from the definition of the ergodic
sequences. �

Remark 13 Let (x∗, z∗, y∗) be a saddle point for the Lagrangian l. By taking (x, z, y) :=
(x∗, z∗, y∗) in the above theorem it yields

(f + h)(xk) + g(zk) + 〈y∗, Axk − zk〉 −
(
f(x∗) + h(x∗) + g(Ax∗)

)
≤ γ(x∗, z∗, y∗)

k
∀k ≥ 1,

where f(x∗) + h(x∗) + g(Ax∗) is the optimal objective value of the problem (18). Hence, if we
suppose that the set of optimal solutions of the dual problem (20) is contained in a bounded
set, there exists R > 0 such that for all k ≥ 1

(f + h)(xk) + g(zk) +R‖Axk − zk‖ −
(
f(x∗) + h(x∗) + g(Ax∗)

)
≤

1

k

(
c

2
‖Ax∗ − z0‖2 +

1

2
‖x∗ − x0‖2M0

1
+

1

2
‖z∗ − z0‖2M0

2
+

1

c
(R2 + ‖y0‖2)

)
.

The set of dual optimal solutions of (20) is equal to the convex subdifferential of the infimal
value function of the problem (18)

ψ : G → R, ψ(y) = inf
x∈H

(f(x) + h(x) + g(Ax+ y)) ,

at 0. This set is weakly compact, thus bounded, if 0 ∈ int(domψ) = int(A(dom f) − dom g)
(see [3, 5, 30]).

3.2 Convergence of the sequence of generated iterates

In this subsection we will address the convergence of the sequence of iterates generated by
Algorithm 7 (see also [6, Theorem 7]). One of the important tools for the proof of the convergence
result will be [15, Theorem 3.3], which we recall below.

Lemma 14 (see [15, Theorem 3.3]) Let S be a nonempty subset of H and (xk)k≥0 a sequence
in H. Let α > 0 and W k ∈ Pα(H) be such that W k <W k+1 for all k ≥ 0. Assume that:

(i) for all z ∈ S and for all k ≥ 0: ‖xk+1 − z‖Wk+1 ≤ ‖xk − z‖Wk ;
(ii) every weak sequential cluster point of (xk)k≥0 belongs to S.

Then (xk)k≥0 converges weakly to an element in S.
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The proof of the convergence result relies on techniques specific to monotone operator theory
and does not make use of the values of the objective function or of the Lagrangian l. This makes
it different from the proofs in [28] and from the majority of other conventional convergence
proofs for ADMM methods. To the few exceptions belong [2] and [19].

Theorem 15 In the context of Problem 6, assume that the set of saddle points of the Lagrangian
l is nonempty and that Mk

1 − L
2 Id ∈ S+(H),Mk

1 < Mk+1
1 , Mk

2 ∈ S+(G),Mk
2 < Mk+1

2 for all
k ≥ 0, and let (xk, zk, yk)k≥0 be the sequence generated by Algorithm 7. If one of the following
assumptions

(I) there exists α1 > 0 such that Mk
1 − L

2 Id ∈ Pα1(H) for all k ≥ 0;

(II) there exists α, α2 > 0 such that Mk
1 − L

2 Id +A∗A ∈ Pα(H) and Mk
2 ∈ Pα2(G) for all k ≥ 0;

(III) there exists α > 0 such that Mk
1 − L

2 Id +A∗A ∈ Pα(H) and 2Mk+1
2 <Mk

2 <M
k+1
2 for all

k ≥ 0;

is fulfilled, then (xk, zk, yk)k≥0 converges weakly to a saddle point of the Lagrangian l. This means
that (xk)k≥0 converges weakly to an optimal solution of problem (18), and (yk)k≥0 converges
weakly to an optimal solution of its dual problem (20).

Proof. Let S ⊆ H×G×G denote the set of the saddle points of the Lagrangian l and (x∗, z∗, y∗)
be a fixed element in S. Then z∗ = Ax∗ and the optimality conditions hold

−A∗y∗ −∇h(x∗) ∈ ∂f(x∗), y∗ ∈ ∂g(Ax∗).

Let k ≥ 0 be fixed. Taking into account (32), (36) and the monotonicity of ∂f and ∂g, we obtain

〈cA∗(zk −Axk+1 − c−1yk) +Mk
1 (xk − xk+1)−∇h(xk) +A∗y∗ +∇h(x∗), xk+1 − x∗〉 ≥ 0

and
〈c(Axk+1 − zk+1 + c−1yk) +Mk

2 (zk − zk+1)− y∗, zk+1 −Ax∗〉 ≥ 0.

We consider first the case L > 0. By the Baillon-Haddad Theorem (see [3, Corollary 18.16]),
the gradient of h is L−1-cocoercive, hence the following inequality holds

〈∇h(x∗)−∇h(xk), x∗ − xk〉 ≥ L−1‖∇h(x∗)−∇h(xk)‖2.

Summing up the three inequalities obtained above we get

c〈zk −Axk+1, Axk+1 −Ax∗〉+ 〈y∗ − yk, Axk+1 −Ax∗〉+ 〈∇h(x∗)−∇h(xk), xk+1 − x∗〉
+〈Mk

1 (xk − xk+1), xk+1 − x∗〉+ c〈Axk+1 − zk+1, zk+1 −Ax∗〉+ 〈yk − y∗, zk+1 −Ax∗〉
+〈Mk

2 (zk − zk+1), zk+1 −Ax∗〉+ 〈∇h(x∗)−∇h(xk), x∗ − xk〉 − L−1‖∇h(x∗)−∇h(xk)‖2 ≥ 0.

Further, by taking into account (25), it holds

〈y∗−yk, Axk+1−Ax∗〉+〈yk−y∗, zk+1−Ax∗〉 = 〈y∗−yk, Axk+1−zk+1〉 = c−1〈y∗−yk, yk+1−yk〉.
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By using some expressions of the inner products in terms of norms, we obtain

c

2

(
‖zk −Ax∗‖2 − ‖zk −Axk+1‖2 − ‖Axk+1 −Ax∗‖2

)
+
c

2

(
‖Axk+1 −Ax∗‖2 − ‖Axk+1 − zk+1‖2 − ‖zk+1 −Ax∗‖2

)
+

1

2c

(
‖y∗ − yk‖2 + ‖yk+1 − yk‖2 − ‖yk+1 − y∗‖2

)
+

1

2

(
‖xk − x∗‖2

Mk
1
− ‖xk − xk+1‖2

Mk
1
− ‖xk+1 − x∗‖2

Mk
1

)
+

1

2

(
‖zk −Ax∗‖2

Mk
2
− ‖zk − zk+1‖2

Mk
2
− ‖zk+1 −Ax∗‖2

Mk
2

)
+〈∇h(x∗)−∇h(xk), xk+1 − xk〉 − L−1‖∇h(x∗)−∇h(xk)‖2 ≥ 0.

By using again relation (25) for expressing Axk+1 − zk+1 and by taking into account that

〈∇h(x∗)−∇h(xk), xk+1 − xk〉 − L−1‖∇h(x∗)−∇h(xk)‖2 =

−L
∥∥∥∥L−1 (∇h(x∗)−∇h(xk)

)
+

1

2

(
xk − xk+1

)∥∥∥∥2 +
L

4
‖xk − xk+1‖2,

it yields

1

2
‖xk+1 − x∗‖2

Mk
1

+
1

2
‖zk+1 −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk+1 − y∗‖2 ≤

1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2

− c
2
‖zk −Axk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1
− 1

2
‖zk − zk+1‖2

Mk
2

−L
∥∥∥∥L−1 (∇h(x∗)−∇h(xk)

)
+

1

2

(
xk − xk+1

)∥∥∥∥2 +
L

4
‖xk − xk+1‖2

and from here, by using the monotonicity assumptions on (Mk
1 )k≥0 and (Mk

2 )k≥0, we finally get

1

2
‖xk+1 − x∗‖2

Mk+1
1

+
1

2
‖zk+1 −Ax∗‖2

Mk+1
2 +c Id

+
1

2c
‖yk+1 − y∗‖2 ≤

1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2

− c
2
‖zk −Axk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1−

L
2
Id
− 1

2
‖zk − zk+1‖2

Mk
2

−L
∥∥∥∥L−1 (∇h(x∗)−∇h(xk)

)
+

1

2

(
xk − xk+1

)∥∥∥∥2. (39)

In case L = 0, similar arguments lead to the inequality

1

2
‖xk+1 − x∗‖2

Mk+1
1

+
1

2
‖zk+1 −Ax∗‖2

Mk+1
2 +c Id

+
1

2c
‖yk+1 − y∗‖2 ≤

1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2

− c
2
‖zk −Axk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1
− 1

2
‖zk − zk+1‖2

Mk
2
. (40)
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It is easy to see, by using arguments invoking telescoping sums, that, in both cases, (39) and
(40) yield∑

k≥0
‖zk −Axk+1‖2 < +∞,

∑
k≥0
‖xk − xk+1‖2

Mk
1−

L
2
Id
< +∞,

∑
k≥0
‖zk − zk+1‖2

Mk
2
< +∞. (41)

The case when Assumption (I) is valid.
By neglecting the negative terms from the right-hand side of both (39) and (40), it follows

that the first assumption in Lemma 14 holds, when applied in the product space H×G ×G, for
the sequence (xk, zk, yk)k≥0, for W k := (Mk

1 ,M
k
2 + c Id, c−1 Id) for k ≥ 0, and for S ⊆ H×G×G

the set of saddle points of the Lagrangian l.
From (41) we get

xk − xk+1 → 0 (k → +∞), (42)

since Mk
1 − L

2 Id ∈ Pα1(H) for all k ≥ 0 with α1 > 0, and

zk −Axk+1 → 0 (k → +∞). (43)

A direct consequence of (42) and (43) is

zk − zk+1 → 0 (k → +∞). (44)

From (25), (43) and (44) we derive

yk − yk+1 → 0 (k → +∞). (45)

The relations (42)-(45) will play an essential role in the verification of the second assumption
in Lemma 14. Let (x, z, y) ∈ H×G×G be such that there exists (kn)n≥0, kn → +∞ (as n→ +∞),
and (xkn , zkn , ykn) converges weakly to (x, z, y) (as n→ +∞).

From (42) we obtain that (Axkn+1)n∈N converges weakly to Ax (as n → +∞), which com-
bined with (43) yields z = Ax. We use now the following notations for all n ≥ 0

a∗n := cA∗(zkn −Axkn+1 − c−1ykn) +Mkn
1 (xkn − xkn+1) +∇h(xkn+1)−∇h(xkn)

an := xkn+1

b∗n := ykn+1 +Mkn
2 (zkn − zkn+1)

bn := zkn+1.

From (32) and (37) we have for all n ≥ 0

a∗n ∈ ∂(f + h)(an) (46)

and
b∗n ∈ ∂g(bn). (47)

Furthermore, from (42) we have

an converges weakly to x (as n→ +∞). (48)

From (45) and (44) we obtain

b∗n converges weakly to y (as n→ +∞). (49)
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Moreover, (25) and (45) yield

Aan − bn converges strongly to 0 (as n→ +∞). (50)

Finally, we have

a∗n +A∗b∗n = cA∗(zkn −Axkn+1) +A∗(ykn+1 − ykn) +Mkn
1 (xkn − xkn+1) +A∗Mkn

2 (zkn − zkn+1)

+∇h(xkn+1)−∇h(xkn).

By using the fact that ∇h is Lipschitz continuous, from (42)-(45) we get

a∗n +A∗b∗n converges strongly to 0 (as n→ +∞). (51)

Taking into account the relations (46)-(51) and applying [1, Proposition 2.4] to the operators
∂(f + h) and ∂g, we conclude that

−A∗y ∈ ∂(f + h)(x) = ∂f(x) +∇h(x) and y ∈ ∂g(Ax),

hence (x, z, y) = (x,Ax, y) is a saddle point of the Lagrangian l, thus the second assumption of
the Lemma 14 is verified, too. In conclusion, (xk, zk, yk)k≥0 converges weakly to a saddle point
of the Lagrangian l.

The case when Assumption (II) is valid.
We show that the relations (42)-(45) are fulfilled also in this case. Indeed, Assumption (II)

allows to derive from (41) that (43) and (44) hold. From (25), (43) and (44) we obtain (45).
Finally, the inequalities

α‖xk+1 − xk‖2 ≤‖xk+1 − xk‖2
Mk

1−
L
2
Id

+ ‖Axk+1 −Axk‖2

≤‖xk+1 − xk‖2
Mk

1−
L
2
Id

+ 2‖Axk+1 − zk‖2 + 2‖zk −Axk‖2 ∀k ≥ 0

yield (42).
On the other hand, notice that both (39) and (40) yield

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk − z∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2

)
, (52)

hence (yk)k≥0 and (zk)k≥0 are bounded. Combining this with (25) and the condition imposed on
Mk

1 − L
2 Id +A∗A, we derive that (xk)k≥0 is bounded, too. Hence there exists a weakly convergent

subsequence of (xk, zk, yk)k≥0. By using the same arguments as in the proof of (I), it follows
that every weak sequential cluster point of (xk, zk, yk)k≥0 is a saddle point of the Lagrangian l.

Now we show that the set of weak sequential cluster points of (xk, zk, yk)k≥0 is a single-
ton. Let (x1, z1, y1), (x2, z2, y2) be two such weak sequential cluster points. Then there ex-
ist (kp)p≥0, (kq)q≥0, kp → +∞ (as p → +∞), kq → +∞ (as q → +∞), a subsequence
(xkp , zkp , ykp)p≥0 which converges weakly to (x1, z1, y1) (as p → +∞), and a subsequence
(xkq , zkq , ykq)q≥0 which converges weakly to (x2, z2, y2) (as q → +∞). As seen, (x1, z1, y1)
and (x2, z2, y2) are saddle points of the Lagrangian l and zi = Axi for i ∈ {1, 2}. From (52),
which is true for every saddle point of the Lagrangian l, we derive

∃ lim
k→+∞

(
E(xk, zk, yk;x1, z1, y1)− E(xk, zk, yk;x2, z2, y2)

)
, (53)
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where, for (x∗, z∗, y∗) the expression E(xk, zk, yk;x∗, z∗, y∗) is defined as

E(xk, zk, yk;x∗, z∗, y∗) =
1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk − z∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2.

Further, we have for all k ≥ 0

1

2
‖xk − x1‖2Mk

1
− 1

2
‖xk − x2‖2Mk

1
=

1

2
‖x2 − x1‖2Mk

1
+ 〈xk − x2,Mk

1 (x2 − x1)〉,

1

2
‖zk − z1‖2Mk

2 +c Id
− 1

2
‖zk − z2‖2Mk

2 +c Id
=

1

2
‖z2 − z1‖2Mk

2 +c Id
+ 〈zk − z2, (Mk

2 + c Id)(z2 − z1)〉,

and
1

2c
‖yk − y1‖2 −

1

2c
‖yk − y2‖2 =

1

2c
‖y2 − y1‖2 +

1

c
〈yk − y2, y2 − y1〉.

Applying [27, Théorème 104.1], there exists M1 ∈ S+(H) such that (Mk
1 )k≥0 converges to M1

in the strong operator topology, i.e., ‖Mk
1 x−M1x‖ → 0 for all x ∈ H (as k → +∞). Similarly,

the monotonicity condition imposed on (Mk
2 )k≥0 implies that supk≥0 ‖Mk

2 + c Id ‖ < +∞. Thus,
according to [15, Lemma 2.3], there exists α′ > 0 and M2 ∈ Pα′(G) such that (Mk

2 + c Id)k≥0
converges to M2 in the strong operator topology (as k → +∞).

Taking the limit in (53) along the subsequences (kp)p≥0 and (kq)q≥0 and using the last three
relations above we obtain

1

2
‖x1 − x2‖2M1

+ 〈x1 − x2,M1(x2 − x1)〉+
1

2
‖z1 − z2‖2M2

+ 〈z1 − z2,M2(z2 − z1)〉

+
1

2c
‖y1 − y2‖2 +

1

c
〈y1 − y2, y2 − y1〉 =

1

2
‖x1 − x2‖2M1

+
1

2
‖z1 − z2‖2M2

+
1

2c
‖y1 − y2‖2,

hence

−‖x1 − x2‖2M1
− ‖z1 − z2‖2M2

− 1

c
‖y1 − y2‖2 = 0.

From here we get ‖x1 − x2‖M1 = 0, z1 = z2 and y1 = y2. Since(
α+

L

2

)
‖x1 − x2‖2 ≤ ‖x1 − x2‖2M1

+ ‖Ax1 −Ax2‖2,

we obtain that x1 = x2. In conclusion, (xk, zk, yk)k≥0 converges weakly to a saddle point of the
Lagrangian l.

The case when Assumption (III) is valid.
Under Assumption (III) we can further refine the inequalities in (39) and (40). Let k ≥ 1 be

fixed. By considering the relation (37) for consecutive iterates and by taking into account the
monotonicity of ∂g we derive

〈zk+1 − zk, yk+1 − yk +Mk
2 (zk − zk+1)−Mk−1

2 (zk−1 − zk)〉 ≥ 0,

hence

〈zk+1 − zk, yk+1 − yk〉 ≥ ‖zk+1 − zk‖2
Mk

2
+ 〈zk+1 − zk,Mk−1

2 (zk−1 − zk)〉

≥ ‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

− 1

2
‖zk − zk−1‖2

Mk−1
2

. (54)
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Using that yk+1 − yk = c(Axk+1 − zk+1), the last inequality yields

‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

− 1

2
‖zk − zk−1‖2

Mk−1
2

≤
c

2

(
‖zk −Axk+1‖2 − ‖zk+1 − zk‖2 − ‖Axk+1 − zk+1‖2

)
. (55)

In case L > 0, adding (55) and (39) leads to

1

2
‖xk+1 − x∗‖2

Mk+1
1

+
1

2
‖zk+1 −Ax∗‖2

Mk+1
2 +c Id

+
1

2c
‖yk+1 − y∗‖2 +

1

2
‖zk+1 − zk‖2

3Mk
2−M

k−1
2

≤
1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2 +

1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1−

L
2
Id
− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2

−L
∥∥∥∥L−1 (∇h(x∗)−∇h(xk)

)
+

1

2

(
xk − xk+1

)∥∥∥∥2 .
Taking into account that, according to Assumption (III), 3Mk

2 −M
k−1
2 <Mk

2 , we can conclude
that for all k ≥ 1 it holds

1

2
‖xk+1 − x∗‖2

Mk+1
1

+
1

2
‖zk+1 −Ax∗‖2

Mk+1
2 +c Id

+
1

2c
‖yk+1 − y∗‖2 +

1

2
‖zk+1 − zk‖2

Mk
2
≤

1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2 +

1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1−

L
2
Id
− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2. (56)

Similarly, in case L = 0 we obtain

1

2
‖xk+1 − x∗‖2

Mk+1
1

+
1

2
‖zk+1 −Ax∗‖2

Mk+1
2 +c Id

+
1

2c
‖yk+1 − y∗‖2 +

1

2
‖zk+1 − zk‖2

Mk
2
≤

1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2 +

1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1
− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2. (57)

Using telescoping sum arguments, we obtain that ‖xk+1 − xk‖Mk
1−

L
2
Id → 0, yk − yk+1 → 0 and

zk − zk+1 → 0 as k → +∞. Using (25), it follows that A(xk − xk+1) → 0 as k → +∞, which,
combined with the fact that Mk

1 − L
2 Id +A∗A ∈ Pα(H), for all k ≥ 0, yields xk − xk+1 → 0

as k → +∞. Consequently, zk − Axk+1 → 0 as k → +∞. Hence, the relations (42)-(45) are
fulfilled. On the other hand, from both (56) and (57) we derive

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1

+
1

2
‖zk −Ax∗‖2

Mk
2 +c Id

+
1

2c
‖yk − y∗‖2 +

1

2
‖zk − zk−1‖2

Mk−1
2

)
.

By using that

‖zk − zk−1‖2
Mk−1

2

≤ ‖zk − zk−1‖2M0
2
≤ ‖M0

2 ‖‖zk − zk−1‖2 ∀k ≥ 1,

it follows that limk→+∞ ‖zk − zk−1‖2Mk−1
2

= 0, which further implies that (52) holds. From here

the conclusion follows by arguing as in the proof provided in the setting of Assumption (II). �
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Remark 16 Choosing as in Remark 9, Mk
1 = 1

τk
Id−cA∗A, with τk > 0 and such that τ :=

supk≥0 τk ∈ R, and Mk
2 = 0 for all k ≥ 0, we have〈

x,

(
Mk

1 −
L

2
Id

)
x

〉
≥
(

1

τk
− c‖A‖2 − L

2

)
‖x‖2 ≥

(
1

τ
− c‖A‖2 − L

2

)
‖x‖2 ∀x ∈ H,

which means that under the assumption 1
τ − c‖A‖

2 > L
2 (which recovers the one in Algorithm

3.2 and Theorem 3.1 in [16]), the operators Mk
1 − L

2 Id belong for all k ≥ 0 to the class Pα1(H),
with α1 := 1

τ − c‖A‖
2 − L

2 > 0.

Remark 17 By taking h = 0 and L = 0, and in each iteration constant operators Mk
1 = M1 < 0

and Mk
2 = M2 < 0 for all k ≥ 0, Theorem 15 in the context of Assumption (I) covers the first

situation investigated in [28, Theorem 5.6], where in finite dimensional spaces the matrix M1

was assumed to be positive definite and the matrix M2 to be positive semidefinite.
The arguments used in [28, Theorem 5.6] for proving convergence in the case when M1 = 0

and A has full column rank contain flaws and rely on incorrect statements. Theorem 15 provides
in the context of Assumption (III) (for h = 0, L = 0, Mk

1 = 0 and Mk
2 = M2 < 0 for all k ≥ 0)

the correct proof of this result.
Finally, we notice that the convergence theorem for the iterates of the classical ADMM

algorithm (which corresponds to the situation when h = 0, L = 0, M1 = M2 = 0 and A has full
column rank, see for example [19]) is covered by Theorem 15 in the context of Assumption (III).
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[5] R.I. Boţ, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and
Mathematical Systems, Vol. 637, Springer, Berlin Heidelberg, 2010
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[10] R.I. Boţ, C. Hendrich, A Douglas-Rachford type primal-dual method for solving inclusions
with mixtures of composite and parallel-sum type monotone operators, SIAM Journal on
Optimization 23(4), 2541–2565, 2013

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Foundations and Trends in
Machine Learning 3, 1–12, 2010
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