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Abstract. In this article, we propose a Krasnosel’skǐı-Mann-type algorithm for find-
ing a common fixed point of a countably infinite family of nonexpansive operators
(Tn)n≥0 in Hilbert spaces. We formulate an asymptotic property which the family
(Tn)n≥0 has to fulfill such that the sequence generated by the algorithm converges
strongly to the element in

⋂
n≥0 Fix Tn with minimum norm. Based on this, we derive

a forward-backward algorithm that allows variable step sizes and generates a sequence
of iterates that converge strongly to the zero with minimum norm of the sum of a
maximally monotone operator and a cocoercive one. We demonstrate the superiority
of the forward-backward algorithm with variable step sizes over the one with constant
step size by means of numerical experiments on variational image reconstruction and
split feasibility problems in infinite dimensional Hilbert spaces.
Key Words. fixed points of families of nonexpansive mappings, Tikhonov regulariza-
tion, splitting methods, forward-backward algorithm
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ ·‖ :=
√
〈·, ·〉.

For a given nonexpansive (i.e. 1-Lipschitz continuous) mapping T : H → H, one of
the most prominent iterative methods for finding a fixed point of T is the so-called
Krasnosel’skǐı-Mann algorithm, which reads as (see [1])

xn+1 = xn + λn(Txn − xn) ∀n ≥ 0,

where x0 ∈ H is an arbitrary starting point and (λn)n≥0 is a sequence of nonnegative
real numbers. Under the assumption that the set of fixed points of T is nonempty,
one can show under mild conditions imposed on (λn)n≥0 that the sequence (xn)n≥0
converges weakly to a fixed point of T .

Since the solving of many monotone inclusion and convex optimization problems
can be reduced to the solving of a fixed point problem, there is a huge interest in design-
ing corresponding efficient and stable algorithms. For instance, the forward-backward
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algorithm, for determining a zero of the sum of a set-valued maximally monotone oper-
ator and a single-valued and cocoercive one, and the Douglas-Rachford algorithm, for
determining a zero of the sum of two set-valued maximally monotone operators, can
be embedded in the framework of the Krasnosel’skǐı-Mann algorithm. A shortcoming
which all of the above mentioned algorithms share is that the convergence of the gen-
erated iterates take place only with respect to the weak topology. In order to achieve
strong convergence, one has to assume that the involved operators satisfy a stronger
notion of monotonicity, like strong monotonicity ([1]).

Since, however, many interesting problems to be solved are formulated in infinite
dimensional function spaces, where weak and strong convergence do not coincide, and
do not involve strong monotone operators, there is a strong interest in developing
algorithms, which generate iterates that strongly converge under minimal assumptions.
A variant of the Krasnosel’skǐı-Mann algorithm which overcomes the drawback of weak
convergence has been proposed in [2] and reads as follows:

xn+1 = βnxn + λn(T (βnxn)− βnxn) ∀n ≥ 0, (1.1)

where x0 ∈ H is an arbitrary starting point and (λn)n≥0 and (βn)n≥0 are suitably
chosen sequences of positive numbers. The formulation of the iterative scheme has its
roots in a standard Tikhonov regularization approach. The sequence (βn)n≥0 is called
Tikhonov regularization sequence and has the role to enforce the strong convergence of
(xn)n≥0 to the fixed point of T with minimum norm. The iterative scheme (1.1) was
the starting point for deriving in [2] strongly convergent forward-backward, Douglas-
Rachford as well as primal-dual algorithms for monotone inclusion problems. Tikhonov
regularization techniques has been used also in [3, 4, 5] in order to enforce strong
convergence of numerical algorithms.

In this article we will address the problem of finding a common fixed point of a family
of nonexpansive operators Tn : H → H, for n ≥ 0. We will formulate a Krasnosel’skǐı-
Mann-type algorithm endowed with Tikhonov regularization terms, which evaluates in
the iteration n ≥ 0 the operator Tn. Under the hypothesis that the sequence (Tn)n≥0
fulfils an appropriate asymptotic condition, and provided that the intersection of the
sets of fixed points of (Tn)n≥0 is nonempty, we show that the sequence of generated
iterates converges strongly to the common fixed point with minimum norm of the
mappings (Tn)n≥0. Based on this, we derive a strongly convergent forward-backward
method with variable step sizes for finding the zeros of the sum of a maximally monotone
operator and a cocoercive one. This method is much more flexible than the variant with
constant step size, a fact which we also emphasize by means of numerical experiments
on variational image reconstruction and split feasibility problems in infinite dimensional
Hilbert spaces.

2 A strongly convergent Krasnosel’skǐı-Mann-type algo-
rithm

The symbols ⇀ and → denote weak and strong convergence, respectively. We recall
that a mapping T : H → H is called nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ H. The set of fixed points of T is denoted by Fix T := {x ∈ H : T (x) = x}. For a
nonempty convex and closed set C ⊆ H, the projection operator onto C, PC : H → H,
is defined as PC(x) := argminc∈C ‖x− c‖.

The following result, which is a direct consequence of [5, Lemma 2.5], will play a
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key role in the proof of the main result of this paper, which we formulate and prove
subsequently.

Lemma 2.1. Let (an)n≥0 be a sequence of non-negative real numbers satisfying the
inequality

an+1 ≤ (1− θn)an + θnbn + εn ∀n ≥ 0,

where
(i) 0 ≤ θn ≤ 1 for all n ≥ 0 and

∑
n≥0 θn = +∞;

(ii) lim supn→+∞ bn ≤ 0;
(iii) εn ≥ 0 for all n ≥ 0 and

∑
n≥0 εn < +∞.

Then the sequence (an)n≥0 converges to 0.

Theorem 2.1. Let (Tn)n≥0 be a sequence of nonexpansive operators Tn : H → H, for
n ≥ 0, with S :=

⋂
n≥0 Fix Tn 6= ∅. Consider the iterative scheme

xn+1 = βnxn + λn(Tn(βnxn)− βnxn) ∀n ≥ 0,

with starting point x0 ∈ H and (λn)n≥0, (βn)n≥0 real sequences satisfying the conditions:
(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,

∑
n≥0(1− βn) = +∞ and

∑
n≥1 |βn −

βn−1| < +∞;
(ii) 0 < λn ≤ 1 for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞;

(iii) ∑
n≥1
‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖ < +∞.

Then

‖xn − Tnxn‖ → 0 as n→ +∞.

In addition, if we suppose that the sequence (Tn)n≥0 satisfies the asymptotic condition

for any subsequences (Tnk)k≥0 of (Tn)n≥0 and (xnk)k≥0 of (xn)n≥0

with xnk ⇀ x ∈ H and xnk − Tnkxnk → 0 as k → +∞ it holds x ∈
⋂
n≥0

Fix Tn, (2.1)

then (xn)n≥0 converges strongly to PS(0).

Proof. First, we show that the sequence (xn)n≥0 is bounded. Let x ∈ S. Due to the
nonexpansiveness of Tn, we have for any n ≥ 0

‖xn+1 − x‖ = ‖(1− λn)(βnxn − x) + λn(Tn(βnxn)− Tnx)‖
≤ (1− λn)‖(βnxn − x)‖+ λn‖(Tn(βnxn)− Tnx)‖
≤ ‖βnxn − x‖ = ‖βn(xn − x) + (βn − 1)x‖
≤ βn‖xn − x‖+ (1− βn)‖x‖.

From here it follows that

‖xn − x‖ ≤ max{‖x0 − x‖, ‖x‖} ∀n ≥ 0,

what shows that (xn)n≥0 is bounded. Since Tn is nonexpansive, we also have for any
n ≥ 0

‖Tn(βnxn)− x‖ = ‖Tn(βnxn)− Tnx‖ ≤ ‖βnxn − x‖.
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This shows that the sequence (Tn(βnxn))n≥0 is also bounded.
Next, we prove that

‖xn+1 − xn‖ → 0 as n→ +∞. (2.2)

Indeed, by taking into account that the operators (Tn)n≥0 are nonexpansive, we can
derive for any n ≥ 1 the following estimate

‖xn+1 − xn‖
= ‖(1− λn)βnxn − (1− λn−1)βn−1xn−1 + λnTn(βnxn)− λn−1Tn−1(βn−1xn−1)‖

≤ ‖(1− λn)(βnxn − βn−1xn−1) + (λn−1 − λn)βn−1xn−1‖
+ ‖λn(Tn(βnxn)− Tn−1(βn−1xn−1)) + λnTn−1(βn−1xn−1)− λn−1Tn−1(βn−1xn−1)‖

≤ ‖βnxn − βn−1xn−1‖+ |λn−1 − λn|‖βn−1xn−1‖
+ ‖λn(Tn(βn−1xn−1)− Tn−1(βn−1xn−1)) + (λn − λn−1)Tn−1(βn−1xn−1)‖

≤ ‖βnxn − βn−1xn−1‖+ |λn−1 − λn|
(
‖βn−1xn−1‖+ ‖Tn−1(βn−1xn−1)‖

)
+ λn‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖.

Thanks to the boundedness of the sequences (βnxn)n≥0 and (Tn(βnxn))n≥0, there exists
a constant C2 > 0 such that

‖xn+1 − xn‖ ≤ ‖βnxn − βn−1xn−1‖+ |λn−1 − λn|C2

+ λn‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖ ∀n ≥ 1.

Since (xn)n≥0 is bounded, there exists a constant C1 > 0 such that

‖xn+1 − xn‖ ≤ ‖βn(xn − xn−1) + (βn − βn−1)xn−1‖
+ |λn−1 − λn|C2 + λn‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖
≤ βn‖xn − xn−1‖+ |βn − βn−1|C1

+ |λn−1 − λn|C2 + λn‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖.

Now statement (2.2) is a consequence of Lemma 2.1, by taking for n ≥ 1 the choices
an := ‖xn − xn−1‖, bn := 0, θn := 1− βn and

εn := |βn − βn−1|C1 + |λn−1 − λn|C2 + λn‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖.

Next we prove that

‖xn − Tnxn‖ → 0 as n→ +∞. (2.3)

For any n ≥ 0 we have the following estimate

‖xn − Tnxn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Tnxn‖
= ‖xn+1 − xn‖+ ‖(1− λn)(βnxn − Tnxn) + λn(Tn(βnxn)− Tnxn)‖
≤ ‖xn+1 − xn‖+ (1− λn)‖βnxn − Tnxn‖+ λn‖βnxn − xn‖
≤ ‖xn+1 − xn‖+ (1− λn)‖βnxn − βnTnxn‖

+ (1− λn)‖βnTnxn − Tnxn‖+ λn(1− βn)‖xn‖
= ‖xn+1 − xn‖+ (1− λn)‖xn − Tnxn‖

+ (1− λn)(1− βn)‖Tnxn‖+ λn(1− βn)‖xn‖.
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From here it follows that

λn‖xn − Tnxn‖ ≤ ‖xn+1 − xn‖+ (1− λn)(1− βn)‖Tnxn‖+ λn(1− βn)‖xn‖ ∀n ≥ 0.

Since

‖Tnxn − x‖ = ‖Tnxn − Tnx‖ ≤ ‖xn − x‖ ≤ max{‖x0 − x‖, ‖x‖},

it follows that the sequence (Tnxn)n≥0 is also bounded. Taking into account that
(xn)n≥0 is bounded, (2.2) and the assumptions (i) and (ii), it follows from the last
inequality that (2.3) holds.

In order to prove the last statement of the theorem, we suppose that the sequence
(Tn)n≥0 fulfills the asymptotic condition (2.1). We denote by x̄ := PS(0) the element
in S with minimum norm. Using again that Tn is nonexpansive, we have for any n ≥ 0

‖xn+1 − x̄‖ = ‖(1− λn)(βnxn − x̄) + λn(Tn(βnxn)− Tnx̄)‖
≤ (1− λn)‖βnxn − x̄‖+ λn‖Tn(βnxn)− Tnx̄‖
≤ ‖βnxn − x̄‖.

Hence,

‖xn+1 − x̄‖2 ≤ ‖βnxn − x̄‖2 = ‖βn(xn − x̄) + (βn − 1)x̄‖2

= β2
n‖xn − x̄‖2 + 2βn(1− βn)〈−x̄, xn − x̄〉+ (1− βn)2‖x̄‖2

≤ βn‖xn − x̄‖2 + (1− βn)(2βn〈−x̄, xn − x̄〉+ (1− βn)‖x̄‖2) ∀n ≥ 0.
(2.4)

Next we show that

lim sup
n→+∞

〈−x̄, xn − x̄〉 ≤ 0. (2.5)

Assuming the contrary, there would exist a positive real number l and a subsequence
(xnk)k≥0 such that

〈−x̄, xnk − x̄〉 ≥ l > 0 ∀k ≥ 0.

Due to the boundedness of the sequence (xn)n≥0, we can assume without losing the
generality that (xnk)k≥0 weakly converges to an element y ∈ H. Taking into account
(2.3), it follows from the asymptotic condition (2.1) that y lies in S. On the other
hand, from the variational characterization of the projection we have

l ≤ lim
k→+∞

〈−x̄, xnk − x̄〉 = 〈−x̄, y − x̄〉 ≤ 0,

which leads to a contradiction. This shows that (2.5) holds. Thus

lim sup
n→+∞

(2βn〈−x̄, xn − x̄〉+ (1− βn)‖x̄‖2) ≤ 0.

A direct application of Lemma 2.1 to (2.4), by taking for n ≥ 0 the choices an :=
‖xn − x̄‖2,

bn := 2βn〈−x̄, xn − x̄〉+ (1− βn)‖x̄‖2,

εn := 0 and θn := 1− βn, delivers the desired conclusion.
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Remark 2.1. (i) The asymptotic condition (2.1) was introduced in [7] and used in the
convergence analysis of inertial Krasnosel’skǐı-Mann algorithms designed for finding a
common fixed point of a countably infinite family of nonexpansive operators.

(ii) In the particular case when Tn = T for any n ≥ 0, where T : H → H is
a nonexpansive operator, the asymptotic condition (2.1) becomes the so-called demi-
closedness principle, which is known to hold for any nonexpansive operator (see [1,
Corollary 4.18]). In this setting, Theorem 2.1 reduces to Theorem 3 in [2].

(iii) The assumptions imposed on the sequence (λn)n≥0 are met by every monotoni-
cally increasing or decreasing (and hence convergent) sequence with a positive limit. For
the Tikhonov regularization sequence (βn)n≥0 one can choose, for instance, β0 ∈ (0, 1

2)
and βn = 1− 1

1+n for any n ≥ 1.

The following result is a consequence of Theorem 2.1 and addresses the problem of
finding a common fixed point of a countably infinite family of averaged operators. It will
play a determinant role in the convergence analysis of the forward-backward method
with variable step sizes which we propose in the next section. We recall that a mapping
T : H → H is called firmly nonexpansive, if ‖Tx − Ty‖2 + ‖(Id−T )x − (Id−T )y‖2 ≤
‖x−y‖2 for all x, y ∈ H. Every firmly nonexpansive mapping is also nonexpansive. Let
α ∈ (0, 1) be fixed. We say that R : H → H is an α-averaged operator, if there exists
a nonexpansive operator T : H → H such that R = (1 − α) Id +αT . Here, Id denotes
the identity operator on H.

Corollary 2.1. Let (Rn)n≥0 be a sequence of αn-averaged operators Rn : H → H with
S :=

⋂
n≥0 FixRn 6= ∅ and (αn)n≥0 ⊆ (0, 1) fulfilling the conditions

lim inf
n→+∞

αn > 0 and
∑
n≥1

∣∣∣∣ 1
αn
− 1
αn−1

∣∣∣∣ < +∞. (2.6)

Consider the iterative scheme

xn+1 = βnxn + λn(Rn(βnxn)− βnxn) ∀n ≥ 0, (2.7)

with starting point x0 ∈ H and (λn)n≥0, (βn)n≥0 real sequences satisfying the conditions:
(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,

∑
n≥0(1− βn) = +∞ and

∑
n≥1 |βn −

βn−1| < +∞;
(ii) 0 < λn ≤ 1

αn
for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞;

(iii) ∑
n≥1
‖Rn(βn−1xn−1)−Rn−1(βn−1xn−1)‖ < +∞.

Then

‖xn −Rnxn‖ → 0 as n→ +∞.

In addition, if we suppose that the sequence (Rn)n≥0 satisfies the asymptotic condition

for any subsequences (Rnk)k≥0 of (Rn)n≥0 and (xnk)k≥0 of (xn)n≥0,

with xnk ⇀ x ∈ H and xnk −Rnkxnk → 0 as k → +∞ it holds x ∈
⋂
n≥0

FixRn, (2.8)

then (xn)n≥0 converges strongly to PS(0).
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Proof. Fix n ≥ 0. Let Tn : H → H be the nonexpansive operator such that Rn =
(1− αn) Id +αnTn. The iterative scheme in (2.7) can be rewritten as

xn+1 = βnxn + αnλn(Tn(βnxn)− βnxn) ∀n ≥ 0.

We have Tn = 1
αn
Rn +

(
1− 1

αn

)
Id and therefore

‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖

≤ 1
αn
‖Rn(βn−1xn−1)−Rn−1(βn−1xn−1)‖+

∣∣∣∣ 1
αn
− 1
αn−1

∣∣∣∣ ‖Rn−1(βn−1xn−1)‖

+
∣∣∣∣ 1
αn
− 1
αn−1

∣∣∣∣ ‖βn−1xn−1‖.

From the proof of Theorem 2.1 it follows that the sequences (Rn(βnxn))n≥0 and (βnxn)n≥0
are bounded. Combining this with (2.6) and assumption (iii), it follows that∑

n≥1
‖Tn(βn−1xn−1)− Tn−1(βn−1xn−1)‖ < +∞.

Finally, since Fix Tn = FixRn,

‖xn − Tnxn‖ = 1
αn
‖xn −Rnxn‖,

and lim infn→+∞ αn > 0, it is easy to see that, if (Rn)n≥0 satisfies the asymptotic
condition (2.8), then (Tn)n≥0 satisfies the asymptotic condition (2.1). The conclusion
follows by applying Theorem 2.1.

3 A strongly convergent forward-backward algorithm with
variable step sizes

Based on the general scheme proposed in Theorem 2.1, we will formulate in this section
a strongly convergent forward-backward algorithm with variable step sizes for solving
the monotone inclusion problem

find x ∈ H such that 0 ∈ Ax+Bx, (3.1)

where A : H ⇒ H is a maximally monotone operator and B : H → H is a cocoercive
operator.

Having a set-valued operator A : H ⇒ H, we denote by zerA := {x ∈ H : 0 ∈ Ax}
its set of zeros, by GrA := {(x, u) ∈ H ×H : u ∈ Ax} its graph and by A−1 : H ⇒ H
the inverse operator of A, which is the operator having as graph GrA−1 := {(x, u) ∈
H × H : x ∈ Au}. The operator A is said to be monotone, if 〈x − y, u − v〉 ≥ 0 for
all (x, u), (y, v) ∈ GrA, and maximally monotone, if it is monotone and there exists
no proper monotone extension of the graph of A on H × H. The resolvent of A,
JA : H → H, is defined by

JA := (Id +A)−1.

If A is maximally monotone, then JA : H → H is single-valued, maximally monotone
and firmly nonexpansive (see [1, Proposition 23.7 and Corollary 23.10]). Further, we
denote by RA : H → H, RA := 2JA − Id, the reflected resolvent of A.
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We recall that, if f : H → R∪ {+∞} is a proper, convex and lower semicontinuous
function, then the (convex) subdifferential ∂f : H⇒ H of f ,

∂f(x) := {p ∈ H : f(y)− f(x) ≥ 〈p, y − x〉 ∀y ∈ H},

for x ∈ H with f(x) 6= +∞ and as ∂f(x) = ∅, otherwise, is a maximally monotone
operator (see [8]). Its resolvent is given by J∂f = proxf (see [1]), where

proxf : H → H, proxf (x) = argminy∈H
{
f(y) + 1

2‖y − x‖
2
}
,

denotes the proximal operator of f . For a nonempty closed and convex set C ⊆ H, one
has that PC = proxδC , where

δC(x) =

 0, x ∈ C

+∞, x 6∈ C
,

denotes the indicator function of C.
A single-valued operator B : H → H is called β-cocoercive, for β > 0, if 〈x−y,Bx−

By〉 ≥ β‖Bx − By‖2 for all x, y ∈ H. According to the Baillon-Haddad Theorem, if
g : H → R is a convex and Fréchet differentiable function with 1

β -Lipschitz gradient,
then ∇g : H → H is a β-cocoercive operator.

The strongly convergent forward-backward algorithm with variable step sizes for
solving (3.1) that we propose in this section will be formulated as a particular case of
(2.7) for Rn = JγnA ◦ (Id−γnB), for n ≥ 0, where infn≥0 γn > 0. To this end we will
prove that (Rn)n≥0 fulfills the asymptotic condition (2.8) (see [9, Corollary 17]). The
proof relies on the following lemma, which is a special instance of [1, Corollary 25.5].

Lemma 3.1. Let A,B : H⇒ H be maximally monotone operators, and (xn, un)n≥0 ∈
GrA, (yn, vn)n≥0 ∈ GrB such that xn ⇀ x, yn ⇀ y, un ⇀ u, vn ⇀ v, un + vn → 0,
xn − yn → 0 as n→ +∞. Then x = y ∈ zer(A+B), (x, u) ∈ GrA and (y, v) ∈ GrB.

Proposition 3.1. Let A : H⇒ H be maximally monotone, B : H → H be β-cocoercive,
for β > 0, and infn≥0 γn > 0. Suppose that zer(A+B) 6= ∅, and set

Rn := JγnA ◦ (Id−γnB) ∀n ≥ 0.

Then (Rn)n≥0 fulfils the asymptotic condition (2.8).

Proof. By [1, Proposition 25.1(iv)] we have FixRn = zer(A+B), hence
⋂
n≥0 FixRn =

zer(A+B).
Let (xn)n≥0 be the sequence generated by the iterative scheme (2.7). Further, let

(xnk)k≥0 be a subsequence of (xn)n≥0 such that xnk ⇀ x ∈ H and xnk − Rnkxnk → 0
as k → +∞. We set yk := Rnkxnk for any k ≥ 0. It holds xnk − yk → 0, therefore
yk ⇀ x as k → +∞. Since

xnk − yk ∈ (Id +γnkA)yk + γnkBxnk − yk = γnk(Ayk +Bxnk) ∀k ≥ 0,

it follows that for any k ≥ 0 there exist (xnk , uk) ∈ GrB, (yk, vk) ∈ GrA such that

γnk(vk + uk) = xnk − yk → 0 as k → +∞.

Since infn≥0 γn > 0, we obtain vk + uk → 0 as k → +∞.
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On the other hand, since B is β-cocoercive, we have ‖Bxnk‖ ≤ β−1‖xnk‖ + ‖B0‖
for any k ≥ 0. Further, as (xnk)k≥0 is weakly convergent, the uniform boundedness
principle implies that (xnk)k≥0 is bounded, hence (Bxnk)k≥0 is also bounded. Con-
sequently, there exists a convergent subsequence (Bxnkl )l≥0 of (Bxnk)k≥0 such that
Bxnkl = ukl ⇀ u as l → +∞. Since vk + uk → 0 as k → +∞ it follows that vkl ⇀ −u
as l→ +∞.

Finally, Lemma 3.1 applied to the sequences (xnkl )l≥0, (ykl)l≥0, (ukl)l≥0 and (vkl)l≥0
gives x = y ∈ zer(A+B).

The following lemma will be useful in the proof of the main result of this section.

Lemma 3.2. Let A : H ⇒ H be a maximally monotone operator and (γn)n≥0 ⊆
(0,+∞). Then for any x ∈ H and any n,m ≥ 0 we have

‖JγnA(x− γnBx)− JγmA(x− γmBx)‖ ≤
∣∣∣∣1− γm

γn

∣∣∣∣ ‖JγnA(x− γnBx)− x‖ .

Proof. Let x ∈ H and n,m ≥ 0. According to [1, Proposition 23.28(i)], we have that

JγnAx = JγmA

(
γm
γn
x+

(
1− γm

γn

)
JγnAx

)
.

Further, using the nonexpansivity of the resolvent JγmA, we get

‖JγnA(x− γnBx)− JγmA(x− γmBx)‖

≤
∥∥∥∥γmγn (x− γnBx) +

(
1− γm

γn

)
JγnA(x− γnBx)− (x− γmBx)

∥∥∥∥
=
∥∥∥∥γmγn x+

(
1− γm

γn

)
JγnA(x− γnBx)− x

∥∥∥∥
=
∣∣∣∣1− γm

γn

∣∣∣∣ ‖JγnA(x− γnBx)− x‖ .

Theorem 3.1. Let A : H ⇒ H be a maximally monotone operator and B : H → H
a β-cocoercive operator, for β > 0, such that zer(A + B) 6= ∅. Consider the iterative
scheme

xn+1 = (1− λn)βnxn + λnJγnA(βnxn − γnB(βnxn)) ∀n ≥ 0, (3.2)

with starting point x0 ∈ H and (λn)n≥0, (βn)n≥0 and (γn)n≥0 real sequences satisfying
the conditions:
(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,

∑
n≥0(1− βn) = +∞ and

∑
n≥1 |βn −

βn−1| < +∞.
(ii) 0 < λn ≤ 4β−γn

2β for any n ≥ 0, lim infn→+∞ λn > 0 and
∑
n≥1 |λn − λn−1| < +∞.

(iii) 0 < γn < 2β for any n ≥ 0, lim infn→+∞ γn > 0, and
∑
n≥1 |γn − γn−1| < +∞.

Then (xn)n≥0 converges strongly to Pzer(A+B)(0).

Proof. The iterative scheme in (3.2) can be rewritten as

xn+1 = βnxn + λn(Rn(βnxn)− βnxn) ∀n ≥ 0,

for Rn := JγnA ◦ (Id−γnB). For any n ≥ 0 we have that FixRn = zer(A+B) (see [1,
Proposition 25.1]), thus

⋂
n≥0 FixRn = zer(A+B) 6= ∅.
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We set αn := 2β
4β−γn for any n ≥ 0. According to (iii) we have that lim infn→+∞ αn >

0 and∑
n≥1

∣∣∣∣ 1
αn
− 1
αn−1

∣∣∣∣ =
∑
n≥1

∣∣∣∣4β − γn2β − 4β − γn−1
2β

∣∣∣∣ = 1
2β

∑
n≥1
|γn − γn−1| < +∞,

hence (2.6) holds.
Thanks to Lemma 3.2, we have that for any n ≥ 1

‖Rn(βn−1xn−1)−Rn−1(βn−1xn−1)‖ ≤
∣∣∣∣1− γn−1

γn

∣∣∣∣ ‖Rn(βn−1xn−1)− βn−1xn−1‖ .

We have seen in the proof of Corollary 2.1 that (βnxn)n≥0 and (Tn(βn−1xn−1))n≥1 are
bounded, too. By (iii) it follows that

∑
n≥0

∣∣∣1− γn−1
γn

∣∣∣ < +∞ and we can conclude that∑
n≥1
‖Rn(βn−1xn−1)−Rn−1(βn−1xn−1)‖ < +∞,

which means that the conditions (i)-(iii) in Corollary 2.1 are fulfilled.
By Proposition 3.1 it follows that the sequence (Rn)n≥0 fulfils condition (2.8). All

assumptions in Corollary 2.1 are fulfilled, which leads to the desired conclusion.

Remark 3.1. (i) Let f : H → (−∞,+∞] be a proper, convex and lower-semicontinuous
function and g : H → R a convex and Fréchet differentiable function with 1

β -Lipschitz
continuous gradient, for β > 0, such that argmin(f + g) 6= ∅. The iterative scheme

xn+1 = (1− λn)βnxn + λn proxγnf (βnxn − γn∇g(βnxn)) ∀n ≥ 0, (3.3)

with starting point x0 ∈ H and (λn)n≥0, (βn)n≥0 and (γn)n≥0 real sequences satisfying
the conditions (i)-(iii) in Theorem 3.1 generates a sequence (xn)n≥0 which converges
strongly to Pargmin(f+g)(0).

(ii) Based on Theorem 3.1, one can derive strongly convergent primal-dual split-
ting algorithms with variable step sizes ([10, 11, 12, 13, 14, 15]) of forward-backward
type. These methods are known for their high efficency when solving highly struc-
tured monotone inclusion problems involving mixtures of linearly composed maximally
monotone operators and parallel sums of maximally monotone operators. The deriva-
tion of strongly convergent primal-dual splitting methods with variable step sizes of
forward-backward type can be done in an analogous way as in [2, Section 5.1].

(iii) For A,B : H ⇒ H two maximally monotone operators, the classical Douglas-
Rachford algorithm operates according to the iterative scheme

(∀n ≥ 0)


yn = JγBxn

zn = JγA(2yn − xn)

xn+1 = xn + λn(zn − yn)

,

with starting point x0 ∈ H. Under mild conditions imposed on the sequence (λn)n≥0
and under the assumption that zer(A+B) 6= ∅, there exists an element x ∈ FixRγARγB
such that the sequence (xn)n≥0 converges weakly to x and (yn)n≥0, and (zn)n≥0 con-
verge weakly to JγB (see [1, Theorem 25.6]). One can design a strongly convergent
Douglas-Rachford algorithm with variable step sizes from the setting of Theorem 2.1,
by considering Tn : H → H, Tn := RγnA ◦ RγnB for n ≥ 0. However, it is not clear
if the family of operators (Tn)n≥0 satisfies the asymptotical condition (2.1). On the
other hand, for a constant step size, i.e. γn = γ for any n ≥ 0 and some γ ∈ (0, 2β), a
strongly convergent Douglas-Rachford method can be found in [2].
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4 Numerical experiments

The numerical experiments presented in this section were implemented in Mathematica
on a 4 × Intel R© CoreTM i5-4670S CPU @ 3.10 GHz computer with 8GB of RAM.
It is worth to mention that the implementations were carried out by only using the
symbolic computation packages of Mathematica. In other words, no discretization was
performed. By doing so, we could fully exploit the spirit of the Tikhonov regularization
technique which is employed in the algorithms we propose in this paper.

4.1 A variational minimization problem

For the first numerical experiment we considered an optimization problem which occurs
in variational image reconstruction in infinite dimensional Hilbert spaces. For more
details concerning this topic, we refer the reader to [16] and the references therein.
Let Ω ⊂ Rn, n ≥ 1, be a domain, H := L2(Ω) :=

{
u : Ω→ R :

∫
Ω |u(x)|2dx < +∞

}
be equipped with the scalar product 〈u, v〉 :=

∫
Ω u(x)v(x)dx and the associated norm

‖u‖ :=
(∫

Ω |u(x)|2dx
)1/2 for all u, v ∈ L2(Ω). The optimization problem we solved has

the following formulation

min
u∈H

{
λ

2

∫
Ω

((Ku)(x)− b(x))2dx+ 1
2

∫
Ω
F (x, u(x))dx

}
, (4.1)

where λ > 0, b ∈ L2(Ω),

K : H → H, (Ku)(x) :=
∫

Ω
k(x, y)u(y)dy,

with k ∈ L2(Ω × Ω), and F : Ω × H → R a measurable function. The parameter λ
controls the trade-off between a good fit of u and a smoothness requirement due to the
regularization term, while the integral operator K models the deblurring of the original
image u. The linear operator K is bounded with ‖K‖ ≤ ‖k‖L2(Ω×Ω) and its adjoint
operator K∗ : H → H is given by (K∗u)(x) :=

∫
Ω k(y, x)u(y)dy for any x ∈ Ω (see, for

instance, [6, Chapter 1]).
For our numerical example, we considered Ω := (0, 1), F := u2 and

k(x, y) :=

 1, y ≤ x

0, y > x
.

For this choice, K is the so-called Volterra operator given by

(Ku)(x) =
∫ x

0
u(y) dy.

We have that

‖K‖2 ≤ ‖k‖2L2((0,1)×(0,1)) =
∫ 1

0

∫ 1

0
k(x, y)2dx dy =

∫ 1

0

∫ 1

y
1 dx dy =

∫ 1

0
(1− y) dy = 1

2 ,

while the adjoint operator of K is given by

K∗ : H → H, (K∗u)(x) =
∫ 1

x
u(y) dy.
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In this setting, problem (4.1) becomes

min
u∈H

{
λ

2

∫
Ω

((Ku)(x)− b(x))2dx+ 1
2

∫
(0,1)

u2(x)dx,
}
,

Since both operator summands are differentiable with Lipschitz continuous gradient,
we had the options: (1) to use the iterative scheme (3.3) as a gradient method (i.e. f is
identical zero and g is the function in the objective); (2) to divide the objective into two
parts and evaluate one of the two smooth functions via its proximal operator, hence,
end up with a proximal-gradient scheme. We pursued both approaches, by taking also
into account [17], which suggests that the evaluation of a smooth objective activated
via its proximal operator may be advantageous in terms of computational performance
compared to evaluating the whole objective through its gradient.

When choosing f identical zero and g(u) = λ
2
∫

Ω((Ku)(x)−b(x))2dx+1
2
∫

(0,1) u
2(x)dx,

the gradient of g reads

∇g(u) = λK∗(Ku− b) + u ∀u ∈ H.

For u1, u2 ∈ H it holds

‖∇g(u1)−∇g(u2)‖ = ‖λK∗K(u1 − u2) + (u1 − u2)‖ ≤
(
λ‖K‖2 + 1

)
‖u1 − u2‖

≤
(
λ

4 + 1
)
‖u1 − u2‖,

thus ∇g is
(
λ
4 + 1

)
-Lipschitz continuous.

In this setting, the iterative scheme (3.3) reads

un+1 = βnun − γn[λK∗(K(βnun)− b) + βnun] ∀n ≥ 0, (4.2)

with starting point u0 ∈ L2((0, 1)) and (βn)n≥0 ⊆ (0, 1], (λn)n≥0 ⊆ (0, 2− γn(λ+ 4)/8]
and (γn)n≥0 ⊆ (0, 8/(λ + 4)) are real sequences fulfilling the assumptions (i), (ii) and
(iii), respectively, in Theorem 3.1. In Table 2 we report some numerical results obtained
when running the iterative scheme (4.2) for different starting points.

When choosing f(u) = 1
2
∫
(0,1) u

2(x)dx and g(u) = λ
2
∫

Ω((Ku)(x) − b(x))2dx, the
gradient of g reads

∇g(u) = λK∗(Ku− b) ∀u ∈ H,

while the proximal operator of f is given by

proxγf (u) = u

1 + γ
,

where γ > 0. For u1, u2 ∈ H it holds

‖∇g(u1)−∇g(u2)‖ = ‖λK∗K(u1 − u2)‖ ≤ λ‖K‖2‖u1 − u2‖ ≤
λ

4 ‖u1 − u2‖,

hence ∇g is λ
4 -Lipschitz continuous. In this setting, the iterative scheme (3.3) reads

un+1 = (1− λn)βnun + λn
1 + γn

[βnun − γnλK∗(Kun − f)(βnun)] ∀n ≥ 0, (4.3)

with starting point u0 ∈ L2((0, 1)) and (βn)n≥0 ⊆ (0, 1], (λn)n≥0 ⊆ (0, 2 − γnλ/8],
and (γn)n≥0 ⊆ (0, 8λ) are real sequences fulfilling the assumptions (i), (ii) and (iii),
respectively, in Theorem 3.1. In Table 1 we report some numerical results obtained
when running the iterative scheme (4.3) for different starting points.
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u0 f γ = 1.3 γn = 1.3− 0.1 · (−1)n

Number of it. CPU time in sec. Number of it. CPU time in sec.

x2/10 x 13 4.09281 - > 600

2x/16 x 13 248.686 - > 600

sin(x) x 7 12.9818 - > 600

cos(x) x 12 10.2537 - > 600

x2/10 x2 13 24.5828 - > 600

2x/16 x2 11 25.3676 - > 600

sin(x) x2 9 18.5916 - > 600

cos(x) x2 14 89.7744 - > 600

x2/10 sin(x) 13 16.3641 - > 600

2x/16 sin(x) 12 30.4143 - > 600

sin(x) sin(x) 5 8.41192 - > 600

cos(x) sin(x) 14 17.4393 - > 600

Table 1: Numerical performances of the Tikhonov regularized gradient method with
constant and variable step sizes and different starting points u0.

u0 f γ = 1.3 γn = 1.3− 0.1 · (−1)n

Number of it. CPU time in sec. Number of it. CPU time in sec.

x2/10 x 11 1.333 7 0.291091

2x/16 x 11 25.5198 7 13.7977

sin(x) x 11 25.3024 7 12.8907

cos(x) x 11 7.72126 7 2.83167

x2/10 x2 10 12.9192 7 5.38062

2x/16 x2 10 22.3199 7 13.649

sin(x) x2 10 21.8628 7 13.3971

cos(x) x2 10 20.5305 7 12.5219

x2/10 sin(x) 11 9.79028 7 3.4632

2x/16 sin(x) 11 27.1717 7 14.137

sin(x) sin(x) 11 27.5599 7 13.958

cos(x) sin(x) 11 6.65283 7 2.18238

Table 2: Numerical performances of the Tikhonov regularized proximal-gradient method
with constant and variable step sizes and different starting points u0.
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Interpretation. In the numerical experiments we carried out for both approaches
described above we considered as regularization parameter λ := 1, as Tikhonov regu-
larization sequence β0 := 1

4 , βn := 1 − 1
1+n for n ≥ 1, and the constant sequence of

relaxation parameters λn = 0.9 for any n ≥ 0. As stopping criterion we used for both
iterative schemes ‖un+1 − un‖ ≤ 10−4.

Table 1 shows that the Tikhonov regularized gradient method with constant step
sizes do not reach the demanded accuracy in a reasonable period of time (in our case 600
sec.), while the variant with variable step size does. Table 2 shows that the Tikhonov
regularized proximal-gradient method with variable step sizes outperforms both the
variant with constant step size as well as the Tikhonov regularized gradient method
(4.2) from the point of view of the number of iterations and of the CPU time.

4.2 A split feasibility problem

Let H and G be real Hilbert spaces and L : H → G a bounded linear operator. Let
C and Q be nonempty, cconvex and closed subsets of H and G, respectively. The split
feasibility problem (SFP) searches for a point with the property

x ∈ C and Lx ∈ Q. (4.4)

It was originally introduced by Censor and Elfving [18] for solving inverse problems in
the context of phase retrieval, medical image reconstruction and intensity modulated
radiation therapy.

We will use the strongly convergent proximal-gradient algorithm stated in (3.3)
for solving the (SFP). For this purpose, we note that, provided it has a solution, the
problem (4.4) can be equivalently written as

min
x∈H

{
δC(x) + 1

2‖Lx− PQ(Lx)‖2
}
. (4.5)

We choose in the framework of Remark 3.1 (i) f = δC and g(x) = 1
2‖Lx − PQ(Lx)‖2.

The function g is Fréchet differentiable with gradient ∇g = L∗ ◦ (Id−PQ) ◦ L and it
holds for x1, x2 ∈ H

‖∇g(x1)−∇g(x2)‖ ≤ ‖L‖2‖x1 − x2‖

hence ∇g is Lipschitz continuous with constant ‖L‖2. The iterative scheme in (3.3)
applied to problem (4.5) reads

(∀n ≥ 0)

 vn = (L∗ ◦ (Id−PQ) ◦ L)(βnxn)

xn+1 = (1− λn)βnxn + λnPC(βnxn − γnvn).
(4.6)

For the numerical experiments we considered

H = G = L2([0, 2π]) :=
{
f : [0, 2π]→ R :

∫ 2π

0
|f(s)|2ds < +∞

}
equipped with the scalar product 〈f, g〉 :=

∫ 2π
0 f(s)g(s)ds and the associated norm

‖f‖ :=
(∫ 2π

0 |f(s)|2ds
)1/2

for all f, g ∈ L2([0, 2π]), and the nonempty, convex and
closed sets

C :=
{
x ∈ L2([0, 2π]) :

∫ 2π

0
x(s)ds ≤ 1

}
,
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and

Q := R+v, with v(t) := t2.

Further, we considered the bounded self-adjoint linear operator L : L2([0, 2π]) →
L2([0, 2π])

(Lx)(t) := 3t
8π3

∫ 2π

0
s · x(s) ds.

For the norm of L we have the following estimate

‖L‖2 ≤ 9
64π6

∫ 2π

0

∫ 2π

0
(s · t)2 ds dt = 1.

The projection onto the set C and can be calculated for any x ∈ H as ([1, Exam-
ple 28.16])

PC(x) =


1−
∫ 2π

0 x(s)ds
2π + x, if

∫ 2π
0 x(s)ds > 1,

x, else
.

On the other hand PQ is given for any x ∈ H by ([1, Example 28.24])

(PQ(x))(t) =


5
∫ 2π

0 s2·x(s)ds
32π5 · t2, if

∫ 2π
0 s2 · x(s)ds > 0

0, else
.

Note that, since x = 0 is a solution to the (SFP), we have C ∩ L−1(Q) 6= ∅.

x0 γn = 0.5 γn = 1− 0.5
1+n

Number of it. CPU time in sec. Number of it. CPU time in sec.

t 8 0.292133 6 0.197763

t2 12 1.74567 8 0.3915235

t3 17 842.058 10 0.655565

sin(t) 3 0.473435 2 0.28365

cos(t) 1 0.050345 1 0.050911

exp(t) 19 836.925 11 2.90818

log(t) 5 16.0949 4 12.8893
√
t 6 2.72155 5 2.24045

Table 3: Numerical performances of the iterative scheme (4.6) with constant and vari-
able step sizes, different stating points and the constant sequence of relaxation param-
eters λn = 0.4 for any n ≥ 0.
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x0 γn = 0.5 γn = 1− 0.5
1+n

Number of it. CPU time in sec. Number of it. CPU time in sec.

t 4 0.123398 3 0.088829

t2 6 0.251096 4 0.158801

t3 9 0.481185 5 0.204154

sin(t) 4 0.561261 3 0.412813

cos(t) 1 0.048766 1 0.048814

exp(t) 10 2.14205 6 1.11041

log(t) 3 10.0328 3 10.2823
√
t 3 1.4994 3 1.49998

Table 4: Numerical performances of the iterative scheme (4.6) with constant and
variable step sizes, different stating points and the sequence of relaxation parameters
λn = 1

2 + 1
2+n for any n ≥ 0.

Interpretation. We implemented the iterative scheme (4.6) in Mathematica using
symbolic computation. We considered as Tikhonov regularization sequence β0 := 1

4 ,
βn := 1− 1

1+n for n ≥ 1 and different choices for the sequences of relaxation variables
and for the step sizes. As stopping criterion we used

1
2 ||PC(xn)− xn||2 + 1

2 ||PQ(Lxn)− Lxn||2 ≤ 10−3.

In Table 3 and Table 4 we compare the numerical performances of (4.6) with constant
and variable step sizes for different starting points and for two different settings of
relaxation variables. One can notice that, in both settings, the variant of the iterative
scheme (4.6) with variable step sizes outperforms the one with constant step sizes from
the point of view of the number of iterations and of the CPU time.

5 Conclusions

The problem of finding a common fixed point of a countably infinite family of operators
is of particular importance sine it covers many monotone inclusion and optimization
problems that appear in applications and it provides an unifying setting for algorithms
with variables step sizes and regularization parameters. We propose in this paper an
algorithm which, by making use of Tikhonov regularization techniques, generates a
sequence that converges strongly to such a common fixed point of minimum norm.
We also show that, when applied to the problem of finding the zeros of the sum of
a maximally monotone operator and a cocoercive operator, its convergence properties
are inherited by the resulting forward-backward algorithm with variable step sizes and
illustrate this by numerical examples. An interesting question of future research is
to investigate to what extent the algorithm can be applied the solving of monotone
inclusion problems of other type, of course, without losing its convergence properties.
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