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Abstract

In this work, we approach the minimization of a continuously differentiable convex func-
tion under linear equality constraints by a second-order dynamical system with asymptot-
ically vanishing damping term. The system is formulated in terms of the augmented La-
grangian associated to the minimization problem. We show fast convergence of the primal-
dual gap, the feasibility measure, and the objective function value along the generated
trajectories. In case the objective function has Lipschitz continuous gradient, we show that
the primal-dual trajectory asymptotically weakly converges to a primal-dual optimal solu-
tion of the underlying minimization problem. To the best of our knowledge, this is the first
result which guarantees the convergence of the trajectory generated by a primal-dual dy-
namical system with asymptotic vanishing damping. Moreover, we will rediscover in case of
the unconstrained minimization of a convex differentiable function with Lipschitz continu-
ous gradient all convergence statements obtained in the literature for Nesterov’s accelerated
gradient method.
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1 Introduction

1.1 Problem statement and motivation

In this paper we will deal with the optimization problem

min f pxq ,
subject to Ax “ b

(1.1)

where
$

’

’

’

’

&

’

’

’

’

%

X ,Y are real Hilbert spaces;

f : X Ñ R is a continuously differentiable convex function;

A : X Ñ Y is a continuous linear operator and b P Y;

the set S of primal-dual optimal solutions of (1.1) is assumed to be nonempty.

(1.2)
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Problems of type (1.1) underlie many important applications in various areas, such as image
recovery [36], machine learning [32, 39], the energy dispatch of power grids [54, 55], distributed
optimization [40, 57] and network optimization [51, 56].

The object of our investigations will be a second-order dynamical system with asymptotic
vanishing damping term associated with the optimization problem (1.1) and formulated in
terms of its augmented Lagrangian. Our main aim is to study the asymptotic behaviour of
the generated trajectories to a primal-dual optimal solution as well as to derive fast rates of
convergence for the primal-dual gap, the feasibility measure, and the objective function value
along these.

The interplay between continuous-time dissipative dynamical systems and numerical algo-
rithms for solving optimization problems has been subject of an intense research activity. It
is well-known for unconstrained optimization problems that damped inertial dynamics are a
natural way to accelerate these systems. In line with the seminal work of Polyak on the heavy
ball method with friction [47, 46], the first studies by Alvarez and Attouch focused on inertial
dynamics with fixed viscous damping coefficient [2, 3, 17]. A decisive step was taken by Su,
Boyd and Candès in [53], where, for the minimization of a continuously differentiable convex
function f : X Ñ R, the following inertial dynamics with an asymptotically vanishing damping
coefficient has been considered

:x ptq `
α

t
9x ptq `∇f px ptqq “ 0. (AVD)

The terminology asymptotic vanishing damping (AVD) refers to the specific characteristic of the

damping coefficient
α

t
to vanish in a controlled manner, neither too fast nor too slowly, as t goes

to infinity. In particular, in the case α “ 3, this dynamical system can be seen as the continuous
limit of Nesterov’s accelerated gradient algorithm [42, 43, 24]. In the last years, the community
paid a lot of attention to the topic of inertial dynamics [7, 9, 12, 13, 20, 26, 29, 30, 38, 41], as
well as of their discrete counterparts [4, 8, 10, 18, 22, 34], to name only a few.

The augmented Lagrangian Method (ALM) [49] (for linearly constrained problems), the
Alternating Direction Method of Multipliers (ADMM) [35, 32] (for problems with separable
objectives and block variables linearly coupled in the constraints) and some of their variants
have proved to be very suitable when solving large-scale structured convex optimization prob-
lems. Since the primal-dual systems of optimality conditions to be solved can be equivalently
formulated as monotone inclusion problems, see [48, 49, 50], the above-mentioned methods are
intimately linked with numerical algorithms designed to find a zero of a maximally monotone
operator. This close connection has been used in recent works addressing the acceleration of
ADMM/ALM methods via inertial dynamics. In [27], for instance, an inertial ADMM numer-
ical algorithm has been proposed originating in the inertial version of the Douglas-Rachford
splitting method for monotone inclusion problems introduced in [28]. Recently, Attouch has
proposed in [5] an inertial proximal ADMM algorithm, relying on the general scheme from [19]
designed to solve general monotone inclusions and in lines with [21], and investigated its fast
convergence properties for certain combinations of the viscosity and the proximal parameters.
However, the inertial proximal ADMM algorithm fails to be a full splitting method.

Continuous-time approaches for structured convex minimization problems formulated in the
spirit of the full splitting paradigm have been recently addressed in [31] and, closely connected
to our approach, in [56, 37, 11], to which we will have a closer look in Subsection 2.3.

1.2 Our contributions

For a primal-dual dynamical system with asymptotically vanishing damping term associated to
the augmented Lagrangian formulation of (1.1) we will show fast convergence for the primal-dual
gap, the feasibility measure, and the objective function value along the generated trajectories,
and, consequently, improve existing results in the literature. We will prove the existence and

2



uniqueness of the trajectories as global twice continuously differentiable solutions of the dynam-
ical system provided the gradient of the objective function is Lipschitz continuous. In the same
setting, we will also prove that the primal-dual trajectory asymptotically weakly converges to
a primal-dual optimal solution of (1.1), which is the first result of this type in the literature
addressing such dynamical systems.

Last but not least, we will show how the asymptotic analysis and the obtained results can
be straightforwardly transferred to continuous-time methods with vanishing damping terms ap-
proaching optimization problems with separable objectives and block variables linearly coupled
in the constraints. Moreover, we will rediscover in case of the unconstrained minimization of
a convex differentiable function with Lipschitz continuous gradient all convergence statements
obtained in the literature for Nesterov’s accelerated gradient method introduced in [53, 12].

1.3 Notations and a preliminary result

For both Hilbert spaces X and Y, the Euclidean inner product and the associated norm will be
denoted by x¨, ¨y and ‖¨‖, respectively. The Cartesian product X ˆ Y will be endowed with the
inner product and the associated norm defined for px, λq , pz, µq P X ˆ Y as

xpx, λq , pz, µqy “ xx, zy ` xλ, µy and ‖px, λq‖ “
b

‖x‖2 ` ‖λ‖2,

respectively. The closed ball centered at x P X with radius ε ą 0 will be denoted by B px; εq :“
ty P X : ‖x´ y‖ ď εu.

Let f : X Ñ R be a continuously differentiable convex function such that ∇f is `´Lipschitz
continuous. For every x, y P X it holds (see [44, Theorem 2.1.5])

0 ď
1

2`
‖∇f pxq ´∇f pyq‖2 ď f pxq ´ f pyq ´ x∇f pyq , x´ yy ď `

2
‖x´ y‖2 . (1.3)

2 The primal-dual dynamical approach with vanishing damping

2.1 Augmented Lagrangian formulation

Consider the saddle point problem

min
xPX

max
λPY
L px, λq (2.1)

associated to problem (1.1), where L : X ˆ Y Ñ R denotes the Lagrangian function

L px, λq :“ f pxq ` xλ,Ax´ by .

Under the assumptions (1.2), L is convex with respect to x P X and affine with respect to λ P Y.
A pair px˚, λ˚q P X ˆ Y is said to be a saddle point of the Lagrangian function L if for every
px, λq P X ˆ Y

L px˚, λq ď L px˚, λ˚q ď L px, λ˚q . (2.2)

If px˚, λ˚q P X ˆY is a saddle point of L then x˚ P X is an optimal solution of (1.1), and λ˚ P Y
is an optimal solution of its Lagrange dual problem. If x˚ P X is an optimal solution of (1.1)
and a suitable constraint qualification is fulfilled, then there exists an optimal solution λ˚ P Y
of the Lagrange dual problem such that px˚, λ˚q P X ˆY is a saddle point of L. For details and
insights into the topic of constraint qualifications for convex duality we refer to [23, 25].

The set of saddle points of L, called also primal-dual optimal solutions of (1.1), will be
denoted by S and, as stated in the assumptions, it will be assumed to be nonempty. The set
of feasible points of (1.1) will be denoted by F :“ tx P X : Ax “ bu and the optimal objective
value of (1.1) by f˚.
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The system of primal-dual optimality conditions for (1.1) reads

px˚, λ˚q P Sô

#

∇xL px˚, λ˚q “ 0

∇λL px˚, λ˚q “ 0
ô

#

∇f px˚q `A˚λ˚ “ 0

Ax˚ ´ b “ 0
, (2.3)

where A˚ : Y Ñ X denotes the adjoint operator of A.
For β ě 0, we consider also the augmented Lagrangian Lβ : X ˆ Y Ñ R associated with

(1.1)

Lβ px, λq :“ L px, λq ` β

2
‖Ax´ b‖2 “ f pxq ` xλ,Ax´ by `

β

2
‖Ax´ b‖2 . (2.4)

For every px, λq P Fˆ Y it holds

f pxq “ Lβ px, λq “ L px, λq . (2.5)

If px˚, λ˚q P S, then we have for every px, λq P X ˆ Y

L px˚, λq “ Lβ px˚, λq ď L px˚, λ˚q “ Lβ px˚, λ˚q ď L px, λ˚q ď Lβ px, λ˚q .

In addition,

px˚, λ˚q P Sô

#

∇xLβ px˚, λ˚q “ 0

∇λLβ px˚, λ˚q “ 0
ô

#

∇f px˚q `A˚λ˚ “ 0

Ax˚ ´ b “ 0
. (2.6)

2.2 Associated monotone inclusion problem

The optimality system (2.3) can be equivalently written as

TL px˚, λ˚q “ 0, (2.7)

where

TL : X ˆ Y Ñ X ˆ Y, TL px, λq “
ˆ

∇xL px, λq
´∇λL px, λq

˙

“

ˆ

∇f pxq `A˚λ
b´Ax

˙

, (2.8)

is the maximally monotone operator associated with the convex-concave function L. Indeed, it
is immediate to verify that TL is monotone. Since it is also continuous, it is maximally monotone
(see, for instance, [23, Corollary 20.28]). Therefore S can be interpreted as the set of zeros of
the maximally monotone operator TL, which means that it is a closed convex subset of X ˆ Y
(see, for instance, [23, Proposition 23.39]).

Applying the fast continuous-time approaches recently proposed in [19, 5] to the solving of
(2.7) would require the use of the Moreau-Yosida approximation of the operator TL, for which
in general no close formula is available. The resulting dynamical system would therefore not be
formulated in the spirit of the full splitting algorithm, which is undesirable from the point of
view of numerical computations.

2.3 The primal-dual dynamical system with vanishing damping

The dynamical system which we associate to (1.1) and investigate in this paper reads

$

’

’

’

’

&

’

’

’

’

%

:x ptq `
α

t
9x ptq `∇xLβ

´

x ptq , λ ptq ` θt 9λ ptq
¯

“ 0

:λ ptq `
α

t
9λ ptq ´∇λLβ

´

x ptq ` θt 9x ptq , λ ptq
¯

“ 0
´

x pt0q , λ pt0q
¯

“

´

x0, λ0

¯

and
´

9x pt0q , 9λ pt0q
¯

“

´

9x0, 9λ0

¯

, (PD-AVD)

4



where t0 ą 0, α ě 3, β ě 0, θ ą 0 and px0, λ0q, p 9x0, 9λ0q P X ˆ Y.
Our system is a particular case of the Temporally Rescaled Inertial Augmented Lagrangian

System (TRIALS) proposed by Attouch, Chbani, Fadili and Riahi in [11]

$

&

%

:x ptq ` γ ptq 9x ptq ` b ptq∇xLβ
´

x ptq , λ ptq ` θ ptq 9λ ptq
¯

“ 0

:λ ptq ` γ ptq 9λ ptq ´ b ptq∇λLβ
´

x ptq ` θ ptq 9x ptq , λ ptq
¯

“ 0
, (TRIALS)

where γ, θ, b : rt0,`8q Ñ p0,`8q are continuously differentiable functions. The case when b is
identically 1 was also studied by He, Hu and Fang in [37]. In [11, 37] the authors have actually
investigated the minimization of the sum of two separable functions with the block variables
linked by linear constraints, however, we will see in the next subsection that our analysis can
be easily extended to this setting.

The viscous damping function γp¨q is vital in achieving fast convergence and its role has been
already well-understood in unconstrained minimization [7, 9, 38] (see also [12, 13, 41] for the

case when γ ptq :“
α

t
). The role of the extrapolation function θp¨q is to induce more flexibility

in the dynamical system and in the associated discrete schemes, as it has been recently noticed
in [11, 15, 37, 56]. The time scaling function bp¨q has the role to further improve the rates of
convergence of the objective function value along the trajectory, as it was noticed in the context
of uncostrained minimization problems in [10, 14, 16] and of linearly constrained minimization
problems in [6].

The dynamical system (PD-AVD) is (TRIALS) for

γptq :“
α

t
, θptq :“ θt and bptq :“ 1 @t ě t0,

where α ě 3 and θ ą 0. A setting which is closely related to ours can be found in the work [56] of
Zeng, Lei and Chen. However, when compared to [11, 37, 56], we provide improved convergence
rates and also prove weak convergence of the trajectories to a primal-dual optimal solution. We
also expect that our analysis can be adapted to the more general system (TRIALS), though,
we prefer the particular setting of (PD-AVD), in order to keep the presentation more simple
and easier to follow.

Since our system is a particular instance of (TRIALS), we could have relied on the results
showing the existence and uniqueness of a strong global solution from [11]. We will prove in-
stead the existence and uniqueness of the trajectories as global twice continuously differentiable
solutions of (PD-AVD), provided ∇f is Lipschitz continuous.

Replacing the expressions of the partial gradients of Lβ into the system leads to the following
formulation for (PD-AVD)

$

’

’

’

’

&

’

’

’

’

%

:x ptq `
α

t
9x ptq `∇f px ptqq `A˚

´

λ ptq ` θt 9λ ptq
¯

` βA˚
´

Ax ptq ´ b
¯

“ 0

:λ ptq `
α

t
9λ ptq ´

´

A
`

x ptq ` θt 9x ptq
˘

´ b
¯

“ 0
´

x pt0q , λ pt0q
¯

“

´

x0, λ0

¯

and
´

9x pt0q , 9λ pt0q
¯

“

´

9x0, 9λ0

¯

. (2.9)

2.4 Extension to multi-block optimization problems

For m ě 2 a positive integer, we consider the minimization of a separable objective function
with respect to linearly coupled block variables

min f1 px1q ` ¨ ¨ ¨ ` fm pxmq ,
subject to A1x1 ` ¨ ¨ ¨ `Amxm “ b

(2.10)
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where
$

’

’

’

’

&

’

’

’

’

%

Xi, i “ 1, ...,m, and Y are real Hilbert spaces;

fi : Xi Ñ R, i “ 1, ...,m, are continuously differentiable convex functions;

Ai : Xi Ñ Y, i “ 1, ...,m, are continuous linear operators and b P Y;

the set of primal-dual optimal solutions of (2.10) is nonempty.

(2.11)

Let X :“ X1 ˆ ¨ ¨ ¨ ˆ Xm be the Cartesian product of the real Hilbert spaces Xi, i “
1, ...,m, endowed with inner product and associated norm defined for x :“ px1, ¨ ¨ ¨ , xmq , z :“
pz1, ¨ ¨ ¨ , zmq P X as

xx, zy “
m
ÿ

i“1

xxi, ziy and ‖x‖ “

g

f

f

e

m
ÿ

i“1

‖xi‖2.

The multi-block optimization problem (2.10) can be equivalently written as (1.1), for the sepa-
rable objective function

f : X Ñ R, f pxq “ f px1, ¨ ¨ ¨ , xmq :“
m
ÿ

i“1

fi pxiq ,

and the continuous linear operator

A : X Ñ Y, Ax “ A px1, ¨ ¨ ¨ , xmq “
m
ÿ

i“1

Aixi.

Since

∇f pxq “

¨

˚

˝

∇f1 px1q
...

∇fm pxmq

˛

‹

‚

for x “ px1, ..., xmq,

and

A˚ : Y Ñ X “ X1 ˆ ¨ ¨ ¨ ˆ Xm, A˚λ “

¨

˚

˝

A˚1λ
...

A˚mλ

˛

‹

‚

,

(2.9) leads to the following dynamical system associated to the multi-block optimization problem
(2.10)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

:x1 ptq `
α

t
9x1 ptq `∇f1 px1 ptqq `A˚1

´

λ ptq ` θt 9λ ptq
¯

` βA˚1

´

m
ÿ

i“1

Aixi ptq ´ b
¯

“ 0

...

:xm ptq `
α

t
9xm ptq `∇fm pxm ptqq `A˚m

´

λ ptq ` θt 9λ ptq
¯

` βA˚m

´

m
ÿ

i“1

Aixi ptq ´ b
¯

“ 0

:λ ptq `
α

t
9λ ptq ´

´

m
ÿ

i“1

Ai
`

xi ptq ` θt 9xi ptq
˘

´ b
¯

“ 0

´

x1pt0q, ..., xmpt0q, λpt0q
¯

“

´

x10, ..., xm0, λ0

¯

and
´

9x1pt0q, ..., 9xmpt0q, 9λpt0q
¯

“

´

9x10, ..., 9xm0, 9λ0

¯

,

where α ě 3, β ě 0, θ ą 0 and px10, ..., xm0, λ0q, p 9x10, ..., 9xm0, 9λ0q P X1 ˆ ... ˆ Xm ˆ Y. By
making use of the above construction, all results we will obtain in the paper for (1.1) can be
transferred to the multi-block optimization problems (2.10).
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3 Fast convergence rates

In this section we will derive fast convergence rates for the primal-dual gap, the feasibility
measure, and the objective function value along the trajectories generated by the dynamical
system (PD-AVD). Throughout this section we will make the following assumption on the
parameters α, β and θ.

Assumption 1. Suppose that α, β and θ in (PD-AVD) satisfy

α ě 3, β ě 0 and
1

2
ě θ ě

1

α´ 1
.

3.1 The energy function

Let px, λq : rt0,`8q Ñ X ˆ Y be a solution of (PD-AVD). For pz, µq P X ˆ Y fixed, we define

Gβ : X ˆ Y Ñ R, Gβ
´

`

x, λ
˘

ˇ

ˇ

ˇ
pz, µq

¯

:“ Lβ px, µq ´ Lβ pz, λq .

According to (2.4) and (2.5), we have for every pz, µq P Fˆ Y and every t ě t0

Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

“ f px ptqq ´ f pzq ` xµ,Ax ptq ´ by `
β

2
‖Ax ptq ´ b‖2 .

When pz, µq :“ px˚, λ˚q P S, it holds for every t ě t0

Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, λ˚q

¯

“ Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq

“ L px ptq , λ˚q ´ L px˚, λ ptqq `
β

2
‖Ax ptq ´ b‖2 (3.1)

“ L px ptq , λ˚q ´ fpx˚q `
β

2
‖Ax ptq ´ b‖2

“ f px ptqq ´ f˚ ` xλ˚, Ax ptq ´ by `
β

2
‖Ax ptq ´ b‖2 ě 0, (3.2)

where f˚ denotes the optimal objective value of (1.1).
For pz, µq P X ˆ Y fixed, we introduce the energy function Ez,µ : rt0,`8q Ñ R defined as

Ez,µ ptq :“ θ2t2Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

`
1

2
‖vz,µ ptq‖2 `

ξ

2

∥∥`x ptq , λ ptq˘´ pz, µq∥∥2 , (3.3)

where

vz,µ ptq :“
`

x ptq , λ ptq
˘

´ pz, µq ` θt
´

9x ptq , 9λ ptq
¯

, (3.4)

ξ :“ θα´ θ ´ 1 ě 0. (3.5)

Notice that due to (3.2), for px˚, λ˚q P S we have

Ex˚,λ˚
ptq ě 0 @t ě t0. (3.6)

Lemma 3.1. Let px, λq : rt0,`8q Ñ X ˆ Y be a solution of (PD-AVD) and pz, µq P F ˆ Y.
For every t ě t0 it holds

d

dt
Ez,µ ptq ď p2θ ´ 1q θtGβ

´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

´
βθt

2
‖Ax ptq ´ b‖2 ´ ξθt

∥∥∥´ 9x ptq , 9λ ptq
¯
∥∥∥2 .
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Proof. Let t ě t0 be fixed. Since z P F, we have

∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

“
`

∇xLβ px ptq , µq ,´∇λLβ pz, λ ptqq
˘

“
`

∇xLβ px ptq , µq , 0
˘

“
`

∇f px ptqq `A˚µ` βA˚ pAx ptq ´ bq , 0
˘

.

Differentiating E with respect to t gives

d

dt
Ez,µ ptq “ 2θ2tGβ

´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

` θ2t2
A

∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

,
´

9x ptq , 9λ ptq
¯E

` xvz,µ ptq , 9vz,µ ptqy ` ξ
A

`

x ptq , λ ptq
˘

´ pz, µq ,
´

9x ptq , 9λ ptq
¯E

. (3.7)

The system (PD-AVD) can be equivalently written as

`

:x ptq , :λ ptq
˘

“´
α

t

`

9x ptq , 9λ ptq
˘

´∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

´

´

A˚
´

λ ptq ´ µ` θt 9λ ptq
¯

,´
´

A px ptq ` θt 9x ptqq ´ b
¯¯

,

which leads to

9vz,µ ptq “ p1` θq
´

9x ptq , 9λ ptq
¯

` θt
´

:x ptq , :λ ptq
¯

“´ ξ
´

9x ptq , 9λ ptq
¯

´ θt∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

´ θt
´

A˚
´

λ ptq ´ µ` θt 9λ ptq
¯

,´
´

A px ptq ` θt 9x ptqq ´ b
¯¯

.

We get from the distributive property of inner product

xvz,µ ptq , 9vz,µ ptqy

“ ´ ξ
A

`

x ptq , λ ptq
˘

´ pz, µq ,
´

9x ptq , 9λ ptq
¯E

´ ξθt
∥∥∥´ 9x ptq , 9λ ptq

¯
∥∥∥2

´ θt
A

∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

,
`

x ptq , λ ptq
˘

´ pz, µq
E

´ θ2t2
A

∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

,
´

9x ptq , 9λ ptq
¯E

´ θt
A

λ ptq ´ µ` θt 9λ ptq , Ax ptq ´Az
E

´ θ2t2
A

λ ptq ´ µ` θt 9λ ptq , A 9x ptq
E

` θt xA px ptq ` θt 9x ptqq ´ b, λ ptq ´ µy

` θ2t2
A

A px ptq ` θt 9x ptqq ´ b, 9λ ptq
E

.

Since z P F, the last four terms in the above identity vanish. Indeed,

´

A

λ ptq ´ µ` θt 9λ ptq , Ax ptq ´Az
E

´ θt
A

λ ptq ´ µ` θt 9λ ptq , A 9x ptq
E

` xA px ptq ` θt 9x ptqq ´ b, λ ptq ´ µy ` θt
A

A px ptq ` θt 9x ptqq ´ b, 9λ ptq
E

“ ´

A

λ ptq ´ µ` θt 9λ ptq , Ax ptq ´ b
E

´ θt
A

λ ptq ´ µ` θt 9λ ptq , A 9x ptq
E

`xAx ptq ´ b, λ ptq ´ µy ` θt xA 9x ptq , λ ptq ´ µy ` θt
A

Ax ptq ´ b, 9λ ptq
E

` θ2t2
A

A 9x ptq , 9λ ptq
E

“ 0.

Therefore, (3.7) becomes

d

dt
Ez,µ ptq “ 2θ2tGβ

´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

´ ξθt
∥∥∥´ 9x ptq , 9λ ptq

¯∥∥∥2
´ θt

@

∇Gβ
``

x ptq , λ ptq
˘

| pz, µq
˘

,
`

x ptq , λ ptq
˘

´ pz, µq
D

. (3.8)
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Furthermore, the convexity of f and the fact that z P F guarantee

´

A

∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

,
`

x ptq , λ ptq
˘

´ pz, µq
E

“ x∇f px ptqq , z ´ x ptqy ` xA˚µ, z ´ x ptqy ` β xA˚ pAx ptq ´ bq , z ´ x ptqy
ď ´ pf px ptqq ´ f pzqq ´ xµ,Ax ptq ´ by ´ β ‖Ax ptq ´ b‖2 (3.9)

“ ´ Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
pz, µq

¯

´
β

2
‖Ax ptq ´ b‖2 .

Combining this inequality with (3.8) yields the desired statement.

An important consequence of Lemma 3.1 is the following theorem.

Theorem 3.2. Let px, λq : rt0,`8q Ñ X ˆ Y be a solution of (PD-AVD) and px˚, λ˚q P S.
The following statements are true:

piq it holds

β

ż `8

t0

t ‖Ax ptq ´ b‖2 dt ď
2Ex˚,λ˚

pt0q

θ
ă `8, (3.10)

p1´ 2θq

ż `8

t0

t
´

L px ptq , λ˚q ´ L px˚, λ ptqq
¯

dt ď
Ex˚,λ˚

pt0q

θ
ă `8, (3.11)

ξ

ż `8

t0

t
∥∥∥´ 9x ptq , 9λ ptq

¯∥∥∥2 dt ď Ex˚,λ˚
pt0q

θ
ă `8; (3.12)

piiq if, in addition α ą 3 and 1
2 ě θ ą 1

α´1 , then the trajectory
`

x ptq , λ ptq
˘

tět0
is bounded and

the convergence rate of its velocity is∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥ “ Oˆ

1

t

˙

as tÑ `8.

Proof. piq Assumption 1 implies that 2θ ´ 1 ď 0 and ξ ě 0 (see (3.5)). Moreover, px˚, λ˚q P S
yields x˚ P F. Therefore, we can apply Lemma 3.1 to obtain for every t ě t0

d

dt
Ex˚,λ˚

ptq ď p2θ ´ 1q θt
´

Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq
¯

´
βθt

2
‖Ax ptq ´ b‖2 ´ ξθt

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2

ď p2θ ´ 1q θt
´

L px ptq , λ˚q ´ L px˚, λ ptqq
¯

´
βθt

2
‖Ax ptq ´ b‖2 ´ ξθt

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2

ď 0. (3.13)

This means that Ex˚,λ˚
is nonincreasing on rt0,`8q, thus, for every t ě t0 it holds

θ2t2
´

Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq
¯

`
1

2
‖vx˚,λ˚

ptq‖2 ` ξ

2

∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥2
ď Ex˚,λ˚

pt0q . (3.14)

For every t ě t0, by integrating (3.13) from t0 to t, we obtain

p1´ 2θq θ

ż t

t0

s
´

L px psq , λ˚q ´ L px˚, λ psqq
¯

ds

`
βθ

2

ż t

t0

s ‖Ax psq ´ b‖2 ds` ξθ
ż t

t0

s
∥∥∥´ 9x psq , 9λ psq

¯∥∥∥2 ds
ď Ex˚,λ˚

pt0q ´ Ex˚,λ˚
ptq ď Ex˚,λ˚

pt0q ,
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where the last inequality follows from (3.6). Since all quantities inside the integrals are
nonnegative, we obtain (3.10) - (3.12) by passing tÑ `8.

piiq Assuming that α ą 3 and 1
2 ě θ ą 1

α´1 , one can immediately see that ξ ą 0. From (3.14)
we obtain for all t ě t0∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥2 ď 2Ex˚,λ˚

pt0q

ξ
@t ě t0, (3.15)

which implies the boundedness of the trajectory. On the other hand, the same inequality
gives for all t ě t0

‖vx˚,λ˚
ptq‖ “

∥∥∥`x ptq , λ ptq˘´ px˚, λ˚q ` θt´ 9x ptq , 9λ ptq
¯
∥∥∥ ďb

2Ex˚,λ˚
pt0q. (3.16)

Using the triangle inequality and (3.15) we obtain for all t ě t0

t
∥∥∥ 9x ptq , 9λ ptq

∥∥∥ ď 1

θ

`∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥` ‖vx˚,λ˚
ptq‖

˘

ď
1

θ

˜

d

2Ex˚,λ˚
pt0q

ξ
`

b

2Ex˚,λ˚
pt0q

¸

“
1

θ

ˆ

1
?
ξ
` 1

˙

b

2Ex˚,λ˚
pt0q,

(3.17)

which gives the desired convergence rate.

3.2 Fast convergence rates for the primal-dual gap, the feasibility measure
and the objective function value

The following result quantifies the values of the energy function when defined with respect to a
primal-dual element which slightly deviates from an element in S.

Lemma 3.3. Let px, λq : rt0,`8q Ñ X ˆY be a solution of (PD-AVD) and px˚, λ˚q P S. The
following statements are true:

piq the following quantity is finite

C0 :“ sup
µPBpλ˚;1q

Ex˚,µ pt0q ă `8; (3.18)

piiq for every µ P B pλ˚; 1q and every t ě t0 it holds

Ex˚,µ ptq ď 2Ex˚,λ˚
pt0q ` θ pα´ 1q ` θ2t2 xµ´ λ˚, Ax ptq ´ by . (3.19)

Proof. piq Let µ P B pλ˚; 1q. For every t ě t0 we have

Ex˚,µ ptq “ θ2t2
´

Lβ px ptq , µq ´ Lβ px˚, λ ptqq
¯

`
1

2
‖vx˚,µ ptq‖

2
`
ξ

2

∥∥`x ptq , λ ptq˘´ px˚, µq∥∥2
“ θ2t2

´

f px ptqq ´ f px˚q ` xµ,Ax ptq ´ by `
β

2
‖Ax ptq ´ b‖2

¯

`
1

2

∥∥∥`x ptq , λ ptq˘´ px˚, µq ` θt´ 9x ptq , 9λ ptq
¯∥∥∥2 ` ξ

2

∥∥`x ptq , λ ptq˘´ px˚, µq∥∥2 .
(3.20)

By the Cauchy-Schwarz inequality we get

f px pt0qq ´ f px˚q ` xµ,Ax pt0q ´ by `
β

2
‖Ax pt0q ´ b‖2

ď f px pt0qq ´ f px˚q ` ‖µ‖ ¨ ‖Ax pt0q ´ b‖`
β

2
‖Ax pt0q ´ b‖2

ď C1 :“ |f px pt0qq ´ f px˚q|` p1` ‖λ˚‖q ¨ ‖Ax pt0q ´ b‖`
β

2
‖Ax pt0q ´ b‖2 . (3.21)
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We also have

1

2

∥∥∥px pt0q , λ pt0qq ´ px˚, µq ` θt0 ´ 9x pt0q , 9λ pt0q
¯
∥∥∥2

ď

∥∥∥px pt0q , λ pt0qq ´ px˚, λ˚q ` θt0 ´ 9x pt0q , 9λ pt0q
¯∥∥∥2 ` ‖µ´ λ˚‖2

ď C2 :“
∥∥∥px pt0q , λ pt0qq ´ px˚, λ˚q ` θt0 ´ 9x pt0q , 9λ pt0q

¯
∥∥∥2 ` 1 (3.22)

and

1

2
‖px pt0q , λ pt0qq ´ px˚, µq‖2 ď ‖px pt0q , λ pt0qq ´ px˚, λ˚q‖2 ` ‖µ´ λ˚‖2

ď C3 :“ ‖px pt0q , λ pt0qq ´ px˚, λ˚q‖2 ` 1. (3.23)

Combining (3.21) - (3.23), it yields

C0 “ sup
µPBpλ˚;1q

Ex˚,µ pt0q ď θ2t20C1 ` C2 ` ξC3 ă `8,

which proves (3.18).

piiq Let t ě t0. By recalling (3.4) and (3.14) we easily see that

1

2
‖vx˚,µ ptq‖

2
`
ξ

2

∥∥`x ptq , λ ptq˘´ px˚, µq∥∥2
ď ‖vx˚,λ˚

ptq‖2 ` ξ
∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥2 ` p1` ξq ‖µ´ λ˚‖2

ď
1

2
‖vx˚,λ˚

ptq‖2 ` ξ

2

∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥2 ` Ex˚,λ˚
pt0q ` 1` ξ. (3.24)

Furthermore, by the definition of Gβ and relation (3.1) we have that

Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, µq

¯

“ f px ptqq ´ fpx˚q ` xλ˚, Ax ptq ´ by `
β

2
‖Ax ptq ´ b‖2

` xµ´ λ˚, Ax ptq ´ by

“ Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, λ˚q

¯

` xµ´ λ˚, Ax ptq ´ by (3.25)

ěxµ´ λ˚, Ax ptq ´ by . (3.26)

Relations (3.24) and (3.25) lead to

Ex˚,µ ptq “ θ2t2Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, λ˚q

¯

` θ2t2 xµ´ λ˚, Ax ptq ´ by

`
1

2
‖vx˚,µ ptq‖

2
`
ξ

2

∥∥`x ptq , λ ptq˘´ px˚, µq∥∥2
ď Ex˚,λ˚

ptq ` θ2t2 xµ´ λ˚, Ax ptq ´ by ` Ex˚,λ˚
pt0q ` 1` ξ

ď 2Ex˚,λ˚
pt0q ` θ pα´ 1q ` θ2t2 xµ´ λ˚, Ax ptq ´ by ,

where the last inequality is due to (3.5) and (3.14). This is nothing else than (3.19).

We can now formulate and prove the main convergence rate results of the paper

Theorem 3.4. Let px, λq : rt0,`8q Ñ X ˆ Y be a solution of (PD-AVD) and px˚, λ˚q P S.
The following statements are true:

piq for every t ě t0 it holds

0 ď L px ptq , λ˚q ´ L px˚, λ ptqq ` ‖Ax ptq ´ b‖ ď
C4

θ2t2
, (3.27)

where
C4 :“ C0 ` 2Ex˚,λ˚

pt0q ` θ pα´ 1q ą 0; (3.28)
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piiq for every t ě t0 it holds

´
‖λ˚‖C4

θ2t2
ď f px ptqq ´ f˚ ď

p1` ‖λ˚‖qC4

θ2t2
. (3.29)

Proof. piq We fix s ě t0 and define

µ psq :“

$

&

%

λ˚ `
Ax psq ´ b

‖Ax psq ´ b‖
, if Ax psq ´ b ‰ 0,

λ˚, if Ax psq ´ b “ 0.
(3.30)

It is clear that µ psq P B pλ˚; 1q. For brevity, we set

σ :“
1´ 2θ

θ
ě 0.

Since px˚, λ˚q P S, we have px˚, µ psqq P FˆB pλ˚; 1q. Lemma 3.1 combined with the relation
(3.26) ensure that for every t ě t0 it holds

d

dt
Ex˚,µpsq ptq ď ´σθ

2tGβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, µ psqq

¯

ď ´σθ2t xµ psq ´ λ˚, Ax ptq ´ by . (3.31)

We will prove that for every t ě t0 it holds

θ2t2
´

f px ptqq ´ f px˚q ` xµ psq , Ax ptq ´ by
¯

ď Ex˚,µpsq ptq

ď C4 “ C0 ` 2Ex˚,λ˚
pt0q ` θ pα´ 1q . (3.32)

The first inequality follows from the definition of Ex˚,µpsq. To show the later one, we multiply
both sides of (3.31) by tσ ą 0 and use integration by parts, for σ ą 0, or just integrate (3.32),
for σ “ 0, to deduce that for every t ě t0

tσEx˚,µpsq ptq ´ t
σ
0Ex˚,µpsq pt0q ´ σ

ż t

t0

τσ´1Ex˚,µpsq pτq dτ

ď ´σθ2
ż t

t0

τσ`1 xµ psq ´ λ˚, Ax pτq ´ by dτ. (3.33)

By using (3.18) and (3.19) we further obtain for every t ě t0

tσEx˚,µpsq ptq ď tσ0Ex˚,µpsq pt0q ` σ

ż t

t0

τσ´1Ex˚,µpsq pτq dτ

´ σθ2
ż t

t0

τσ`1 xµ psq ´ λ˚, Ax pτq ´ by dτ

ď tσ0C0 ` σ p2Ex˚,λ˚
pt0q ` θ pα´ 1qq

ż t

t0

τσ´1dτ

“ tσ0C0 ` p2Ex˚,λ˚
pt0q ` θ pα´ 1qq

`

tσ ´ tσ0
˘

ď tσ
`

C0 ` 2Ex˚,λ˚
pt0q ` θ pα´ 1q

˘

,

which is equivalent to (3.32).

Now, since (3.32) is true for every t ě t0, it is fulfilled also for t :“ s ě t0, which means that

θ2s2
´

f px psqq ´ f px˚q ` xµ psq , Ax psq ´ by
¯

ď C4.
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By the definition of µ psq in (3.30), if Ax psq ´ b ‰ 0, we have

f px psqq ´ f px˚q ` xµ psq , Ax psq ´ by

“ f px psqq ´ f px˚q ` xλ˚, Ax psq ´ by ` ‖Ax psq ´ b‖
“ L px psq , λ˚q ´ L px˚, λ psqq ` ‖Ax psq ´ b‖ ,

while, if Ax psq ´ b “ 0, we can also write

f px psqq ´ f px˚q ` xµ psq , Ax psq ´ by “ f px psqq ´ f px˚q ` xλ˚, Ax psq ´ by

“ L px psq , λ˚q ´ L px˚, λ psqq “ L px psq , λ˚q ´ L px˚, λ psqq ` ‖Ax psq ´ b‖ .

For both scenarios, the estimate (3.32) becomes

θ2s2
´

L px psq , λ˚q ´ L px˚, λ psqq ` ‖Ax psq ´ b‖
¯

ď C4.

Since s ě t0 has been arbitrarily chosen, this gives proves (3.27).

piiq Since L px ptq , λ˚q ´ L px˚, λ ptqq ě 0, a direct consequent of (3.27) is that for every t ě t0

‖Ax ptq ´ b‖ ď C4

θ2t2
. (3.34)

From (3.27) and the Cauchy-Schwarz inequality we can also deduce for every t ě t0 that

f px ptqq ´ f px˚q ď
C4

θ2t2
´ xλ˚, Ax ptq ´ by ď

C4

θ2t2
` ‖λ˚‖ ‖Ax ptq ´ b‖

ď
p1` ‖λ˚‖qC4

θ2t2
. (3.35)

On the other hand, the convexity of f together with the fact that px˚, λ˚q P S guarantee for
every t ě t0

f px ptqq ´ f px˚q ě x∇f px˚q , x ptq ´ x˚y “ ´ xA˚λ˚, x ptq ´ x˚y
“ ´ xλ˚, Ax ptq ´ by

ě ´ ‖λ˚‖ ‖Ax ptq ´ b‖ ě ´
‖λ˚‖C4

θ2t2
. (3.36)

By combining (3.35) and (3.36) we obtain the desired statement.

Remark 3.5. A few remarks comparing our convergence rate results with the ones reported in
[11, 37, 56] are in order.

‚ Primal-dual gap: Relation (3.27) guarantees a convergence rate for the primal-dual gap of

L px ptq , λ˚q ´ L px˚, λptqq “ O
ˆ

1

t2

˙

as tÑ `8,

which can be equivalently written as

L px ptq , λ˚q ´ L px˚, λ˚q “ O
ˆ

1

t2

˙

as tÑ `8.

The primal-dual gap convergence rate stated in this form has been reported in [11, 37, 56].

‚ Feasibility measure: Relation (3.34) guarantees a convergence rate for the feasibility measure
of

‖Ax ptq ´ b‖ “ O
ˆ

1

t2

˙

as tÑ `8,

In [11, 37, 56], the feasibility measure ‖Ax ptq ´ b‖ is reported to have a convergence rate of
O p1{tq as tÑ `8.
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‚ Objective function value: The upper bound we report for the objective function value in
(3.29) matches the one from [11], while our lower bound, which is of order 1

t2
, outperforms

the one reported in [11], which is of order 1
t . In [37, 56] no convergence rates for the objective

function value are provided.

4 Weak convergence of the trajectory to a primal-dual optimal
solution

The study of the convergence of the trajectory will be made in the following setting, which will
be assumed to be fulfilled throughout the whole section.

Assumption 2. Suppose that ∇f is `´Lipschitz continuous and α, β and θ in (PD-AVD)
satisfy

α ą 3, β ě 0 and
1

2
ą θ ą

1

α´ 1
.

For the beginning we will prove that in the setting of Assumption 2 the dynamical system
(PD-AVD) has a unique global twice continuously differentiable solution.

Theorem 4.1. For every initial condition
´

x pt0q , λ pt0q
¯

:“
´

x0, λ0

¯

P X ˆ Y and
´

9x pt0q , 9λ pt0q
¯

:“
´

9x0, 9λ0

¯

P X ˆ Y

the dynamical system (PD-AVD) has a unique global twice continously differentiable solution
px, λq : rt0,`8q Ñ X ˆ Y.

Proof. We observe that px, λq : rt0,`8q Ñ X ˆ Y is a solution of (PD-AVD) if and only if
px, λ, y, νq : rt0,`8q Ñ X ˆ Y ˆ X ˆ Y is a solution of the first-order dynamical system

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

9x ptq “ y ptq

9λ ptq “ ν ptq

9y ptq “ ´
α

t
y ptq ´∇f px ptqq ´A˚ pλ ptq ` θtν ptqq ´ βA˚

´

Ax ptq ´ b
¯

9ν ptq “ ´
α

t
ν ptq `

´

A
`

x ptq ` θt 9x ptq
˘

´ b
¯

´

x pt0q , λ pt0q , y pt0q , ν pt0q
¯

“

´

x0, λ0, 9x0, 9λ0

¯

. (4.1)

For F : rt0,`8q ˆ X ˆ Y ˆ X ˆ Y Ñ X ˆ Y ˆ X ˆ Y by

F pt, z, ζ, u, ρq :“
´

u, ρ,´
α

t
u´∇f pzq ´A˚ pζ ` θtρq ´ βA˚

´

Az ´ b
¯

,´
α

t
ρ`

´

A
`

z ` θtu
˘

´ b
¯¯

,

(4.1) can be equivalently written as
$

&

%

`

9x ptq , 9λ ptq , 9y ptq , 9ν ptq
˘

“ F
`

t, x ptq , λ ptq , y ptq , ν ptq
˘

´

x pt0q , λ pt0q , y pt0q , ν pt0q
¯

“

´

x0, λ0, 9x0, 9λ0

¯ .

Next we will show that F is Lipschitz continuous on bounded sets and chose to this end
arbitrary t0 ď t1 ă t2 ă `8 and δ ą 0. For

pt, z, ζ, u, ρq ,
´

rt, rz, rζ, ru, rρ
¯

P rt1, t2s ˆ B p0; δq ˆ B p0; δq ˆ B p0; δq ˆ B p0; δq

Ď rt0,`8q ˆ X ˆ Y ˆ X ˆ Y,
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we have∥∥∥F pt, z, ζ, u, ρq ´ F ´

rt, rz, rζ, ru, rρ
¯
∥∥∥

ď ‖u´ ru‖` ‖ρ´ rρ‖`∥∥∥∥αt u´ α

rt
ru`∇f pzq ´∇f przq `A˚

´

ζ ´ rζ ` θ
`

tρ´ rtrρ
˘

¯

` βA˚A pz ´ rzq

∥∥∥∥`∥∥∥∥αt ρ´ α

rt
rρ´

´

A
`

z ´ rz ` θ
`

tu´ rtru
˘˘

¯

∥∥∥∥
ď ‖u´ ru‖` ‖ρ´ rρ‖`

´

β ‖A‖2 ` }A} ` `
¯

‖z ´ rz‖` ‖A‖
∥∥∥ζ ´ rζ

∥∥∥`
α

∥∥∥∥1

t
u´

1

rt
ru

∥∥∥∥` θ ‖A‖ ∥∥tρ´ rtrρ
∥∥` α ∥∥∥∥1

t
ρ´

1

rt
rρ

∥∥∥∥` θ ‖A‖ ∥∥tu´ rtru
∥∥

ď

´

1`
α

t
` θt ‖A‖

¯

‖u´ ru‖`
´

1`
α

t
` θt ‖A‖

¯

‖ρ´ rρ‖`
´

β ‖A‖2 ` }A} ` `
¯

‖z ´ rz‖`

‖A‖
∥∥∥ζ ´ rζ

∥∥∥` α p‖ru‖` ‖rρ‖q ∣∣∣∣1t ´ 1

rt

∣∣∣∣` θ ‖A‖ p‖ru‖` ‖rρ‖q ∣∣t´ rt
∣∣

ď

ˆ

1`
α

t1
` θt2 ‖A‖

˙

p‖u´ ru‖` ‖ρ´ rρ‖q `
´

β ‖A‖2 ` }A} ` `
¯

‖z ´ rz‖`

‖A‖
∥∥∥ζ ´ rζ

∥∥∥` 2δ

ˆ

α

t21
` θ ‖A‖

˙ ∣∣t´ rt
∣∣ .

Consequently,∥∥∥F pt, z, ζ, u, ρq ´ F ´

rt, rz, rζ, ru, rρ
¯
∥∥∥ ď LF

∥∥∥pt, z, ζ, u, ρq ´ ´

rt, rz, rζ, ru, rρ
¯
∥∥∥ ,

where

LF :“

d

2

ˆ

1`
α

t1
` θt2 ‖A‖

˙2

`

´

β ‖A‖2 ` }A} ` `
¯2
` ‖A‖2 ` 4δ2

ˆ

α

t21
` θ ‖A‖

˙2

.

Since F is Lipschitz continuous on bounded sets and continuously differentiable, the local
existence and uniqueness theorem (see, for instance, [52, Theorems 46.2 and 46.3]) allows us to
conclude that there exists a unique solution px, λ, y, νq P X ˆ Y ˆ X ˆ Y of (4.1) defined on a
maximally interval rt0, Tmaxq where t0 ă Tmax ď `8. Furthermore, either

Tmax “ `8 or lim
tÑTmax

‖px ptq , λ ptq , y ptq , ν ptqq‖ “ `8.

We will prove that Tmax “ `8.
Let px˚, λ˚q P S. According to Lemma 3.1 we have for every t0 ď t ă Tmax

d

dt
Ex˚,λ˚

ptq ď p2θ ´ 1q θtGβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, λ˚q

¯

´
βθt

2
‖Ax ptq ´ b‖2 ´ ξθt

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2

ď 0.

From here it follows, as in Theorem 3.2 (see (3.15) and (3.17)), that for every t0 ď t ă Tmax it
holds

‖px ptq , λ ptqq‖ ď
∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥` ‖px˚, λ˚q‖ ď

d

2Ex˚,λ˚
pt0q

ξ
` ‖px˚, λ˚q‖ ,∥∥∥p 9x ptq , 9λ ptqq

∥∥∥ “ ‖py ptq , ν ptqq‖ ď 1

θt

ˆ

1
?
ξ
` 1

˙

b

2Ex˚,λ˚
pt0q ď

1

θt0

ˆ

1
?
ξ
` 1

˙

b

2Ex˚,λ˚
pt0q.

Consequently, t ÞÑ px ptq , λ ptq , y ptq , ν ptqq is bounded on rt0, Tmaxq, which means that the limit
lim

tÑTmax

‖px ptq , λ ptq , y ptq , ν ptqq‖ cannot be `8. In conclusion, Tmax “ `8, which completes

the proof.
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We start the convergence analysis of the trajectory with the proof of two important inte-
grability results, whereby we notice that statement (3.10) only implies (4.3) if β ą 0.

Proposition 4.2. Let px, λq : rt0,`8q Ñ X ˆY be a solution of (PD-AVD) and px˚, λ˚q P S.
Then it holds

ż `8

t0

t ‖∇f px ptqq ´∇f px˚q‖2 dt ă `8 (4.2)

and
ż `8

t0

t ‖Ax ptq ´ b‖2 dt ă `8. (4.3)

Proof. The determinant role in the proof is the fact that, for every t ě t0, as ∇f is `´ Lipschitz
continuous, relation (3.9) in the proof of Lemma 3.1 can be sharpened thanks to (1.3) to

´

A

∇Gβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, λ˚q

¯

,
`

x ptq , λ ptq
˘

´ px˚, λ˚q
E

“ x∇f px ptqq , x˚ ´ x ptqy ` xA˚λ˚, x˚ ´ x ptqy ` β xA˚ pAx ptq ´ bq , x˚ ´ x ptqy

ď ´ pf px ptqq ´ f px˚qq ´
1

2`
‖∇f px ptqq ´∇f px˚q‖2 ´ xλ˚, Ax ptq ´ by ´ β ‖Ax ptq ´ b‖2

“ ´ Gβ
``

x ptq , λ ptq
˘

| px˚, λ˚q
˘

´
1

2`
‖∇f px ptqq ´∇f px˚q‖2 ´

β

2
‖Ax ptq ´ b‖2 .

Consequently, by combining this inequality with (3.8), it yields for every t ě t0

d

dt
Ex˚,λ˚

ptq ď p2θ ´ 1q θtGβ
´

`

x ptq , λ ptq
˘

ˇ

ˇ

ˇ
px˚, λ˚q

¯

´ ξθt
∥∥∥´ 9x ptq , 9λ ptq

¯
∥∥∥2

´
θt

2`
‖∇f px ptqq ´∇f px˚q‖2 ´

θβt

2
‖Ax ptq ´ b‖2

ď´
θt

2`
‖∇f px ptqq ´∇f px˚q‖2 .

This leads by integration to (4.2).
On the other hand, it follows from (3.34) that

ż `8

t0

t ‖Ax ptq ´ b‖2 dt ď C2
4

θ4

ż `8

t0

1

t3
ă `8,

and the proof is complete.

Now we define, for a given primal-dual optimal solution px˚, λ˚q P S, the following two
mappings on rt0,`8q

W ptq :“ Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq `
1

2

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2 ě 0

ϕ ptq :“
1

2

∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥2 ě 0.

Lemma 4.3. Let px, λq : rt0,`8q Ñ X ˆY be a solution of (PD-AVD) and px˚, λ˚q P S. The
following inequality holds for every t ě t0:

:ϕ ptq `
α

t
9ϕ ptq ` θt 9W ptq `

1

2`
‖∇f px ptqq ´∇f px˚q‖2 `

β

2
‖Ax ptq ´ b‖2 ď 0. (4.4)

Proof. Let t ě t0 be fixed. The time derivative of W reads

9W ptq “ x∇xLβ px ptq , λ˚q , 9x ptqy ` x:x ptq , 9x ptqy `
A

:λ ptq , 9λ ptq
E

“

A

∇xLβ
´

x ptq , λ ptq ` θt 9λ ptq
¯

, 9x ptq
E

` x:x ptq , 9x ptqy ´
A

λ ptq ´ λ˚ ` θt 9λ ptq , A 9x ptq
E

´

A

∇λLβ px ptq ` θt 9x ptq , λ ptqq , 9λ ptq
E

`

A

:λ ptq , 9λ ptq
E

`

A

Ax ptq ´ b` θtA 9x ptq , 9λ ptq
E

“´
α

t
‖ 9x ptq‖2 ´ α

t

∥∥∥ 9λ ptq
∥∥∥2 ´ xλ ptq ´ λ˚, A 9x ptqy `

A

Ax ptq ´ b, 9λ ptq
E

. (4.5)

16



On the one hand, by the chain rule, we have

9ϕ ptq “ xx ptq ´ x˚, 9x ptqy `
A

λ ptq ´ λ˚, 9λ ptq
E

,

:ϕ ptq “ xx ptq ´ x˚, :x ptqy ` ‖ 9x ptq‖2 `
A

λ ptq ´ λ˚, :λ ptq
E

`

∥∥∥ 9λ ptq
∥∥∥2 .

By combining these relations and using that Ax˚ “ b, we get

:ϕ ptq `
α

t
9ϕ ptq “

A

x ptq ´ x˚, :x ptq `
α

t
9x ptq

E

`

A

λ ptq ´ λ˚, :λ ptq `
α

t
9λ ptq

E

` ‖ 9x ptq‖2 `
∥∥∥ 9λ ptq

∥∥∥2
“´

A

x ptq ´ x˚,∇xLβ
´

x ptq , λ ptq ` θt 9λ ptq
¯E

` xλ ptq ´ λ˚,∇λLβ px ptq ` θt 9x ptq , λ ptqqy ` ‖ 9x ptq‖2 `
∥∥∥ 9λ ptq

∥∥∥2
“´ xx ptq ´ x˚,∇xLβ px ptq , λ˚qy ´

A

Ax ptq ´ b, λ ptq ´ λ˚ ` θt 9λ ptq
E

` xλ ptq ´ λ˚, Ax ptq ´ b` θtA 9x ptqy ` ‖ 9x ptq‖2 `
∥∥∥ 9λ ptq

∥∥∥2 . (4.6)

By exploiting the Lipschitz continuity of ∇f (see (1.3)) and using again that Ax˚ “ b, we obtain
the following estimate

´ xx ptq ´ x˚,∇xLβ px ptq , λ˚qy
“ ´ xx ptq ´ x˚,∇f px ptqqy ´ xx ptq ´ x˚, A˚λ˚y ´ β ‖Ax ptq ´ b‖2

ď ´ pf px ptqq ´ f˚q ´
1

2`
‖∇f px ptqq ´∇f px˚q‖2 ´ xλ˚, Ax ptq ´ by ´ β ‖Ax ptq ´ b‖2

“ ´

´

Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq
¯

´
1

2`
‖∇f px ptqq ´∇f px˚q‖2 ´

β

2
‖Ax ptq ´ b‖2 ,

which, in combination with (4.6), leads to

:ϕ ptq `
α

t
9ϕ ptq “ ´ xx ptq ´ x˚,∇xLβ px ptq , λ˚qy ´ θt

A

Ax ptq ´ b, 9λ ptq
E

` θt xλ ptq ´ λ˚, A 9x ptqy ` ‖ 9x ptq‖2 `
∥∥∥ 9λ ptq

∥∥∥2
ď´

´

Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq
¯

´ θt
A

Ax ptq ´ b, 9λ ptq
E

` θt xλ ptq ´ λ˚, A 9x ptqy ` ‖ 9x ptq‖2 `
∥∥∥ 9λ ptq

∥∥∥2
´

1

2`
‖∇f px ptqq ´∇f px˚q‖2 ´

β

2
‖Ax ptq ´ b‖2 . (4.7)

Multiplying (4.5) by θt ą 0 then summing the result to (4.7) yields

:ϕ ptq `
α

t
9ϕ ptq ` θt 9W ptq `

1

2`
‖∇f px ptqq ´∇f px˚q‖2 `

β

2
‖Ax ptq ´ b‖2

ď´

´

Lβ px ptq , λ˚q ´ Lβ px˚, λ ptqq
¯

` p1´ θαq
∥∥∥´ 9x ptq , 9λ ptq

¯∥∥∥2
ď 0,

since θ ą
1

α´ 1
ą

1

α
.

The following result provides one of the two statements of the Opial Lemma (see Lemma
A.3) which we will use to prove weak convergence of the trajectory.

Lemma 4.4. Let px, λq : rt0,`8q Ñ X ˆY be a solution of (PD-AVD) and px˚, λ˚q P S. Then
the positive part r 9ϕs` of 9ϕ belongs to L1 prt0,`8qq and the limit lim

tÑ`8
ϕ ptq P R exists.
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Proof. Multiplying inequality (4.4) by t and adding θpα` 1qtW ptq to its both sides, we obtain
for every t ě t0

t :ϕ ptq ` α 9ϕ ptq ` θ
´

t2 9W ptq ` pα` 1q tW ptq
¯

ď θ pα` 1q tW ptq . (4.8)

Multiplying further (4.8) by tα´1, it yields for every t ě t0

d

dt
ptα 9ϕ ptqq ` θ

d

dt

`

tα`1W ptq
˘

ď θpα` 1qtαW ptq . (4.9)

As 1 ´ 2θ ą 0 and ξ “ θα ´ θ ´ 1 ą 0, it follows from (3.11) and (3.12) in Theorem 3.2 that
t ÞÑ tW ptq belongs to L1 prt0,`8qq.

After integration we obtain from (4.9) that for every t ě t0

tα 9ϕ ptq ´ tα0 9ϕ pt0q ` θ
`

tα`1W ptq ´ tα`10 W pt0q
˘

ď θpα` 1q

ż t

t0

sαW psq ds

which yields

9ϕ ptq ď
1

tα
`

tα0 | 9ϕ pt0q|` θtα`10 W pt0q
˘

`
θpα` 1q

tα

ż t

t0

sαW psq ds.

We set
C5 :“ tα0 | 9ϕ pt0q|` θtα`10 W pt0q ě 0

and obtain further that for every t ě t0

r 9ϕ ptqs` ď
C5

tα
`
θpα` 1q

tα

ż t

t0

sαW psq ds

and after integration
ż `8

t0

r 9ϕ ptqs` dt ď C5

ż `8

t0

1

tα
dt` θpα` 1q

ż `8

t0

1

tα

ˆ
ż t

t0

sαW psq ds

˙

dt.

We have
ż `8

t0

1

tα
dt “

1

pα´ 1q tα´10

and, by applying Lemma A.1 with h ptq :“ tW ptq and r :“ `8,

ż `8

t0

1

tα

ˆ
ż t

t0

sαW psq ds

˙

dt “
1

α´ 1

ż `8

t0

tW ptq dt.

Combining these relations we conclude that
ż `8

t0

r 9ϕ ptqs` dt ď
C5

pα´ 1q tα´10

`
θpα` 1q

α´ 1

ż `8

t0

tW ptq dt ă `8.

Finally, let ψ : rt0,`8q Ñ R be the function defined by

ψ ptq :“ ϕ ptq ´

ż t

t0

r 9ϕ psqs` ds.

This function is nonincreasing and bounded from below, thus it has a finite limit as t Ñ `8.
From here it yields that the limit

lim
tÑ`8

ϕ ptq “ lim
tÑ`8

ψ ptq `

ż `8

t0

r 9ϕ psqs` ds P R

exists.
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Next we will prove a number of results which will finally guarantee that the second assump-
tion of the Opial Lemma is fulfilled, namely that every weak sequential cluster point of the
trajectory px, λq is an element of S.

Lemma 4.5. Let px, λq : rt0,`8q Ñ X ˆY be a solution of (PD-AVD) and px˚, λ˚q P S. The
following inequality holds for every t ě t0:

α

t

d

dt

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2 ` θ d

dt

´

t ‖A˚ pλ ptq ´ λ˚q‖2
¯

` p1´ θq ‖A˚ pλ ptq ´ λ˚q‖2

` 2
A

:x ptq `
α

t
9x ptq , A˚ pλ ptq ´ λ˚q

E

ď 2 ‖∇f px ptqq ´∇f px˚q‖2 `
´

2β2 ‖A‖2 ` 1
¯

‖Ax ptq ´ b‖2.

Proof. Let t ě t0 be fixed. We have

‖∇f px ptqq ´∇f px˚q ` βA˚ pAx ptq ´ bq‖2 “
∥∥∥:x ptq `

α

t
9x ptq `A˚

´

λ ptq ´ λ˚ ` θt 9λ ptq
¯∥∥∥2

“

∥∥∥:x ptq `
α

t
9x ptq

∥∥∥2 ` ∥∥∥A˚ ´λ ptq ´ λ˚ ` θt 9λ ptq
¯∥∥∥2 ` 2

A

:x ptq `
α

t
9x ptq , A˚ pλ ptq ´ λ˚q

E

` 2θt
A

:x ptq , A˚ 9λ ptq
E

` 2αθ
A

9x ptq , A˚ 9λ ptq
E

(4.10)

and

‖Ax ptq ´ b‖2 “
∥∥∥:λ ptq `

α

t
9λ ptq ´ θtA 9x ptq

∥∥∥2
“

∥∥∥:λ ptq `
α

t
9λ ptq

∥∥∥2 ` θ2t2 ‖A 9x ptq‖2 ´ 2θt
A

:λ ptq , A 9x ptq
E

´ 2αθ
A

9λ ptq , A 9x ptq
E

. (4.11)

Summing (4.10) and (4.11), we get

‖∇f px ptqq ´∇f px˚q ` βA˚ pAx ptq ´ bq‖2 ` ‖Ax ptq ´ b‖2

“

∥∥∥´:xptq, :λptq
¯

`
α

t

´

9xptq, 9λptq
¯∥∥∥2 ` ∥∥∥A˚ ´λ ptq ´ λ˚ ` θt 9λ ptq

¯∥∥∥2 ` θ2t2 ‖A 9x ptq‖2

` 2θt
A

:x ptq , A˚ 9λ ptq
E

´ 2θt
A

:λ ptq , A 9x ptq
E

` 2
A

:x ptq `
α

t
9x ptq , A˚ pλ ptq ´ λ˚q

E

. (4.12)

We have

θ2t2 ‖A 9x ptq‖2 ` 2θt
A

:x ptq , A˚ 9λ ptq
E

´ 2θt
A

:λ ptq , A 9x ptq
E

“ θ2t2
∥∥∥´A˚ 9λ ptq ,´A 9x ptq

¯∥∥∥2 ´ θ2t2 ∥∥∥A˚ 9λ ptq
∥∥∥2 ` 2θt

A´

:xptq, :λptq
¯

,
´

A˚ 9λ ptq ,´A 9x ptq
¯E

“ ´

∥∥∥´:xptq, :λptq
¯∥∥∥2 ` ∥∥∥´:xptq, :λptq

¯

` θt
´

A˚ 9λ ptq ,´A 9x ptq
¯∥∥∥2 ´ θ2t2 ∥∥∥A˚ 9λ ptq

∥∥∥2
ě ´

∥∥∥´:xptq, :λptq
¯∥∥∥2 ´ θ2t2 ∥∥∥A˚ 9λ ptq

∥∥∥2 (4.13)

and ∥∥∥´:xptq, :λptq
¯

`
α

t

´

9x ptq , 9λ ptq
¯∥∥∥2 ´ ∥∥∥´:xptq, :λptq

¯∥∥∥2
“
α2

t2

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2 ` 2

α

t

A´

:xptq, :λptq
¯

,
´

9x ptq , 9λ ptq
¯E

ě
α

t

d

dt

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2 . (4.14)
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In addition, ∥∥∥A˚ ´λ ptq ´ λ˚ ` θt 9λ ptq
¯∥∥∥2 ´ θ2t2 ∥∥∥A˚ 9λ ptq

∥∥∥2
“ ‖A˚ pλ ptq ´ λ˚q‖2 ` 2θt

A

AA˚ pλ ptq ´ λ˚q , 9λ ptq
E

“ p1´ θq ‖A˚ pλ ptq ´ λ˚q‖2 ` θ ‖A˚ pλ ptq ´ λ˚q‖2 ` θt
d

dt
‖A˚ pλ ptq ´ λ˚q‖2

“ p1´ θq ‖A˚ pλ ptq ´ λ˚q‖2 ` θ
d

dt

´

t ‖A˚ pλ ptq ´ λ˚q‖2
¯

. (4.15)

Hence, using (4.13), (4.14) and (4.15) in (4.12) we obtain

‖∇f px ptqq ´∇f px˚q ` βA˚ pAx ptq ´ bq‖2 ` ‖Ax ptq ´ b‖2

ě

∥∥∥´:xptq, :λptq
¯

`
α

t

´

9x ptq , 9λ ptq
¯
∥∥∥2 ´ ∥∥∥´:xptq, :λptq

¯
∥∥∥2

`

∥∥∥A˚ ´λ ptq ´ λ˚ ` θt 9λ ptq
¯
∥∥∥2 ´ θ2t2 ∥∥∥A˚ 9λ ptq

∥∥∥2 ` 2
A

:x ptq `
α

t
9x ptq , A˚ pλ ptq ´ λ˚q

E

ě
α

t

d

dt

∥∥∥´ 9x ptq , 9λ ptq
¯
∥∥∥2 ` θ d

dt

´

t ‖A˚ pλ ptq ´ λ˚q‖2
¯

` p1´ θq ‖A˚ pλ ptq ´ λ˚q‖2

` 2
A

:x ptq `
α

t
9x ptq , A˚ pλ ptq ´ λ˚q

E

.

Since

‖∇f px ptqq ´∇f px˚q ` βA˚ pAx ptq ´ bq‖2

ď 2 ‖∇f px ptqq ´∇f px˚q‖2 ` 2β2 ‖A‖2 ‖Ax ptq ´ b‖2 ,

the conclusion follows.

The following proposition provides a further important integrability result.

Proposition 4.6. Let px, λq : rt0,`8q Ñ X ˆY be a solution of (PD-AVD) and px˚, λ˚q P S.
Then it holds:

ż `8

t0

t ‖A˚ pλ ptq ´ λ˚q‖2 dt ă `8.

Proof. From Lemma 4.3 and Lemma 4.5 we have for every t ě t0 that

:ϕ ptq `
α

t
9ϕ ptq ` θt 9W ptq`

α

t

d

dt

∥∥∥´ 9x ptq , 9λ ptq
¯∥∥∥2

`θ
d

dt

´

t ‖A˚ pλ ptq ´ λ˚q‖2
¯

`2
A

:x ptq `
α

t
9x ptq , A˚ pλ ptq ´ λ˚q

E

ď pθ ´ 1q ‖A˚ pλ ptq ´ λ˚q‖2 `
ˆ

2´
1

2`

˙

‖∇f px ptqq ´∇f px˚q‖2

`

ˆ

2β2 ‖A‖2 ` 1´
β

2

˙

‖Ax ptq ´ b‖2

ď pθ ´ 1q ‖A˚ pλ ptq ´ λ˚q‖2 ` C6 ‖∇f px ptqq ´∇f px˚q‖2 ` C7 ‖Ax ptq ´ b‖2 , (4.16)

where

C6 :“

„

2´
1

2`



`

ě 0 and C7 :“

„

2β2 ‖A‖2 ` 1´
β

2



`

ě 0.

Multiplying (4.16) by tα and integrating, we obtain for every t ě t0

I1ptq ` θI2ptq`αI3ptq ` θI4ptq ` 2I5ptq

ď pθ ´ 1q

ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds` C6

ż t

t0

sα ‖∇f px psqq ´∇f px˚q‖2 ds

`C7

ż t

t0

sα ‖Ax psq ´ b‖2 ds, (4.17)
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where

I1ptq :“

ż t

t0

`

sα :ϕ psq ` αsα´1 9ϕ psq
˘

ds,

I2ptq :“

ż t

t0

sα`1 9W psq ds,

I3ptq :“

ż t

t0

sα´1
ˆ

d

ds

∥∥∥´ 9x psq , 9λ psq
¯
∥∥∥2˙ ds,

I4ptq :“

ż t

t0

sα
ˆ

d

ds

´

s ‖A˚ pλ psq ´ λ˚q‖2
¯

˙

ds,

I5ptq :“

ż t

t0

@

sα:x psq ` αsα´1 9x psq , A˚ pλ psq ´ λ˚q
D

ds.

We will compute these five integrals separately. Let t ě t0 fixed.

• The integral I1ptq. By the chain rule we have for all s P rt0, ts

sα :ϕ psq ` αsα´1 9ϕ psq “
d

ds
psα 9ϕ psqq ,

which leads to

0 “ I1ptq ´ t
α 9ϕ ptq ` tα0 9ϕ pt0q ď I1ptq ´ t

α 9ϕ ptq ` tα0 | 9ϕ pt0q |. (4.18)

• The integrals I2ptq, I3ptq and I4ptq. Integration by parts gives

I2ptq “ tα`1W ptq ´ tα`10 W pt0q ´ pα` 1q

ż t

t0

sαW psq ds,

which yields

0 ď tα`1W ptq “ I2ptq ` t
α`1
0 W pt0q ` pα` 1q

ż t

t0

sαW psq ds. (4.19)

Similarly, we have

I3ptq “ tα´1
∥∥∥´ 9x ptq , 9λ ptq

¯
∥∥∥2 ´ tα´10

∥∥∥´ 9x pt0q , 9λ pt0q
¯
∥∥∥2

´ pα´ 1q

ż t

t0

sα´2
∥∥∥´ 9x psq , 9λ psq

¯∥∥∥2 ds,
which yields

0 ď I3ptq ` t
α´1
0

∥∥∥´ 9x pt0q , 9λ pt0q
¯∥∥∥2 ` pα´ 1q

ż t

t0

sα´2
∥∥∥´ 9x psq , 9λ psq

¯∥∥∥2 ds
ď I3ptq ` t

α´1
0

∥∥∥´ 9x pt0q , 9λ pt0q
¯
∥∥∥2 ` α´ 1

t20

ż t

t0

sα
∥∥∥´ 9x psq , 9λ psq

¯
∥∥∥2 ds. (4.20)

Using again integration by parts, we have

I4ptq “ tα`1 ‖A˚ pλ ptq ´ λ˚q‖2 ´ tα`10 ‖A˚ pλ pt0q ´ λ˚q‖2 ´ α
ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds

and from here

tα`1 ‖A˚ pλ ptq ´ λ˚q‖2 “ I4ptq ` t
α`1
0 ‖A˚ pλ pt0q ´ λ˚q‖2 ` α

ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds.

(4.21)
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• The integral I5ptq. Integration by parts gives

I5ptq “

ż t

t0

B

d

ds
psα 9x psqq , A˚ pλ psq ´ λ˚q

F

ds

“ tα x 9x ptq , A˚ pλ ptq ´ λ˚qy ´ t
α
0 x 9x pt0q , A

˚ pλ pt0q ´ λ˚qy ´

ż t

t0

sα
A

9x psq , A˚ 9λ psq
E

ds.

and, since

ż t

t0

sα
A

9x psq , A˚ 9λ psq
E

ds ď
max

!

1, ‖A‖2
)

2

ż t

t0

sα
ˆ

‖ 9x psq‖2 `
∥∥∥ 9λ psq

∥∥∥2˙ ds,
we obtain

0 ď I5ptq ´ t
α x 9x ptq , A˚ pλ ptq ´ λ˚qy ` t

α
0 | x 9x pt0q , A

˚ pλ pt0q ´ λ˚qy |

`

max
!

1, ‖A‖2
)

2

ż t

t0

sα
∥∥∥´ 9x psq , 9λ psq

¯∥∥∥2 ds. (4.22)

Combining (4.18), (4.19), (4.20), (4.21) and (4.22), we obtain

θtα`1 ‖A˚ pλ ptq ´ λ˚q‖2

ď I1ptq ` θI2ptq ` αI3ptq ` θI4ptq ` 2I5ptq ´ t
α 9ϕ ptq

`

ż t

t0

sα
ˆ

θ pα` 1qW psq `

ˆ

α pα´ 1q

t20
`max

!

1, ‖A‖2
)

˙ ∥∥∥´ 9x psq , 9λ psq
¯
∥∥∥2˙ ds

`θα

ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds´2tα x 9x ptq , A˚ pλ ptq ´ λ˚qy ` C8

ď ´tα 9ϕ ptq `

ż t

t0

sαV psq ds` pθ pα` 1q ´ 1q

ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds

´2tα x 9x ptq , A˚ pλ ptq ´ λ˚qy ` C8, (4.23)

where the last inequality follows from (4.17),

V psq :“ θ pα` 1qW psq `

ˆ

α pα´ 1q

t20
`max

!

1, ‖A‖2
)

˙ ∥∥∥´ 9x psq , 9λ psq
¯
∥∥∥2

`C6 ‖∇f px psqq ´∇f px˚q‖2 ` C7 ‖Ax psq ´ b‖2 ě 0 @s ě t0

and

C8 :“ tα0 | 9ϕ pt0q|` θtα`10 W pt0q`αt
α´1
0

∥∥∥´ 9x pt0q , 9λ pt0q
¯∥∥∥2

`θtα`10 ‖A˚ pλ pt0q ´ λ˚q‖2 ` 2tα0 |x 9x pt0q , A
˚ pλ pt0q ´ λ˚qy| ě 0.

Dividing (4.23) by tα we obtain from here

θt ‖A˚ pλ ptq ´ λ˚q‖2 ď´ 9ϕ ptq `
1

tα

ż t

t0

sαV psq ds`
pθ pα` 1q ´ 1q

tα

ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds

´2 x 9x ptq , A˚ pλ ptq ´ λ˚qy `
C8

tα
, (4.24)
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which holds for every t ě t0. We choose r ě t0 and integrate (4.24) from t0 to r. This yields

θ

ż r

t0

t ‖A˚ pλ ptq ´ λ˚q‖2 dt ď ϕ pt0q ´ ϕ prq `

ż r

t0

1

tα

ˆ
ż t

t0

sαV psq ds

˙

dt

` pθ pα` 1q ´ 1q

ż r

t0

1

tα

ˆ
ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds
˙

dt

´2

ż r

t0

xA 9x ptq , λ ptq ´ λ˚y dt` C8

ż r

t0

1

tα
dt. (4.25)

Recall that
ż r

t0

1

tα
dt ď

1

pα´ 1q tα´10

. (4.26)

Moreover, by applying Lemma A.1 with h ptq :“ tV ptq, it yields

ż r

t0

1

tα

ˆ
ż t

t0

sαV psq ds

˙

dt ď
1

α´ 1

ż r

t0

tV ptq dt. (4.27)

Similarly, applying the same result with h ptq :“ t ‖A˚ pλ ptq ´ λ˚q‖2 gives

ż r

t0

1

tα

ˆ
ż t

t0

sα ‖A˚ pλ psq ´ λ˚q‖2 ds
˙

dt ď
1

α´ 1

ż r

t0

t ‖A˚ pλ ptq ´ λ˚q‖2 dt. (4.28)

Using again integration by parts we obtain

´

ż r

t0

xA 9x ptq , λ ptq ´ λ˚y dt

“ ´ xAx prq ´ b, λ prq ´ λ˚y ` xAx pt0q ´ b, λ pt0q ´ λ˚y `

ż r

t0

A

Ax ptq ´ b, 9λ ptq
E

dt

ď ‖Ax prq ´ b‖ ‖λ prq ´ λ˚‖` ‖Ax pt0q ´ b‖ ‖λ pt0q ´ λ˚‖`
ż r

t0

A

Ax ptq ´ b, 9λ ptq
E

dt

ď sup
tět0

t‖Ax ptq ´ b‖ ‖λ ptq ´ λ˚‖u ` ‖Ax pt0q ´ b‖ ‖λ pt0q ´ λ˚‖

`
1

2

ż r

t0

ˆ

‖Ax ptq ´ b‖2 `
∥∥∥ 9λ ptq

∥∥∥2˙ dt. (4.29)

Due to the boundedness of the trajectory we have

sup
tět0

t‖Ax ptq ´ b‖ ‖λ ptq ´ λ˚‖u ă `8.

Combining (4.26), (4.27), (4.28) and (4.29) with (4.25) and using the nonnegativity of ϕ, we
obtain

1´ 2θ

α´ 1

ż r

t0

t ‖A˚ pλ ptq ´ λ˚q‖2 dt “
ˆ

θ `
1´ θ pα` 1q

α´ 1

˙
ż r

t0

t ‖A˚ pλ ptq ´ λ˚q‖2 dt

ď
1

α´ 1

ż r

t0

tV ptq dt`

ż r

t0

t

ˆ

‖Ax ptq ´ b‖2 `
∥∥∥ 9λ ptq

∥∥∥2˙ dt` C9

ď
1

α´ 1

ż `8

t0

tV ptq dt`

ż `8

t0

t

ˆ

‖Ax ptq ´ b‖2 `
∥∥∥ 9λ ptq

∥∥∥2˙ dt` C9, (4.30)

where

C9 :“ ϕ pt0q ` 2 sup
tět0

t‖Ax ptq ´ b‖ ‖λ ptq ´ λ˚‖u ` 2 ‖Ax pt0q ´ b‖ ‖λ pt0q ´ λ˚‖`
C8

pα´ 1q tα´10

.
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According to (3.11) and (3.12) in Theorem 3.2 as well as (4.2) and (4.3) in Proposition 4.2, we

conclude that both t ÞÑ tV ptq and t ÞÑ t

ˆ

‖Ax ptq ´ b‖2 `
∥∥∥ 9λ ptq

∥∥∥2˙ belong to L1 prt0,`8qq,

therefore the right-hand side of (4.30) is finite.
Hence, by passing r Ñ `8 in (4.30) and by taking into account the choice of the parameters

θ and α, we obtain the desired statement.

The following result will be used to show the weak convergence of the trajectory, but it also
has its own interest, since it provides the convergence rate for the KKT system associated to
problem (1.1).

Theorem 4.7. Let px, λq : rt0,`8q Ñ X ˆ Y be a solution of (PD-AVD) and px˚, λ˚q P S.
Then it holds:

‖A˚ pλ ptq ´ λ˚q‖ “ o

ˆ

1
?
t

˙

and ‖∇f px ptqq ´∇f px˚q‖ “ o

ˆ

1
?
t

˙

as tÑ `8. (4.31)

Consequently,

∥∥∇xL`x ptq , λ ptq˘∥∥ “ ‖∇f px ptqq `A˚λ ptq‖ “ o

ˆ

1
?
t

˙

as tÑ `8,

while, as seen in Section 3,

∥∥∇λL`x ptq , λ ptq˘∥∥ “ ‖Ax ptq ´ b‖ “ Oˆ

1

t2

˙

as tÑ `8.

Proof. The continously differentiable functions

F ptq :“ t ‖A˚ pλ ptq ´ λ˚q‖2 ě 0

G ptq :“
´

1` t ‖A‖2
¯

‖A˚ pλ ptq ´ λ˚q‖2 ` t
∥∥∥ 9λ ptq

∥∥∥2
defined on rt0,`8q belong, according to Proposition 4.6 and Theorem 3.2, to L1 prt0,`8qq.
For every t ě t0 we have

d

dt

´

t ‖A˚ pλ ptq ´ λ˚q‖2
¯

“ ‖A˚ pλ ptq ´ λ˚q‖2 ` 2t
A

AA˚ pλ ptq ´ λ˚q , 9λ ptq
E

ď ‖A˚ pλ ptq ´ λ˚q‖2 ` t
ˆ

‖AA˚ pλ ptq ´ λ˚q‖2 `
∥∥∥ 9λ ptq

∥∥∥2˙
ď

´

1` t ‖A‖2
¯

‖A˚ pλ ptq ´ λ˚q‖2 ` t
∥∥∥ 9λ ptq

∥∥∥2 ,
thus, from Lemma A.2 we get

‖A˚ pλ ptq ´ λ˚q‖ “ o

ˆ

1
?
t

˙

as tÑ `8. (4.32)

The functions

F ptq :“ t ‖∇f px ptqq ´∇f px˚q‖2 ě 0

G ptq :“ p1` tq ‖∇f px ptqq ´∇f px˚q‖2 ` t`2 ‖ 9x ptq‖2
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defined on rt0,`8q are locally absolutely continuous and belong, according to Proposition 4.2
and Theorem 3.2, to L1 prt0,`8qq. For almost every t ě t0 we have

d

dt

´

t ‖∇f px ptqq ´∇f px˚q‖2
¯

“ ‖∇f px ptqq ´∇f px˚q‖2 ` 2t

B

∇f px ptqq ´∇f px˚q ,
d

dt
∇f px ptqq

F

ď p1` tq ‖∇f px ptqq ´∇f px˚q‖2 ` t
∥∥∥∥ ddt∇f px ptqq

∥∥∥∥2
ď p1` tq ‖∇f px ptqq ´∇f px˚q‖2 ` t`2 ‖ 9x ptq‖2 ,

where the last inequality follows from the fact that ∇f is `´Lipschitz continuous. From Lemma
A.2 we get

‖∇f px ptqq ´∇f px˚q‖ “ o

ˆ

1
?
t

˙

as tÑ `8.

According to (4.32) we have∥∥∇xL`x ptq , λ ptq˘∥∥ “ ‖∇f px ptqq `A˚λ ptq‖
ď ‖∇f px ptqq ´∇f px˚q‖` ‖A˚ pλ ptq ´ λ˚q‖ “ o

ˆ

1
?
t

˙

as tÑ `8,

while Theorem 3.4 gives∥∥∇λL`x ptq , λ ptq˘∥∥ “ ‖Ax ptq ´ b‖ “ Oˆ

1

t2

˙

as tÑ `8.

We are now in the position to prove the main result of this section.

Theorem 4.8. Let px, λq : rt0,`8q Ñ X ˆ Y be a solution of (PD-AVD) and px˚, λ˚q P S.
Then

`

x ptq , λ ptq
˘

converges weakly to a primal-dual optimal solution of (1.1) as tÑ `8.

Proof. We have seen in Lemma 4.4 that the limit lim
tÑ`8

∥∥`x ptq , λ ptq˘´ px˚, λ˚q∥∥ exists for every

px˚, λ˚q P S, which proves condition (i) of Opial’s Lemma (see Lemma A.3).

In order to prove condition (ii), we consider
´

rx, rλ
¯

an arbitrary weak sequential cluster

point of
`

x ptq , λ ptq
˘

as tÑ `8, which means that there exists a sequence tpx ptnq , λ ptnqquně0
such that

px ptnq , λ ptnqq á
´

rx, rλ
¯

as nÑ `8.

Theorem 4.7 and Theorem 3.4 allow us to deduce that

∇f px ptnqq `A˚λ ptnq Ñ ∇f px˚q `A˚λ˚ “ 0 as nÑ `8.

and
Ax ptnq ´ bÑ 0 as nÑ `8,

respectively. Since the graph of the operator TL introduced in (2.8) is sequentially closed in
pX ˆ Yqweak ˆ pX ˆ Yqstrong (cf. [23, Proposition 20.38]), we have that

#

∇f prxq `A˚rλ “ ∇f px˚q `A˚λ˚ “ 0

Arx´ b “ Ax˚ ´ b “ 0
.

In other words,
´

rx, rλ
¯

belongs to S and the proof is complete.
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Remark 4.9. In case A :“ 0 and b :“ 0, the optimization problem (1.1) reduces to the
unconstrained optimization problem

min
xPX

f pxq . (4.33)

We will prove that inwe obtain as particular case all convergence results stated in the literature
for Nesterov’s accelerated gradient system (AVD).

Indeed, the system of optimality conditions (2.3) read in this case

px˚, λ˚q P Sô ∇f px˚q “ 0 and λ˚ P Y,

in particular, x˚ P X is an optimal solution of (4.33) if and only if ∇f px˚q “ 0. The system
(PD-AVD) becomes

$

’

’

’

’

&

’

’

’

’

%

:x ptq `
α

t
9x ptq `∇f px ptqq “ 0

:λ ptq `
α

t
9λ ptq “ 0

´

x pt0q , λ pt0q
¯

“

´

x0, λ0

¯

and
´

9x pt0q , 9λ pt0q
¯

“

´

9x0, 9λ0

¯

.

The dynamical system in x is reads

$

&

%

:x ptq `
α

t
9x ptq `∇f px ptqq “ 0

xpt0q “ x0 and 9xpt0q “ 9x0
,

for α ě 3, and is nothing else than Nesterov’s accelerated gradient system. The trajectory

generated by the system in λ is λptq “
9λ0tα0
1´α t

1´α ` λ0 ´
9λ0t0
1´α for every t ě t0. The parameters β

and θ play no role in the system.
If α ě 3, then Theorem 3.4 (ii) gives that fpxptqq converges to f˚ with a rate of convergence

of O
ˆ

1

t2

˙

as tÑ `8, which is the rate reported in [12, 53] for (AVD).

If α ą 3, then Theorem 4.8 gives that the trajectory xptq converges weakly to an optimal
solution of (4.33), as tÑ `8, which agrees with what it has been reported in [12] for (AVD).

Finally, we mention that the convergence of the trajectory in the critical case α “ 3 ([12, 53])
is still an open question, as it is the convergence of the iterates of the original Nesterov’s
acceleration algorithm ([8, 24, 42]).

A Appendix

We collect here some results which are used in the proof of the convergence of the trajectory of
the dynamical system (PD-AVD).

Lemma A.1. Let 0 ă δ ď r ď `8 and h : rδ,`8q Ñ r0,`8q be a continuous function. For
every α ą 1 it holds

ż r

δ

1

tα

ˆ
ż t

δ
sα´1h psq ds

˙

dt ď
1

α´ 1

ż r

δ
h ptq dt.

If r “ `8, then equality holds.

Proof. We have

ż r

δ

1

tα

ˆ
ż t

δ
sα´1h psq ds

˙

dt “

ż r

δ

ż t

δ

1

tα
sα´1h psq dsdt “

ĳ

A

1

tα
sα´1h psq dA,
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where

A :“ tps, tq : δ ď t ď r, δ ď s ď tu “ tpt, sq : δ ď s ď r, s ď t ď ru .

Thus, by applying Fubini’s theorem,

ż r

δ

1

tα

ˆ
ż t

δ
sα´1h psq ds

˙

dt “

ż r

δ

ż r

s

1

tα
sα´1h psq dtds “

ż r

δ
sα´1h psq

ˆ
ż r

s

1

tα
dt

˙

ds,

from which we get the desired estimate, as

ż r

s

1

tα
dt “

1

α´ 1

ˆ

1

sα´1
´

1

rα´1

˙

ď
1

pα´ 1q sα´1
.

If r :“ `8, then the above inequality is an equality.

The following result can be found in [1, Lemma 5.2].

Lemma A.2. Let δ ą 0, 1 ď p ă 8 and 1 ď q ď 8. Suppose that F P Lp prδ,`8qq is a locally
absolutely continuous nonnegative function, G P Lq prδ,`8qq and

d

dt
F ptq ď G ptq for almost every t ě δ.

Then lim
tÑ`8

F ptq “ 0.

Opial’s Lemma [45] in continuous form is used in the proof of the weak convergence of the
trajectory of (PD-AVD) to a primal-dual solution of (1.1). This argument was first used in [33]
to establish the convergence of nonlinear contraction semigroups.

Lemma A.3. Let S be a nonempty subset of X and z : rt0,`8q Ñ X . Assume that

piq for every z˚ P S, lim
tÑ`8

‖z ptq ´ z˚‖ exists;

piiq every weak sequential cluster point of the trajectory z ptq as tÑ `8 belongs to S.

Then z converges weakly to a point in S as tÑ `8.

Statement (4.31) in Theorem 4.7 suggests that the mapping px, λq ÞÑ p∇fpxq, A˚λq is con-
stant along the set S of primal-dual optimal solutions of (1.1). This is confirmed by the following
result.

Proposition A.4. Consider the optimization problem (1.1). If ∇f is `´Lipschitz continuous,
then for every px˚, λ˚q , px˚˚, λ˚˚q P S it holds

∇f px˚q “ ∇f px˚˚q and A˚λ˚ “ A˚λ˚˚.

Proof. Let px˚, λ˚q , px˚˚, λ˚˚q P S. We have Ax˚ “ Ax˚˚ “ b. According to the Baillon-Haddad
theorem [23, Corollary 18.17], ∇f is `´1-cocoercive, which means

1

`
‖∇f px˚˚q ´∇f px˚q‖2 ď x∇f px˚˚q ´∇f px˚q , x˚˚ ´ x˚y

“ ´ xA˚ pλ˚˚ ´ λ˚q , x˚˚ ´ x˚y “ xλ˚ ´ λ˚˚, Ax˚˚ ´Ax˚y “ 0,

where the first equation comes from (2.3). This yields ∇f px˚˚q “ ∇f px˚q, which, again via
(2.3), gives A˚λ˚ “ A˚λ˚˚.

Acknowledgements. The authors are thankful to Ernö Robert Csetnek (University of
Vienna) for comments and remarks which have improved the quality of the paper.
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