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Abstract. We aim to factorize a completely positive matrix by using an optimization approach which
consists in the minimization of a nonconvex smooth function over a convex and compact set. To solve this
problem we propose a projected gradient algorithm with parameters that take into account the effects of
relaxation and inertia. Both projection and gradient steps are simple in the sense that they have explicit
formulas and do not require inner loops. Furthermore, no expensive procedure to find an appropriate
starting point is needed. The convergence analysis shows that the whole sequence of generated iterates
converges to a critical point of the objective function and it makes use of the  Lojasiewicz inequality. Its
rate of convergence expressed in terms of the  Lojasiewicz exponent of a regularization of the objective
function is also provided. Numerical experiments demonstrate the efficiency of the proposed method, in
particular in comparison to other factorization algorithms, and emphasize the role of the relaxation and
inertial parameters.
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1 Introduction

A symmetric matrix A P Rnˆn is called completely positive if there exists an entrywise nonegative matrix
X P Rnˆr` such that

A “ XXT .

Let
CPn :“

 

A P Rnˆn : A “ XXT with X P Rnˆr` , r ě 1
(

(1.1)

denote the set of n ˆ n completely positive matrices. This set is a proper cone whose extreme rays are
the rank-one matrices xxT with x P Rn` (see [10]), thus

CPn “ conv
 

xxT : x P Rn`
(

,

where conv stands for the convex hull operator.
The factorization of a nonzero completely positive matrix A is never unique. Moreover, the number

of columns of the factor X can vary (see [25, 33]), which gives rise to the following notion.
Let A P Rnˆn. The cp-rank of A is defined as

cpr pAq :“ inf
 

r ě 1: DX P Rnˆr` , A “ XXT
(

.

The majority of the known numerical methods aiming to factorize a completely positive matrix are
sensitive to its cp-rank.

The cp`-rank of A is defined as

cpr` pAq :“ inf
 

r ě 1: DX P Rnˆr`` , A “ XXT
(

,
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where Rnˆr`` denotes the set of matrices in Rnˆr` which have at least one positive column. The cp`-rank
is useful when characterizing the interior of the cone of completely positive matrices. Indeed, as showed
by Dickinson in [25, Theorem 3.8], this can be characterized as

int pCPnq “
 

A P Rnˆn : rank pAq “ n,A “ XXT , X P Rnˆr``

(

. (1.2)

The problem of computing the cp-rank of a matrix is in general open (see [11]). However, upper
bounds for the cp-rank have been derived by Bomze, Dickinson and Still in [17, Theorem 4.1], namely,
for A P CPn, it holds

cpr pAq ď cpn :“

$

&

%

n for n P t2, 3, 4u ,
1

2
n pn` 1q ´ 4 for n ě 5.

Moreover, if A P int pCPnq, then

cpr` pAq ď cp`n :“

$

&

%

n` 1 for n P t2, 3, 4u ,
1

2
n pn` 1q ´ 3 for n ě 5.

Notice that there exists matrices A P int pCPnq such that cpr pAq ‰ cpr` pAq.
Closely related to the completely positive matrices is the class of copositive matrices

COPn :“
 

A P Snˆn : xTAx ě 0 @x P Rn`
(

,

where Snˆn denotes the set of n ˆ n symmetric matrices. In fact, CPn is the dual cone of COPn (see,
for instance, [10]), namely,

CPn “ pCOPnq˚ :“
 

A P Snˆn : xA,By ě 0 @B P COPn
(

.

Here, x¨, ¨y denotes the Frobenius inner product (see Section 2 for the precise definition).
Many relaxations of combinatorial optimization problems and of nonconvex quadratic optimization

problems can be formulated as linear problems over CPn or COPn. Since the objective function and
the constraint functions are linear, the challenge when addressing these is entirely transferred in the
proper handling of the cone constraints. Consequently, copositive and completely positive matrices
have received considerable attention in recent years (see, for instance, [16, 22, 31]). The application
fields, where copositive and completely positive matrices appear, include block design, complementarity
problems, projections in energy demand, the Markovian modelling of DNA evolutions, and maximin
efficiency robust tests, see [10] and the references therein.

We illustrate this approach for a nonconvex quadratic programming problem

min
xPRn

xTMx.

s.t. jTnx “ 1,

x P Rn`,

(1.3)

where M P Snˆn and jn denotes the all-ones vector in Rn. If M is not a positive semidefinite matrix,
then (1.3) is a nonconvex optimization problem which is usually NP-hard and exhibits numerous local
minima. Observe that the objective function of (1.3) can be rewritten in terms of the Frobenius inner
product as for X “ xxT , it holds xTMx “

@

M,xxT
D

“ xM,Xy. In the same fashion, the constraint

jTnx “ 1 implies
@

jnjTn , X
D

“ 1. Therefore, the optimization problem

min
XPRnˆn

xM,Xy .

s.t.
@

jnjTn , X
D

“ 1,

X P CPn,

(1.4)

is a convex relaxation of the nonconvex quadratic problem (1.3). In [18] it has been shown how optimal
solutions of (1.4) can be related to optimal solutions of (1.3). Let X˚ be an optimal solution of (1.4).
If X˚ is of rank one, then it can be expressed as X˚ “ x˚x

T
˚ and therefore x˚ is an optimal solution
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of (1.3). If rank pX˚q ą 1, then X˚ can be factorized as X˚ “
řr
i“1 xix

T
i and it can be shown that an

appropriately scaled version of each xi is an optimal solution of (1.3).
Another class of matrices related to the completely positive matrices is the one of doubly nonneg-

ative matrices, which are real positive semidefinite square matrices with nonnegative entries, namely,
DNNn :“ Snˆn X Rnˆn` . One has in general

CPn Ď DNNn,

whereas, for n ď 4, the inclusion becomes an equality (see [10, 31]). However, for n ě 5, the inclusion is
strict; for example (see [11])

A :“

¨

˚

˚

˚

˚

˝

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 1 1
1 0 0 1 3

˛

‹

‹

‹

‹

‚

P DNN 5zCP5.

Checking membership of a matrix to CPn is known to be a NP-hard prpblem, as it has been proved
by Dickinson and Gijben in [27]. Jarre and Schmallowsky proposed in [34] a method which provides
a certificate for a given matrix to be completely positive. Their approach is based on an augmented
primal-dual method and aims to solve a certain second order cone problem. Eventually, it is necessary
to solve Lyapunov equations to obtain a completely positive factorization.

One of the main challenge when dealing with completely positive matrices is their efficient factor-
ization ([10, 26, 33]). This is a question of high relevance in many applications, as, for example, in the
statistics of multivariate extremes. Cooley and Thibaud have shown in [24] that the tail dependence of a
multi-variate regularly-varying random vector can be summarized in a so-called tail pairwise dependence
matrix Σ of pairwise dependence metrics. This matrix Σ can be shown to be completely positive, and
a nonnegative factorization of it can be used to estimate probabilities of extreme events or to simulate
realizations with pairwise dependence summarized by Σ. This approach is used in [24] to study data
describing daily precipitation measurements. Further applications of the nonnegative factorization of
completely positive matrices can be found in data mining and clustering ([28]), and in automatic control
([13, 44]).

Sponsel and Dür developed in [57] an algorithm for determining the projection of a matrix onto the
copositive cone COPn. This method can be also used to compute completely positive factorizations,
however, for reasonably big input matrices, the algorithm runs into memory problems. In [49], Nie treats
the completely positive factorization problem as a special case of an A-truncated K-moment problem,
for which an algorithm is developed based on the solving of a sequence of semidefinite optimization
problems. From the numerical point of view this method is expensive, the reported numerical experiments
demonstrate the factorization of completely positive matrices only up to order 8ˆ 8.

Recently, Groetzner and Dür proposed in [33] a novel approach to the nonnegative factorization
problem which consists of formulating it as a nonconvex split feasibility problem and, consequently, in
solving it via the method of alternating projections. It is known that when the initial point is sufficiently
close to the feasible set, then the sequence generated by the nonconvex method of alternating projections
convergences to an feasible element. The drawback of this algorithm is that it requires in every iteration
two projections, which both have in general to be approximately calculated via inner loops, since they
amount to solve a second order cone problem (SOCP) and to find a singular value decomposition of
a matrix, respectively. In the same article, a modification of this method has been suggested, which
replaces the solving of the SOCP by a simple projection on the nonnegative orthant, but keeps the
singular value decomposition, however, without a theoretical evidence of its convergence. Also very
recently, Chen, Pong, Tan and Zeng proposed in [23] another approach which consists of reformulating
the split feasibility problem as a difference-of-convex optimization problem and, consequently, in solving
it via a specific algorithm, which also requires the singular valued decomposition of a matrix in every
iteration. We will present these approaches in more detail later.

In this paper we develop a different approach for the nonnegative factorization of a completely positive
matrix, which amounts to the minimization of a nonconvex smooth function over a convex and compact
set. To solve this problem we propose a projected gradient algorithm with parameters that take into
account the effects of relaxation and inertia. The gradient and the projection steps are expressed by
simple explicit formulas and thus do not require any inner loops. We prove the global convergence of the
generated sequence for any starting point, which is another advantage over the methods discussed above,
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which make use of expensive computing procedures to find the points where the algorithms start. We
provide rates of convergence for both the sequences of objective function values and of iterates in terms
of the  Lojasiewicz exponent of a regularization of the objective function. Numerical experiments show
that our algorithm outperforms the other iterative factorization methods and emphasize the influence of
the relaxation and inertial parameters on its performances.

Relaxation techniques have been introduced to provide more flexibility to iterative schemes ([7]),
while inertial effects in order to accelerate the convergence of numerical methods ([47, 12, 6]) and to
allow the detection of different critical points ([53]). Inertial proximal gradient algorithms for nonconvex
optimization problems have been proposed and studied in [19, 20, 38, 50, 52]; their global convergence
has been shown in the framework of the Kurdyka- Lojasiewicz property ([2, 3, 14, 15, 35, 42]). For convex
optimization problems, relaxed inertial algorithms have been proved to combine the advantages of both
relaxation techniques and inertial effects (see [4, 5, 36]). One of the aims of this work is to investigate,
also in the nonconvex setting, to which extent the interplay between relaxation and inertial parameters
influence the numerical performances of projected/proximal gradient algorithms.

Solution methods for nonsmooth nonconvex optimization problems have been already used in the
literature for nonnegative matrix factorization. We recall here PALM, introduced by Bolte, Sabach, and
Teboulle in [15], which is a block coordinate projection gradient method, and its inertial variant studied
by Pock and Sabach in [52], for which also numerical experiments were reported. Recently, the symmetric
nonnegative matrix factorization has been addressed by Dragomir, d’Aspremont and Bolte in [29] from
the perspective of a non-Euclidean first-order method. We also want to mention [32] where nonnegative
matrix factorizations are computed in an alternating manner.

In what concerns sparse matrix factorizations ([48]), this can be formulated as the feasibility problem
of finding an element in the intersection of two nonconvex sets. In [23] a difference-of-convex optimization
approach was used to develop a solution method for it, as alternatives one could use approaches based
on the method of alternating projections ([30]) or on the Douglas-Rachford algorithm for feasibility
problems ([1, 40]).

2 Preliminaries

2.1 Notations

We will write for a n ˆ r matrix X :“ pxi,jq1ďiďn,1ďjďr if we want to specify its elements, and neglect

the subscripts if there is no risk of confusion. The Frobenius inner product of X,Y P Rnˆr is defined by

xX,Y y :“ trace
`

XTY
˘

“

n
ÿ

i“1

r
ÿ

j“1

xi,jyi,j . Due to the definition of trace operator it holds

trace
`

XTY
˘

“ trace
`

XY T
˘

“ trace
`

Y TX
˘

“ trace
`

Y XT
˘

. (2.1)

For X P Rnˆr we will denote its Frobenius norm by

‖X‖F :“
a

xX,Xy “
b

trace pXTXq “

g

f

f

e

n
ÿ

i“1

r
ÿ

j“1

|xi,j |2, (2.2)

and its 2-norm by

‖X‖2 :“ sup
‖ξ‖‰0

‖Xξ‖
‖ξ‖

,

where ‖¨‖ denotes the usual Euclidean norm of a vector. IfX :“
“

X1

ˇ

ˇ ¨ ¨ ¨
ˇ

ˇXr

‰

is the column representation
of the matrix X, then we have

‖X‖F “

g

f

f

e

r
ÿ

j“1

‖Xj‖2.

For every X,Y P Rnˆr we have

‖X ` Y ‖2F “ ‖X‖
2
F ` ‖Y ‖

2
F ` 2 xX,Y y ,

‖X‖2 ď ‖X‖F ,∥∥XTY
∥∥
2
ď ‖X‖2 ¨ ‖Y ‖2 ,∥∥XTY

∥∥
F
ď ‖X‖F ¨ ‖Y ‖F .

(2.3a)

(2.3b)

(2.3c)

(2.3d)
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In addition, for every η P R, it holds

‖ηX ` p1´ ηqY ‖2F “ η ‖X‖2F ` p1´ ηq ‖Y ‖
2
F ´ η p1´ ηq ‖X ´ Y ‖

2
F . (2.4)

For a symmetric positive semidefinite matrix A P Rnˆn we denote by

λmax pAq :“ λ1 pAq ě λ2 pAq ě ¨ ¨ ¨ ě λn pAq :“ λmin pAq ě 0

its eigenvalues. Therefore,

trace pAq “
n
ÿ

i“1

λi pAq ě λmax pAq “ ‖A‖2 ě λmin pAq . (2.5)

The following two estimates, which we also prove for the sake of completeness, will be useful later on.

Lemma 1. Let X,Y P Rnˆr.

piq It holds ∥∥XTY
∥∥
F
ď ‖X‖2 ¨ ‖Y ‖F . (2.6)

piiq If A P Rnˆn is a symmetric positive semidefinite matrix, then

λmin pAq ‖X‖2F ď
@

A,XXT
D

ď ‖A‖2 ¨ ‖X‖
2
F . (2.7)

Proof. piq Using the column representation of Y :“
“

Y1
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇYr
‰

, we have XTY “
“

XTY1
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇXTYr
‰

.
Thus ∥∥XTY

∥∥2
F
“

r
ÿ

j“1

∥∥XTYj
∥∥2 ď ‖X‖22 r

ÿ

j“1

‖Yj‖2 “ ‖X‖22 ‖Y ‖
2
F .

Notice that, in view of (2.3b), inequality (2.6) is sharper than (2.3d).

piiq For two positive semidefinite matrices A,B P Rnˆn we have the following consequence of the Von
Neumann’s trace inequality (see [43, pp. 340–341])

n
ÿ

i“1

λi pAqλn`1´i pBq ď trace pABq ď
n
ÿ

i“1

λi pAqλi pBq . (2.8)

The inequality (2.7) follows by applying (2.8) for the positive semidefinite matrices A and XXT , and

by noticing further that
řn
i“1 λi

`

XXT
˘

“ trace
`

XXT
˘

“ ‖X‖2F.

The open ball around Z P Rnˆr with radius ε ą 0 is denoted by B̊F pZ; εq :“tX P Rnˆr: ‖X ´ Z‖F ă εu

and the closed ball by BF pZ; εq :“ B̊F pZ; εq, where the closure is taken with respect to the topology
induced by the Frobenius norm. The indicator function of a set D Ď Rnˆr is defined as δD pXq “ 0, if
X P D, and δD pXq “ `8, otherwise. We say that an element Z P D is a projection of an element X onto
a nonempty closed subset D of Rnˆr, if ‖X ´ Z‖F “ infY PD ‖X ´ Y ‖F. If the set D is also convex, then
the projection of an element X is uniquely defined and we will denote it by PrD pXq. It is characterized
by

PrD pXq P D and xX ´PrD pXq , Y ´PrD pXqy ď 0 @Y P D. (2.9)

Example 1. For every X P Rnˆr,

piq if D :“ Rnˆr` , then it holds
PrD pXq “ rXs` :“ max tX,0u ,

where the max operator is understood entrywise;

piiq if D :“ BF p0; εq for ε ą 0, we have

PrD pXq “
ε

max t‖X‖F , εu
X.
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In general, it is challenging to compute the projection onto the intersection of two sets, even if these
are both convex and explicit forms for the projections onto the sets are available. To this end one can
either use the method of alternating projections [8, 30] or the Douglas-Rachford algorithm for feasibility
problems [1, 40]. Cyclic formulations of these iterative methods can be used to determine the projection
on the intersection of more than two sets.

In the following example we provide one particular pair of two convex sets for which the projec-
tion onto their intersection can expressed by a closed formula. We will make use of this formula in
our algorithm, which means that it will require a reduced computational effort when calculating this
projection.

Example 2. Let ε ą 0 and K be a nonempty closed convex cone in Rnˆr. Then the projection onto
the intersection K X BF p0, εq is given by (see [9, Theorem 7.1])

PrKXBFp0,εq pXq “ PrBFp0,εq ˝PrK pXq “
ε

max t‖PrK pXq‖F , εu
PrK pXq @X P Rnˆr. (2.10)

Notice that in general PrBFp0,εq ˝PrK pXq ‰ PrK pXq ˝PrBFp0,εq (see [9, Example 7.5]).

For later comparison we discuss two more examples of projections on some particular sets which were
used in the nonnegative factorization of completely positive matrices.

Example 3. Let B P Rnˆr and consider the following set associated to B

P pBq :“
 

X P Rrˆr : BX P Rnˆr`

(

. (2.11)

The set P pBq is a polyhedral cone and thus a closed convex subset of Rrˆr. The projection of X P Rrˆr
onto the set P pBq is the unique solution of the optimization problem

min
Y PRrˆr

‖Y ´X‖F .

s.t. BY P Rnˆr` .
(2.12)

It was shown in [33] that (2.12) is equivalent to the second order cone problem (SOCP)

min
tPR,ZPRrˆr

t.

s.t. B pX ` Zq P Rnˆr` ,

‖Z‖F ď t.

(SOCP)

Second order cone problems have been intensively studied in the literature from both theoretical and
numerical perspectives.

Example 4. Let Or be the set of orthogonal matrices in Rrˆr

Or :“
 

X P Rrˆr : XXT “ XTX “ Ir
(

, (2.13)

where Ir denotes rˆ r identity matrix. The set Or is compact but nonconvex, so projections on this set
always exist, but may not be unique. A projection of an element X P Rrˆr on Or can be found by polar
decomposition of X (see, for instance, [33, Lemma 4.1]). In particular, for every X P Rrˆr, there exist
a positive semidefinite matrix T P Rrˆr and an orthogonal matrix Y P Rrˆr such that

X “ TY and ‖X ´ Y ‖F ď ‖X ´ Z‖F @Z P Or.

Therefore, the matrix Y is a projection of X onto Or and it can be computed by means of the singular
value decomposition of X “ UΣV T . Indeed, for T :“ UΣUT and Y :“ UV T it holds

X “ UΣV T “ UΣUTUV T “ TY.

2.2 Variational analysis tools

In the following we will introduce some tools from variational analysis which will play an important role
in the convergence analysis.
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Let Ψ: Rnˆr Ñ R Y t`8u be a proper and lower semicontinuous function and X an element of its
effective domain domΨ :“ tY P Rnˆr : Ψ pY q ă `8u. The Fréchet (viscosity) subdifferential of Ψ at X
is

pBΨ pXq :“

"

V P Rnˆr : lim inf
YÑX

Ψ pY q ´Ψ pXq ´ xV, Y ´Xy

‖Y ´X‖F
ě 0

*

and the limiting (Mordukhovich) subdifferential ([45, 54]) of Ψ at X is

BΨ pXq :“ tV P Rnˆr : exist sequences Xk Ñ X and Vk Ñ V as k Ñ `8

such that Ψ pXkq Ñ Ψ pXq as k Ñ `8 and Vk P pBΨ pXkq for any k ě 0u.

For X R domΨ, we set pBΨ pXq “ BΨ pXq :“ H.

The inclusion pBΨ pXq Ď BΨ pXq holds for each X P Rnˆr. If Ψ is convex, then the two subdifferentials
coincide with the convex subdifferential of Ψ

pBΨ pXq “ BΨ pXq “
 

V P Rnˆr : Ψ pY q ě Ψ pXq ` xV, Y ´Xy @Y P Rnˆr
(

for any X P Rnˆr.

If X P Rnˆr is a local minimum of Ψ, then 0 P BΨ pXq. We denote by crit pΨq :“ tX P Rnˆr : 0 P BΨ pXqu
the set of critical points of Ψ. The limiting subdifferential fulfils the following closedness criterion: if
tXkukě0 and tVkukě0 are sequence in Rnˆr such that Vk P BΨ pXkq for any k ě 0 and pXk, Vkq Ñ pX,V q
and Ψ pXkq Ñ Ψ pXq as k Ñ `8, then V P BΨ pXq. We also have the following subdifferential sum
formula (see [45, Proposition 1.107], [54, Exercise 8.8]): if Φ: Rnˆr Ñ R is a continuously differentiable
function, then B pΨ` Φq pXq “ BΨ pXq `∇Φ pXq for any X P Rnˆr.

The normal cone to a nonempty convex subset D of Rnˆr is defined as

ND pXq :“
 

V P Rnˆr : xV, Y ´Xy ď 0 @Y P D
(

,

for X P D, and as ND pXq “ H for X R D. It holds ND pXq “ BδD pXq for every X P Rnˆr. If D Ď Rnˆr
is a nonempty convex closed set and X P Rnˆr, then

Z “ PrD pXq ô X ´ Z P ND pZq . (2.14)

2.3 Nonnegative factorization of completely positive matrices via projection
onto the orthogonal set Or

In the following we will revisit some recent iterative approaches for finding a nonnegative factorization
of completely positive matrices.

In [33] this problem was reformulated as a feasibility problem. For a given matrix A P Rnˆn, in a
first step, a not necessarily entrywise nonnegative matrix B P Rnˆr such that A “ BBT was considered.
The aim was

to find a r ˆ r square matrix Q such that Q P P pBq XOr, (2.15)

where P pBq and Or are the polyhedral cone associated to B and the set of r ˆ r orthogonal matrices
given in (2.11) and in (2.13), respectively. This approach was motivated by the observation that, for
every B1, B2 P Rnˆr, it holds B1B

T
1 “ B2B

T
2 if and only if there exists Q P Or such that B1Q “ B2 (see

[33, Lemma 2.6]).
To solve (2.15), naturally, the method of alternating projections was used.

(The Method of Alternating Projections ([33])). Let A P CPn and r be a positive integer value.
Input:

• a given B P Rnˆr such that A “ BBT ;

• a given starting point Q0 P Or.

Main iterate: Set k :“ 0.
Step1 : Compute

#

Pk :“ PrPpBq pQkq ,

Qk`1 P PrOr pPkq .
(MAP)
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Step2 : If a stopping criterion is not met, then set k :“ k ` 1 and go to Step1.

Output: Qk`1 P Or, which provides a completely positive factorization A “ pBQk`1q pBQk`1q
T

.

The stopping criterion used in [33] for this scheme, as well as for the other two methods that will be
described later in this section, reads

min
1ďiďn,1ďjďr

pBQk`1qi,j ě ´Tolfea, (2.16)

where Tolfea is a positive very small tolerance number.
The nonconvex method of alternating projections is known to converge locally, which means that

convergence can be guaranteed if the initial point is sufficiently close to P pBq XOr.
As noticed in Example 3, the first step in (MAP) amounts to solve a second-order cone problem,

which usually can be done only in an approximate way and requires an inner loop. To avoid this
drawback, another algorithm was proposed in [33], which, in every iteration, calculates an approximation
of PrPpBq pQkq. This is done by using the projection on Rnˆr` , for which an exact formula exists, and an

update step which uses the Moore-Penrose-Inverse of B, that is B` :“ BT
`

BBT
˘´1

.
This second algorithm has the following formulation.

(The second Method of Alternating Projections ([33])). Let A P CPn and r be a positive integer value.
Input:

• a given B P Rnˆr such that A “ BBT ;

• a given starting point Q0 P Or.

Main iterate: Set k :“ 0.
Step1 : Compute

$

’

’

&

’

’

%

Rk :“ PrRnˆr
`

pBQkq ,

pPk :“ B`Rk ` pIr ´B`BqQk,
Qk`1 P PrOr

´

pPk

¯

.

(ModMAP)

Step2 : If a stopping criterion is not met, then set k :“ k ` 1 and go to Step1.

Output: Qk`1 P Or, which provides a completely positive factorization A “ pBQk`1q pBQk`1q
T

.

In [23], an alternative approach to (2.15) was considered, by reformulating the nonnegative factoriza-
tion problem as a difference-of-convex optimization problem and by solving the latter via a nonmonotone
linesearch algorithm. This can be found [23, Section 6.1], here we present for easy reference the iterative
scheme with a fixed stepsize.

(The Difference-of-Convex Approach with fixed stepsize ([23])). Let A P CPn and r be a positive integer
value.

Input:

• a given B P Rnˆr such that A “ BBT ;

• a fixed stepsize LB ą λmax

`

BTB
˘

;

• a given starting point Q0 P Or.

Main iterate: Set k :“ 0.
Step1 : Compute

$

’

&

’

%

Wk :“ PrRnˆr
`

pBQkq ,

Qk`1 P PrOr

ˆ

Qk ´
1

LB
BT pBQk ´Wkq

˙

.
(SpFeasDC)

Step2 : If a stopping criterion is not met, then set k :“ k ` 1 and go to Step1.
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Output: Qk`1 P Or, which provides a completely positive factorization A “ pBQk`1q pBQk`1q
T

.

One can notice that all three iterative schemes require in every iteration the calculation of a projection
onto the orthogonal set Or. To do this one basically needs to carry out a singular value decomposition
of a matrix, as discusses in Example 4, which can be done in a subroutine that needs O

`

r3
˘

steps.
Furthermore, all three algorithms ask for finding a matrix B P Rnˆr such that A “ BBT . This can be
done, for instance, by the Cholesky decomposition of A, in which case B is a lower triangular matrix, or
by the spectral decomposition A “ V ΣV T and then by setting B :“ V Σ

1
2 . In either case, one needs an

additional procedure to find an appropriate initial matrix B.

3 An optimization model with convergence guarantees

In this section we will propose a new approach for the nonnegative factorization of completely positive
matrices, which consists of solving a nonconvex optimization problem by means of a projected gradient
algorithm. We will also carry out for the iterative method a comprehensive convergence analysis, and
even derive convergence rates.

3.1 The optimization model

For a given nonzero completely positive matrix A P Rnˆn, finding a factorization A “ XXT , where
X P Rnˆr` , can be cast as an optimization problem

min
XPRnˆr

E pXq :“
1

2

∥∥A´XXT
∥∥2
F
.

s.t. X P D :“ Rnˆr` X BF

´

0,
a

trace pAq
¯

(Pmod)

Denoting by E˚ :“ infXPD E pXq the optimal objective value of (Pmod), it holds

A “ X˚X
T
˚ with X˚ P Rnˆr` ô rX˚ solves (Pmod) and E˚ “ 0s .

Notice that E is a nonconvex objective function with continuous gradient ∇E pXq “ ´2
`

A´XXT
˘

X,
which is however not Lipschitz continuous, but locally Lipschitz continuous. In order to be able to handle
this situation in a proper way in the convergence analysis, we minimize the objective function E pXq over
a meaningfully chosen bounded set, which, however, does not pose any restriction on the model. Indeed,
if X satisfies A “ XXT , then

‖X‖F ď
a

trace pAq,

since, according to the definition of the Frobenius norm and (2.1) - (2.2), we have

‖X‖F “
b

trace pXTXq “
b

trace pXXT q “
a

trace pAq.

This explains the choice of D as the intersection of Rnˆr` and BF

´

0,
a

trace pAq
¯

.

Proposition 2. Let A P CPn.

piq The set D is nonempty convex and closed, and for any X P Rnˆr it holds

PrD pXq :“

a

trace pAq

max
!∥∥rXs`∥∥F ,atrace pAq

) rXs` , (3.1)

where rXs` :“ max tX,0u and the max operator is understood entrywise.

piiq For X,Y P Rnˆr, the following inequalities are true

´ ‖A‖2 ¨ ‖X ´ Y ‖
2
F ď E pXq ´ E pY q ´ x∇E pY q , X ´ Y y ď

L pX,Y q

2
‖X ´ Y ‖2F , (3.2)

where
L pX,Y q :“ 2

´

‖Y ‖22 ´ λmin pAq
¯

` p‖X‖2 ` ‖Y ‖2q
2
. (3.3)

9



Proof. piq Since D is the intersection of the cone K :“ Rnˆr` with the ball BF

´

0,
a

trace pAq
¯

, it follows

from (2.10) that

PrD pXq “

a

trace pAq

max
!

‖PrK pXq‖F ,
a

trace pAq
)PrK pXq .

For K “ Rnˆr` it holds PrK pXq “ PrRnˆr
`

pXq “ rXs` “ max tX,0u.

piiq We introduce the auxiliary function Q : Rnˆn Ñ R defined as

Q pZq :“
1

2
‖A´ Z‖2F @Z P Rnˆn.

By the definition, E pXq “ Q
`

XXT
˘

for every X P Rnˆn. Since ∇Q pZq “ ´ pA´ Zq, the following
relation is true for every Z,W P Rnˆn

Q pW q “ Q pZq ` x∇Q pZq ,W ´ Zy `
1

2
‖W ´ Z‖2F . (3.4)

Moreover, if Z is symmetric, then so is ∇Q pZq.
Let X,Y P Rnˆr be fixed. One can easily verify that

XXT ´ Y Y T “ pX ´ Y qY T ` Y pX ´ Y q
T
` pX ´ Y q pX ´ Y q

T
. (3.5)

Applying (3.4) with W :“ XXT and Z :“ Y Y T and by taking into consideration (3.5), we get

Q
`

XXT
˘

´Q
`

Y Y T
˘

“
@

∇Q
`

Y Y T
˘

, XXT ´ Y Y T
D

`
1

2

∥∥XXT ´ Y Y T
∥∥2
F

“
@

∇Q
`

Y Y T
˘

, pX ´ Y qY T
D

`

A

∇Q
`

Y Y T
˘

, Y pX ´ Y q
T
E

`

A

∇Q
`

Y Y T
˘

, pX ´ Y q pX ´ Y q
T
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2
F

“ 2
@

∇Q
`

Y Y T
˘

Y, pX ´ Y q
D

`

A

∇Q
`

Y Y T
˘

, pX ´ Y q pX ´ Y q
T
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2
F
. (3.6)

Since 2∇Q
`

Y Y T
˘

Y “ ´2
`

A´ Y Y T
˘

Y “ ∇E pY q, it remains to estimate the two last terms in
(3.6). Observe that

A

∇Q
`

Y Y T
˘

, pX ´ Y q pX ´ Y q
T
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2
F

“ ´

A

A´ Y Y T , pX ´ Y q pX ´ Y q
T
E

`
1

2

∥∥XXT ´ Y Y T
∥∥2
F

“ ´

A

A, pX ´ Y q pX ´ Y q
T
E

`
∥∥Y T pX ´ Y q∥∥2

F
`

1

2

∥∥XXT ´ Y Y T
∥∥2
F
, (3.7)

where the last equation comes from the fact that trace operator is invariant under cyclic permutations,
as we see below

A

Y Y T , pX ´ Y q pX ´ Y q
T
E

“ trace
”

`

Y Y T
˘T
pX ´ Y q pX ´ Y q

T
ı

“ trace
”

Y Y T pX ´ Y q pX ´ Y q
T
ı

“ trace
”

pX ´ Y q
T
Y Y T pX ´ Y q

ı

“ trace
”

`

Y T pX ´ Y q
˘T
Y T pX ´ Y q

ı

“
∥∥Y T pX ´ Y q∥∥2

F
.

Notice that, thanks to (2.7),
A

A, pX ´ Y q pX ´ Y q
T
E

ď ‖A‖2 ‖X ´ Y ‖
2
F. Plugging this estimate into

(3.7), also neglecting the last two nonnegative terms, we obtain the left-hand side inequality in (3.2).
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By applying (2.6) we can derive an upper bound for the last term in (3.7)∥∥XXT ´ Y Y T
∥∥
F
ď

∥∥pX ´ Y qXT
∥∥
F
`

∥∥∥Y pX ´ Y qT∥∥∥
F

ď ‖X‖2 ‖X ´ Y ‖F ` ‖Y ‖2 ‖X ´ Y ‖F “ p‖X‖2 ` ‖Y ‖2q ‖X ´ Y ‖F . (3.8)

By plugging (3.8) into (3.7) and recalling the inequalities (2.7) and (2.6), we get the right-hand side
inequality in (3.2) with L pX,Y q defined as in (3.3).

3.2 A projected gradient algorithm with relaxation and inertial parameters

We are now in the position to formulate the projected gradient algorithm we propose in this paper to
solve (Pmod).

Algorithm 1. Let A P CPn and r be a positive integer value.
Input:

• given starting points X1 :“ X0 P D and;

• a sequence tαkukě1 Ď r0, 1s, for which we set α` :“ sup
kě0

αk and

LFpα`q :“ 2
“`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq
‰

ą 0; (3.9)

• a relaxation parameter ρ P p0, 1s chosen such that

0 ă

a

LFpα`q ` 2 ‖A‖2
a

LFpα`q ` 2 ‖A‖2 `
a

LFpα`q
ă ρ ă

a

LFpα`q ` 2 ‖A‖2
p1` α`q

a

LFpα`q ` 2 ‖A‖2 ´
a

LFpα`q
. (3.10)

Main iterate: Set k :“ 1.
Step1 : Compute

Yk :“ Xk ` αk pXk ´Xk´1q ,

Zk`1 :“ PrD

ˆ

Yk ´
1

LFpα`q
∇E pYkq

˙

,

Xk`1 :“ p1´ ρqXk ` ρZk`1.

(3.11a)

(3.11b)

(3.11c)

Step2 : If a stopping criterion is not met, then set k :“ k ` 1 and go to Step1.

Output: Xk`1 P D, which provides a factorization A “ Xk`1X
T
k`1.

Remark 3. piq In the analysis we will use, to ease the reading, LF instead of LFpα`q, however, we will
return to this notation in subsection 4.1, where we will consider some particular choices of the sequence
of inertial parameters, which will give different values for α`. To help the readers to understand the
choice of the parameters, and the motivation behind the construction of LF in (3.9), we formulate
and prove Lemma 4 and Lemma 6 first and postpone the discussion on the feasibility of ρ in (3.10)
to Remark 7.

piiq In the following theoretical investigations, we are interested on the convergence behaviour of the
generated sequences as k Ñ `8, however, in the numerical experiments we will use as stopping
criterion ∥∥A´XkX

T
k

∥∥2
F

‖A‖2F
ă Tolval,

where Tolval is a positive very small tolerance number.

piiiq Recall that an explicit formula for the projection operator on D has been given in (3.1).
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pivq For any k ě 1, the following equivalent formulation of (3.11c) will be useful in the analysis

Xk`1 “ p1´ ρqXk ` ρZk`1 ô Zk`1 ´Xk “
1

ρ
pXk`1 ´Xkq

ô Zk`1 ´Xk`1 “

ˆ

1

ρ
´ 1

˙

pXk`1 ´Xkq .

(3.12a)

(3.12b)

The following result proves that the sequence tXkukě0 generated by Algorithm 1 belongs to D and
that LFpα`q is an upper bound for the sequence tL pZk`1, Ykqukě1.

Lemma 4. Let tXkukě0 be the sequence generated by Algorithm 1. For any k ě 1

piq it holds Xk`1 P D and ‖Yk‖F ď p1` 2α`q
a

trace pAq;

piiq it holds

L pZk`1, Ykq ď LFpα`q “ 2
“`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq
‰

, (3.13)

where pX,Y q ÞÑ L pX,Y q is defined in (3.3).

Proof. piq Notice that tZkukě2 Ď D due to (3.11b). If we assume that X1 P D, then, by induction
arguments, Xk`1 P D, since it is a convex combination of Xk and Zk`1. Consequently, for any k ě 0,
‖Xk‖F ď

a

trace pAq. By the definition of Yk in (3.11a), we have

‖Yk‖F ď p1` αkq ‖Xk‖F ` αk ‖Xk´1‖F ď p1` 2α`q
a

trace pAq @k ě 1.

piiq Since tZkukě2 Ď D Ď BF
´

0;
a

trace pAq
¯

and tYkukě1 Ď BF
´

0; p1` 2α`q
a

trace pAq
¯

it follows

from the definition of pX,Y q ÞÑ L pX,Y q in (3.3) that

L pZk`1, Ykq “ 2
´

‖Yk‖22 ´ λmin pAq
¯

` p‖Zk`1‖2 ` ‖Yk‖2q
2

“ 3 ‖Yk‖22 ` ‖Zk`1‖22 ` 2 ‖Zk`1‖2 ¨ ‖Yk‖2 ´ 2λmin pAq

ď

”

3 p1` 2α`q
2
` 1` 2 p1` 2α`q

ı

trace pAq ´ 2λmin pAq .

Remark 5. In the nonconvex setting, the boundedness of the sequence of iterates plays an important
role in the convergence analysis. As seen in Lemma 4 (i), the nature of Algorithm 1 ensures that Xk P D
for every k ě 0, and thus the sequence tXkukě0 is bounded.

For readers’ convenience we denote the objective function of (Pmod) by Ψ :“ E ` δD.

Lemma 6. Let tXkukě0 be the sequence generated by Algorithm 1. For every k ě 2 it holds

Ψ pZk`1q `

ˆ

LF ´ pLF ` 2 ‖A‖2q γ
2

`
τ

2

˙

‖Xk`1 ´Xk‖2 ď Ψ pZkq `
τ

2
‖Xk ´Xk´1‖2 , (3.14)

where

γ :“ max

#

ˆ

1

ρ
´ 1

˙2

,

ˆ

1` α` ´
1

ρ

˙2
+

,

τ :“
LF p1´ ρq

ρ
` pLF ` 2 ‖A‖2q γ.

(3.15a)

(3.15b)

Proof. Let k ě 2 be fixed. We first show that

Ψ pZk`1q `
LF

2
‖Zk`1 ´ Zk‖2F ď Ψ pZkq `

LF ` 2 ‖A‖2
2

‖Zk ´ Yk‖2F . (3.16)

The characterization of the projection (2.9) ensures that

B

Yk ´
1

LF
∇E pYkq ´ Zk`1, X ´ Zk`1

F

ď 0 @X P D. (3.17)
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In view of (3.11b), it is clear that Zk P D, thus, setting X :“ Zk in (3.17) yields

0 ď x∇E pYkq , Zk ´ Zk`1y ` LF xZk`1 ´ Yk, Zk ´ Zk`1y

“ x∇E pYkq , Zk ´ Zk`1y ´
LF

2
‖Zk`1 ´ Yk‖2F ´

LF

2
‖Zk`1 ´ Zk‖2F `

LF

2
‖Zk ´ Yk‖2F . (3.18)

The left-hand side inequality in (3.2) implies that

E pZkq ě E pYkq ` x∇E pYkq , Zk ´ Yky ´ ‖A‖2 ¨ ‖Yk ´ Zk‖
2
F , (3.19)

while the right-hand side inequality in (3.2) and (3.13) imply

E pZk`1q ď E pYkq ` x∇E pYkq , Zk`1 ´ Yky `
LF

2
‖Zk`1 ´ Yk‖2F . (3.20)

Summing up (3.18), (3.20) and (3.19), and noticing that δD pZk`1q “ δD pZkq “ 0, yield (3.16).

Next we will study the term ‖Zk`1 ´ Zk‖2F in detail. From (3.12a) we have that

Zk`1 “
1

ρ
pXk`1 ´Xkq `Xk,

and

Zk “
1

ρ
pXk ´Xk´1q `Xk´1,

thus

Zk`1 ´ Zk “
1

ρ
pXk`1 ´Xkq `

ˆ

1´
1

ρ

˙

pXk ´Xk´1q . (3.21)

Then, by using identity (2.4), it holds

‖Zk`1 ´ Zk‖2F “
∥∥∥∥1

ρ
pXk`1 ´Xkq `

ˆ

1´
1

ρ

˙

pXk ´Xk´1q

∥∥∥∥2
F

“
1

ρ
‖Xk`1 ´Xk‖2F `

ˆ

1´
1

ρ

˙

‖Xk ´Xk´1‖2F

´
1

ρ

ˆ

1´
1

ρ

˙

‖pXk`1 ´Xkq ´ pXk ´Xk´1q‖2F

ě
1

ρ
‖Xk`1 ´Xk‖2F ´

ˆ

1

ρ
´ 1

˙

‖Xk ´Xk´1‖2F . (3.22)

Combining (3.11a) and (3.12b) gives us further

Zk ´ Yk “ Zk ´Xk ´ αk pXk ´Xk´1q “

ˆ

1

ρ
´ 1´ αk

˙

pXk ´Xk´1q . (3.23)

By plugging (3.22) and (3.23) into (3.16), we get

Ψ pZk`1q `
LF

2ρ
‖Xk`1 ´Xk‖2F

“ Ψ pZk`1q `

ˆ

LF p1´ ρq

2ρ
`
LF

2

˙

‖Xk`1 ´Xk‖2F

ď Ψ pZkq `

˜

LF p1´ ρq

2ρ
`
LF ` 2 ‖A‖2

2

ˆ

1

ρ
´ 1´ αk

˙2
¸

‖Xk ´Xk´1‖2F

ď Ψ pZkq `

ˆ

LF p1´ ρq

2ρ
`
pLF ` 2 ‖A‖2q γ

2

˙

‖Xk ´Xk´1‖2F , (3.24)

which is nothing else than (3.14) with the constants τ and γ as defined in (3.15). Notice that (3.24) is

true since γ is an upper bound for

ˆ

1

ρ
´ 1´ αk

˙2

. Indeed, if
1

ρ
´ 1 ě αk, then

0 ď
1

ρ
´ 1´ αk ď

1

ρ
´ 1 ñ

ˆ

1

ρ
´ 1´ αk

˙2

ď

ˆ

1

ρ
´ 1

˙2

ď γ.
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Otherwise, we have

0 ă 1` αk ´
1

ρ
ď 1` α` ´

1

ρ
ñ

ˆ

1

ρ
´ 1´ αk

˙2

ď

ˆ

1` α` ´
1

ρ

˙2

ď γ,

which leads to the desired statement.

The estimate above remains true if we replace Ψ by E . In fact, the indicator function was artificially
inserted in the decreasing property (3.14), as it will help us to prove the convergence of the iterates later
on. Now, with τ ě 0 introduced in (3.15b), we define the following function

Ψτ : Rnˆr ˆ Rnˆr Ñ RY t`8u , Ψτ pZ,Xq :“ Ψ pZq `
ρ2τ

2
‖Z ´X‖2F . (3.25)

The objective function Ψ of (Pmod) is closely related to Ψτ in terms of their critical point. Indeed, if
τ “ 0, which is the case when ρ “ 1 and α` “ 0, then Ψτ pZ,Xq “ ΨpZq for any pZ,Xq P Rnˆr ˆRnˆr,
thus Z˚ P critΨ if and only if pZ˚, X˚q P critΨτ for X˚ P Rnˆr. On the other hand, one can easily verify
that for every τ ą 0 we have

X˚ P critΨ ô pX˚, X˚q P critΨτ . (3.26)

Remark 7. In the view of (3.11c), it holds Xk`1 ´ Xk “ ρ pZk`1 ´Xkq for every k ě 1 . Therefore,
using the definition (3.25), the inequality (3.14) can be rewritten for any k ě 2 as

Ψτ pZk`1, Xkq ` C0 ‖Xk`1 ´Xk‖2F ď Ψτ pZk, Xk´1q , where C0 :“
LF ´ pLF ` 2 ‖A‖2q γ

2
. (3.27)

We will show that C0 ą 0. It holds

LF ´ pLF ` 2 ‖A‖2q γ ą 0 ô

$

’

’

&

’

’

%

ˆ

1

ρ
´ 1

˙2

ă
LF

LF ` 2 ‖A‖2
,

ˆ

1` α` ´
1

ρ

˙2

ă
LF

LF ` 2 ‖A‖2
.

(3.28)

On the one hand, since 0 ă ρ ď 1, we have

0 ď
1

ρ
´ 1 ă

d

LF

LF ` 2 ‖A‖2
ô 1 ď

1

ρ
ă

a

LF ` 2 ‖A‖2 `
?
LF

a

LF ` 2 ‖A‖2
.

This is further equivalent to
a

LF ` 2 ‖A‖2
a

LF ` 2 ‖A‖2 `
?
LF

ă ρ ď 1. (3.29)

On the other hand, by setting ξ :“
1

ρ
ą 0, the second inequality in (3.28) can be equivalently expressed

as

ξ2 ´ 2 p1` α`q ξ ` p1` α`q
2
´

LF

LF ` 2 ‖A‖2
ă 0. (3.30)

Its reduced discriminant reads

∆1 :“ p1` α`q
2
´

ˆ

p1` α`q
2
´

LF

LF ` 2 ‖A‖2

˙

“
LF

LF ` 2 ‖A‖2
ą 0.

Thus, the inequality (3.30) is equivalent to

1` α` ´

d

LF

LF ` 2 ‖A‖2
“
p1` α`q

a

LF ` 2 ‖A‖2 ´
?
LF

a

LF ` 2 ‖A‖2

ă ξ “
1

ρ
ă 1` α` `

d

LF

LF ` 2 ‖A‖2
“
p1` α`q

a

LF ` 2 ‖A‖2 `
?
LF

a

LF ` 2 ‖A‖2
,

which means
a

LF ` 2 ‖A‖2
p1` α`q

a

LF ` 2 ‖A‖2 `
?
LF

ă ρ ă

a

LF ` 2 ‖A‖2
p1` α`q

a

LF ` 2 ‖A‖2 ´
?
LF

. (3.31)
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Combining (3.29) and (3.31), we observe further that

a

LF ` 2 ‖A‖2
p1` α`q

a

LF ` 2 ‖A‖2 `
?
LF

ď

a

LF ` 2 ‖A‖2
a

LF ` 2 ‖A‖2 `
?
LF

.

Thus, in view of (3.10), C0 ą 0.

A direct consequence of Lemma 6 follows.

Proposition 8. Let tXkukě0 be the sequence generated by Algorithm 1. The following statements are
true:

piq the sequence tΨτ pZk, Xk´1qukě2 is monotonically decreasing and convergent;

piiq it holds that Xk`1 ´Xk Ñ 0 as k Ñ `8, and so Xk`1 ´ Yk Ñ 0 and Zk`1 ´ Yk Ñ 0 as k Ñ `8,
hence the sequences tXkukě0, tYkukě1 and tZkukě2 have the same cluster points.

Proof. Let k ě 2 be fixed. In view of (3.27) we have

Ψτ pZk`1, Xkq ` C0 ‖Xk`1 ´Xk‖2 ď Ψτ pZk, Xk´1q .

It is clear that the sequence tΨ pZk, Xk´1qukě2 is monotonically decreasing and, since it is nonnegative,
is convergent. The fact that C0 ą 0 and telescoping arguments (see, for instance, [7, Lemma 5.31]) give
ř

kě1 ‖Xk`1 ´Xk‖2 ă `8, thus Xk`1 ´Xk Ñ 0 as k Ñ `8. By taking into consideration (3.21), we
deduce that Zk`1 ´ Zk Ñ 0 as k Ñ `8. Using further (3.12a) and (3.11a), we have Zk`1 ´ Yk Ñ 0 as
k Ñ `8. According to (3.12), (3.11a) and (3.11c), the conclusion follows.

Now we show that every cluster point of tXkukě0 is a critical point of Ψ.

Theorem 9. Let tXkukě0 be the sequence generated by Algorithm 1. Then every cluster point of tXkukě0

is a critical point of Ψ.

Proof. Let sX be a cluster point of tXkukě0, which means that there exists a subsequence tXkiuiě1 such

that Xki Ñ
sX as i Ñ `8. We deduce further that Zki Ñ

sX as i Ñ `8, due to (3.12b). By the
characterization of the projection (2.14) and (3.11b), we get that for every i ě 1

Wki :“ Yki´1 ´ Zki ´
1

LF
∇E pYki´1q P ND pZkiq .

From here,

LFWki “ LF pYki´1 ´ Zkiq `∇E pZkiq ´∇E pYki´1q ´∇E pZkiq P ND pZkiq @i ě 1.

By passing to limit as iÑ `8, and by taking into consideration the continuity of ∇E and the fact that
Zk`1 ´ Yk Ñ 0 as k Ñ `8 (see Proposition 8 piiq), we get

LFWki Ñ ´∇E
`

sX
˘

.

The closedness of the graph of the normal cone gives ´∇E
`

sX
˘

P ND
`

sX
˘

. In other words, sX P critΨ.

3.3 Global convergence thanks to the  Lojasiewicz property

In this subsection we will prove that actually the whole sequence of iterates tXkukě0 generated by
Algorithm 1 converges to a critical point of the objective function Ψ and even establish its rate of
convergence. To this end we will use that the regularized objective function Ψτ fulfills the  Lojasiewicz
property (see [42]), since it is a semialgebraic function (see [2, Example 1], [14]). Recall that a function
is called semialgebraic if its graph can be expressed as a semialgebraic set

p
ď

i“1

q
č

j“1

tx P Rn : Pi,j “ 0, Qi,j ă 0u ,

where Pi,j , Qi,j : Rn Ñ R are polynomials for all 1 ď i ď p, 1 ď j ď q.
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Let τ ě 0. The fact that Ψτ satisfies the  Lojasiewicz property means that for any critical point
p sZ, sXq of Ψτ there exist CL, εL ą 0 and θ P r0, 1q such that∣∣Ψτ pZ,Xq ´Ψτ

`

sZ, sX
˘
∣∣θ ď CL ¨ dist p0, BΨτ pZ,Xqq @pZ,Xq P B̊F

`

p sZ, sXq, εL
˘

.

If Ω is a connected and compact subset of critΨτ , then, according to [2, Lemma 1], Ψτ fulfills the
uniform  Lojasiewicz property, which means that there exist (global constants) C, ε ą 0 and θ P r0, 1q
such that for all p sZ, sXq P Ω∣∣Ψτ pZ,Xq ´Ψτ

`

sZ, sX
˘
∣∣θ ď C ¨ dist p0, BΨτ pZ,Xqq @pZ,Xq P Rnˆr ˆ Rnˆr with dist ppZ,Xq,Ωq ă ε.

Next we will see that, for Ω :“ Ω
`

tpZk, Xk´1qukě2

˘

the set of cluster points of the sequence
tpZk, Xk´1qukě2, we actually are in the setting of the uniform  Lojasiewicz property. Notice that Ω ‰ H
thanks to the boundedness of the sequences tXkukě0 and tZkukě2.

Lemma 10. Let tXkukě0 be the sequence generated by Algorithm 1. The following statements are true:

piq it holds that Ω Ď critΨτ “ tpX˚, X˚q P Rnˆr ˆ Rnˆr : X˚ P critΨu;

piiq it holds that lim
kÑ`8

dist rpZk, Xk´1q ,Ωs “ 0;

piiiq the set Ω is nonempty, connected and compact;

pivq the function Ψτ takes on Ω the value Ψ˚ :“ lim
kÑ`8

Ψτ pZk, Xk´1q.

Proof. The item piq follows from Theorem 9 and (3.26). The proof of piiq - piiiq follows in the lines of
[15, Theorem 5 (ii)-(iii)], by taking into consideration [15, Remark 5], according to which the properties
in piiq - piiiq are generic for sequences satisfying Zk ´ Zk´1 Ñ 0 and Xk ´Xk´1 Ñ 0 as k Ñ `8, which
is indeed our case due to Proposition 8 piiq.

Finally, to prove pivq, we consider an arbitrary element
`

sX, sX
˘

in Ω, that is, there exists a subsequence

pZki , Xki´1q Ñ
`

sX, sX
˘

as iÑ `8. It holds sX P D and

lim
iÑ`8

Ψτ pZki , Xki´1q “ Ψτ

`

sX, sX
˘

.

As a consequence, since tΨ pZk, Xk´1qukě2 converges due to Proposition 8 piq, it follows that Ψτ is a

constant on Ω, namely, Ψτ

`

sX, sX
˘

“ Ψ˚ “ lim
kÑ`8

Ψτ pZk, Xk´1q for every
`

sX, sX
˘

P Ω.

As a last preparatory step we derive an upper bound for a subgradient of Ψτ .

Lemma 11. Let tXkukě0 be a sequence generated by Algorithm 1. For any k ě 2 we have

Vk :“
`

V 1k, V
2
k

˘

P BΨτ pZk, Xk´1q , (3.32)

where
V 1k :“ LF pYk´1 ´ Zkq `∇E pZkq ´∇E

`

Yk´1

˘

` ρ2τ pZk ´Xk´1q

V 2k :“ ´ρ2τ pZk ´Xk´1q .

In addition,

‖Vk‖F ď C1 ‖Xk ´Xk´1‖F ` C2 ‖Xk´1 ´Xk´2‖F @k ě 2, (3.33)

where
LE :“ 2

`

‖A‖2 `
`

3` 6α` ` 4α2
`

˘

trace pAq
˘

,

C1 :“
LF ` LE ` 2ρ2τ

ρ
ą 0,

C2 :“ pLF ` LEqα` ě 0.

Proof. Let k ě 2 be fixed. The calculus rules of the limiting subdifferential guarantee that for every
pZ,Xq P Rnˆr ˆ Rnˆr it holds

BZΨτ pZ,Xq “ BΨ pZq ` ρ
2τ pZ ´Xq “ ∇E pZq `ND pZq ` ρ

2τ pZ ´Xq

∇XΨτ pZ,Xq “ ´ρ
2τ pZ ´Xq .
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By the characterization of the projection (2.14) and (3.11b), we have

Wk :“ Yk´1 ´ Zk ´
1

LF
∇E pYk´1q P ND pZkq .

From this we deduce

LFWk “ LF pYk´1 ´ Zkq `∇E pZkq ´∇E pYk´1q P ∇E pZkq `ND pZkq ,

which proves (3.32).
Further, we observe that

‖∇E pZkq ´∇E pYk´1q‖F “ 2
∥∥`A´ ZkZTk ˘Zk ´ `

A´ Yk´1Y
T
k´1

˘

Yk´1

∥∥
F

ď 2 ‖A‖2 ‖Zk ´ Yk´1‖F ` 2
∥∥ZkZTk Zk ´ Yk´1Y

T
k´1Yk´1

∥∥
F

ď 2 ‖A‖2 ‖Zk ´ Yk´1‖F ` 2
∥∥ZkZTk ∥∥2 ‖Zk ´ Yk´1‖F

` 2 ‖Zk‖2 ‖Yk´1‖2 ‖Zk ´ Yk´1‖F ` 2
∥∥Yk´1Y

T
k´1

∥∥
2
‖Zk ´ Yk´1‖F

ď 2
`

‖A‖2 `
`

3` 6α` ` 4α2
`

˘

trace pAq
˘

‖Zk ´ Yk´1‖F
“ LE ‖Zk ´ Yk´1‖F ,

where the last inequality follows from (2.3b) - (2.3c) and the fact that tZkukě1 Ď D Ď B
´

0;
a

trace pAq
¯

and tYkukě0 Ď B
´

0; p1` α`q
a

trace pAq
¯

(see Lemma 4). From here we derive the following estimate

which holds for all k ě 2

‖Vk‖F “
b

‖V 1k‖
2
F ` ‖V

2
k ‖

2
F ď

∥∥V 1k∥∥F ` ∥∥V 2k ∥∥F
“

∥∥LF pYk´1 ´ Zkq `∇E pZkq ´∇E pYk´1q ` ρ
2τ pZk ´Xk´1q

∥∥
F
` ρ2τ ‖Zk ´Xk´1‖F

ď LF ‖Zk ´ Yk´1‖F ` ‖∇E pZkq ´∇E pYk´1q‖F ` 2ρ2τ ‖Zk ´Xk´1‖F
“ pLF ` LEq ‖Zk ´ Yk´1‖F ` 2ρ2τ ‖Zk ´Xk´1‖F
ď
`

LF ` LE ` 2ρ2τ
˘

‖Zk ´Xk´1‖F ` pLF ` LEqαk ‖Xk´1 ´Xk´2‖F

ď
LF ` LE ` 2ρ2τ

ρ
‖Xk ´Xk´1‖F ` pLF ` LEqα` ‖Xk´1 ´Xk´2‖F ,

which yields the inequality (3.33).

To simplify the notation, let us define for every k ě 2

ζk :“ Ψτ pZk, Xk´1q ´Ψ˚, (3.34)

where Ψ˚ “ lim
kÑ`8

Ψτ pZk, Xk´1q. According to Proposition 8 piq, the sequence tζkukě0 converges mono-

tonically decreasing to 0.
We are now in the position to prove the global convergence of the sequence generated by Algorithm

1.

Theorem 12. Let tXkukě0 be the sequence generated by Algorithm 1. The sequence tXkukě0 converges
to a critical point of Ψ.

Proof. Let
`

sX, sX
˘

P Ω. Then, according to Lemma 10 pivq, Ψτ

`

sX, sX
˘

“ Ψ˚ and, for every k ě 2, we

have Ψτ pZk, Xk´1q ´Ψτ

`

sX, sX
˘

“ ζk. We will show that tXkukě0 has finite length, namely,

ÿ

kě0

‖Xk`1 ´Xk‖F ă `8. (3.35)

Form here it will follow that tXkukě0 is a Cauchy sequence, thus it converges to some X˚, which,
according to Theorem 9, will be a critical point of (Pmod).

In order to prove (3.35) we will consider two cases:
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Case 1. There exists an integer k1 ě 2 such that ζk “ 0 ô Ψτ pZk1 , Xk1´1q “ Ψ˚. The monotonicity
of tζkukě0 implies that ζk “ 0 for all k ě k1 and, further, in view of (3.27) and (3.10), that
Xk`1 ´Xk “ 0 for all k ě k1. Hence

ÿ

kě0

‖Xk`1 ´Xk‖F “
k1´1
ÿ

k“0

‖Xk`1 ´Xk‖F ă `8.

Case 2. It holds ζk ą 0 for every k ě 2. As Ψτ fulfills the uniform  Lojasiewicz property, there exist C, ε ą 0
and θ P r0, 1q such that∣∣Ψτ pZ,Xq ´Ψτ

`

sX, sX
˘
∣∣θ ď C ¨ dist p0, BΨτ pZ,Xqq (3.36)

for all pZ,Xq P Rnˆr ˆ Rnˆr with dist rpZ,Xq ,Ωs ă ε. Since lim
kÑ`8

dist rpZk, Xk´1q ,Ωs “ 0 (see

Lemma 10 piiq), there exists an interger k2 ě 2 such that

dist rpZk, Xk´1q ,Ωs ă ε @k ě k2. (3.37)

Combining (3.36) and (3.37), we deduce that for every k ě k2 it holds∣∣Ψτ pZk, Xk´1q ´Ψτ

`

sX, sX
˘
∣∣θ “ |ζk|θ ď C ¨ dist p0, BΨτ pZk, Xk´1qq

ď C ‖Vk‖F
ď C ¨ C1 ‖Xk ´Xk´1‖F ` C ¨ C2 ‖Xk´1 ´Xk´2‖F , (3.38)

where the last two inequalities follow from Lemma 11. For the given exponent θ P r0, 1q, we define

ϕ : R` Ñ R, s ÞÑ s1´θ, (3.39)

which is a nondecreasing function as ϕ1 psq “
s´θ

1´ θ
ą 0. The concavity of ϕ gives, by taking into

consideration (3.27), for all k ě 2

ϕ pζkq ´ ϕ pζk`1q ě ϕ1 pζkq ¨ pζk ´ ζk`1q

“
pζkq

´θ

1´ θ
pΨτ pZk, Xk´1q ´Ψτ pZk`1, Xkqq ě

pζkq
´θ

1´ θ
¨ C0 ‖Xk`1 ´Xk‖2F .

From here we get that for every k ě k2

‖Xk`1 ´Xk‖F ď
c

1´ θ

C0
pζkq

θ
pϕ pζkq ´ ϕ pζk`1qq

ď
1

2C ¨ pC1 ` C2q
pζkq

θ
`
p1´ θqC ¨ pC1 ` C2q

2C0
pϕ pζkq ´ ϕ pζk`1qq

ď
C1

2 pC1 ` C2q
‖Xk ´Xk´1‖F `

C2

2 pC1 ` C2q
‖Xk´1 ´Xk´2‖F

`
p1´ θqC ¨ pC1 ` C2q

2C0
pϕ pζkq ´ ϕ pζk`1qq . (3.40)

By setting for every k ě k2
ak :“ ‖Xk ´Xk´1‖F ,
bk :“ C3 pϕ pζkq ´ ϕ pζk`1qq ,

C3 :“
p1´ θqC ¨ pC1 ` C2q

2C0
,

the inequality (3.40) becomes
ak`1 ď χ0ak ` χ1ak´1 ` bk,

with

χ0 :“
C1

2 pC1 ` C2q
P p0, 1q and χ1 :“

C2

2 pC1 ` C2q
P r0, 1q .

Since χ0`χ1 “
1

2
ă 1, we obtain, by telescoping sum arguments, that

ř

kěk2
‖Xk ´Xk´1‖F ă `8

(see, for instance, [19, Lemma 2.3] or [20, Lemma 3]). This leads to (3.35) and the proof is
completed.
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We will close this section by discussing the rates of convergence of the projected gradient algorithm
with relaxation and inertial parameters. The nature of the rates is determined by the  Lojasiewicz
exponent θ of the function Ψτ , which cannot be calculated exactly. This is why we will cover in our
statements all possible situations. Further discussions about the values the  Lojasiewicz exponent take
will be made in the last section of the paper.

An essential tool for deriving the rates of convergence is the following lemma, the proof of which can
be found in [21, Lemma 15].

Lemma 13. Let tηkukě0 be a monotonically decreasing sequence of nonnegative numbers converging 0.

Assume further that there exists a natural number sk ě 2 such that for any k ě sk it holds

ηk´2 ´ ηk ě Cηη
2θ
k , (3.41)

where Cη ą 0 and θ P r0, 1q. The following statements are true:

piq if θ “ 0, then tηkukě0 converges in finite time;

piiq if θ P p0, 1{2s, then there exist Cη,0 ą 0 and Q P r0, 1q such that for any k ě sk

0 ď ηk ď Cη,0Q
k;

piiiq if θ P p1{2, 1q, then there exists Cη,1 ą 0 such that for any k ě sk ` 2

0 ď ηk ď Cη,1 pk ´ 1q
´ 1

2θ´1 .

We will show that the sequence tζkukě0 defined in (3.34) satisfies the recursion inequality (3.41) in
Lemma 13.

Lemma 14. Let tXkukě0 be the sequence generated by Algorithm 1 and tζkukě2 the sequence defined in
(3.34). Then there exists k3 ě 2 such that for any k ě k3

ζk´2 ´ ζk ě C4 ¨ ζ
2θ
k , where C4 :“

C0

2 pC ¨ C1q
2 ą 0.

Proof. From (3.27) we get for any k ě 4

ζk´2 ´ ζk “ Ψτ pZk´2, Xk´3q ´Ψτ pZk´1, Xk´2q `Ψτ pZk´1, Xk´2q ´Ψτ pZk, Xk´1q

ě C0 ‖Xk´1 ´Xk´2‖2F ` C0 ‖Xk ´Xk´1‖2F

ě
C0

2
p‖Xk ´Xk´1‖F ` ‖Xk´1 ´Xk´2‖Fq

2

ě
C0

2C2
1

pC1 ‖Xk ´Xk´1‖F ` C2 ‖Xk´1 ´Xk´2‖Fq
2

ě
C0

2C2
1

‖Vk‖2F ,

(3.42)

(3.43)

where Vk P BΨτ pZk, Xk´1q is the element defined in Lemma 11 and(3.42) holds true by taking into
account further that 0 ď ρα` ď 1, hence

C1 “
LF ` LE ` 2ρ2τ

ρ
ě
LF ` LE

ρ
ě pLF ` LEqα` “ C2.

By the same argument as in the proof of Theorem 12, if we take k3 :“ k2 ě 2 for which (3.37) holds,
then according to (3.36) the following inequality holds for every k ě k3

|Ψτ pZk, Xk´1q ´Ψ˚|θ “ ζθk ď C ¨ dist p0, BΨτ pZk, Xk´1qq ď C ‖Vk‖F .

The desired statement is a combination of this estimate and (3.43).

In order to transfer the convergence rates from tζkukě0 to the sequence tXkukě0, we will need the
following lemma.
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Lemma 15. Let tXkukě0 be the sequence generated by Algorithm 1 and tζkukě2 the sequence defined in
(3.34). Let X˚ be the critical point of (Pmod) to which the sequence tXkukě0 converges as k Ñ `8 and

ϕ : R` Ñ R, ϕpsq “ s1´θ. Then there exists k3 ě 2 such that for any k ě k3

‖Xk ´X˚‖F ď C5 max
!

a

ζk, ϕ pζkq
)

, where C5 :“
4
?
C0

` 2C3 ą 0. (3.44)

Proof. By using the same arguments as in the proof of Theorem 12, there exists k3 ě 2 such that for
any k ě k3 the following inequality is true

‖Xk`1 ´Xk‖F ď
C1

2 pC1 ` C2q
‖Xk ´Xk´1‖F `

C2

2 pC1 ` C2q
‖Xk´1 ´Xk´2‖F ` C3 pϕ pζkq ´ ϕ pζk`1qq .

(3.45)

Let k ě k3 be fixed. By an induction argument one can prove that

‖Xk ´X˚‖F ď ‖Xk`1 ´X˚‖F ` ‖Xk`1 ´Xk‖F ď ¨ ¨ ¨ ď
ÿ

iěk

‖Xi`1 ´Xi‖F . (3.46)

For any K ě k ` 2 ě k3, by summing up (3.45) for i “ k ` 2, ¨ ¨ ¨ ,K, we get

K
ÿ

i“k`2

‖Xi`1 ´Xi‖F ď
C1

2 pC1 ` C2q

K
ÿ

i“k`2

‖Xi ´Xi´1‖F `
C2

2 pC1 ` C2q

K
ÿ

i“k`2

‖Xi´1 ´Xi´2‖F

` C3

K
ÿ

i“k`2

pϕ pζiq ´ ϕ pζi`1qq . (3.47)

Notice that

K
ÿ

i“k`2

‖Xi`1 ´Xi‖F “
K
ÿ

i“k

‖Xi`1 ´Xi‖F ´ ‖Xk`2 ´Xk`1‖F ´ ‖Xk`1 ´Xk‖F ,

K
ÿ

i“k`2

‖Xi ´Xi´1‖F “
K´1
ÿ

i“k`1

‖Xi`1 ´Xi‖F

“

K
ÿ

i“k

‖Xi`1 ´Xi‖F ´ ‖Xk`1 ´Xk‖F ´ ‖XK`1 ´XK‖F ,

K
ÿ

i“k`2

‖Xi´1 ´Xi´2‖F “
K´2
ÿ

i“k

‖Xi`1 ´Xi‖F ,

“

K
ÿ

i“k

‖Xi`1 ´Xi‖F ´ ‖XK ´XK´1‖F ´ ‖XK`1 ´XK‖F .

(3.48a)

(3.48b)

(3.48c)

Plugging these relations into (3.47), neglecting the last two negative terms in (3.48b) and (3.48c), we get

K
ÿ

i“k

‖Xi`1 ´Xi‖F ď
C1

2 pC1 ` C2q

K
ÿ

i“k`1

‖Xi ´Xi´1‖F `
C2

2 pC1 ` C2q

K
ÿ

i“k`1

‖Xi´1 ´Xi´2‖F

` ‖Xk`2 ´Xk`1‖F ` ‖Xk`1 ´Xk‖F ` C3

K
ÿ

i“k`1

pϕ pζiq ´ ϕ pζi`1qq

ď
1

2

K
ÿ

i“k

‖Xi`1 ´Xi‖F `‖Xk`2 ´Xk`1‖F `‖Xk`1 ´Xk‖F `C3 pϕ pζk`1q ´ ϕ pζK`1qq .

Thanks to (3.27) we can deduce that

K
ÿ

i“k

‖Xi`1 ´Xi‖F ď 2 ‖Xk`2 ´Xk`1‖F ` 2 ‖Xk`1 ´Xk‖F ` 2C3 pϕ pζk`1q ´ ϕ pζK`1qq

ď
2
?
C0

a

ζk`1 ´ ζk`2 `
2
?
C0

a

ζk ´ ζk`1 ` 2C3 pϕ pζk`1q ´ ϕ pζK`1qq

ď
2
?
C0

a

ζk`1 `
2
?
C0

a

ζk ` 2C3ϕ pζk`1q . (3.49)
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The fact that tζkukě0 is monotonically decreasing implies
a

ζk`1 ď
?
ζk and ϕ pζk`1q ď ϕ pζkq. By

passing K Ñ `8 in (3.49) and by using (3.46), we get the desired statement.

We can now formulate the rates of convergence for the sequences of objective function values and
iterates.

Theorem 16. Let tXkukě0 be the sequence generated by Algorithm 1 and tζkukě2 the sequence defined
in (3.34). Let X˚ be the critical point of (Pmod) to which the sequence tXkukě0 converges as k Ñ `8.
Then there exists k4 ě 2 such that the following statements are true:

piq if θ “ 0, then tζkukě2 and tXkukě0 converge in finite time;

piiq if θ P p0, 1{2s, then there exist C 11, C
1
2 ą 0 and Q1, Q2 P r0, 1q such that for any k ě k4

0 ď E pZkq ´Ψ˚ ď C 11Q
k
1 and ‖Xk ´X˚‖F ď C 12Q

k
2 ;

piiiq if θ P p1{2, 1q, then there exist C 13, C
1
4 ą 0 such that for any k ě k4 ` 2

0 ď E pZkq ´Ψ˚ ď C 13 pk ´ 1q
´ 1

2θ´1 and ‖Xk ´X˚‖F ď C 14 pk ´ 1q
´

1´θ
2θ´1 .

Proof. Let k3 ě 2 be the index provided by previous lemma with the property that (3.44) holds for any
k ě k3. Since tζkukě0 converges to 0, there exists k4 ě k3 such that for any k ě k4

‖Xk ´X˚‖F ď C5 max
!

a

ζk, ϕ pζkq
)

,

ζk ď 1.

(3.50)

(3.51)

piq If θ “ 0, then tζkukě1 converges in finite time. By similar arguments as in the proof of Theorem
12, we get that the sequence tXkukě0 becomes identical to X˚ starting from a given index. In other
words, the sequence tXkukě0 converges in finite time, too.

piiq If θ P p0, 1{2s, then, according to Lemma 13 piiq, there exist C 11 ą 0 and Q1 P r0, 1q such that for any
k ě k4

0 ď E pZkq ´Ψ˚ ď ζk ď C 11Q
k
1 .

Moreover, as 1´ 2θ ě 0, due to (3.51) it holds

ζ
1´2θ

2

k “ ζ
1
2´θ

k ď 1 ô ζ1´θk ď
a

ζk.

Consequently, Lemma 15 implies that

‖Xk ´X˚‖F ď C5

a

ζk ď C5

a

C 11

´

a

Q1

¯k

@k ě k4,

which is nothing else than the second inequality of piiq with C 12 :“ C5

a

C 11 ą 0 andQ2 :“
?
Q1 P p0, 1q.

piiiq If θ P p1{2, 1q, then we can use Lemma 13 piiiq to ensure that there exist C 13 ą 0 such that for any
k ě k4

0 ď E pZkq ´Ψ˚ ď ζk ď C 13 pk ´ 1q
´ 1

2θ´1 .

Since 2θ ´ 1 ą 0 and ζk ď 1 due to (3.51), we have

ζ
2θ´1

2

k “ ζ
θ´ 1

2

k ď 1 ô
a

ζk ď ζ1´θk .

Then the second statement follows from (3.50) with C 14 :“ C5C
1´θ
3 ą 0.
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4 Particular instances and numerical experiments

4.1 Some particular instances of Algorithm 1

In the following we will discuss some particular instances of Algorithm 1. To this aim we will use again
the notation LF pα`q, which will allow us to better underline the dependence of the step size from the
inertial parameters.

Example 5. Choosing αk “ 0 for all k ě 1, Algorithm 1 reduces to the relaxed projected gradient
algorithm

p@k ě 1q

$

’

&

’

%

Zk`1 :“ PrD

ˆ

Xk ´
1

LFp0q
∇E pXkq

˙

,

Xk`1 :“ p1´ ρqXk ` ρZk`1.

In this case, α` “ 0 and condition (3.10) becomes

a

LF p0q ` 2 ‖A‖2
a

LF p0q ` 2 ‖A‖2 `
a

LF p0q
“

a

3trace pAq ` ‖A‖2 ´ λmin pAq
a

3trace pAq ` ‖A‖2 ´ λmin pAq `
a

3trace pAq ´ λmin pAq

ă ρ ď 1 ă

a

LF p0q ` 2 ‖A‖2
a

LF p0q ` 2 ‖A‖2 ´
a

LF p0q
. (4.1)

Notice that, according to (4.1), the the choice ρ “ 1 is allowed, which leads to the classical projected
gradient algorithm.

Example 6. For ρ “ 1, Algorithm 1 reduces to the inertial projected gradient algorithm

p@k ě 1q

$

’

&

’

%

Yk :“ Xk ` αk pXk ´Xk´1q ,

Xk`1 :“ PrD

ˆ

Yk ´
1

LFpα`q
∇E pYkq

˙

.

In the nonconvex setting, algorithms with inertial effects proved to be helpful to detect critical points of
minimization problems which cannot be found by their non-inertial variants (see, for instance, [20, 37]).
For constant inertial parameters αk “ α` P r0, 1s for any k ě 1, condition (3.10) is equivalent to

1 ă

a

LF pα`q ` 2 ‖A‖2
p1` α`q

a

LF pα`q ` 2 ‖A‖2 ´
a

LF pα`q

and further to

0 ď α` ă

d

LF pα`q

LF pα`q ` 2 ‖A‖2
. (4.2)

Condition (4.2) is in implicit form, however, one can show that it is satisfied for every 0 ă α` ď 0.967.
In order to find a larger α`, which fulfills (4.2), one can use a bisection routine starting from 0.967, as
we did in our numerical experiments and will explain in the next subsection.

In order to see that for every 0 ă α` ď 0.967 the inequality (4.2) always holds true, one can rewrite
(4.2) equivalently as

α2
`

`

‖A‖2 `
`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq
˘

ď
`

3` 8α` ` 6α2
`

˘

trace pAq ´ λmin pAq . (4.3)

Relation (4.3) is definitively fulfilled if
w pα`q ď 0,

where

w pξq :“ 6trace pAq ξ4 ` 8trace pAq ξ3 ´ pλmin pAq ` 2trace pAqq ξ2 ´ 8ξtrace pAq ´ 3trace pAq ´ λmin pAq .

We have
w pα`q ď trace pAqφ pα`q ´ λmin pAqα

2
` ´ λmin pAq ď trace pAqφ pα`q ,

where

φ pξq :“ 6ξ4 ` 8ξ3 ´ 2ξ2 ´ 8ξ ´ 3,
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and this is why we will solve a more restricted yet easier inequality φ pξq ď 0 instead of (4.3). The
derivative of φ reads

φ1 pξq “ 24ξ3 ` 24ξ2 ´ 4ξ ´ 8

and has exactly one root

ν “
1

18

3

b

594´ 54
?

67`
1

6
3

c

2
´

11`
?

67
¯

´
1

3
« 0.5253.

Since φ1 p0q “ ´8 ă 0 and φ1 p1q “ 36 ą 0, we have that φ is decreasing on p0, νq and increasing
on pν, 1q. Moreover, as φ p0.967q “ ´0.00458574 ă 0, φ p0q “ ´3 ă 0 and φ p1q “ 1 ą 0, we can
conclude that φ pξq ă 0 for every ξ P r0, 0.967s, which implies that (4.3) is fulfilled as a strict inequality
for every α` P r0, 0.967s as well. Since in the above approach we weakened (4.3) in order to simplify
the computations, one cannot expect 0.967 to be the largest value for which this inequality is fulfilled.
However, we will use in our numerical experiments 0.0967 as the starting point for a bisection procedure
aimed to find larger values of α` which fulfill (4.3).

Example 7. An interesting choice of the variable inertial parameters tαkukě1 in the context of the
inertial projected gradient algorithm discussed in Example 6 is

αk :“ κ ¨
tk ´ 1

tk`1
, where

$

&

%

t1 :“ 1

tk`1 :“
1`

a

1` 4t2k
2

@k ě 1. (4.4)

Notice that, for κ :“ 1, this is exactly the update rule of the celebrated Nesterov/FISTA algorithm
[47, 12]. This iterative scheme have attracted the interest of the optimization community and of many
practitioners due to the fact that, in the convex setting, it improves for the sequence of objective function
values the convergence rate over the one of the standard non-inertial method. In the nonconvex setting,
no theoretical results, which emphasize an improvement in the convergence behaviour through this update
rule, have been obtained so far, however, some empirical studies suggest that this might be the case (see,
for instance, [52]).

Since α` “ sup
kě0

αk “ κ, one can find κ such that (3.10) holds by solving (see (4.2))

0 ď κ ă

d

LF pκq

LF pκq ` 2 ‖A‖2
. (4.5)

If one wants to choose larger values for κ, for instance to take κ close to 1, a restart mechanism can be
adapted into the scheme (4.4), like, for example, in [51].

Example 8. If we set, again in the context of the inertial projected gradient algorithm,

αk :“
κk

k ` 3
@k ě 1, where κ P p0, 1q ,

then it holds α` “ κ. This is a setting considered by László in [37] for the inertial gradient algorithm,
which is the scheme in Example 6 without the projection step. Our algorithm can be considered as an
extension of the one in [37]. To guarantee convergence, in [37] is required that the step size fulfills

0 ă µ ă
2 p1´ κq

LF
,

where LF denotes the Lipschitz constant of the gradient of the objective function. This condition excludes
the case κ “ 1 and allows µ “ 1{LF as stepsize when κ “ 1{2. In our setting, we can have larger values of
κ in combination with the stepsize 1{LF, namely, those for which (4.5) is fulfilled (see also the discussion
at the end of Example 6).

Example 9. Other than for the classical inertial algorithms for convex optimization problems and
monotone inclusions, for which the inertial parameters were not allowed to take values greater than 1{3,
the interplay between relaxation and inertia gives us much more freedom when it comes to the choice of
the latter. We have seen that as far as α` satisfies (4.2) we can choose ρ “ 1. For α` close to 1 such
that (4.2) is not satisfied, in other words

d

LF pα`q

LF pα`q ` 2 ‖A‖2
ď α`,

23



we can take

0 ă

a

LF pα`q ` 2 ‖A‖2
a

LF pα`q ` 2 ‖A‖2 `
a

LF pα`q
ă ρ ă

a

LF pα`q ` 2 ‖A‖2
p1` α`q

a

LF pα`q ` 2 ‖A‖2 ´
a

LF pα`q
ă 1. (4.6)

This applies also for the case when αk “ 1 for any k ě 1, and thus α` “ 1, for which Algorithm 1
becomes

p@k ě 1q

$

’

&

’

%

Zk`1 :“ PrD

ˆ

2Xk ´Xk´1 ´
1

LFp1q
∇E p2Xk ´Xk´1q

˙

,

Xk`1 :“ p1´ ρqXk ` ρZk`1.

As we will see in the numerical results, the strategy of choosing α` close to 1 and ρ according to (4.6)
yields to the best performances of the algorithm.

4.2 Numerical experiments

The aim of the numerical experiments we will present in this subsection is twofold: to compare the
performances of our algorithm with those of other numerical methods for the nonnegative factorization
of completely positive matrices, as are ModMAP and SpFeasDC from [33] and [23], respectively, and to
show in which way and to which extent the algorithm parameters influence these performances.

A particular attention will be paid to the nonnegative factorization of matrices not belonging to the
interior of CPn, for which the algorithms in [33, 23] perform rather poor.

Number of runs and starting points. In every numerical experiment, for A P Rnˆn with n ă 100,
we run Algorithm 1 100 times for 100 randomly chosen initial matrices in D (for instance, by chosing
a random matrix in Rnˆr and then by using the projection formula (3.1)), and run the algorithms
ModMAP and SpFeasDC also 100 times for 100 randomly chosen initial matrices in Or (for instance, by
chosing a random matrix in Rrˆr and by computing a SVD decomposition); if n ě 100, then we do this
for each of the algorithms 10 times.

As noticed in Section 2.3, the algorithm ModMAP and SpFeasDC require, in addition, a matrix B,
which we compute by the Cholesky decomposition. If the Cholesky decomposition fails, then we use the
eigenvalue decomposition. Here we follow the approach described in [33, Section 3], see also [23, Section
6].

Parameter choice. We will choose the constant α`, which will then determine the sequence of
inertial parameters tαkukě1, with two different aims:

‚ by running a simple bisection routine which starts at 0.967 in order to find greater values for α`
that satisfy (4.2), namely,

0 ď α` ă

d

LF pα`q

LF pα`q ` 2 ‖A‖2
.

Instead of using the midpoint rule, we will use as update rule α` :“ p3α` ` 1q {4 for the bisection
routine, which seemingly gives better results. We will then choose α` :“ pα`, which is the last
value at which (4.2) holds. As seen in the previous subsection, as long as (4.2) is fulfilled, we can
and do choose ρ “ 1.

‚ by taking pα1 :“ p3pα` ` 1q {4, pα2 :“ ppα` ` 1q {2, and pα3 :“ ppα` ` 3q {4, which, when pα` is
obtained as above, all violate (4.2). The corresponding relaxation parameters will be denoted by
ρ ppα1q, ρ ppα2q and ρ ppα3q, respectively, and chosen to satisfy (4.6). Another value of α` which
violates (4.2) is 1, which we will also use in the experiments in combination with a relaxation
parameter ρp1q fulfilling (4.6) as well.

Stopping criteria. For A P Rnˆn, we will run each of the algorithms at most 10000 iterations if
n ă 100 and 50000 otherwise. We count the algorithms ModMAP and SpFeasDC as “success” if the
stopping criterion

mintpBQkqi,ju ě ´Tolfea (4.7)

is reached before the maximal number of iterations is attained. This is nothing else than the stopping
criterion used in [33, 23]. For SpFeasDC, we will set Tolfea :“ 10´16 if the matrix A belongs to int pCPnq,
and Tolfea :“ 10´7 otherwise. For ModMAP we will take as threshold 10ˆ Tolfea.
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For all instances of Algorithm 1 we will use as stopping criterion the relative error condition∥∥A´XkX
T
k

∥∥2
F

‖A‖2F
ă Tolval. (4.8)

Also here, we will set Tolval :“ 10´16 if A belongs to int pCPnq, and Tolval :“ 10´7 otherwise.
Tables. In the tables with numerical results, we report the (rounded) successful rate over the total

number of trials (Rate), the average CPU time in seconds for both successful (Time (s)) and failed
(Time (f)) trials, and the average number of iterations (Iter.) needed to reach the stopping criteria
for the successful trials. We also use boldfaces to highlight the best results among all methods that have
successful rate 1.

Plots. In the figures 1 - 2 and 9 - 12 we plot for some particular instances of the matrix A the
sequences of function values tE pZkq ´ Eminukě2 and of distances t 12 ‖Xk ´Xsol‖2Fukě0 in logarithmic
scale, where Emin denotes the smallest objective function value over all methods and Xsol is the last
iterate Xk for each method. With the plots we want to emphasize that the sequences of both function
values and iterates have linear rates of convergence.

In the figures 3 - 8 we emphasize to what extent the performances of the algorithms are sensitive to
the number of columns r of the factor.

Algorithms. We summarize here the different variants of Algorithm 1 with corresponding parameter
choices we will use in the numerical experiments:

piq PG: the classical projected gradient algorithm formulated in Example 5 in case ρ “ 1;

piiq FISTA: the Nesterov/FISTA algorithm from [47, 12];

piiiq IPG-const: the inertial projected gradient algorithm formulated in Example 6 (for ρ “ 1) with
constant inertial parameters αk “ α` for any k ě 1 and pα` chosen to satisfy (4.2);

pivq IPG-sFISTA: the inertial projected gradient algorithm formulated in Example 7 (for ρ “ 1) with
inertial parameters fulfilling (4.4) for κ :“ pα`;

pvq IPG-mod: the modification of Nesterov’s scheme from [37] discussed in Example 8 with κ :“ pα` and
step size µ :“ 1{LF. The setting goes beyond the one in which convergence was proved in [37], but it
is within the one for which our convergence result holds.

pviq RIPG-const, RIPG-sFISTA and RIPG-mod: the relaxed versions of IPG-const, IPG-sFISTA and
IPG-mod, respectively, for different values of α` that violate (4.2), as in Example 9, and with corre-
sponding relaxation parameters ρ satisfying (4.6).

Numerical experiment 1. In our first experiment, we use randomly generated completely positive
matrices as in [33, Section 7.8]. Precisely, in each test we generate a random n ˆ 2n matrix B0 and

then we set A :“ |B0| |B0|T ; here the absolute value operator |¨| is understood entrywise. We test the
algorithms on 50 randomly generated 40ˆ 40 matrices, 10 randomly generated 100ˆ 100 matrices, and
10 randomly generated 500 ˆ 500 matrices, all via the approach described above. For the nonnegative
factorization we choose in each case r :“ 1.5n ` 1 and r :“ 3n ` 1, which have been used also in
[23]. Notice that the choice r :“ 1.5n ` 1 may not be sufficient since the test instances are generated
using matrices of order n ˆ 2n. Nevertheless, we obtain satisfactory results for these choices of r. The
performances of the different numerical methods on the for the different instances are captured in the
Tables 1 - 6.

One can notice that SpFeasDC outperforms the other methods with respect to the number of itera-
tions, which is due the fact that SpFeasDC uses a linesearch routine to improve the step size, while the
other methods have quite conservative step size rules. However, some of the instances of Algorithm 1 can
compete with SpFeasDC in terms of computational time. This is due to the fact that the latter runs in
every iteration a SVD routine, which is much more time expensive than the simple projection step made
by Algorithm 1. In particular with growing dimensions our algorithm becomes faster than SpFeasDC.
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Method Rate Time (s) Time (f) Iter.

ModMAP 0.80 2.5137ˆ 100 7.0416ˆ 100 3467.08
SpFeasDC 1.00 4.1259ˆ 10´2 ´{{´ 38.51
PG 0.00 ´{{´ 4.5239ˆ 10´1 ´{{´

IPG-const: α “ pα` 1.00 1.3017ˆ 10´1 ´{{´ 2554.45
IPG-sFISTA: α “ pα` 1.00 1.2994ˆ 10´1 ´{{´ 2561.51
IPG-mod: α “ pα` 1.00 1.3122ˆ 10´1 ´{{´ 2562.88
RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 2.8331ˆ 10´1 ´{{´ 5490.14
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.8589ˆ 10´1 ´{{´ 5532.32
RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.8411ˆ 10´2 ´{{´ 1752.14
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4610ˆ 10´1 ´{{´ 2906.58
RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.9617ˆ 10´2 ´{{´ 1751.66
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4798ˆ 10´1 ´{{´ 2904.48

Table 1: The nonnegative factorization of random completely positive matrices for n “ 40 and r “ 61.

Method Rate Time (s) Time (f) Iter.

ModMAP 0.90 8.3492ˆ 100 2.1794ˆ 101 3883.03
SpFeasDC 1.00 6.3118ˆ 10´2 ´{{´ 19.22
PG 0.00 ´{{´ 8.4875ˆ 10´1 ´{{´

IPG-const: α “ pα` 1.00 1.9973ˆ 10´1 ´{{´ 2020.26
IPG-sFISTA: α “ pα` 1.00 2.5665ˆ 10´1 ´{{´ 2589.74
IPG-mod: α “ pα` 1.00 2.6477ˆ 10´1 ´{{´ 2591.06
RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 5.0055ˆ 10´1 ´{{´ 4964.26
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 5.0620ˆ 10´1 ´{{´ 5014.23
RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 1.6188ˆ 10´1 ´{{´ 1634.78
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.7420ˆ 10´1 ´{{´ 2760.50
RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 1.6681ˆ 10´1 ´{{´ 1633.88
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.8115ˆ 10´1 ´{{´ 2756.80

Table 2: The nonnegative factorization of random completely positive matrices for n “ 40 and r “ 121.

Method Rate Time (s) Time (f) Iter.

ModMAP 0.62 6.4857ˆ 101 1.3183ˆ 102 24245.13
SpFeasDC 1.00 5.3558ˆ 10´1 ´{{´ 109.72
PG 0.68 1.0220ˆ 101 1.0925ˆ 101 47216.68
IPG-const: α “ pα` 1.00 1.9569ˆ 100 ´{{´ 7948.22
IPG-sFISTA: α “ pα` 1.00 1.6213ˆ 100 ´{{´ 6606.02
IPG-mod: α “ pα` 1.00 1.6379ˆ 100 ´{{´ 6607.08
RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 3.4802ˆ 100 ´{{´ 14271.40
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 3.5571ˆ 100 ´{{´ 14465.50
RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.3203ˆ 10´1 ´{{´ 3160.96
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 8.1442ˆ 10´1 ´{{´ 3216.90
RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 8.2046ˆ 10´1 ´{{´ 3163.08
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 7.9077ˆ 10´1 ´{{´ 3215.90

Table 3: The nonnegative factorization of random completely positive matrices for n “ 100 and r “ 151.
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Method Rate Time (s) Time (f) Iter.

ModMAP 0.16 6.1287ˆ 102 9.1004ˆ 102 34943.88
SpFeasDC 1.00 2.1906ˆ 100 ´{{´ 96.08
PG 0.80 2.4696ˆ 101 2.3458ˆ 101 47725.30
IPG-const: α “ pα` 1.00 1.9569ˆ 100 ´{{´ 7948.22
IPG-sFISTA: α “ pα` 1.00 1.6213ˆ 100 ´{{´ 6606.02
IPG-mod: α “ pα` 1.00 1.6379ˆ 100 ´{{´ 6607.08
RIPG-const: pα, ρq “ ppα2, ρ ppα2qq 1.00 3.8786ˆ 100 ´{{´ 13377.24
RIPG-const: pα, ρq “ ppα3, ρ ppα3qq 1.00 3.7777ˆ 100 ´{{´ 13551.98
RIPG-sFISTA: pα, ρq “ ppα2, ρ ppα2qq 1.00 2.0073ˆ 100 ´{{´ 3232.04
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.7938ˆ 100 ´{{´ 3021.04
RIPG-mod: pα, ρq “ ppα2, ρ ppα2qq 1.00 1.9433ˆ 100 ´{{´ 3234.30
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.7880ˆ 100 ´{{´ 3018.80

Table 4: The nonnegative factorization of random completely positive matrices for n “ 100 and r “ 301.

Method Rate Time (s) Time (f) Iter.

SpFeasDC 1.00 1.6557eˆ 102 ´{{´ 929.38
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4526ˆ 102 ´{{´ 7919.40
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 1.4861ˆ 102 ´{{´ 7921.64

Table 5: The nonnegative factorization of random completely positive matrices for n “ 500 and r “ 751.

Method Rate Time (s) Time (f) Iter.

SpFeasDC 1.00 1.3813ˆ 103 ´{{´ 914.15
RIPG-sFISTA: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.2975ˆ 102 ´{{´ 7776.30
RIPG-mod: pα, ρq “ ppα3, ρ ppα3qq 1.00 2.3037ˆ 102 ´{{´ 7779.60

Table 6: The nonnegative factorization of random completely positive matrices for n “ 500 and r “ 1501.

Figure 1: The sequence E pZkq ´ Emin in logarithmic
scale for a particular instance of A in case n “ 40 and

r “ 61.

Figure 2: The sequence
1

2
‖Xk ´Xsol‖2F in logarithmic

scale for a particular instance of A in case n “ 40 and
r “ 61.

27



Numerical experiment 2. In the second numerical experiment we examine the efficiency of the fac-
torization algorithms when the number of columns r of the factor varies.

We first consider the factorization of a matrix of the form

An :“

ˆ

0 jTn´1

jn´1 In´1

˙T ˆ

0 jTn´1

jn´1 In´1

˙

P Rnˆn, (4.9)

and recall that In and jn denote the n ˆ n identity matrix and the all-ones-vector in Rn, respectively.
It has been observed in [33] that for such matrices the rate of success of ModMAP, when applied with
random initial points, increases with higher values for r. We notice that An P int pCPnq for any n ě 2
([55]).

A similar behaviour can be noticed for various instances of Algorithm 1, as it can be seen in Figure
3. Here we plot the rate of success with which the algorithms ModMAP, PG and IPG-sFISTA with
α “ pα` and RIPG-sFISTA with pα, ρq “ ppα3, ρ ppα3qq provided a factorization of the matrix A40 for
r P t40, 51, 61, 71, 81, 101, 121u and 100 random initial points. The number of required iterations is
plotted in Figure 4. For the variants of Algorithm 1 similar results can be reported.

We repeat the experiment for a completely positive matrix A :“ |B0| |B0|T constructed as in the
previous numerical experiment from a randomly generated 100ˆ200 matrix B0 for random initial points
and various r P t151, 176, 201, 251, 301u. As it can be seen in Figure 5, the rate of success for different
variants of Algorithm 1 increases with higher values for r, however, this is not anymore the case for
ModMAP. Moreover, according to Figure 4, the numbers of iterations required by the first provide a
factorization that is more stable than the one required by ModMAP.

With the figures 6 and 8 we want to underline that, while IPG-sFISTA requires for all instances of
r less iterations than RIPG-sFISTA when factorizing A40 given by (4.9), the situation changes to the
opposite when it comes to the factorization of the randomly generated matrix A P CP100.

Numerical experiment 3. In this numerical experiment we address the factorization of the matrix
from [56, Example 2.7]

A :“

¨

˚

˚

˚

˚

˝

41 43 80 56 50
43 62 89 78 51
80 89 162 120 93
56 78 120 104 62
50 51 93 62 65

˛

‹

‹

‹

‹

‚

, (4.10)

which is known to be completely positive with cprpAq “ rankpAq “ 3 (see [56, Theorem 2.5]). However,
at the time this matrix was introduced no completely positive factorization of it was known. A completely
positive factorization of this matrix with two zero columns was obtained for the first time in [33] and it
is given by

A “ rX rXT , where rX “

¨

˚

˚

˚

˚

˝

0.0000 3.3148 4.3615 3.3150 0.0000
0.0000 0.7261 4.3485 6.5241 0.0000
0.0000 4.5242 9.9675 6.4947 0.0000
0.0000 0.1361 7.4192 6.9955 0.0000
0.0000 5.3301 3.8960 4.6272 0.0000

˛

‹

‹

‹

‹

‚

,

for the generation of which the spectral decomposition of A has been used.
With Algorithm 1 we obtain several other factorizations of A. We present exemplary the following

factors, all having two zero columns,

rX1 “

¨

˚

˚

˚

˚

˝

4.4017 0 2.7669 0 3.7376
4.1001 0 6.4472 0 1.9034
6.9385 0 7.0193 0 8.0366
3.7388 0 8.4422 0 4.3302
6.8248 0 2.5512 0 3.4515

˛

‹

‹

‹

‹

‚

,

rX2 “

¨

˚

˚

˚

˚

˝

2.6507 0 5.1505 0 2.7287
6.3431 0 3.3813 0 3.2144
5.6648 0 8.7429 0 7.3124
7.0264 0 3.9453 0 6.2502
3.4789 0 7.1126 0 1.5191

˛

‹

‹

‹

‹

‚

, rX3 “

¨

˚

˚

˚

˚

˝

0 0 3.9911 3.2352 3.8216
0 0 2.3524 1.7597 7.3054
0 0 5.8924 7.4202 8.4981
0 0 1.8483 4.3608 9.0315
0 0 6.2922 2.5714 4.3355

˛

‹

‹

‹

‹

‚

,

and notice that the matrix rX1 is obtained with IPG-const, rX2 with IPG-sFISTA, and rX3 with RIPG-mod.

28



Figure 3: The rate of success for the factorization of
A40 given by (4.9) for different values of r and random

initial points.

Figure 4: The number of iterations required for the
factorization of A40 given by (4.9) for different values of

r and random initial points.

Figure 5: The rate of success for the factorization of a
randomly generated matrix A P CP100 for different

values of r and random initial points.

Figure 6: The number of iterations required for the
factorization of a randomly generated matrix A P CP100

for different values of r and random initial points.

Figure 7: Comparison of the number of iterates
required by IPG-sFISTA and RIPG-sFISTA for the

factorization of A40 given by (4.9) for different values of
r and random initial points.

Figure 8: Comparison of the number of iterates
required by IPG-sFISTA and RIPG-sFISTA for the

factorization of a randomly generated matrix A P CP100

for different values of r and random initial points.
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Numerical experiment 4. In this numerical experiment, we consider the perturbed matrix Aω defined
by

Aω :“ ωA` p1´ ωqP, for ω P r0, 1s , (4.11)

where

A :“

¨

˚

˚

˚

˚

˝

8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

˛

‹

‹

‹

‹

‚

and P :“

¨

˚

˚

˚

˚

˝

2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

˛

‹

‹

‹

‹

‚

. (4.12)

Both A and Aω belong to CP5 for all ω P r0, 1s. Furthermore, Aω P int pCP5q whenever 0 ď ω ă 1,

since P “
“

j5|I5
‰“

j5|I5
‰T
P int pCP5q, while A P CP5zint pCP5q. It has been observed in [33, 23] that

it is much more difficult to perform a nonnegative factorization of A than of Aω when ω ă 1. In
particular, the rate of success for ModMAP and SpFeasDC decreases to zero when ω to 1, that is, when
Aω becomes nearly identical to A. For this experiment, we set, according to the lower bounds for the
cp-rank derived in [17], r :“ 11 for ω :“ 1 and r :“ 12 otherwise. We present in Table 7 and in Table 8 the
numerical performances of the algorithms applied to the nonnegative factorization of the matrices A0.99

and A1.00 “ A, respectively. One can see that both ModMAP and SpFeasDC practically fail to factorize
the two matrices, a fact which was noticed in [33, 23]. In what concerns the inertial methods IPG-const,
IPG-sFISTA and IPG-mod, they also seem to face some difficulties in solving these matrices, as the rate
of success is not for every initial matrix equal to 1. On the other hand, the methods RIPG-sFISTA

and RIPG-mod combining inertial and relaxation parameters always return nonnegative factorizations for
α` taken equal to pα3 and equal to 1. This emphasizes the importance of the interplay between the
inertial and relaxation parameters, as mentioned in Example 9, and provides a strong motivation for the
approach proposed in this paper.

Numerical experiment 5. Let In and Jn denote the identity matrix and the all-ones-matrix in Rnˆn,
respectively, and define

A2n :“

ˆ

nIn Jn
Jn nIn

˙

. (4.13)

This family of matrices, that lie on the boundary of CP2n, has been also considered in [33]. The authors
report that the algorithms they propose fail to factorize matrices in this family, which is also the case
with SpFeasDC, as we have seen in our experiments. We exemplify this in Table 9 for n “ 15 and
r “ 30. On the other hand, the methods RIPG-sFISTA and RIPG-mod combining inertial and relaxation
parameters provide a factorization in reasonable time, as it is also the case for n “ 50 and r “ 100 on
which we report in Table 10. It is also interesting to notice that, for this family of matrices, FISTA
outperforms all the other methods, despite of the fact that the parameter choice for this method does
not fail into the setting for which convergence was proved.

5 Further perspectives

Numerical evidence (see the figures 1 - 2 and 9 - 12) suggests that the convergence rates of our model are
linear, which at its turn suggests that the  Lojasiewicz exponent of the function Ψτ is at most 1{2. Even
though the  Lojasiewicz exponent has played an important role in the derivation of many convergence
rates results, to little is known about the calculation of its exact values for functions with complex
structure. Some calculus rules for the  Lojasiewicz exponent have been provided in [39] and in [41] for
some simple models, however, it is not yet clear how to calculate it for Ψτ . This is an interesting topic
of future research.

The empirical evidence on the benefit of the use of linesearch techniques gives rise to the interesting
question of studying the theoretical convergence guarantees of the iterates generated by a Algorithm 1
enhanced with such a procedure. Another topic of further research is related to the extension of the
convergence analysis beyond the current setting, in order to cover the parameter choice of the FISTA

method, which, for the numerical experiments 4 and 5, proves to have excellent numerical performances.
Further, one can replace in the formulation of the optimization problem (Pmod) the closed ball with

radius
a

trace pAq by the sphere of the same radius, formulate a projected gradient algorithm with
relaxation and inertial parameters (by using the formula of the projection on the intersection of a cone
and a sphere from [9]), determine a parameter setting for which convergence can be guaranteed and
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Method Rate Time (s) Time (f) Iter.

ModMAP 0.00 ´{{´ 4.7649ˆ 10´1 ´{{´

SpFeasDC 0.02 7.0223ˆ 10´1 7.5259ˆ 10´1 9220.50
PG 0.27 1.8571ˆ 10´2 2.7675ˆ 10´2 7069.00
FISTA 1.00 2.1624ˆ 10´3 ´{{´ 728.32
IPG-const: α` “ 0.9814 1.00 7.2203ˆ 10´3 ´{{´ 2385.20
IPG-sFISTA: α` “ 0.9814 1.00 7.9190ˆ 10´3 ´{{´ 2474.65
IPG-mod: α` “ 0.9814 1.00 7.7214ˆ 10´3 ´{{´ 2473.84
RIPG-const: pα, ρq “ p0.9954, 0.9705q 0.93 1.3141ˆ 10´2 3.1291ˆ 10´2 4383.86
RIPG-const: pα, ρq “ p1.0000, 0.9661q 0.94 1.3217ˆ 10´2 3.2318ˆ 10´2 4446.59
RIPG-sFISTA: pα, ρq “ p0.9954, 0.9705q 1.00 3.5561ˆ 10´3 ´{{´ 1050.93
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9661q 1.00 2.5225ˆ 10´3 ´{{´ 742.12
RIPG-mod: pα, ρq “ p0.9954, 0.9705q 1.00 3.5350ˆ 10´3 ´{{´ 1056.10
RIPG-mod: pα, ρq “ p1.0000, 0.9661q 1.00 2.4953ˆ 10´3 ´{{´ 744.37

Table 7: The nonnegative factortization of A0.99 given by (4.11) - (4.12) for r “ 12.

Method Rate Time (s) Time (f) Iter.

ModMAP 0.00 ´{{´ 5.0659ˆ 10´1 ´{{´

SpFeasDC 0.00 ´{{´ 9.1030ˆ 10´1 ´{{´

PG 0.01 1.7454ˆ 10´2 2.7524ˆ 10´2 7531.00
FISTA 1.00 3.1237ˆ 10´3 ´{{´ 1067.09
IPG-const: α` “ 0.9814 0.99 1.1232ˆ 10´2 2.9201ˆ 10´2 3785.31
IPG-sFISTA: α` “ 0.9814 0.95 1.2694ˆ 10´2 3.3234ˆ 10´2 4052.98
IPG-mod: α` “ 0.9814 0.95 1.2337ˆ 10´2 3.0064ˆ 10´2 4041.04
RIPG-const: pα, ρq “ p0.9954, 0.9705q 0.76 1.7583ˆ 10´2 2.9249ˆ 10´2 5882.72
RIPG-const: pα, ρq “ p1.0000, 0.9661q 0.76 1.7549ˆ 10´2 2.9381ˆ 10´2 5908.16
RIPG-sFISTA: pα, ρq “ p0.9954, 0.9705q 1.00 6.0671ˆ 10´3 ´{{´ 1835.64
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9661q 1.00 3.6109ˆ 10´3 ´{{´ 1083.75
RIPG-mod: pα, ρq “ p0.9954, 0.9705q 1.00 6.0041ˆ 10´3 ´{{´ 1850.06
RIPG-mod: pα, ρq “ p1.0000, 0.9661q 1.00 3.6073ˆ 10´3 ´{{´ 1084.20

Table 8: The nonnegative factortization of A1 “ A given by (4.11) - (4.12) for r “ 11.

Method Rate Time (s) Time (f) Iter.

ModMAP 0.00 ´{{´ 3.4746ˆ 102 ´{{´

SpFeasDC 0.00 ´{{´ 5.8390ˆ 102 ´{{´

PG 0.00 ´{{´ 1.3049ˆ 100 ´{{´

FISTA 1.00 9.9557ˆ 10´1 ´{{´ 6959.95
IPG-const: α` “ 0.9861 0.00 ´{{´ 1.5734ˆ 100 ´{{´

IPG-sFISTA: α` “ 0.9861 0.00 ´{{´ 1.5584ˆ 100 ´{{´

IPG-mod: α` “ 0.9861 0.00 ´{{´ 1.5747ˆ 100 ´{{´

RIPG-const: pα, ρq “ p0.9965, 0.9730q 0.00 ´{{´ 1.6052ˆ 100 ´{{´

RIPG-const: pα, ρq “ p1.0000, 0.9697q 0.00 ´{{´ 1.6032ˆ 100 ´{{´

RIPG-sFISTA: pα, ρq “ p0.9965, 0.9730q 1.00 1.4735ˆ 100 ´{{´ 7719.29
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9697q 1.00 1.4564ˆ 100 ´{{´ 7037.52
RIPG-mod: pα, ρq “ p0.9965, 0.9730q 1.00 1.4998ˆ 100 ´{{´ 7728.84
RIPG-mod: pα, ρq “ p1.0000, 0.9697q 1.00 1.4641ˆ 100 ´{{´ 7036.06

Table 9: The nonnegative factorization of A30 given by (4.13) for r “ 30.
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Method Rate Time (s) Time (f) Iter.

FISTA 1.00 1.9818ˆ 102 ´{{´ 22246.50
RIPG-sFISTA: pα, ρq “ p0.9998, 0.9796q 1.00 2.3743ˆ 102 ´{{´ 23125.20
RIPG-sFISTA: pα, ρq “ p1.0000, 0.9794q 1.00 2.3330ˆ 102 ´{{´ 22467.40
RIPG-mod: pα, ρq “ p0.9998, 0.9794q 1.00 2.3752ˆ 102 ´{{´ 23130.90
RIPG-mod: pα, ρq “ p1.0000, 0.9794q 1.00 2.3290ˆ 102 ´{{´ 22463.90

Table 10: The nonnegative factorization of A100 given by (4.13) for r “ 100.

Figure 9: The sequence E pZkq ´ Emin for the
factorization of A0.99 given by (4.11) - (4.12).

Figure 10: The sequence
1

2
‖Xk ´Xsol‖2F for the

factorization of A0.99 given by (4.11) - (4.12).

Figure 11: The sequence E pZkq ´ Emin for the
factorization of A1 “ A given by (4.11) - (4.12).

Figure 12: The sequence
1

2
‖Xk ´Xsol‖2F for the

factorization of A1 “ A given by (4.11) - (4.12).

convergence rates can be derived (in the spirit of the analysis for inertial proximal gradient algorithms
in the fully nonconvex setting from [20]), and, of course, investigate its numerical performances.
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