
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0364-765X |eissn 1526-5471 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Extrapolated Proximal Subgradient Algorithms for
Nonconvex and Nonsmooth Fractional Programs

Radu Ioan Boţ
Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria, radu.bot@univie.ac.at,

Minh N. Dao
School of Engineering, Information Technology and Physical Sciences, Federation University Australia, Ballarat 3353,

Australia, m.dao@federation.edu.au,

Guoyin Li
Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia, g.li@unsw.edu.au,

In this paper, we consider a broad class of nonsmooth and nonconvex fractional programs, which encompass
many important modern optimization problems arising from diverse areas such as the recently proposed scale
invariant sparse signal reconstruction problem in signal processing. We propose a proximal subgradient algo-
rithm with extrapolations for solving this optimization model and show that the iterated sequence generated
by the algorithm is bounded and any of its limit points is a stationary point of the model problem. The choice
of our extrapolation parameter is flexible and includes the popular extrapolation parameter adopted in the
restarted Fast Iterative Shrinking-Threshold Algorithm (FISTA). By providing a unified analysis framework
of descent methods, we establish the convergence of the full sequence under the assumption that a suitable
merit function satisfies the Kurdyka–Łojasiewicz property. Our algorithm exhibits linear convergence for the
scale invariant sparse signal reconstruction problem and the Rayleigh quotient problem over spherical con-
straint. When the denominator is the maximum of finitely many continuously differentiable weakly convex
functions, we also propose another extrapolated proximal subgradient algorithm with guaranteed conver-
gence to a stronger notion of stationary points of the model problem. Finally, we illustrate the proposed
methods by both analytical and simulated numerical examples.
Key words : descent method; extrapolation; fractional program; Kurdyka–Łojasiewicz property; linear
convergence; proximal subgradient algorithm

MSC2000 subject classification : Primary: 90C26, 90C32; secondary: 49M27, 65K05
OR/MS subject classification : Primary: programming: fractional; secondary: programming:
nondifferentiable; programming: nonlinear: algorithms

1. Introduction In this paper, we consider the following class of nonsmooth and nonconvex
fractional program which takes the form

min
x∈S

f(x)
g(x) , (P)

where H is a Euclidean space (or a finite-dimensional real Hilbert space), S is a nonempty closed
convex subset of H, and f, g : H→ (−∞,+∞] are proper lower semicontinuous functions which are
not necessarily convex. Unless stated otherwise, the numerator f can be written as the sum of f s

and fn, where f s is a differentiable convex function whose gradient is Lipschitz continuous and fn

1

mailto:radu.bot@univie.ac.at
mailto:m.dao@federation.edu.au
mailto:g.li@unsw.edu.au

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
2 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

is a nonconvex function, and the denominator g is a continuous weakly convex function on an open
convex set containing S, and always takes positive values on S. We note that weakly convex functions
form a broad class of functions which covers convex functions, nonconvex quadratic functions and
differentiable functions whose gradient is Lipschitz continuous.
This class of nonsmooth and nonconvex fractional program is a broad optimization model which

encompasses many important modern optimization problems arising from diverse areas. This includes,
for example, the recently proposed scale invariant sparse signal reconstruction problem in signal
processing [28] and the robust Sharpe ratio optimization problems in finance [11]. Moreover, in the
special case where the denominator g(x) ≡ 1 and S =H, problem (P) reduces to the well-studied
nonsmooth composite optimization with the form

min
x∈H

f(x) = f s(x) + fn(x),

which covers a lot of modern optimization problems in machine learning (for example, the Lasso
problem in computer science). Below we provide a few motivating examples illustrating the model
problem (P).
(i) Scale invariant sparse signal recovery problem: In signal processing, to reconstruct a sparse

signal from its observation, one considers the following scale invariant minimization problem [28]

min
x∈RN

‖x‖1

‖x‖2
s.t. Ax≤ b, Cx= d,

where ‖ · ‖1 and ‖ · ‖2 are the `1-norm and Euclidean norm respectively, A ∈ RM×N , b ∈ RM ,
C ∈ RP×N , d ∈ RP , and the constraint set is bounded and does not contain the origin. Here,
the objective function relates to the restricted isometry constant and serves as a surrogate of
the cardinality of x. It was shown in [28] that this model can outperform the celebrated Lasso
model in recovering a sparse solution. This model problem is indeed a special case of problem (P)
with f(x) = ‖x‖1 (that is, f s = 0, fn = f), g(x) = ‖x‖2 and S being the polytope {x∈RN :Ax≤
b,Cx= d}.

(ii) Rayleigh quotient optimization with spherical constraint: The Rayleigh quotient opti-
mization problem with spherical constraint can be formulated as

min
x∈RN

x>Ax

x>Bx
s.t. ‖x‖2 = 1,

where A and B are symmetric positive definite matrices. This is a special case of problem (P)
with S = RN , f(x) = x>Ax+ ιC(x) (that is, f s(x) = x>Ax, fn(x) = ιC(x)), where C is the unit
sphere {x ∈ RN : ‖x‖2 = 1} and ιC is the indicator function of the set C (see (4) later for the
definition of indicator function), and g(x) = x>Bx.

(iii) Robust Sharpe ratio minimization problem: The standard Sharpe ratio optimization prob-
lem (see, e.g., [11]) can be formulated as

max
x∈RN

a>x− r√
x>Ax

s.t. e>x= 1, x≥ 0,

where the numerator is the expected return and the denominator measures the risk. In practice,
the data associated with the model is often uncertain due to prediction or estimation errors.
Following robust optimization approach, we assume that the data (A,a, r) are uncertain and
belong to the polyhedral uncertainty set U = U1 ×U2, where U1 = conv{(a1, r1), . . . , (am1 , rm1)}
and U2 = conv{A1, . . . ,Am2}. Here, (ai, ri)∈RN ×R, i= 1, . . . ,m1, are such that a>i x− ri ≤ 0 for

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 3

all x∈ S = {x∈RN : e>x= 1, x≥ 0}, and Aj are symmetric positive definite matrix, j = 1, . . . ,m2.
The robust Sharpe ratio optimization problem can be written as

max
x∈RN

min(a,r)∈U1{a>x− r}
maxA∈U2

√
x>Ax

s.t. e>x= 1, x≥ 0,

which can be written as

min
x∈RN

−min1≤i≤m1{a>i x− ri}
max1≤i≤m2

√
x>Aix

s.t. e>x= 1, x≥ 0.

This is a special case of problem (P) with f(x) =−min1≤i≤m1{a>i x− ri}= max1≤i≤m1{ri−a>i x}
(that is, f s = 0, fn = f), g(x) = max1≤i≤m2

√
x>Aix and S as mentioned above.

Before we proceed, we also note that the model problem (P) can be simplified as minx∈H f̂(x)
g(x) with

f̂ = f + ιS and some appropriate modifications of the assumptions. On the other hand, we stick to
the model problem (P), as this simplification complicates the statement of the assumptions needed
for ensuring the convergence of the algorithms later on.
The fractional programming problem has a long history, and a classical and popular approach for

solving the fractional programming problem is the Dinkelbach’s method (see, for example, [12, 13])
which relates it to the following optimization problem

min
x∈S

f(x)− θg(x). (1)

In particular, (P) has an optimal solution x∈ S if and only if x is an optimal solution to (1) and the
optimal objective value of (1) is equal to zero with θ= f(x)

g(x) . However, one drawback of this procedure
is that this can only be done in the very restrictive case when the optimal objective value of (P) is
known. To overcome this drawback, in the literature (see [12, 13, 15, 16, 30]) an iterative scheme was
proposed which requires solving in each iteration n of the optimization problem

min
x∈S
{f(x)− θng(x)} (2)

while θn is updated by θn+1 := f(xn+1)
g(xn+1) , where xn+1 is an optimal solution of (2). However, solving in

each iteration an optimization problem of type (2) can be as expensive and difficult as solving the
fractional programming problem (P) in general.
Recently, in view of the success of the proximal algorithms in solving composite optimization prob-

lems (that is, when the denominator g(x)≡ 1), [7] proposed proximal gradient type algorithms for
fractional programming problems, where the numerator f is a proper, convex and lower semicontinu-
ous function and the denominator g is a smooth function, either concave or convex. The approach of
[7] is appealing because the proposed iterative methods there perform a gradient step with respect to
g and a proximal step with respect to f . In this way, the functions f and g are processed separately
in each iteration.
Although the approach in [7] is of interest, still many research questions need to be answered. For

example,
• firstly, how to extend the approach in [7] to the case where the numerator and denominator

are both nonconvex and nonsmooth? Such an extension would allow us to cover, for example,
robust Sharpe ratio optimization problems where both the numerator f and the denominator g
are nonsmooth, and the Rayleigh quotient optimization problem with spherical constraints where
the numerator f is a nonconvex function.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
4 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

• secondly, it is known that the performance of the proximal gradient method can be largely
improved (see [23]) if one can incorporate extrapolation steps in solving composite optimization
problems (that is, when the denominator g(x)≡ 1 in (P)), as for example for the restarted Fast
Iterative Shrinking-Threshold Algorithm (FISTA) [5, Chapter 10]. Therefore, it is of great interest
to develop proximal algorithms with extrapolations for solving fractional programs.
• thirdly, in the case where f and g are convex, and g is continuously differentiable, it was shown

in [7] that the proximal gradient method generates a sequence of iterates which converges to a
stationary point of problem (P). Recently, algorithms were proposed for computing a stronger
version of stationary points called d(irectional)-stationary points for a class of difference-of-convex
optimization problems (for example see [1, 27]). Taking this into account, developing algorithms
which converge to sharper notions of stationary points of problem (P) is also highly desirable.
The purpose of this paper is to provide answers to the above questions. Specifically, the contribu-

tions of this paper are as follows.
(1) In Section 4, we propose a proximal subgradient algorithm with extrapolations for solving the

model problem (P). We then establish that the sequence of iterates generated by the algorithm is
bounded and any of its limit points is a stationary point of the model problem (P). Interestingly,
the convergence of our algorithm does not require the numerator and denominator to be convex
or smooth. Moreover, our extrapolation parameter is broad enough to accommodate the popular
extrapolation parameter used for restarted FISTA.

(2) In Section 5, we establish a general framework for analyzing descent methods which is amenable
for optimization methods with multi-steps and inexact subproblems. Our conditions are weaker
than those in the literature and complement the existing results. With the help of this framework,
we establish the convergence of the full sequence under the assumption that a suitable merit
function satisfies the KL property. In particular, by identifying the explicit KL exponent, we
establish linear convergence of the proposed algorithm for scale invariant sparse signal recovery
problem and Rayleigh quotient optimization with spherical constraint.

(3) In the case where the denominator is the maximum of finitely many continuously differentiable
weakly convex functions, in Section 6, we also propose an enhanced proximal subgradient algo-
rithm with extrapolations, and show that this enhanced algorithm converges to a stronger notion
of stationary points of the model problem.

(4) Finally, we illustrate the proposed methods via analytical and simulated numerical examples in
Section 7.

2. Preliminaries Throughout this work, we assume that H is a Euclidean space (or a finite-
dimensional real Hilbert space) with inner product 〈·, ·〉 and the induced norm ‖ · ‖. The set of
nonnegative integers is denoted by N, the set of real numbers by R, the set of nonnegative real
numbers by R+ := {x∈R : x≥ 0}, and the set of the positive real numbers by R++ := {x∈R : x> 0}.
Let h : H→ [−∞,+∞] be an extended real-valued function. The domain of h is domh := {x∈H :

h(x)<+∞}. We say that h is proper if domh 6= ∅ and it never takes the value −∞. The function
h is lower semicontinuous if, for all x ∈ domh, h(x)≤ lim infz→x h(z). We use the symbol z h→ x to
indicate z→ x and h(z)→ h(x). Given x∈H with |h(x)|<+∞, the Fréchet subdifferential of h at x
is defined by

∂̂h(x) :=
{
u∈H : lim inf

z→x

h(z)−h(x)−〈u, z−x〉
‖z−x‖

≥ 0
}

and the limiting subdifferential of h at x is defined by

∂Lh(x) :=
{
u∈H : ∃xn h→ x, un→ u with un ∈ ∂̂h(xn)

}
.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 5

We set ∂̂h(x) = ∂Lh(x) := ∅ when |h(x)| = +∞ and define dom∂Lh := {x ∈ H : ∂Lh(x) 6= ∅}. It
follows from the definition that the limiting subdifferential has the robustness property

∂Lh(x) =
{
u∈H : ∃xn h→ x, un→ u with un ∈ ∂Lh(xn)

}
. (3)

For a convex function h, both Fréchet and limiting subdifferentials reduce to the classical subdiffer-
ential in convex analysis (see, for example, [21, Theorem 1.93])

∂h(x) := {u∈H : ∀z ∈H, 〈u, z−x〉 ≤ h(z)−h(x)} .

Moreover, for a strictly differentiable1 function h, both Fréchet and limiting subdifferentials reduce
to the derivative of h denoted by ∇h.
Let S be a nonempty subset of H. Its convex hull is denoted by convS. The indicator function of

S is given by

ιS(x) :=
{

0 if x∈ S,
+∞ if x /∈ S.

(4)

Given x∈H, the Fréchet normal cone of S at x is given by N̂S(x) := ∂̂ιS(x) and the limiting normal
cone of S at x is NS(x) := ∂LιS(x). The set S is regular at x ∈ S if NS(x) = N̂S(x). We say that S
is regular if it is regular at all of its points. It is known, e.g., from [21, Proposition 1.5] that if S is
locally convex around x, i.e., S ∩U is convex for some neighborhood U of x, then S is regular at x.
For a function h : H→ [−∞,+∞] finite at x, we say that h is regular2 at x if ∂̂h(x) = ∂Lh(x).

The function h is said to be regular on a set C if it is regular at any x ∈ C. For a proper lower
semicontinuous function h, it is clear that if h is convex around x or strictly differentiable at x,
then it is regular at x. In the case where h is an indicator function of a closed set or is a Lipschitz
continuous function around x, according to [21, Proposition 1.92], h is regular at x if and only if
epih := {(x, r)∈H×R : r≥ h(x)} is regular at (x,h(x)).
In general, the limiting subdifferential set can be nonconvex (e.g., for h(x) = −|x| at 0 ∈ R),

while ∂Lh enjoys comprehensive calculus rules based on variational/extremal principles of variational
analysis [21, 29]. In particular, the following sum rule and quotient rule and for limiting subdifferential
will be useful for us later.
Lemma 2.1 (Sum and quotient rules). Let h1, h2 : H→ (−∞,+∞] be proper lower semicon-

tinuous functions, and let x∈H. Then the following hold:
(i) Suppose that h1 is finite at x and h2 is locally Lipschitz around x. Then ∂L(h1 +h2)(x)⊆ ∂Lh1(x)+

∂Lh2(x), where the equality holds if both h1 and h2 are regular at x, in which case h1 +h2 is also
regular at x. Moreover, if h2 is strictly differentiable at x, then ∂L(h1 +h2)(x) = ∂Lh1(x)+∇h2(x).

(ii) Suppose that h1 and h2 are Lipschitz continuous around x, and h2(x) 6= 0. Then, if ∂̂h2 is
nonempty-valued around x, one has

∂L

(
h1

h2

)
(x)⊆ ∂L(h2(x)h1)(x)−h1(x)∂Lh2(x)

h2(x)2 . (5)

If h2 is strictly differentiable at x, one has

∂L

(
h1

h2

)
(x) = ∂L(h2(x)h1)(x)−h1(x)∇h2(x)

h2(x)2 , (6)

and consequently h1/h2 is regular at x if and only if the function x 7→ h2(x)h1(x) is regular at x.
1 A function h is strictly differentiable at x if there exists u∈H such that lim

y,z→x

h(y)−h(z)−〈u,y−z〉
‖y−z‖ = 0. Clearly, if h is

continuously differentiable at x, then it is strictly differentiable at x.
2 This is also referred as lower regular in [21, 22].

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
6 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Proof. (i): We first derive from [21, Theorem 3.36] and its following remark that ∂L(h1 +h2)(x)⊆
∂Lh1(x)+∂Lh2(x) and that if both h1 and h2 are regular at x, then so is h1 +h2 and ∂L(h1 +h2)(x) =
∂Lh1(x)+∂Lh2(x). By [21, Proposition 1.107(ii)], this equality also holds if h2 is strictly differentiable
at x.
(ii): As h1 and h2 are Lipschitz continuous around x and h2(x) 6= 0, [21, Proposition 1.111(ii)]

implies that
∂L

(
h1

h2

)
(x) = ∂L(h2(x)h1−h1(x)h2)(x)

h2(x)2 . (7)

Thus, to see (5), it suffices to show that ∂L(h2(x)h1−h1(x)h2)(x)⊆ ∂L(h2(x)h1)(x)−h1(x)∂Lh2(x).
This is obvious if h1(x) = 0. If h1(x)< 0, then −h1(x)> 0 and, by (i),

∂L(h2(x)h1−h1(x)h2)(x)⊆ ∂L(h2(x)h1)(x) + ∂L(−h1(x)h2)(x) = ∂L(h2(x)h1)(x)−h1(x)∂Lh2(x).

If h1(x)> 0, then ∂̂(h1(x)h2) = h1(x)∂̂h2 is nonempty-valued around x and, by [22, Corollary 3.4],

∂L(h2(x)h1−h1(x)h2)(x)⊆ ∂L(h2(x)h1)(x)− ∂L(h1(x)h2)(x) = ∂L(h2(x)h1)(x)−h1(x)∂Lh2(x),

from which we get the claimed inclusion.
To see (6), we assume in addition that h2 is strictly differentiable. Then, −h1(x)h2 is also strictly

differentiable. Applying the last assertion of (i) by replacing h1 and h2 with h2(x)h1 and −h1(x)h2
respectively, it follows from (7) that (6) holds. Finally, the conclusion for the regularity of h1/h2
follows from (6) and [17, Corollaries 1.12.2 and 1.14.2]. �
We say that a function h is weakly convex (on H) if there exists ρ ≥ 0 such that h+ ρ

2‖ · ‖
2 is

a convex function. Moreover, the smallest constant ρ such that h+ ρ
2‖ · ‖

2 is convex is called the
modulus for a weakly convex function h. More generally, a function h is said to be weakly convex on
S ⊆H with modulus ρ if h+ ιS is weakly convex with modulus ρ. Weakly convex functions form a
broad class of functions which covers convex functions and differentiable functions whose gradient
is Lipschitz continuous, in particular, any (possibly nonconvex) quadratic functions. Recall that the
(one-sided) directional derivative of a proper function h at x∈ domh in the direction d is defined by

h′(x;d) = lim
t→0+

h(x+ td)−h(x)
t

,

provided the limit exists in [−∞,+∞]; see [4, Definition 17.1]. We end this section with the following
lemma.
Lemma 2.2. Let S be a nonempty closed convex subset of H, let x ∈ S, and let h : H →

(−∞,+∞] be a proper lower semicontinuous function which is weakly convex on S. Then the follow-
ing hold:
(i) For all x∈H, ∂L(h+ ιS)(x) is a (possibly empty) closed convex set.
(ii) If x∈ intS and h is continuous at x, then ∂Lh(x) = ∂L(h+ ιS)(x) 6= ∅ and, for all x∈ S, h′(x;x−

x) = max{〈v,x−x〉 : v ∈ ∂L(h + ιS)(x)}. In particular, if h is a weakly convex function on H
which is continuous at x, then, for all d∈H, h′(x;d) = max{〈v, d〉 : v ∈ ∂Lh(x)}.

(iii) 0∈ ∂L(h+ ιS)(x) if and only if, for all x∈ S, h′(x;x−x)≥ 0.
Proof. By assumption, there exists ρ ≥ 0 such that H := h + ιS + ρ

2‖ · ‖
2 is a convex function.

Using Lemma 2.1(i), we have that, for all x ∈ H, ∂H(x) = ∂LH(x) = ∂L(h + ιS)(x) + ρx, and so
∂L(h+ ιS)(x) = ∂H(x)−ρx. Since S is convex, it follows from the definition of directional derivative
that, for all x∈H,

h′(x;x−x)≤ (h+ ιS)′(x;x−x) =H ′(x;x−x)−〈ρx,x−x〉 , (8)

where the first inequality is an equality if x∈ S.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

(i): Since ∂H(x) is a closed convex set, so is ∂L(h+ ιS)(x).
(ii): Assume that x ∈ intS and h is continuous at x, then h(x) = (h+ ιS)(x) for x near x and H

is a convex function which is continuous at x ∈ intS and h is continuous at x, and hence ∂Lh(x) =
∂L(h+ ιS)(x) = ∂LH(x)− ρx 6= ∅.
Now, let x ∈ S. By [4, Theorem 17.18], H ′(x;x − x) = max{〈u,x−x〉 : u ∈ ∂H(x)} =

max{〈v+ ρx,x−x〉 : v ∈ ∂(h+ ιS)(x)}, which combined with (8) implies the desired claim.
(iii): Set H1 := h+ ιS + ρ

2‖ ·−x‖
2. Then H1 is also a convex function. We derive from Lemma 2.1(i)

that ∂L(h + ιS)(x) = ∂H1(x) and from (8) that h′(x;x − x) ≥ 0 for all x ∈ S if and only if (h +
ιS)′(x;x−x) =H ′1(x;x−x)≥ 0 for all x∈H. The conclusion then follows from [4, Theorem 16.3 and
Proposition 17.3]. �

Kurdyka–Łojasiewicz property Next, we recall the celebrated Kurdyka–Łojasiewicz (KL)
property [18, 20] which plays an important role in our convergence analysis later on. For each η ∈
(0,+∞], we denote by Φη the class of all continuous concave functions ϕ : [0, η)→ R+ such that
ϕ(0) = 0 and ϕ is continuously differentiable on (0, η) with ϕ′ > 0.
Let h : H→ (−∞,+∞] be a proper lower semicontinuous function. We say that h satisfies the KL

property [18, 20] at x ∈ dom∂Lh if there exist a neighborhood U of x, η ∈ (0,+∞], and a function
ϕ∈Φη such that, for all x∈U with h(x)<h(x)<h(x) + η, one has

ϕ′(h(x)−h(x)) dist(0, ∂Lh(x))≥ 1.

If h satisfies the KL property at each point in dom∂Lh, then h is called a KL function. For a function
h satisfying the KL property at x ∈ dom∂Lh, if the corresponding function ϕ can be chosen as
ϕ(s) = γs1−α for some γ ∈R++ and α ∈ [0,1), then we say that h has the KL property at x with an
exponent of α. If h is a KL function and has the same exponent α at any x ∈ dom∂Lh, then h is
called a KL function with an exponent of α.
This definition encompasses broad classes of functions that arise in practical optimization problems.

For example, it is known that if h is a proper lower semicontinuous semi-algebraic function, then
h is a KL function with a suitable exponent of α ∈ [0,1). The semi-algebraic function covers many
common nonsmooth functions that appear in modern optimization problems such as functions which
can be written as maximum or minimum of finitely many polynomials, Euclidean norms and the
eigenvalues and rank of a matrix. Also, sums, products, and quotients of semi-algebraic functions are
still semi-algebraic. For some recent development of KL property, see [2, 8, 19].
Next, we state a uniform version of KL property which will be used later on. The proof is essentially

based on [10, Lemma 6]. On the other hand, as our conclusion here slightly differs from [10, Lemma
6], we provide a short proof for completeness.

Lemma 2.3. Let (xn)n∈N be a bounded sequence in H, let Ω be the set of cluster points of (xn)n∈N,
and let h : H → (−∞,+∞] be a proper lower semicontinuous function that is constant on Ω and
satisfies the KL property at each point of Ω. Set Ω0 := {x ∈ Ω : h(xn)→ h(x) as n→ +∞} and
suppose that Ω0 6= ∅. Then there exist η ∈ (0,+∞], ϕ∈Φη, and n0 ∈N such that, for all x∈Ω0,

ϕ′(h(xn)−h(x)) dist(0, ∂Lh(xn))≥ 1 (9)

whenever n≥ n0 and h(xn)>h(x). Moreover, if h satisfies the KL property at every point of Ω with
an exponent of α, then the function ϕ can be chosen as ϕ(s) = γs1−α for some γ ∈R++.

Proof. Since (xn)n∈N is bounded, Ω is nonempty and compact. According to [10, Lemma 6], there
exists ε > 0, η > 0, and ϕ∈Φη such that

ϕ′(h(x)−h(x)) dist(0, ∂Lh(x))≥ 1 (10)

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
8 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

whenever dist(x,Ω) < ε and h(x) < h(x) < h(x) + η. From the proof of [10, Lemma 6], we also see
that, if h satisfies the KL property at every point of Ω with an exponent of α, then the function ϕ
can be chosen as ϕ(s) = γs1−α for some γ ∈R++.
We note that dist(xn,Ω)→ 0 as n→+∞. Indeed, suppose otherwise. Then there exist ε > 0 and

a subsequence (xkn)n∈N of (xn)n∈N such that, for all n ∈ N, dist(xkn ,Ω)≥ ε. Since (xkn)n∈N is also
bounded, there exists a subsequence (xlkn)n∈N such that xlkn → x∗. We have that x∗ ∈Ω and that, for
all n ∈N, dist(xlkn ,Ω)≥ ε. By the continuity of the distance function (see, e.g., [4, Example 1.48]),
dist(x∗,Ω)≥ ε, which contradicts the fact that x∗ ∈Ω.
Now, let x ∈ Ω0. Since dist(xn,Ω)→ 0 and h(xn)→ h(x) as n→ +∞, one can find n0 ∈ N such

that, for all n≥ n0,
dist(xn,Ω)< ε and h(xn)<h(x) + η.

Here, we note that n0 does not depend on x ∈ Ω0 ⊆ Ω because h is constant on Ω. The conclusion
follows from (10) and its following remark. �

3. Stationary points of fractional programs In this section, we introduce various versions
of stationary points for fractional programs and examine their relationships.
Definition 3.1 (Stationary points, lifted stationary points & strong lifted stationary points).

For problem (P), we say that x∈ S is
(i) a (limiting) stationary point if 0∈ ∂L(f

g
+ ιS)(x);

(ii) a (limiting) lifted stationary point if 0∈ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x);
(iii) a (limiting) strong lifted stationary point if f(x)∂Lg(x)⊆ g(x)∂L(f + ιS)(x).

It is well known that a necessary condition for x∈ S to be a local minimizer of f
g
on S is 0∈ ∂L(f

g
+

ιS)(x). Thus, any local minimizer must be a stationary point. Next, we examine the relationships
between the above three versions of stationary points.
Lemma 3.2 (Stationary points vs. lifted stationary points). Consider problem (P) in

which f, g : H→ (−∞,+∞] are proper lower semicontinuous functions and S is a nonempty closed
subset of H. Let C be a nonempty closed subset of H such that C ∩S 6= ∅ and let x∈C ∩S. Suppose
that g is Lipschitz continuous around x with g(x) > 0, and that f = f1 + ιC , where f1 is Lipschitz
continuous around x and one of the following is satisfied:
(a) x∈ int(C ∩S);
(b) f1 and C ∩S are regular at x;
(c) f1 is strictly differentiable at x.
Then the following statements hold:
(i) If ∂̂g is nonempty-valued around x, then

∂L

(
f

g
+ ιS

)
(x)⊆ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x)

g(x)2 , (11)

in which case, if x is a stationary point of (P), then it is a lifted stationary point of (P).
(ii) If g is strictly differentiable at x, then

∂L

(
f

g
+ ιS

)
(x) = g(x)∂L(f + ιS)(x)− f(x)∇g(x)

g(x)2 , (12)

in which case, x is a stationary point of (P) if and only if it is a lifted stationary point of (P).
Proof. (i): By assumption, g is positive around x and f1/g is Lipschitz continuous around x. Using

this fact and applying Lemma 2.1(i) and then Lemma 2.1(ii), we have

∂L

(
f

g
+ ιS

)
(x) = ∂L

(
f1

g
+ ιC∩S

)
(x)⊆ ∂L

(
f1

g

)
(x)+∂LιC∩S(x)⊆ g(x)∂Lf1(x)− f1(x)∂Lg(x)

g(x)2 +∂LιC∩S(x).

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Now, if (a) holds, then ∂Lf1(x) + ∂LιC∩S(x) = ∂L(f1 + ιC∩S)(x) = ∂L(f + ιS)(x). By Lemma 2.1(i),
this is also valid if (b) or (c) holds. Noting that f1(x) = f(x) and that ∂LιC∩S(x) = 1

g(x)∂LιC∩S(x)
since g(x)> 0, we get (11).
(ii): As g is strictly differentiable at x with g(x) 6= 0, we note that f1/g is regular at x if f1 is regular

at x (by Lemma 2.1(ii)), and that f1/g is strictly differentiable at x if f1 is strictly differentiable
at x. Now, (12) is obtained by using the same argument as in (i) and noting that the inclusions
become equalities due to the strict differentiability of g (in all of three cases) and either the fact that
x ∈ int(C ∩ S) (in the case of (a)), or the regularity of f1/g and C ∩ S (in the case of (b)), or the
strict differentiability of f1/g (in the case of (c)). �
From the definition, any strong lifted stationary point x with ∂Lg(x) 6= ∅ is also a lifted stationary

point. Moreover, if g is strictly differentiable, then strong lifted stationary points and lifted stationary
points are the same. However, if g is not strictly differentiable, then a lifted stationary point need
not to be a strong lifted stationary point in general, as in the following example.
Example 3.3. Consider the following one-dimensional fractional program

min
x∈[−1,1]

x2 + 1
|x|+ 1 . (13)

Let x= 0, f(x) = x2 + 1, g(x) = |x|+ 1 and S = [−1,1]. Clearly, ∂L(f + ιS)(x) = {0} and ∂Lg(x) =
[−1,1]. Then, x is a lifted stationary point because 0∈ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x) = [−1,1]. On
the other hand, x is not a strong lifted stationary point as

[−1,1] = f(x)∂Lg(x) * g(x)∂L(f + ιS)(x) = {0}.

Indeed, a direct verification shows that the lifted stationary points of (13) are −
√

2+1, 0, and
√

2−1;
while the set of strong lifted stationary points of (13) is {−

√
2 + 1,

√
2−1}, which coincides with the

set of local/global minimizers of problem (13).
Finally, we establish the relationship between the strong lifted stationary points and the recently

studied d(irectional)-stationary points in the difference-of-convex (DC) optimization literature [27, 6].
Recall that x∈ S is a d-stationary point of a function h on S if, for all x∈ S, h′(x;x−x)≥ 0.

Lemma 3.4 (Strong lifted stationary point vs. d-stationary points). Consider problem (P)
in which S is a nonempty closed convex subset of H and both f + ιS and g are proper lower semicon-
tinuous weakly convex functions. Let x∈ S. Suppose that g is continuous on an open set containing S
and that g(x)> 0. Then x is a strong lifted stationary point of (P) if and only if it is a d-stationary
point of f − f(x)

g(x)g on S.

Proof. Set θ := f(x)/g(x). First, x is a strong lifted stationary point of (P) if and only if, for all
v ∈ ∂Lg(x), 0∈ ∂L(f + ιS)(x)− θv = ∂L(f − θ 〈v, ·〉+ ιS)(x), which is equivalent to, for all v ∈ ∂Lg(x)
and all x ∈ S, f ′(x;x− x)− θ 〈v,x−x〉= (f −

〈
θv, ·

〉
)′(x;x− x)≥ 0 due to Lemma 2.2(iii). Now, as

g is weakly convex on H and continuous at x, applying the last conclusion of Lemma 2.2(ii) with
h= g, we have, for all x ∈H, g′(x;x− x) = max{〈v,x−x〉 : v ∈ ∂Lg(x)}, which completes the proof.
�

4. Extrapolated proximal subgradient (e-PSG) algorithm In this section, we consider
problem (P) under the following assumptions.
Assumption A1. f = f s + fn, where f s is a differentiable convex function whose gradient ∇f s

is Lipschitz continuous with modulus ` on H, and fn is a proper lower semicontinuous function,
S ∩ domf 6= ∅ and, for all x∈ S ∩ domf , f(x)≥ 0.
Assumption A2. g is a continuous weakly convex function with modulus β on an open convex

set containing S, and always takes positive values on S.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
10 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

We note that the nonnegative assumption of the numerator f and the positivity assumption of the
denominator g are standard in the literature of fractional programs [7, 12, 13]. Although, at a first
glance, these assumptions might be restrictive, they are indeed easily satisfied for many practical
optimization models in diverse areas, in particular, for all the motivating examples we mentioned
in the introduction. Moreover, consider the case where the constraint set S is compact and the
denominator g takes positive values on S. Note that problem (P) is equivalent to minx∈S f(x)+αg(x)

g(x)
for any α > 0. By replacing f with f +αg for large enough α if necessary, we may assume without
loss of generality that, in this case, the numerator of the objective function always takes nonnegative
values.
We now propose the following proximal subgradient algorithm with extrapolation for solving the

nonsmooth and nonconvex fractional programming problem (P). To do this, we define the following
boundedness condition (BC): There exist m,M ∈R++ such that, for all x∈ S ∩ domf ,

m≤ g(x)≤M. (BC)

Algorithm 4.1 (Extrapolated proximal subgradient (e-PSG) algorithm).
. Step 1. Choose x−1 = x0 ∈ S ∩ domf and set n = 0. Let δ ∈ R++, let ζ ∈ R++ be such that
1−
√
βζ > 0, and let

µ∈
[
0, δ(1−

√
βζ)
√
mM

2M

)
and κ∈

0,
√
mδ(1−

√
βζ)

`M
− 2mµ
`
√
mM

 ,
where ` is defined in Assumption A1, β is defined in Assumption A2, while m and M are given in
(BC). In the absence of (BC), we let µ= 0 and κ= 0.
. Step 2. Set θn = f(xn)

g(xn) , let gn ∈ ∂Lg(xn), choose τn ∈ R such that 0< τn ≤ 1/max{
√
βθn/ζ, δ}.

Let un = xn +κn(xn−xn−1) with κn ∈ [0, κ], vn = xn +µn(xn−xn−1) with µn ∈ [0, µτn], and find

xn+1 ∈ arg min
x∈S

(
fn(x) + f s(un) + 〈∇f s(un), x−un〉+

1
2τn
‖x− vn− τnθngn‖2 + `

2‖x−un‖
2
)
.

. Step 3. If a termination criterion is not met, let n= n+ 1 and go to Step 2.

Before proceeding, we first make a few observations. Firstly, in the special case where f s ≡ 0,
fn is convex, κn = 0, µn = 0, ` = 0 and g is continuously differentiable (and so, gn = ∇g(xn)),
Algorithm 4.1 reduces to the proximal gradient algorithm proposed in [7]. Secondly, in Step 2, the
part “f s(un) + 〈∇f s(un), x−un〉” serves as the linear approximation of f s at un. Although the
term “f s(un)” can be removed as it does not contribute to the minimization problem, we prefer
to leave it here for understanding the algorithm intuitively. Finally, it is worth noting that when
µ<

δ(1−
√
βζ)
√
mM

2M , then mδ(1−
√
βζ)

`M
> 2mµ

`
√
mM

, and so, the choice of κ in Step 1 makes sense.
Remark 4.2 (Computing the subproblems). In the above algorithm, the major computa-

tional cost lies in solving the subproblem in Step 2. In Step 2, finding xn+1 is indeed equivalent to
computing the proximal operator3 of τn

1+`τn (fn + ιS) at the point vn+τnθngn+`τnun−τn∇fs(un)
1+`τn , where fn

is the nonsmooth part of the numerator. This can be done efficiently for functions f and sets S with
specific structures. For example,
(i) In the case where S is a polyhedral and fn is the maximum of finitely many affine functions, the

optimization problem in Step 2 can be reformulated as a convex quadratic optimization problem
with linear constraints, and so, can be solved by calling a QP solver. This, in particular, covers
the motivating examples (i) and (iii) in the introduction.

3 The proximal operator of a function h is denoted by Proxh and is defined as Proxh(x) = argminy{h(y)+ 1
2‖y−x‖2}.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

(ii) In the case of S = RN , f s is a convex quadratic function, fn = ιC with C being the unit sphere (as
in the motivating example (ii) in the introduction), the optimization problem in Step 2 reduces
to computing the projection onto the unit sphere C which has a closed form solution.

(iii) In the case of fn is the minimum of finitely many (nonconvex) quadratic function, that is, fn(x) =
min1≤i≤m{x>Aix+ a>i x+αi} and S = {x : ‖x‖2 ≤ ρ}, the optimization problem in Step 2 can be
computed by solving m many (nonconvex) quadratic optimization problem with a ball constraint.
As each quadratic optimization problem with a ball constraint is a trust-region problem, it can
be equivalently reformulated as either a semi-definite program (SDP) or an eigenvalue problem.
So, the subproblem can be solved by calling an SDP solver or an eigenvalue problem solver.

(iv) In the case of S = {x : qi(x) ≤ 0, i = 1, . . . ,m1} where qi are convex quadratic functions, and
fn(x) = max1≤i≤m2 hi(x) where each hi is a convex quadratic function, the optimization problem
in Step 2 can be reformulated as a convex quadratic optimization problem with convex quadratic
constraints, and so, can be further rewritten as a semidefinite programming problem (SDP) and
solved by calling an SDP solver.

We also note that, when solving the subproblem in Step 2, we require an exact minimizer. On the
other hand, one can suitably modify the algorithm to solve the subproblem inexactly and establish
convergence to approximate stationary points in suitable sense. For brevity, we will not discuss this
in this paper, and leave it as a future work.
Remark 4.3 (Extrapolation parameters). Our choice of the extrapolation parameters covers

the popular extrapolation parameter used for restarted FISTA in the case where g is convex and
satisfies (BC) (see, for example, [5, Chapter 10] and [23]). To see this, as g is convex, one has β = 0.
Choose µ= 0, δ = `M

m
, and κ∈ (0,1). Let κn = κ

νn−1−1
νn

, where

ν−1 = ν0 = 1 and νn+1 = 1 +
√

1 + 4ν2
n

2 ,

and reset νn−1 = νn = 1 when n= n0,2n0,3n0, . . . for some integer n0. In this case, it can be directly
verified that 0≤ κn ≤ κ< 1, and so, the requirement of our extrapolation parameter is satisfied. Also,
it is worth noting that our proposed algorithm (Algorithm 4.1) allows one to perform extrapolation
even when the smooth part of the numerator f s ≡ 0 (as in the the motivating examples (i) and (iii)
in the introduction).
Remark 4.4 (Choices of the parameters). Firstly, in Algorithm 4.1, δ is any positive real

number and ζ is any positive real number such that 1−
√
βζ > 0. If the modulus of weak convexity

β > 0, then we require ζ ∈
(
0,1/
√
β
)
. This can be easily satisfied by setting, for example, ζ = 1/(2

√
β).

If β = 0 (that is, g is convex), then ζ can be chosen as any positive number (and actually, in this
case, ζ does not involve in Algorithm 4.1). In our numerical experiments later, when choosing the
extrapolation parameter in the form of restarted FISTA, we follow the choice in the previous remark
and set δ = `M

m
.

Regarding the parameter τn in Algorithm 4.1, we require that 0< τn ≤ 1/max{
√
βθn/ζ, δ}. In our

numerical experiment, we observe that if τn are chosen small, then the step size tends to be very
small, and so, the progress of the algorithm can be slow. Therefore, to avoid small step sizes, we
choose τn = 1/max{

√
βθn/ζ, δ}.

For the choices of κ and µ, we divide the discussions into two cases. If g does not satisfy (BC),
then κ = µ = 0. We now consider the case that g satisfies (BC). If the modulus of weak convexity
β > 0, by choosing ζ ∈

(
0,1/(2

√
β)
]
, one can set µ= δ

√
mM

8M and choose κ∈
[
0,
√

mδ
4`M

)
. If β = 0 (that

is, g is convex), the conditions on κ and µ in Algorithm 4.1 read as

µ∈
[
0, δ
√
mM

2M

)
and κ∈

[
0,
√
mδ

`M
− 2mµ
`
√
mM

)
.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
12 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

For the choices κn and µn, motivated by the restarted FISTA, a plausible choice for extrapolation
parameters κn and µn is to let

κn = κ
νn−1− 1
νn

and µn = µτn
νn−1− 1
νn

,

where
ν−1 = ν0 = 1 and νn+1 = 1 +

√
1 + 4ν2

n

2 ,

and reset νn−1 = νn = 1 when n = n0,2n0,3n0, . . . for some positive integer n0. This strategy in
choosing the extrapolation parameters κn and µn indeed will be utilized in our numerical experiments
later.
Next, we establish the subsequential convergence of Algorithm 4.1. To do this, we will need the

following lemmas which will be used later on. The first lemma shows that our Assumption A2 on
weak convexity implies an important subgradient inequality. The second lemma is known as the
decent lemma for differentiable functions whose gradient is Lipschitz continuous.

Lemma 4.5 (Subgradient inequality for weakly convex functions). Let S be a nonempty
closed convex subset of H. Suppose that either g is regular and weakly convex with modulus β on S,
or g is weakly convex with modulus β on an open convex set containing S. Then, for all x, y ∈ S and
u∈ ∂Lg(x),

〈u, y−x〉 ≤ g(y)− g(x) + β

2 ‖y−x‖
2.

Proof. Let x, y ∈ S. By assumption, G := g+ ιC + β
2 ‖ · ‖

2 is a convex function for C = S or C =O,
where O is some open convex set containing S. This implies that ∂G(x) = ∂LG(x) = ∂L(g+ ιC)(x) +
βx, where the second equality is from Lemma 2.1(i). If C = O, then ∂L(g + ιC)(x) = ∂Lg(x). In
the case where C = S, since S is convex and g is regular on S, Lemma 2.1(i) also implies that
∂L(g+ ιC)(x) = ∂Lg(x) + ∂LιS(x). Noting that 0 ∈ ∂LιS(x), we deduce that, in both cases, ∂Lg(x) +
βx⊆ ∂L(g+ ιC)(x) + βx= ∂G(x).
Now, let any u∈ ∂Lg(x). Then u+ βx∈ ∂G(x), and so

〈u, y−x〉= 〈u+ βx, y−x〉+ 〈−βx, y−x〉 ≤G(y)−G(x)− β 〈x, y−x〉
=
(
g(y) + ιC(y) + β

2 ‖y‖
2
)
−
(
g(x) + ιC(x) + β

2 ‖x‖
2
)
− β 〈x, y−x〉

= g(y)− g(x) + β

2 ‖y−x‖
2,

which completes the proof. �

Lemma 4.6 (Descent lemma). Let h : H→ R be a differentiable function whose gradient is
Lipschitz continuous with modulus `. Then, for all x, y ∈H,

h(y)≤ h(x) + 〈∇h(x), y−x〉+ `

2‖y−x‖
2.

Proof. This follows from [23, Lemma 1.2.3], see also [4, Lemma 2.64(i)]. �
We are now ready to state the subsequential convergence of Algorithm 4.1.

Theorem 4.7 (Subsequential convergence). Let (xn)n∈N be the sequence generated by Algo-
rithm 4.1. Suppose that Assumptions A1 and A2 hold, and that the set S0 := {x∈ S : f(x)

g(x) ≤
f(x0)
g(x0)} is

bounded. Then the following hold:

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

(i) For all n∈N, xn ∈ S ∩ domf and(
f(xn+1)
g(xn+1) + c‖xn+1−xn‖2

)
+α‖xn+1−xn‖2 ≤ f(xn)

g(xn) + c‖xn−xn−1‖2,

where c := `κ2

2m + µ

2
√
mM

, α := δ(1−
√
βζ)

2M − µ√
mM
− `κ2

2m if (BC) holds,

c := 0, α := δ(1−
√
βζ)

2M ′ with M ′ := supx∈S0 g(x) otherwise.
(14)

Consequently, the sequence
(
f(xn)
g(xn)

)
n∈N

is convergent.
(ii) The sequence (xn)n∈N is bounded and

∑+∞
n=0 ‖xn+1−xn‖2 <+∞. Consequently, limn→+∞ ‖xn+1−

xn‖= 0.
(iii) If lim infn→+∞ τn = τ > 0, then, for every cluster point x of (xn)n∈N, it holds that x∈ S ∩ domf ,

limn→+∞
f(xn)
g(xn) = f(x)

g(x) , and x is a lifted stationary point of (P).

Proof. (i)&(ii): First, it is clear that, for all n∈N, xn ∈ S ∩ domf , and so

g(xn)> 0 and θn = f(xn)
g(xn) ≥ 0. (15)

We see that, for all n∈N and x∈ S,

f(x) + 1
2τn
‖x− vn− τnθngn‖2 + `

2‖x−un‖
2

= fn(x) + f s(x) + 1
2τn
‖x− vn− τnθngn‖2 + `

2‖x−un‖
2

≥ fn(x) + f s(un) + 〈∇f s(un), x−un〉+
1

2τn
‖x− vn− τnθngn‖2 + `

2‖x−un‖
2

≥ fn(xn+1) + f s(un) + 〈∇f s(un), xn+1−un〉+
1

2τn
‖xn+1− vn− τnθngn‖2 + `

2‖xn+1−un‖2

≥ fn(xn+1) + f s(xn+1)− `

2‖xn+1−un‖2 + 1
2τn
‖xn+1− vn− τnθngn‖2 + `

2‖xn+1−un‖2

= f(xn+1) + 1
2τn
‖xn+1− vn− τnθngn‖2,

where the first inequality follows from the convexity of f s, the second inequality is from the definition
of xn+1 in Step 2 of the algorithm, and the last inequality follows from the fact that f s is a differ-
entiable function whose gradient is Lipschitz continuous with modulus ` (Lemma 4.6 with h = f s,
y = xn+1 and x= un). Therefore, for all n∈N and x∈ S,

f(x)≥ f(xn+1) + 1
2τn

(‖xn+1− vn‖2−‖x− vn‖2)− θn 〈gn, xn+1−x〉−
`

2‖x−un‖
2. (16)

Letting x= xn and noting that xn+1− vn = (xn+1−xn)−µn(xn−xn−1), xn− vn =−µn(xn−xn−1),
and xn−un =−κn(xn−xn−1), we have

f(xn)≥ f(xn+1) + 1
2τn

(
‖xn+1−xn‖2− 2µn 〈xn+1−xn, xn−xn−1〉

)
− θn 〈gn, xn+1−xn〉−

`κ2
n

2 ‖xn−xn−1‖2.

Next, let ω ∈R++. By Young’s inequality,

〈xn+1−xn, xn−xn−1〉 ≤
1

2ω‖xn+1−xn‖2 + ω

2 ‖xn−xn−1‖2.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
14 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Since xn, xn+1 ∈ S and gn ∈ ∂Lg(xn), Lemma 4.5 implies that

〈gn, xn+1−xn〉 ≤ g(xn+1)− g(xn) + β

2 ‖xn+1−xn‖2.

Combining the three above inequalities yields

f(xn)≥ f(xn+1) + 1
2

(1
τn
− βθn−

µn
ωτn

)
‖xn+1−xn‖2 + θn(g(xn)− g(xn+1))− 1

2

(
`κ2

n + ωµn
τn

)
‖xn−xn−1‖2.

Since 1/τn ≥max{
√
βθn/ζ, δ} ≥

√
βθn/ζ (and so, 1

τn
−βθn ≥

1−
√
βζ

τn
) and θn = f(xn)/g(xn), dividing

by g(xn+1)> 0 on both sides, it follows that

f(xn)
g(xn) + 1

2g(xn+1)

(
`κ2

n + ωµn
τn

)
‖xn−xn−1‖2 ≥ f(xn+1)

g(xn+1) + 1
2g(xn+1)

(
1−
√
βζ

τn
− µn
ωτn

)
‖xn+1−xn‖2.

(17)
We now distinguish two following cases.
Case 1: (BC) holds. Combining with κn ≤ κ, µn ≤ µτn, 1/τn ≥ δ, and choosing ω :=

√
m/M , we

derive from (17) that

f(xn)
g(xn) + `κ2 +ωµ

2m ‖xn−xn−1‖2 ≥ f(xn+1)
g(xn+1) +

(
δ(1−

√
βζ)

2M − µ

2Mω

)
‖xn+1−xn‖2,

which means

f(xn)
g(xn) +

(
`κ2

2m + µ

2
√
mM

)
‖xn−xn−1‖2 ≥ f(xn+1)

g(xn+1) +
(
δ(1−

√
βζ)

2M − µ

2
√
mM

)
‖xn+1−xn‖2.

Setting Fn := f(xn)
g(xn) + c‖xn−xn−1‖2, we deduce that

Fn+1 +α‖xn+1−xn‖2 ≤ Fn. (18)

From the choice of κ, we have `κ2

2m <
δ(1−
√
βζ)

2M − µ√
mM

. Thus, α > 0 and the sequence (Fn)n∈N is
nonincreasing. As Fn is nonnegative, (Fn)n∈N is a convergent sequence, say Fn→ F . Furthermore,
one also has from (18) that, for any positive integer m,

m∑
n=0

α‖xn+1−xn‖2 ≤
m∑
n=0

(Fn−Fn+1) = F0−Fm+1 ≤ F0.

It follows that
+∞∑
n=0
‖xn+1−xn‖2 <+∞.

In particular, xn+1−xn→ 0 as n→+∞, and so

f(xn)
g(xn) = Fn− c‖xn−xn−1‖2→ F as n→+∞.

Next, to see the boundedness of (xn)n∈N, observe that

f(xn)
g(xn) ≤ Fn ≤ F0 = f(x0)

g(x0) + c‖x0−x−1‖2 = f(x0)
g(x0) .

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 15

So, xn ∈ S0 = {x ∈ S : f(x)
g(x) ≤

f(x0)
g(x0)}, and hence (xn)n∈N is bounded by the assumption that S0 is

bounded.
Case 2 : (BC) does not hold. Then, by the construction of the algorithm, µ= κ= 0, so µn = κn = 0

for all n∈N and (17) becomes

f(xn)
g(xn) ≥

f(xn+1)
g(xn+1) + 1−

√
βζ

2τng(xn+1)‖xn+1−xn‖2,

which implies that (θn)n∈N = (f(xn)
g(xn))n∈N is nonincreasing. As (θn)n∈N is bounded below, it is con-

vergent. Therefore, for all n ∈ N, xn ∈ S0 = {x ∈ S : f(x)
g(x) ≤

f(x0)
g(x0)}, and the sequence (xn)n∈N is thus

bounded. Combining with the continuity of g on S and the boundedness of S0, one has supn∈N g(xn)≤
M ′ = supx∈S0 g(x)<+∞. Since 1/τn ≥ δ, it follows that

f(xn+1)
g(xn+1) + δ(1−

√
βζ)

2M ′ ‖xn+1−xn‖2 ≤ f(xn)
g(xn) . (19)

Since
(
f(xn)
g(xn)

)
n∈N

is convergent, telescoping (19) yields

+∞∑
n=0
‖xn+1−xn‖2 <+∞.

(iii): Let x be any cluster point of (xn)n∈N and let (xkn)n∈N be a subsequence of (xn)n∈N such that
xkn→ x. Then x ∈ S and, by (ii), xkn−1→ x and also ukn−1→ x and vkn−1→ x. We have from (16)
that, for all n∈N and x∈ S,

f(x)≥ f(xkn)− 1
2τkn−1

‖x− vkn−1‖2− θkn−1 〈gkn−1, xkn −x〉−
`

2‖x−ukn−1‖2. (20)

Since g is locally Lipschitz continuous on an open set containing S (due to Assumption A2 and
[29, Example 9.14]), we have from xkn → x ∈ S that g(xkn)→ g(x) > 0. Moreover, as xkn−1 → x
and [21, Corollary 1.81], we have that (gkn−1)n∈N is bounded. By (3) and passing to a subsequence
if necessary, we may assume that gkn−1 → g ∈ ∂Lg(x). Letting x = x and n→ +∞ in (20) and
noting that lim infn→+∞ τn = τ > 0, we get lim supn→+∞ f(xkn)≤ f(x). This together with the lower
semicontinuity of f implies that limn→+∞ f(xkn) = f(x). It then follows that

lim
n→+∞

f(xn)
g(xn) = lim

n→+∞

f(xkn)
g(xkn) = f(x)

g(x) .

Now, letting n→+∞ in (20), one has, for all x∈ S,

f(x)− f(x)≥− 1
2τ ‖x−x‖

2− f(x)
g(x) 〈g,x−x〉−

`

2‖x−x‖
2,

or equivalently, for all x∈ S,

ϕ(x)≥ ϕ(x), where ϕ(x) := f(x) +
(1

2τ + `

2

)
‖x−x‖2− f(x)

g(x) 〈g,x〉 .

We must have 0 ∈ ∂L(ϕ+ ιS)(x), and so f(x)
g(x)g ∈ ∂L(f + ιS)(x). In particular, x ∈ S ∩ domf . Since

g ∈ ∂Lg(x), we obtain that
0∈ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x),

and the proof is complete. �

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
16 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Remark 4.8 (Discussions on Theorem 4.7). Firstly, in Theorem 4.7(iii), we require that
lim infn→+∞ τn = τ > 0. This can be ensured easily. Indeed, we note that, as shown in the proof of
Theorem 4.7(i)&(ii), for all n∈N,

θn ≤
f(xn)
g(xn) + c‖xn−xn−1‖ ≤

f(x0)
g(x0) + c‖x0−x−1‖= θ0,

and so 1/max{
√
βθn/ζ, δ} ≥ ε := 1/max{

√
βθ0/ζ, δ} > 0. Now, if we fix an ε ∈ (0, ε) and, for each

n ∈ N, choose τn such that ε ≤ τn ≤ 1/max{
√
βθn/ζ, δ}, then lim infn→+∞ τn ≥ ε > 0. Thus, the

required condition holds.
Secondly, as we have seen in the construction of Algorithm 4.1, the choices of parameters κn

and µn depend on whether the condition (BC) holds or not. These choices play an important role
when deriving the subsequential convergence of the algorithm. A natural question is to see whether
condition (BC) can be weaken to a form so that the choices of the parameters can be unified. This
would be an interesting future research topic to examine.
Next, we consider the following assumption.
Assumption A3. fn = f l + ιC , where C is a nonempty closed subset of H such that C ∩S 6= ∅

and one of the following is satisfied:
(a) f l is locally Lipschitz continuous on H and C = S =H;
(b) f l is locally Lipschitz continuous on an open set containing S ∩domf and both f l and C ∩S are

regular at any x∈ S ∩ domf ;
(c) f l is strictly differentiable on an open set containing S ∩ domf .

All of our motivating examples in the introduction satisfy this assumption. Indeed, we note that
convex sets and the unit sphere C = {x∈RN : ‖x‖= 1} are regular, a continuous convex function on
RN is regular at any x ∈ RN , and ιC is regular at any x ∈ C. It follows that examples (i) and (iii)
both satisfy Assumption A3(a)&(b), while example (ii) satisfies Assumption A3(b)&(c).
Corollary 4.9. Under the hypotheses of Theorem 4.7, suppose further that lim infn→+∞ τn = τ >

0, Assumption A3 holds, and g is strictly differentiable on an open set containing S ∩ domf . Then
every cluster point x of (xn)n∈N is a stationary point of (P).
Proof. This follows from Theorem 4.7(iii) and Lemma 3.2(ii). �

5. A unified analysis framework and global convergence of e-PSG In this section, we
will prove that the global convergence of the whole sequence of (xn)n∈N generated by Algorithm 4.1,
under the assumption that a suitable merit function satisfies the KL property. To do this, we first
establish a general framework for analyzing descent methods which is amenable for optimization
method with multi-steps and inexact subproblems. As we will see later on, the proximal subgradient
method with extrapolation which we proposed fits to this framework, and so, our desired global
convergence result follows consequently.
Firstly, we fix some notation which will be used later on. Let H,K be two finite-dimensional real

Hilbert spaces. Let h : K→ (−∞,+∞] be a proper lower semicontinuous function, let (xn)n∈N and
(zn)n∈N be respectively sequences in H and K, (αn)n∈N and (βn)n∈N sequences in R++, (∆n)n∈N and
(εn)n∈N sequences in R+, and let ı≤ ı be two (not necessarily positive) integers and λi ∈R+, i∈ I :=
{ı, ı+ 1, . . . , ı}, with

∑
i∈I λi = 1. We set ∆k = 0 for k < 0 and consider the following conditions:

H1 (Sufficient decrease condition). For each n∈N,

h(zn+1) +αn∆2
n ≤ h(zn);

H2 (Relative error condition). For each n∈N,

βn dist(0, ∂Lh(zn))≤
∑
i∈I

λi∆n−i + εn;

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 17

H3 (Continuity condition). There exist a subsequence (zkn)n∈N and z̃ such that

zkn→ z̃ and h(zkn)→ h(z̃) as n→+∞;

H4 (Parameter condition). It holds that

α := inf
n∈N

αn > 0, γ := inf
n∈N

αnβn > 0, and
+∞∑
n=1

εn <+∞;

H5 (Distance condition). There exist j ∈Z and c∈R such that, for all n∈N,

‖xn+1−xn‖ ≤ c∆n+j .

Next, we present a lemma which serves as a preparation for our abstract convergence result later
on.
Lemma 5.1. Suppose that (H1) and (H3) hold. Let Ω be the set of cluster points of (zn)n∈N and

set Ω0 := {z ∈Ω : h(zn)→ h(z) as n→+∞}. Then the following hold:
(i) Ω0 = {z ∈K : ∃zkn→ z with h(zkn)→ h(z) as n→+∞}, Ω0 6= ∅, and, for all z ∈Ω0,

h(zn) ↓ h(z) as n→+∞.

(ii) If α := infn∈Nαn > 0, then, for all z ∈Ω0,
+∞∑
n=0

∆2
n ≤

h(z0)−h(z)
α

<+∞

and, consequently, ∆n→ 0 as n→+∞.
(iii) If (H2) holds and δ := infn∈N,i∈I αn−iβ2

n > 0, then, for all n≥max{0, ı},

dist(0, ∂Lh(zn))≤
√
h(zn−ı)−h(zn+1−ı)

δ
+ εn
βn
.

If additionally limn→+∞ εn/βn = 0, then, for all z ∈Ω0,

0∈ ∂Lh(z).

Proof. (i): We first have from (H1) that (h(zn))n∈N is nonincreasing. Therefore, (h(zn))n∈N is
convergent if and only if it has a converging subsequence. It follows that

Ω0 = {z ∈K : ∃zkn→ z with h(zkn)→ h(z) as n→+∞}

and by (H3), Ω0 6= ∅. The remaining statement follows from the definition of Ω0 and the monotonicity
of (h(zn))n∈N.
(ii): Let z ∈Ω0. By (H1) and (i),

+∞∑
n=0

αn∆2
n ≤

+∞∑
n=0

(h(zn)−h(zn+1)) = h(z0)−h(z).

Since α= infn∈Nαn > 0, it follows that
+∞∑
n=0

∆2
n ≤

h(z0)−h(z)
α

<+∞,

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
18 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

and hence, ∆n→ 0 as n→+∞.
(iii): Assume that (H2) holds and δ := infn∈N,i∈I αn−iβ2

n > 0. Let n≥max{0, ı}. Applying Cauchy–
Schwarz inequality and using the fact that

∑
i∈I λ

2
i ≤

∑
i∈I λi = 1, we have(∑

i∈I
λi∆n−i

)2

≤
(∑
i∈I

λ2
i

)(∑
i∈I

∆2
n−i

)
≤
∑
i∈I

∆2
n−i.

Combining with (H2) and then with (H1) yields

βn dist(0, ∂Lh(zn))≤
√∑

i∈I
∆2
n−i + εn ≤

√√√√∑
i∈I

h(zn−i)−h(zn+1−i)
αn−i

+ εn.

Since δ = infn∈N,i∈I αn−iβ2
n > 0, we derive that

dist(0, ∂Lh(zn))≤

√√√√∑
i∈I

h(zn−i)−h(zn+1−i)
αn−iβ2

n

+ εn
βn

≤

√√√√∑
i∈I

h(zn−i)−h(zn+1−i)
δ

+ εn
βn

=
√
h(zn−ı)−h(zn+1−ı)

δ
+ εn
βn
.

Finally, if limn→+∞ εn/βn = 0, then, noting from (i) that (h(zn))n∈N is convergent, we get
limn→+∞ dist(0, ∂Lh(zn)) = 0. This shows that 0 ∈ ∂Lh(z) for all z ∈Ω0, which completes the proof.
�

Theorem 5.2 (Abstract convergence). Suppose that (H1), (H2), (H3), and (H4) hold and
that the sequence (zn)n∈N is bounded. Let Ω be the set of cluster points of (zn)n∈N and suppose that
h is constant on Ω and satisfies the KL property at each point of Ω. Set Ω0 := {z ∈ Ω : h(zn)→
h(z) as n→+∞} and h := h(z) for z ∈Ω0. Then the following hold:
(i) The sequence (∆n)n∈N satisfies

+∞∑
n=0

∆n <+∞.

(ii) If (H5) holds, then
∑+∞
n=0 ‖xn+1−xn‖<+∞, and the sequence (xn)n∈N is convergent.

(iii) If infn∈N βn > 0, then, for all z ∈Ω0,
0∈ ∂Lh(z).

(iv) Suppose further that h satisfies the KL property at every point of Ω with an exponent of α≤ 1/2,
that ı≤ 1, and that

δ := inf
n∈N,i∈I

αn−iβ
2
n > 0 and εn

βn
=O

(√
h(zn−ı)−h(zn+1−ı)

)
as n→+∞. (21)

Then there exist γ1 ∈R++ and ρ∈ (0,1) such that, for all n∈N,

h(zn)−h≤ γ1ρ
n.

Moreover, if additionally (H5) holds and
∑+∞
k=n εk = O

(√
h(zn−ı)−h

)
as n→ +∞, then there

exist x∈H and γ2 ∈R++ such that, for all n∈N,

‖xn−x‖ ≤ γ2ρ
n
2 .

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

Proof. First, Ω0 6= ∅ due to Lemma 5.1(i). Let z ∈Ω0. Again by Lemma 5.1(i),

h(zn) ↓ h= h(z) as n→+∞.

(i): Noting that, for all n∈N, h(zn)≥ h(z), we distinguish the following two cases.
Case 1: There exists n1 ∈ N such that h(zn1) = h(z). Then, since (h(zn))n∈N is nondecreasing,

h(zn) = h(z) for all n≥ n1. It follows from (H1) that ∆n = 0 for all n≥ n1, so
∑+∞
n=0 ∆n <+∞.

Case 2: For all n ∈ N, h(zn) > h(z). We derive from Lemma 2.3 that there exist η ∈ (0,+∞],
ϕ∈Φη, and n0 ∈N such that, for all n≥ n0,

ϕ′(h(zn)−h(z)) dist(0, ∂Lh(zn))≥ 1. (22)

Setting rn := h(zn)−h(z) ↓ 0, by combining with (H1), (H2), (H4), and the concavity of ϕ, it follows
that, for all n≥ n0,

∆2
n ≤

1
αn

(h(zn)−h(zn+1))ϕ′(h(zn)−h(z)) dist(0, ∂Lh(zn))

≤ 1
αnβn

(
ϕ(rn)−ϕ(rn+1)

)(∑
i∈I

λi∆n−i + εn
)

≤ 1
γ

(
ϕ(rn)−ϕ(rn+1)

)(∑
i∈I

λi∆n−i + εn
)
.

Using the inequality of arithmetic and geometric means (AM-GM) gives us that, for all n≥ n0,

2∆n ≤
1
γ

(
ϕ(rn)−ϕ(rn+1)

)
+
(∑
i∈I

λi∆n−i + εn
)
.

Since this inequality holds for all n≥ n0, we derive that, for all m≥ n≥max{n0, ı},

2
m∑
k=n

∆k ≤
1
γ

(
ϕ(rn)−ϕ(rm+1)

)
+

m∑
k=n

∑
i∈I

λi∆k−i +
m∑
k=n

εk. (23)

We have that
m∑
k=n

∑
i∈I

λi∆k−i =
∑
i∈I

λi

m∑
k=n

∆k−i =
∑
i∈I

λi

m−i∑
k=n−i

∆k ≤
∑
i∈I

λi

m−ı∑
k=n−ı

∆k =
m−ı∑
k=n−ı

∆k,

using the fact that ∆k ≥ 0 for all k ∈Z and that
∑
i∈I λi = 1. Now, by adopting the convention that

a summation is zero when the starting index is larger than the ending index,
m−ı∑
k=n−ı

∆k ≤
m∑
k=n

∆k +
n−1∑
k=n−ı

∆k +
m−ı∑

k=m+1
∆k =

m∑
k=n

∆k +
ı∑
i=1

∆n−i +
−1∑
i=ı

∆m−i.

We continue (23) as

m∑
k=n

∆k ≤
1
γ

(
ϕ(rn)−ϕ(rm+1)

)
+

ı∑
i=1

∆n−i +
−1∑
i=ı

∆m−i +
m∑
k=n

εk.

Letting m→+∞ and noting from Lemma 5.1(ii) that ∆m→ 0, we obtain

+∞∑
k=n

∆k ≤
1
γ
ϕ(rn) +

ı∑
i=1

∆n−i +
+∞∑
k=n

εk <+∞, (24)

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
20 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

which yields
∑+∞
n=0 ∆n <+∞.

(ii): This follows from (i) and (H5).
(iii): As infn∈N βn > 0, noting that infn∈Nαn > 0 and limn→+∞ εn = 0, we have infn∈N,i∈I αn−iβ2

n > 0
and limn→+∞ εn/βn = 0. Therefore, the conclusion of this part follows from Lemma 5.1(iii).
(iv): Using Lemma 5.1(iii) and (21), and by increasing n0 if necessary, we find c1 ∈R++ such that,

for all n≥ n0,

dist(0, ∂Lh(zn))≤

√
h(zn−ı)−h(zn+1−ı)

δ
+ εn
βn
≤ c1

√
h(zn−ı)−h(zn+1−ı).

Combining with (22) yields

1≤ c1ϕ
′(h(zn)−h(z))

√
h(zn−ı)−h(zn+1−ı).

Since rn = h(zn)−h(z), it follows that

1≤ c2
1 [ϕ′(rn)]2 (rn−ı− rn+1−ı).

As ϕ can be chosen as ϕ(s) = γs1−α for some γ ∈R++, there exists c2 ∈R++ such that, for all n≥ n0,

c2r
2α
n ≤ rn−ı− rn+1−ı.

Since rn ↓ 0, 2α ≤ 1, and 1 − ı ≥ 0, by increasing n0 if necessary, it holds that, for all n ≥ n0,
r2α
n ≥ rn ≥ rn+1−ı. We deduce that, for all n≥ n0,

rn+1−ı ≤
1

c2 + 1rn−ı,

and hence, there exist γ1 ∈R++ and ρ∈ (0,1) such that, for all n∈N, 0≤ rn = h(zn)−h(z)≤ γ1ρ
n.

Now, recalling the convention that a summation is zero when the starting index is larger than the
ending index, it follows from Cauchy–Schwarz inequality, (H1), and (H4) that(

ı∑
i=1

∆n−i

)2

≤max{0, ı}
ı∑
i=1

∆2
n−i ≤max{0, ı}

ı∑
i=1

h(zn−i)−h(zn+1−i)
α

≤ max{0, ı}
α

max{0, h(zn−ı)−h(zn)}

≤ max{0, ı}
α

rn−ı.

Combining with (24) gives, for all n≥ n0,
+∞∑
k=n

∆k ≤
1
γ
ϕ(rn) +

√
max{0, ı}

α
rn−ı +

+∞∑
k=n

εk.

As
∑+∞
k=n εk = O

(√
h(zn−ı)−h(z)

)
= O(√rn−ı) as n→ +∞ and ϕ(rn) = γr1−α

n ≤ γr1−α
n−ı ≤ γ

√
rn−ı

for all n large enough, by increasing n0 if necessary, there exists c3 ∈R++ such that, for all n≥ n0,
+∞∑
k=n

∆k ≤ c3
√
rn−ı ≤ c3

√
γ1ρ

n−ı
2 .

Since (H5) holds, (ii) implies that (xn)n∈N is convergent to some x∈H. Then, for all n∈N,

‖xn−x‖ ≤
+∞∑
k=n
‖xk+1−xk‖ ≤ c

+∞∑
k=n

∆k

and the conclusion follows. �

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 21

Remark 5.3 (Parameter conditions). In view of (H4) and as shown in the proof of Theo-
rem 5.2(iii), if infn∈N βn > 0, then the conditions infn∈N,i∈I αn−iβ2

n > 0 and limn→+∞ εn/βn = 0 in
Lemma 5.1(iii) are guaranteed. If additionally εn = O(h(zn−ı) − h(zn+1−ı)) as n→ +∞, then the
parameter conditions

εn
βn

=O
(√

h(zn−ı)−h(zn+1−ı)
)

and
+∞∑
k=n

εk =O

(√
h(zn−ı)−h(z)

)
as n→+∞.

in Theorem 5.2(iv) are also satisfied. Indeed, since h(zn) ↓ h(z), we have h(zn−ı)− h(zn+1−ı)→ 0
as n→ +∞, and so, for all n large enough, h(zn−ı)− h(zn+1−ı) ≤

√
h(zn−ı)−h(zn+1−ı). It follows

that εn = O(
√
h(zn−ı)−h(zn+1−ı)) and, since infn∈N βn > 0, εn/βn = O(

√
h(zn−ı)−h(zn+1−ı)) as

n→+∞. Now, we note that

+∞∑
k=n

(h(zk−ı)−h(zk+1−ı)) =
ı∑
i=ı

(h(zn−i)−h(z))≤ (ı− ı+ 1)(h(zn−ı)−h(z)),

which implies that
∑+∞
k=n εk =O(h(zn−ı)−h(z)), and so

∑+∞
k=n εk =O

(√
h(zn−ı)−h(z)

)
as n→+∞.

Remark 5.4 (Comparison to the existing literature). The general framework (H1)–(H5)
extends various convergence conditions for exact and inexact descent methods in the literature.
Specifically, in [3, 10], the authors proposed conditions that satisfied (H1)–(H5) with K =H= RN ,
zn = xn, ∆n = ‖xn+1−xn‖, αn ≡ a, βn ≡ 1/b, εn ≡ 0, I = {1}, and λ1 = 1. These conditions were then
generalized in [14] to flexible parameters and real Hilbert spaces. In the finite-dimensional setting,
the conditions in [14] fulfill (H1)–(H5) with K=H, zn = xn, ∆n = ‖xn+1−xn‖, I = {1}, and λ1 = 1.
The framework (H1)–(H5) also holds in the case of [9, Proposition 4] with K = H = RN , zn =

xn, ∆n = ‖xn+2 − xn+1‖, αn ≡ a, βn ≡ 1/b, εn ≡ 0, I = {1}, and λ1 = 1. Here, ∆n is shifted one
step forward comparing to the two aforementioned studies. This difference makes the relative error
condition explicit; see [24, Section 2.4] for a discussion.
In [26], the authors provided a framework for convergence analysis of iPiano, a proximal gradi-

ent algorithm with extrapolation. In turn, their conditions satisfied (H1)–(H5) with K =H2, zn =
(xn, xn−1), ∆n = ‖xn−xn−1‖, αn ≡ a, βn ≡ 1/b, εn ≡ 0, I = {0,1}, and λ0 = λ1 = 1/2. Recently, these
conditions have been extended in [25] with H= RN , K= RN+P and zn = (xn, un). It is worth noting
that the finite index set I of integers in [25] can always be written as I = {ı, ı+ 1, . . . , ı} for ı ≤ ı.
To get the global convergence of (xn)n∈N, [25, Theorem 10] not only needs (H5) as our Theorem 5.2
but also requires that h is bounded from below and that, for any converging subsequence (zkn)n∈N
of (zn)n∈N,

zkn→ z̃ and h(zkn)→ h(z̃) as n→+∞,

which implies that h is constant on Ω. We also note that linear convergence of (xn)n∈N has been not
investigated in the framework of [25, 26].
Next, we show that the full sequence generated by Algorithm 4.1 is globally convergent by further

assuming that a suitable merit function is a KL function. We note that, as we will see later in Remark
5.6, this assumption is automatically fulfilled if f and g are both semi-algebraic functions and S is a
semi-algebraic set, which, in particular, holds for all the motivating examples mentioned before.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
22 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Theorem 5.5 (Global convergence). Let lim infn→∞ τn = τ > 0 and let (xn)n∈N be the
sequence generated by Algorithm 4.1. Suppose that Assumptions A1, A2, and A3 hold, that g is dif-
ferentiable on an open set containing S ∩ domf whose gradient ∇g is Lipschitz continuous4 with
modulus `g on S ∩ domf , that, for c given in (14),

h(x, y) := f(x)
g(x) + ιS(x) + c‖x− y‖2

satisfies the KL property at (x,x) for all x ∈ S ∩ domf , and that the set {x ∈ S : f(x)
g(x) ≤

f(x0)
g(x0)} is

bounded. Then
∑+∞
n=0 ‖xn+1 − xn‖ < +∞, and the sequence (xn)n∈N converges to a stationary point

of (P). Moreover, if h satisfies the KL property with an exponent of α ≤ 1/2 at (x,x) for all x ∈
S∩domf , then the convergence rate of (xn)n∈N and (h(xn+1, xn))n∈N is linear in the sense that there
exist γ1, γ2 ∈R++ and ρ∈ (0,1) such that, for all n∈N,

|h(xn+1, xn)−h(x∞, x∞)| ≤ γ1ρ
n and ‖xn−x∞‖ ≤ γ2ρ

n
2 .

Proof. Let zn = (xn+1, xn). Let Ω be the set of cluster points of (zn)n∈N. Theorem 4.7 asserts that
the sequence (zn)n∈N is bounded and that, for all n∈N, xn ∈ S ∩ domf and

h(zn+1) +α‖xn+1−xn‖2 ≤ h(zn) with α> 0 given in (14). (25)

By combining with Corollary 4.9, for every z ∈Ω, one has z = (x,x) with x∈ S ∩domf a stationary
point of (P) and

θn = f(xn)
g(xn) →

f(x)
g(x) as n→+∞.

In particular, h(zn) = h(xn+1, xn) = f(xn+1)
g(xn+1) + c‖xn+1−xn‖2→ f(x)

g(x) as n→+∞.
From Step 2 of Algorithm 4.1 and noting that gn =∇g(xn), we have for all n∈N,

0∈ ∂L(fn + ιS)(xn+1) +∇f s(un) + 1
τn

(xn+1− vn− τnθn∇g(xn)) + `(xn+1−un),

which combined with ∂L(f + ιS) =∇f s + ∂L(fn + ιS) yields

x̂n+1 :=∇f s(xn+1)−∇f s(un)− `(xn+1−un)− 1
τn

(xn+1− vn) + θn∇g(xn)
∈ ∂L(f + ιS)(xn+1).

Since g is continuously differentiable at xn and g(xn)> 0, it follows from Lemma 3.2(ii) that

∂L

(
f

g
+ ιS

)
(xn+1) = g(xn+1)∂L(f + ιS)(xn+1)− f(xn+1)∇g(xn+1)

g(xn+1)2

= ∂L(f + ιS)(xn+1)− θn+1∇g(xn+1)
g(xn+1) ,

and so
x∗n := x̂n+1− θn+1∇g(xn+1)

g(xn+1) ∈ ∂L
(
f

g
+ ιS

)
(xn+1).

Therefore, (x∗n + 2c(xn+1−xn),2c(xn−xn+1))∈ ∂Lh(zn).

4 Assumption on Lipschitz continuity of ∇g can be relaxed to a weaker assumption that there exist ε, `g ∈R++ such
that ‖∇g(x)−∇g(y))‖ ≤ `g‖x− y‖ for all x, y ∈ S ∩dom f with ‖x− y‖ ≤ ε.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

Note that τn ≤ 1/max{
√
βθn/ζ, δ} ≤ 1

δ
, so µn ≤ µτn ≤ µ

δ
. Next, we see that, for all n∈N,

‖xn+1− vn‖ ≤ ‖xn+1−xn‖+µn‖xn−xn−1‖ ≤ ‖xn+1−xn‖+ µ

δ
‖xn−xn−1‖,

‖xn+1−un‖ ≤ ‖xn+1−xn‖+κn‖xn−xn−1‖ ≤ ‖xn+1−xn‖+κ‖xn−xn−1‖,

and by the Lipschitz continuity of ∇f s,

‖∇f s(xn+1)−∇f s(un)‖ ≤ `‖xn+1−un‖ ≤ `‖xn+1−xn‖+ `κ‖xn−xn−1‖.

Since (xn)n∈N is bounded, the continuity of ∇g implies that (∇g(xn))n∈N is also bounded. There
thus exists µ ∈ R++ such that, for all n ∈ N, ‖∇g(xn)‖ ≤ µ. Since lim infn→+∞ τn = τ > 0 and
limn→+∞ ‖xn+1−xn‖= 0 (see Theorem 4.7(ii)), there exists n0 ∈N such that, for all n≥ n0,

τn ≥ τ/2 and ‖xn−xn−1‖ ≤ ε.

Now, from the definition of h(zn), we see that

θn∇g(xn)− θn+1∇g(xn+1) = θn(∇g(xn)−∇g(xn+1))− c‖xn−xn−1‖2∇g(xn+1)
+ c‖xn+1−xn‖2∇g(xn+1) + (h(zn−1)−h(zn))∇g(xn+1)

and by the Lipschitz continuity of ∇g and the boundedness of (∇g(xn)), for all n≥ n0,

‖θn∇g(xn)− θn+1∇g(xn+1)‖ ≤ `gθn‖xn+1−xn‖+ cεµ‖xn−xn−1‖
+ cεµ‖xn+1−xn‖+µ(h(zn−1)−h(zn)).

Altogether, it follows from the definition of x∗n that, for all n≥ n0,

‖x̂n+1− θn+1∇g(xn+1)‖ ≤ ‖∇f s(xn+1)−∇f s(un)‖+ `‖xn+1−un‖+ 1
τn
‖xn+1− vn‖

+ ‖θn∇g(xn)− θn+1∇g(xn+1)‖
≤ 2`‖xn+1−xn‖+ 2`κ‖xn−xn−1‖+ 2

τ
(‖xn+1−xn‖+ µ

δ
‖xn−xn−1‖)

+ (`gθn + cεµ)‖xn+1−xn‖+ cεµ‖xn−xn−1‖+µ(h(zn−1)−h(zn)).

Recalling that (θn)n∈N is convergent and hence bounded and noting that infn∈N g(xn)> 0 due to the
continuity and positivity of g, the boundedness of (xn)n∈N and the closedness of S, we find K ∈R++
such that, for all n≥ n0,

‖x∗n‖= ‖x̂n+1− θn+1∇g(xn+1)‖
|g(xn+1)|

≤K (‖xn+1−xn‖+ ‖xn−xn−1‖+ (h(zn−1)−h(zn))) .

We deduce that there exists K1 ∈R++ such that, for all n≥ n0,

dist(0, ∂Lh(zn))≤
√
‖x∗n + 2c(xn+1−xn)‖2 + 4c2‖xn−xn+1‖2

≤
√

2‖x∗n‖2 + 8c2‖xn+1−xn‖2 + 4c2‖xn−xn+1‖2

≤K1 (‖xn+1−xn‖+ ‖xn−xn−1‖+h(zn−1)−h(zn)) ,

where the second inequality is from the elementary inequality that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Now,
by applying Theorem 5.2 and Remark 5.3 with I = {0,1}, λ0 = λ1 = 1/2, ∆n = 2K1‖xn+1 − xn‖,
αn ≡ α

4K2
1
> 0, βn ≡ 1, and εn =K1(h(zn−1)−h(zn))≤K1(h(zn−1)−h(zn+1)), we get the conclusion.

�

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
24 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Remark 5.6 (KL property of the merit function). In Theorem 5.5, we impose the assump-
tion that the merit function h(x, y) = f(x)

g(x) + ιS(x) + c‖x− y‖2 is a KL function with c given in (14).
Note that sum or quotient of two semi-algebraic functions is a semi-algebraic function, and indica-
tor function of a semi-algebraic set (sets described as union or intersections of finitely many sets
which can be expressed as lower level sets of polynomials) is also a semi-algebraic function. We note
that this assumption is automatically satisfied when f and g are semi-algebraic functions, and S
is a semi-algebraic set. This, in particular, covers all the motivating examples we mentioned in the
introduction.
It is also known from [19, Theorem 3.6] that the merit function h has the KL property with an

exponent of α ∈ [1/2,1) at (x,x) as long as f/g+ ιS has the KL property with an exponent of α at
x.
Next, we see that Algorithm 4.1 converges at a linear rate when applied to the scale invariant

sparse signal recovery problem and Rayleigh quotient optimization with spherical constraint, if the
parameters τn satisfy lim infn→∞ τn = τ > 0.

Proposition 5.7 (KL exponent 1/2 & linear convergence). Let H= RN , and suppose that
one of the following holds:
(i) f(x) = x>Ax+ ιC(x), g(x) = x>Bx, and S = RN , where A and B are symmetric positive definite

matrices and C := {x∈RN : ‖x‖= 1}.
(ii) f(x) = ‖x‖1, g(x) = ‖x‖2, and S = {x ∈ RN : Ax ≤ b,Cx = d}, where A ∈ RM×N , b ∈ RM , C ∈

RP×N , and d∈RP .
Then, for all c∈R+, h(x, y) = f(x)

g(x) + ιS(x) + c‖x− y‖2 satisfies the KL property with an exponent of
1/2 at (x,x) for all x ∈ domf . Consequently, if lim infn→∞ τn = τ > 0, then Algorithm 4.1 exhibits
linear convergence when applied to the above cases.

Proof. In view of [19, Theorem 3.6] and Theorem 5.5, it suffices to show that F := f/g + ιS is a
KL function with an exponent of 1/2.
(i): We see that F (x) = x>Ax

x>Bx + ιC(x). For all x /∈ C, ∂LF (x) = ∅. For all x ∈ C, since ∂LιC(x) =
NC(x) = {ξx : ξ ∈R}, it holds that

∂LF (x) =
{

2(x>Bx)Ax− 2(x>Ax)Bx
(x>Bx)2 + ξx : ξ ∈R

}
. (26)

Let x ∈ dom∂LF . We must have x ∈ C. Let ε, η ∈ (0,1) and let x be such that ‖x − x‖ ≤ ε and
F (x)<F (x)<F (x) + η. Then F (x)<+∞, and so x∈C. It follows from (26) that

dist(0, ∂LF (x)) = inf
ξ∈R

∥∥∥∥∥2(x>Bx)Ax− 2(x>Ax)Bx
(x>Bx)2 + ξx

∥∥∥∥∥
= inf
ξ∈R

∥∥∥∥∥2(x>Bx)Ax− 2(x>Ax)Bx
(x>Bx)2

∥∥∥∥∥
2

+ ξ2

1/2

=
∥∥∥∥∥2(x>Bx)Ax− 2(x>Ax)Bx

(x>Bx)2

∥∥∥∥∥
= 2
x>Bx

‖(A−F (x)B)x− (F (x)−F (x))Bx‖ ,

where the second equality follows from the fact that x>(2(x>Bx)Ax−2(x>Ax)Bx) = 0 and ‖x‖= 1.
Now, since A−F (x)B is a symmetric matrix, there exists c > 0 such that, for all z ∈RN ,

‖(A−F (x)B)z‖2 ≥ c(z>(A−F (x)B)z) = c(z>Bz)(F (z)−F (x)).

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 25

Therefore,

dist(0, ∂LF (x))≥ 2(F (x)−F (x))1/2

(√
c√

x>Bx
− (F (x)−F (x))1/2 ‖Bx‖

x>Bx

)
.

Let λmax and λmin are the maximum and minimum eigenvalues of B, respectively. Then λmin ≤
x>Bx≤ λmax since ‖x‖= 1. By shrinking η if necessary, we have

(F (x)−F (x))1/2 ‖Bx‖
x>Bx

≤ η1/2 ‖Bx‖
λmin

≤
√
c

2
√
λmax

.

We deduce that dist(0, ∂LF (x)) ≥
√
c√

λmax
(F (x) − F (x))1/2, and F is thus a KL function with an

exponent of 1/2.
(ii): By a similar argument as in [31, Theorem 4.4], F is a KL function with an exponent of 1/2.
�

6. Convergence to strong stationary points In this section, we propose another algorithm
which converges to a strong lifted stationary points of the fractional programming problem (P).
To do this, we now consider the case where Assumption A2 is replaced by the following stronger
assumption.
Assumption A2’. g(x) = max{gi(x) : 1≤ i≤ p}, where each gi is continuously differentiable on

an open set containing S and weakly convex on S with modulus β ∈R+, and (BC) holds.
Recall that the ε-active set for g(x) = max{gi(x) : 1≤ i≤ p} is defined by

Iε(x) = {i∈ {1, . . . , p} : gi(x)≥ g(x)− ε}.

We then propose an extrapolated proximal subgradient algorithm as follows.

Algorithm 6.1 (e-PSG for strong stationary points).
. Step 1. Choose x−1 = x0 ∈ S ∩ domf and set n = 0. Let ε, δ ∈ R++, let ζ ∈ R++ be such that
1−
√
βζ > 0, and let

µ∈
[
0, δ(1−

√
βζ)
√
mM

2M

)
and κ∈

0,
√
mδ(1−

√
βζ)

`M
− 2mµ
`
√
mM

 ,
where ` is defined in Assumption A1, β is defined in Assumption A2’, while m and M are given in
(BC).
. Step 2. Set θn = f(xn)

g(xn) and choose τn ∈R such that 0< τn ≤ 1/max{
√
βθn/ζ, δ}. Let un = xn +

κn(xn− xn−1) with κn ∈ [0, κ] and vn = xn +µn(xn− xn−1) with µn ∈ [0, µτn]. For each in ∈ Iε(xn),
find

winn ∈ arg min
x∈S

(
fn(x) + f s(un) + 〈∇f s(un), x−un〉+

1
2τn
‖x− vn− τnθn∇gin(xn)‖2 + `

2‖x−un‖
2
)
.

. Step 3. Set xn+1 :=wînn , where

în ∈ arg min
in∈Iε(xn)

(
f(winn)− θng(winn) + 1

2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖winn −xn‖2

)
.

. Step 4. If a termination criterion is not met, let n= n+ 1 and go to Step 2.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
26 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Before we proceed, we note that Step 3 in Algorithm 6.1 is motivated by the recent work of Pang
et al. [27] which proposes an enhanced version of the DC algorithm for solving DC programs that
converges to a stronger notion of stationary points, namely, to d-stationary points. Similar to the
work of Pang et al., in Step 2, we need to compute the proximal mapping of fn + ιS for |Iε(xn)| times
(which is at most p). Although comparing to Algorithm 4.1, the computation cost in solving each
subproblem may be higher, as we will see later, the algorithm converges to a strong lifted stationary
point of (P).
Theorem 6.2. Let (xn)n∈N be the sequence generated by Algorithm 6.1. Suppose that Assump-

tions A1 and A2’ hold, and that the set {x∈ S : f(x)
g(x) ≤

f(x0)
g(x0)} is bounded. Then the following hold:

(i) For all n∈N, xn ∈ S ∩ domf and

Fn := f(xn)
g(xn) +

(
`κ2

2m + µ

2
√
mM

)
‖xn−xn−1‖2 (27)

is nonincreasing and convergent. Consequently, the sequence
(
f(xn)
g(xn)

)
n∈N

is convergent.
(ii) The sequence (xn)n∈N is bounded and

+∞∑
n=0
‖xn+1−xn‖2 <+∞.

Consequently, limn→+∞ ‖xn+1−xn‖= 0.
(iii) If lim infn→+∞ τn = τ > 0, then, for every cluster point x of (xn)n∈N, it holds that x∈ S ∩ domf ,

limn→+∞
f(xn)
g(xn) = f(x)

g(x) , and
f(x)
g(x)

⋃
i∈I0(x)

∇gi(x)⊆ ∂L(f + ιS)(x). (28)

In addition, if f is weakly convex on S, then x is a strong lifted stationary point of (P).
Proof. (i)&(ii): We first see that, for all n∈N, xn ∈ S∩domf , and so g(xn)> 0 and θn = f(xn)

g(xn) ≥
0.
Next, for all n∈N, in ∈ Iε(xn), and x∈ S,

f(winn) = fn(winn) + f s(winn)
≤ fn(winn) + f s(un) +

〈
∇f s(un),winn −un

〉
+ `

2‖w
in
n −un‖2

≤ fn(x) + f s(un) + 〈∇f s(un), x−un〉+
1

2τn
‖x− vn− τnθn∇gin(xn)‖2 + `

2‖x−un‖
2

− 1
2τn
‖winn − vn− τnθn∇gin(xn)‖2

≤ fn(x) + f s(x) + 1
2τn
‖x− vn− τnθn∇gin(xn)‖2 + `

2‖x−un‖
2

− 1
2τn
‖winn − vn− τnθn∇gin(xn)‖2

= f(x) + 1
2τn
‖x− vn‖2− 1

2τn
‖winn − vn‖2 + θn

〈
∇gin(xn),winn −x

〉
+ `

2‖x−un‖
2

= f(x) + 1
2τn
‖x− vn‖2− 1

2τn
‖xn− vn‖2− 1

2τn
‖winn −xn‖2 + µn

τn

〈
winn −xn, xn−xn−1

〉
+ θn

〈
∇gin(xn),winn −xn

〉
− θn 〈∇gin(xn), x−xn〉+

`

2‖x−un‖
2, (29)

where the first inequality is from the fact that ∇f s is Lipschitz continuous with modulus `
(Lemma 4.6), the second inequality is from Step 2 of Algorithm 6.1, the third inequality follows

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 27

from the convexity of f s, and the last equality uses the fact that xn − vn = −µn(xn − xn−1). For
ω =

√
m/M > 0, one has from Young’s inequality that

〈
winn −xn, xn−xn−1

〉
≤ 1

2ω‖w
in
n −xn‖2 + ω

2 ‖xn−xn−1‖2

= M

2
√
mM

‖winn −xn‖2 + m

2
√
mM

‖xn−xn−1‖2. (30)

It follows from Assumption A2’ that g is regular and weakly convex with modulus β on S. By
Lemma 4.5, 〈

∇gin(xn),winn −xn
〉
≤ gin(winn)− gin(xn) + β

2 ‖w
in
n −xn‖2. (31)

Combining inequalities (29), (30) and (31), and noting that gin(winn)≤ g(winn) by the definition of g
and that βθn ≤

√
βζ/τn by the choice of τn, one has

f(winn)≤ f(x) + 1
2τn
‖x− vn‖2− 1

2τn
‖xn− vn‖2− 1

2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖winn −xn‖2

+ θn(g(winn)− gin(xn))− θn 〈∇gin(xn), x−xn〉+
`

2‖x−un‖
2 + mµn

2
√
mMτn

‖xn−xn−1‖2.

Now, using the definition of xn+1, we derive that, for all n∈N, in ∈ Iε(xn), and x∈ S,

f(xn+1)− θng(xn+1) + 1
2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖xn+1−xn‖2

≤ f(winn)− θng(winn) + 1
2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖winn −xn‖2

≤ f(x)− θngin(xn) + 1
2τn
‖x− vn‖2− 1

2τn
‖xn− vn‖2

− θn 〈∇gin(xn), x−xn〉+
`

2‖x−un‖
2 + mµn

2
√
mMτn

‖xn−xn−1‖2. (32)

Let in ∈ I0(xn)⊆ Iε(xn). Then gin(xn) = g(xn). Since f(xn) = θng(xn) and xn−un =−κn(xn−xn−1),
letting x= xn in (32) yields

f(xn+1)− θng(xn+1) + 1
2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖xn+1−xn‖2 ≤ 1

2

(
`κ2

n + mµn√
mMτn

)
‖xn−xn−1‖2.

Dividing by g(xn+1)> 0 on both sides and recalling that m≤ g(xn+1)≤M , κn ≤ κ, µn ≤ µτn, and
1/τn ≥ δ, we have that

f(xn+1)
g(xn+1) +

(
δ(1−

√
βζ)

2M − µ

2
√
mM

)
‖xn+1−xn‖2 ≤ f(xn)

g(xn) +
(
`κ2

2m + µ

2
√
mM

)
‖xn−xn−1‖2.

Proceeding as in the proof of Theorem 4.7(i)&(ii), we obtain conclusions (i) and (ii) of this theorem.
(iii): In view of (i), we set

θ := lim
n→+∞

θn = lim
n→+∞

f(xn)
g(xn) .

Let x be a cluster point of (xn)n∈N and let (xkn)n∈N be a subsequence convergent to x. Then x ∈ S
as well as xkn+1→ x, ukn → x, and vkn → x due to (ii). By the continuity of each gi, there exists
n0 ∈N such that, for all i ∈ {1, . . . , p} and all n≥ n0, gi(xkn)≥ gi(x)− ε/2 and g(x)≥ g(xkn)− ε/2.
It follows that, for all n≥ n0, I0(x)⊆ Iε(xkn).

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
28 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Let n≥ n0 and let i∈ I0(x)⊆ Iε(xkn). We have from (32) that, for all x∈ S,

f(xkn+1)− θkng(xkn+1) + 1
2

(
1−
√
βζ

τkn
− Mµkn√

mMτkn

)
‖xkn+1−xkn‖2

≤ f(x)− θkngi(xkn) + 1
2τkn
‖x− vkn‖2− 1

2τkn
‖xkn − vkn‖2

− θkn 〈∇gi(xkn), x−xkn〉+
`

2‖x−ukn‖
2 + mµkn

2
√
mMτkn

‖xkn −xkn−1‖2. (33)

It follows from the continuity of g, gi, and ∇gi that g(xkn+1)→ g(x), gi(xkn)→ gi(x) = g(x) (as
i ∈ I0(x)), and ∇gi(xkn) → ∇gi(x). Letting x = x and n → +∞ in (33) and noting that τ =
lim infk→∞ τn > 0, we have lim supn→+∞ f(xkn+1)≤ f(x). Combining with the lower semicontinuity
of f gives f(xkn+1)→ f(x) as n→+∞. Thus, θkn→ θ= f(x)

g(x) as n→+∞.
Now, letting n→+∞ in (33), we obtain that, for all x∈ S,

f(x)≤ f(x) +
(1

2τ + `

2

)
‖x−x‖2 + f(x)

g(x) 〈∇gi(x), x−x〉 .

This shows that x minimizes the function ϕ over S, where

ϕ(x) := f(x) +
(1

2τ + `

2

)
‖x−x‖2− f(x)

g(x) 〈∇gi(x), x〉

In particular, one sees that, for all i∈ I0(x), f(x)
g(x) ∇gi(x)∈ ∂L(f + ιS)(x). So, x∈ S ∩ domf and⋃

i∈I0(x)

f(x)
g(x) ∇gi(x)⊆ ∂L(f + ιS)(x). (34)

By taking convex hull on both sides, we see that
f(x)
g(x)∂Lg(x) = conv

⋃
i∈I0(x)

f(x)
g(x) ∇gi(x)⊆ conv∂L(f + ιS)(x).

If f is weakly convex on S, Lemma 2.2(i) implies that ∂(f + ιS)(x) is convex. Thus, the conclusion
follows. �
Remark 6.3 (Absence of the boundedness condition). As with Algorithm 4.1 and Theo-

rem 4.7, in the case where (BC) fails, if we set µ= κ= 0 in Step 1 and let

în ∈ arg min
in∈Iε(xn)

(
f(winn)− θng(winn) + 1−

√
βζ

2τn
‖winn −xn‖2

)
in Step 3 of Algorithm 6.1, then Theorem 6.2 still holds with Fn = f(xn)

g(xn) .
Remark 6.4 (Discussion of the results). (i) Firstly, a close inspection of the proof and not-
ing that, for all η < ε, one has for all large n, Iη(x) ⊆ Iε(xkn). So, (28) in the conclusion of
Theorem 6.2(iii) indeed can be strengthened as: for all η < ε,

f(x)
g(x)

⋃
i∈Iη(x)

∇gi(x)⊆ ∂L(f + ιS)(x).

(ii) Secondly, following the same method of proof used in Theorem 5.5, one can establish the global
convergence of Algorithm 6.1 under the KL assumptions in Theorem 5.5 and also the additional
assumption that I0(x) = {i∈ {1, . . . , p} : gi(x) = g(x)} is a singleton for all x∈Ω, where Ω is the set
of cluster points of (xn)n∈N. Another sufficient condition ensuring the global convergence would be
that any point x∈Ω is isolated. For brevity purpose, we omit the proof here. Unfortunately, these
conditions are rather restrictive for the setting of Algorithm 6.1. It would be interesting to see
how one can obtain further weaker conditions ensuring the global convergence of Algorithm 6.1.
This would be an interesting open question and will be examined later.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 29

7. Numerical examples In the section, we illustrate our proposed algorithms via numerical
examples. We first start with an explicit analytic example and use it to demonstrate the different
behavior of Algorithm 4.1 and Algorithm 6.1 as well as the effect of the extrapolations. Then, we
examine the performance of the algorithm for the scale invariant sparse signal reconstruction model.
All the numerical tests were conducted on a computer with a 2.8 GHz Intel Core i7 and 8 GB RAM,
equipped with MATLAB R2015a.

7.1. An analytical example Consider the analytical example discussed in Example 3.3

min
x∈[−1,1]

x2 + 1
|x|+ 1 . (EP1)

In this case, g(x) = |x|+ 1 is convex, and so, β = 0. Also, for all x ∈ [−1,1], m≤ g(x)≤M , where
m= 1 andM = 2. The numerator f(x) = f s(x) = x2 +1 is a convex and differentiable function whose
gradient is Lipschitz continuous with modulus `= 2.
Algorithm 4.1 vs. Algorithm 6.1. Let δ = `M

m
= 4 and τn = 1

δ
= 1

4 for all n. Set µ = 0 and
let κ ∈ (0,1) and κn ∈ [0, κ]. We now compare the behavior of Algorithm 4.1 and Algorithm 6.1 for
(EP1):
Firstly, it can be directly verified that gn = sign(xn) ∈ ∂g(xn) and that f s(un) + 〈∇f s(un), x−

un〉+ `
2‖x−un‖

2 = x2 + 1. In this case, Algorithm 4.1 reduces to

xn+1 = P[−1,1]

(2
3

[
xn + 1

4
x2
n + 1
|xn|+ 1sign(xn)

])
.

Here, P[−1,1] denotes the Euclidean projection onto the set [−1,1]. If one chooses as initial point
x0 = 0, then xn = 0 for all n, and so, (xn)n∈N converges to a lifted stationary point (but not a strong
lifted stationary point).
If one chooses as initial point x0 > 0, then, by induction, it is easy to see that xn > 0 and so,

xn ∈ (0,1]. This implies that

xn+1 = P[−1,1]

(2
3

[
xn + x2

n + 1
4(xn + 1)

])
= 2

3

[
xn + x2

n + 1
4(xn + 1)

]
,

where the last equality is from the fact that xn+ x2
n+1

4(xn+1) ∈ [0, 3
2] for all xn ∈ (0,1]. Thus, xn→

√
2−1

which is a lifted stationary point.
Similarly, if one chooses as initial point x0 < 0, then, xn→ 1−

√
2 which is also a lifted stationary

point.
Next, we analyze the behavior of Algorithm 6.1. Recall that δ = `M

m
= 4, τn = 1

δ
= 1

4 , µ= 0, κn ∈
[0, κ] with κ∈ (0,1). Let ε= 2. Note that g(x) = max{x+ 1,−x+ 1}. Then Iε(xn) = {1,2}, and so,

w1
n = P[−1,1]

(2
3

[
xn + 1

4
x2
n + 1
|xn|+ 1

])
and w2

n = P[−1,1]

(2
3

[
xn−

1
4
x2
n + 1
|xn|+ 1

])
.

In Algorithm 6.1, we set xn+1 :=wînn , where

în ∈ arg min
i∈{1,2}

(
(win)2 + 1− x2

n + 1
|xn|+ 1(|win|+ 1) + 2(win−xn)2

)
.

For the proceeding step for updating xn+1, if the values happens to be the same in the above argmin
operations, we choose în to be the smallest index. By randomly generating the initial guess x0,
we observe that Algorithm 6.1 generates a sequence (xn)n∈N such that xn→

√
2− 1 if x0 ≥ 0 and

xn→ 1−
√

2 if x0 < 0. Figure 1 depicts the trajectory xn of Algorithm 6.1 with three initial points:

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
30 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 1. Trajectory of Algorithm 6.1 with different initial guess x0 for (EP1)

x0 = 0,−1,1. Interestingly, we note that, in the case where x0 = 0, Algorithm 6.1 converges to a
strong lifted stationary point

√
2− 1 while Algorithm 4.1 converges to a lifted stationary point 0,

which is not a strong lifted stationary point.
Effect of the extrapolation parameter. We now illustrate the behavior of Algorithm 4.1

by varying the extrapolation parameters. To do this, again let δ = `M
m

= 4, τn = 1
δ

= 1
4 , and gn =

sign(xn)∈ ∂Lg(xn) for all n. Set α ∈ [0,1), µ= αδ
√
mM

2M =
√

2α, and κ∈
[
0,
√

1−α
)
. Let any κn ∈ [0, κ]

and µn = µτn
νn−1−1
νn

=
√

2
4 α

νn−1−1
νn

, where

ν−1 = ν0 = 1 and νn+1 = 1 +
√

1 + 4ν2
n

2 ,

and reset νn−1 = νn = 1 when n = n0,2n0,3n0, . . . for the integer n0 = 50. In this case, direct veri-
fication shows that supn νn ≤ 1, and hence µn ≤

√
2

4 α = µτn. Starting with the initialization x0 = 1,
we then run Algorithm 4.1 with different α ∈ [0,1). Figure 2 depicts the distance, in the log scale,
between the iterates xn and the solution x∗ =

√
2− 1 for α ∈ {0,0.5,0.7,0.99}, where the case α= 0

indeed corresponds to the un-extrapolated cases. As one can see from Figure 2, as α increases and
approaches 1, the algorithm tends to converge faster. Moreover, we note that, from our derivation,
we require α < 1 to ensure the convergence of the algorithm. On the other hand, when α increases
and approaches one, the algorithm exhibits some oscillation phenomenon.

7.2. Scale invariant sparse signal recovery problem As another illustration, we examine
the following scale invariant sparse signal recovery problem discussed in the motivating example

min
x∈RN

‖x‖1

‖x‖2
s.t. Ax= b, lbi ≤ xi ≤ ubi, i= 1, . . . ,N, (EP2)

where lbi and ubi are the lower bound and upper bound for the variables xi, i= 1, . . . ,N . We follow
[28] and generate the matrix A via the so-called oversampled discrete cosine transform (DCT), that
is, A= [a1, a2, . . . , aN]∈RP×N where

aj = 1√
P

cos
(2πw j

F

)
, j = 1, . . . ,N.

where w is a random vector uniformly distributed in [0,1]P and F is a positive number which gives
a measure on how coherent the matrix is. The ground truth xg ∈ RN is simulated as an s-sparse

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 31

Figure 2. Distance to the solution vs iterations in solving (EP1)

signal where s is the total number of nonzero entries. The support of xg is a random index set,
and the values of nonzero elements follow a Gaussian normal distribution. Then the ground-truth is
normalized to have maximum magnitude as 1 so that we can examine the performance within the
[−1,1]N box constraint. Then, we generate b=Axg, and set lbi =−1 and ubi = 1. Specifically, in our
experiment, following [28], we consider the above matrix A of size (P,N) = (64,1024), F = 10 and
the ground-truth sparse vector has 12 nonzero elements.

We use two methods for solving this scale invariant sparse signal recovery problem: our proposed
extrapolated proximal subgradient method (e-PSG) and the alternating direction of method of multi-
pliers (ADMM) proposed in [28]. It was shown in [28] that the ADMM method works very efficiently
although the theoretical justification of the convergence of this method is still lacking.
• ADMM method: We first solve the L1-optimization problem which results when replacing the

objective of (EP2) by ‖x‖1 :=
∑N
i=1 |xi|. This is done by using the commercial software Gurobi

and produces a solution x0 for the L1-optimization problem. Following [28], we use x0 as an
initialization and use the ADMM method proposed therein. We terminate the algorithm when
the relative error ‖xn+1−xn‖

max{‖xn‖,1} is smaller than 10−9.
• Algorithm 4.1 (e-PSG method): Similar to the ADMM method, we also use the solution of the L1-

optimization problem as the initial point. We choose f s ≡ 0 (and so, `= 0), κn = 0. As g(x) = ‖x‖2
is convex, β = 0. Moreover, for all x feasible for (EP2), m≤ g(x)≤M where M =

√
N and m is

a positive number computed as the Euclidean norm of the least norm solution of Ax= b via the
Matlab code m = norm(pinv(A)*b). Let α= 0.99 and set µn = α

√
mM

2M
νn−1−1
νn

, where

ν−1 = ν0 = 1 and νn+1 = 1 +
√

1 + 4ν2
n

2 ,

and reset νn−1 = νn = 1 when n= n0,2n0,3n0, . . . for the integer n0 = 50. For δ = `M
m
> 0, let τn = 1

δ

and µ= αδ
√
mM

2M < δ
√
mM

2M . It can be verified that µn ≤ α
√
mM

2M = µτn, and so, the requirements of the
parameters in Algorithm 4.1 are satisfied. We use the same termination criterion as for the ADMM
method. For the subproblem arising in Step 2 of Algorithm 4.1, we reformulate the problem as
an equivalent quadratic program with linear constraints, and solve it using the software Gurobi.
We run the ADMM and the e-PSG method (Algorithm 4.1) for 50 trials. The following table

summarizes the output of the two methods by listing the average number of
• sparsity level of the initial guess: the number of entries of the initialization (the solution for
L1-optimization problem) with value larger than 10−6;
• sparsity level of the solution: the number of entries of the computed solution with value larger

than 10−6;

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
32 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

• error with respect to the ground truth: the Euclidean norm of the difference of the computed
solution and the ground truth xg;
• the objective value of the computed solution;
• CPU time measured in seconds.
From Table 1, one can see that e-PSG method is competitive with the ADMM method in terms of
sparsity level and the CPU time used, and produces a solution with slightly better quality in terms
of the final objective value and the error with respect to the ground truth. As plotted in Figure 3,
one can see that ADMM uses around 2000 iterations to reach the desired relative error tolerance, and
has sharp oscillating phenomenon in terms of the objective value (this has also been observed in [28],
and the authors of [28] believed that this is one of the major obstacles in establishing the convergence
of the ADMM method); while the proposed e-PSG method quickly approaches the desired error
tolerance. On the other hand, it should be noted that the subproblems in the ADMM method have
closed form solutions while the subproblems in the e-PSG method are reformulated as quadratic
programming problems with linear constraints and solved via the software Gurobi5.

Table 1. Computation results for (EP2)

sparsity level error w.r.t objective value of CPU timeinitial guess computed solution the ground truth the computed solution
ADMM 64 12 6.948329e-06 2.724348 1.970365
e-PSG 64 12 4.539185e-10 2.724326 2.375557

Figure 3. Objective values vs. iterations in solving (EP2)

5 One possible way to improve the CPU time in using e-PSG is to solve the subproblem via alternating direction
method of multiplier method directly. We leave this as a future study.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 33

8. Conclusions We have proposed proximal subgradient algorithms with extrapolations for
solving fractional optimization model where both the numerator and denominator can be nonsmooth
and nonconvex. We have shown that the sequence of iterates generated by the algorithm is bounded
and any of its limit points is a stationary point of the model problem. We have also established
the global convergence of the sequence by further assuming the KL property for a suitable merit
function by providing a unified analysis framework of descent methods. Finally, in the case where the
denominator is the maximum of finitely many continuously differentiable weakly convex functions,
we have also proposed an enhanced proximal subgradient algorithm with extrapolations, and showed
that this enhanced algorithm converges to a stronger notion of stationary points of the model problem.
Our results in this paper point out the following interesting open questions and future work: (1)

For the enhanced proximal subgradient algorithm with extrapolations (Algorithm 6.1), is it possible
to extend the case from g(x) = max1≤i≤p{gi(x)} to g(x) = maxt∈T{gt(x)} where T is a (possibly)
infinite set? (2) In Algorithm 6.1, as one needs to solve the subproblem |Iε(xn)| times, this can be
time consuming when the dimension is high. Is it possible to incorporate any randomize technique
to save the computational cost and establish the convergence in probability? (3) How to obtain the
global convergence of the full sequence of Algorithm 6.1 under weaker and reasonable assumptions
is also an important topic to be examined. (4) In our model problem (P), we assume that the
numerator f can be written as the sum of f s and fn, where f s is a differentiable convex function
whose gradient is Lipschitz continuous and fn is a nonconvex function. It would be interesting to
see how one could develop algorithms which allow the smooth part f s being possibly nonconvex as
well. (5) Finally, further numerical implementations of our algorithms and comparisons with other
competitive methods are left as future research.

Acknowledgments The authors would like to thank Dr. Yifei Lou for kindly sharing the MAT-
LAB code for the ADMM method used in [28]. The authors are also grateful to the Associate Editor
and the referees for their constructive comments and suggestions. R.I. Boţ was partially supported
by the Austrian Science Fund (FWF) under project I 2419-N32. M.N. Dao and G. Li were partially
supported by the Australian Research Council (ARC) under project DP190100555.

References
[1] Aragón Artacho FJ, Campoy R, Vuong PT (2020) Using positive spanning sets to achieve d-stationarity

with the boosted DC algorithm. Vietnam J. Math. 48(2):363–376.
[2] Attouch H, Bolte J (2009) On the convergence of the proximal algorithm for nonsmooth functions

involving analytic features. Math. Program. Ser. B 116(1–2):5–16.
[3] Attouch H, Bolte J, Svaiter BF (2013) Convergence of descent methods for semi-algebraic and tame prob-

lems: Proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math.
Program. Ser. A 137(1–2):91–129.

[4] Bauschke HH, Combettes PL (2017) Convex Analysis and Monotone Operator Theory in Hilbert Spaces
(Cham: Springer), 2nd edition.

[5] Beck A (2017) First-Order Methods in Optimization (Philadelphia: Society for Industrial and Applied
Mathematics (SIAM)).

[6] Beck A, Hallak N (2020) On the convergence to stationary points of deterministic and randomized
feasible descent directions methods. SIAM J. Optim. 30(1):56–79.

[7] Boţ RI, Csetnek ER (2017) Proximal-gradient algorithms for fractional programming. Optimization
66(8):1383–1396.

[8] Bolte J, Daniilidis A, Lewis A, Shiota M (2007) Clarke subgradients of stratifiable functions. SIAM J.
Optim. 18(2):556–572.

[9] Bolte J, Pauwels E (2016) Majorization-minimization procedures and convergence of sqp methods for
semi-algebraic and tame programs. Math. Oper. Res. 41(2):442–465.

Boţ, Dao, and Li: Extrapolated Proximal Subgradient Algorithms for Fractional Programs
34 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

[10] Bolte J, Sabach S, Teboulle M (2014) Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Math. Program. Ser. A 146(1–2):459–494.

[11] Chen L, He S, Zhang SZ (2011) When all risk-adjusted performance measures are the same: in praise
of the Sharpe ratio. Quant. Finance 11(10):1439–1447.

[12] Crouzeix JP, Ferland JA, Schaible S (1985) An algorithm for generalized fractional programs. J. Optim.
Theory Appl. 47(1):35–49.

[13] Dinkelbach W (1967) On nonlinear fractional programming. Management Sci. 13:492–498.
[14] Frankel P, Garrigos G, Peypouquet J (2014) Splitting methods with variable metric for Kurdyka–

łojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165(3):874–900.
[15] Ibaraki T (1981) Solving mathematical programming problems with fractional objective functions.

Schaible S, Ziemba W, eds., Generalized Concavity in Optimization and Economics, 441–472 (New
York-London: Academic Press).

[16] Ibaraki T (1983) Parametric approaches to fractional programs. Math. Program. 26(3):345–362.
[17] Kruger AY (2003) On Fréchet subdifferentials. J. Math. Sci. 116:3325–3358.
[18] Kurdyka K (1998) On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier

(Grenoble) 48(3):769–783.
[19] Li G, Pong TK (2018) Calculus of the exponent of Kurdyka–łojasiewicz inequality and its applications

to linear convergence of first-order methods. Found. Comput. Math. 18(5):1199–1232.
[20] Lojasiewicz S (1963) Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux

Dérivées Partielles, 87–89 (Paris: Éditions du Centre National de la Recherche Scientifique (CNRS)).
[21] Mordukhovich BS (2006) Variational Analysis and Generalized Differentiation I. Basic Theory (Berlin:

Springer).
[22] Mordukhovich BS, Nam NM, Yen ND (2006) Fréchet subdifferential calculus and optimality conditions

in nondifferentiable programming. Optimization 55(5–6):685–708.
[23] Nesterov Y (2004) Introductory Lectures on Convex Optimization: A Basic Course (Boston: Kluwer

Academic).
[24] Noll D (2013) Convergence of non-smooth descent methods using the Kurdyka–łojasiewicz inequality.

J. Optim. Theory Appl. 160(2):553–572.
[25] Ochs P (2019) Unifying abstract inexact convergence theorems and block coordinate variable metric

iPiano. SIAM J. Optim. 29(1):541–570.
[26] Ochs P, Chen Y, Brox T, Pock T (2014) iPiano: Inertial proximal algorithm for nonconvex optimization.

SIAM J. Imaging Sci. 7(2):1388–1419.
[27] Pang JS, Razaviyayn M, Alvarado A (2016) Computing B-stationary points of nonsmooth DC programs.

Math. Oper. Res. 42(1):95–118.
[28] Rahimi Y, Wang C, Dong H, Lou Y (2019) A scale-invariant approach for sparse signal recovery. SIAM

J. Sci. Comput. 41(6):3649–3672.
[29] Rockafellar RT, Wets RJB (1998) Variational Analysis (Berlin: Springer).
[30] Schaible S (1976) Fractional programming II. On Dinkelbach’s algorithm. Management Sci. 22(8):868–

873.
[31] Zeng L, Yu P, Pong TK (2020) Analysis and algorithms for some compressed sensing models based on

L1/L2 minimization, arXiv:2007.12821, to appear in SIAM J. Optim., 2021.

https://arxiv.org/abs/2007.12821

	Introduction
	Preliminaries
	Stationary points of fractional programs
	Extrapolated proximal subgradient (e-PSG) algorithm
	A unified analysis framework and global convergence of e-PSG
	Convergence to strong stationary points
	Numerical examples
	An analytical example
	Scale invariant sparse signal recovery problem

	Conclusions

