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Abstract

In this work, we study resolvent splitting algorithms for solving composite mono-
tone inclusion problems. The objective of these general problems is finding a zero
in the sum of maximally monotone operators composed with linear operators. Our
main contribution is establishing the first primal-dual splitting algorithm for composite
monotone inclusions with minimal lifting. Specifically, the proposed scheme reduces
the dimension of the product space where the underlying fixed point operator is de-
fined, in comparison to other algorithms, without requiring additional evaluations of
the resolvent operators. We prove the convergence of this new algorithm and analyze
its performance in a problem arising in image deblurring and denoising. This work
also contributes to the theory of resolvent splitting algorithms by extending the min-
imal lifting theorem recently proved by Malitsky and Tam to schemes with resolvent
parameters.
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1 Introduction

In the last decades, monotone inclusion problems have become an attractive topic of re-
search in operator theory and numerical optimization. The wide variety of situations in
applied mathematics that can be modeled as finding a zero of the sum of mixtures of
maximally monotone operators is one of the reasons for its increasing popularity. Among
the methods that are usually employed for tackling these problems, splitting algorithms
(see, e.g., [2, Chapter 26]) are the ones that have received more attention. Using sim-
ple operations, these methods define an iterative sequence which separately handles the
operators defining the problem and is convergent to a solution to the inclusion problem.
Further, as these methods only use first-order information, they are well suited for large-
scale optimization problems.

In this work, we focus on the study of primal-dual splitting algorithms for composite
monotone inclusion problems in real Hilbert spaces of the following form.
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Problem 1.1. Let H and (Gj)1≤j≤m be real Hilbert spaces. Let A1, . . . , An : H ⇒ H be
maximally monotone operators, let Bj : Gj ⇒ Gj be maximally monotone and Lj : H → Gj
be a bounded linear operator whose adjoint is denoted by L∗j , for all j ∈ {1, . . . ,m} . The
problem consists in solving the primal inclusion

find x ∈ H such that 0 ∈
n∑
i=1

Ai(x) +

m∑
j=1

L∗jBj(Ljx), (1)

together with its associated dual inclusion

find (u1, . . . , um) ∈ G1 × · · · × Gm such that (∃x ∈ H)


−

m∑
j=1

L∗juj ∈
n∑
i=1

Ai(x),

uj ∈ Bj(Ljx) j = 1, . . . ,m.

(2)

Problem 1.1 encompasses numerous important problems in mathematical optimization
and real-world applications, see e.g. [10, 11, 20]. In these settings, it is highly desirable
to devise algorithms that simultaneously obtain solutions to both problems (1) and (2)
–namely, a primal-dual solution– and which only make use of resolvents of the maximally
monotone operators, forward evaluations of the linear operators and their adjoints, scalar
multiplication and vector addition. Many splitting methods can be found in the literature
satisfying these conditions, see e.g. [3, 4, 5, 12, 22]. One of the best-known primal-dual
algorithm is the one proposed by Briceño-Arias and Combettes in [7], which was further
studied in [6]. To derive this scheme, let us consider first the particular instance of Prob-
lem 1.1 in which n = m = 1 and let us define the pair of operators M and N given
by {

M : H× G ⇒ H× G :(x, u)→ A(x)×B−1(u),

N : H× G → H× G :(x, u)→ (L∗u,−Lx).

The operator M is maximally monotone and N is a skew symmetric bounded linear
operator. Further, the set of zeros of the sum M +N consists of primal-dual solutions to
Problem 1.1. Applying the forward-backward-forward algorithm to the problem of finding
the zeros of M +N results in the fixed point iteration given by

xk+1 =
(
JγM (Id−γN) + γN (Id−JγM (Id−γN))

)
(xk) ∀k ≥ 0, (3)

where γ > 0, Id denotes the identity operator and JγA stands for the resolvent of A with
parameter γ (see Definition 2.3). Thus, since the resolvent of a cartesian product is the
cartesian product of the resolvents, it can be seen that (3) is a full splitting algorithm, as
it only requires evaluations of the resolvents JγA and JγB−1 , and of the linear operator
and its adjoint.

The general problem involving more than two operators can be addressed by setting

A := A1, B := A2 × · · · ×An ×B1 × · · · ×Bm

and L := Id×
(n)
· · · × Id×L1 × · · · × Lm.

In this case, according to (3), the resulting algorithm is generated by a fixed point iter-
ation of an operator defined in the ambient space Hn × G1 × · · · × Gm. The dimension
of the underlying space is directly related to the memory requirements of the resulting
algorithm. In general, a smaller dimension of the space translates into less consumption
of computational resources. For this reason, the development of algorithms with reduced
dimension for solving monotone inclusion problems has recently become an active topic of
research [8, 16, 14, 19].
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Lifted splitting algorithms The notion of lifted splitting, first introduced in [19], re-
lates a fixed point algorithm with the dimension of its underlying ambient space. Consider
the simplest case of the classical monotone inclusion problem obtained by setting m = 0
in (1):

Problem 1.2. Let A1, . . . , An : H ⇒ H be maximally monotone operators and consider
the problem

find x ∈ H such that 0 ∈
n∑
i=1

Ai(x).

A fixed point algorithm for finding a solution to Problem 1.2 employs a d-fold lifting
if its underlying fixed point operator can be defined on the d-fold Cartesian product Hd.
For example, if n = 2, the famous Douglas–Rachford algorithm [15] makes use of a 1-fold
lifting, since it can be written as the fixed point iteration

xk+1 = xk + λ (JA2 (2JA1 − Id)− JA1) (xk) ∀k ≥ 0,

with λ ∈ ]0, 2[. Until very recently, the only way to tackle the problem when n > 2 was
using Pierra’s product space reformulation [18], which implies an n-fold lifting. Nowadays,
various algorithms have been proposed allowing to solve the problem by only resorting to
an (n − 1)-lifting, see e.g. [8, ?]. This reduction from n to n − 1 has been proven to be
minimal [16] when the algorithms are required to be frugal resolvent splittings [19], which
means that each of the resolvents JA1 , . . . , JAn is evaluated only once per iteration.

To the best of the authors’ knowledge, the notion of lifting has not been developed
in the setting of primal-dual inclusions given by Problem 1.1. We will say that a primal-
dual splitting has (d, f)-lifting if the underlying fixed point operator can be written in the
product space

Hd × Gf11 × · · · × G
fm
m ,

with f =
∑m

j=1 fj . Thus, the Briceño-Arias–Combettes primal-dual splitting algorithm
makes use of an (n,m)-fold lifting. This is also the case for the other primal-dual al-
gorithms existing in the literature. In this work, we propose the first (n − 1,m)-lifted
splitting method for solving primal-dual inclusions and demonstrate the minimality of the
algorithm. In order to do this, it is important to note the definition of frugal resolvent
splitting does not allow the use of parametrized resolvents. The inclusion of these resolvent
parameters is of crucial importance for controlling the Lipschitz constants of the linear
operators in Problem 1.1, as can be seen in all the existent primal-dual schemes. This
motivates the introduction of the concept of frugal parametrized resolvent splitting whose
definition coincides with the one of frugal resolvent splitting except that it permits the in-
clusion of resolvent parameters. Our contribution to the theory of minimal lifting splitting
methods is double: (i) we extend the results of Malitsky–Tam in [16, Section 3] to frugal
parametrized resolvent splitting algorithms, (ii) we prove that for a frugal primal-dual
parametrized resolvent splitting (see Section 3 for a precise definition) with (d,m)-fold
lifting to solve Problem 1.1, one necessarily has d ≥ n− 1. Our proposed algorithm is the
first algorithm in the literature being minimal according to this relation.

The rest of this work is structured as follows. In Section 2 we recall some preliminary
notions and results. In particular, in Section 2.1 we present the extension of the results by
Malitsky–Tam [16] to parametrized resolvent splitting algorithms. In Section 3, we intro-
duce the first primal-dual algorithm with reduced lifting for composite monotone inclusion
problems and prove its convergence. The concept of parametrized resolvent splitting is
adapted to primal-dual schemes in Section 3. We prove a minimality theorem under the
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hypothesis of frugality and show that our proposed algorithm verifies it. In Section 4 we
include a numerical experiment on image deblurring and compare the performance of the
new algorithm with the best performing primal-dual algorithm for this problem. The pa-
per ends with some conclusions and possible future work directions in Section 5. Finally,
in Appendix A, a detailed proof of the results in Section 2.1 is presented.

2 Preliminaries

Throughout this paper, H, G and (Gj)1≤j≤m are real Hilbert spaces. Otherwise stated,
to simplify the notation we will employ 〈·, ·〉 and ‖ · ‖ to denote the inner product and
the induced norm, respectively, of any space. We use → to denote norm convergence of

a sequence. We denote by Hn the product Hilbert space Hn = H×
(n)
· · · ×H with inner

product defined as

〈(x1, . . . , xn), (x̄1, . . . , x̄n)〉 :=
n∑
i=1

〈xi, x̄i〉 ∀(x1, . . . , xn), (x̄1, . . . , x̄n) ∈ Hn.

Sequences and sets in product spaces are marked with bold, e.g., x = (x1, . . . , xn) ∈ Hn.

For a set-valued operator, we write A : H ⇒ H, in opposite to A : H → H which
denotes a single-valued operator. The notation dom, Fix, zer and gra is used for the
domain, the set of fixed points, the zeros and the graph of A, respectively, i.e.,

domA := {x ∈ H : A(x) 6= ∅} , FixA := {x ∈ H : x ∈ A(x)} ,
zerA := {x ∈ H : 0 ∈ A(x)} , graA := {(x, u) ∈ H ×H : u ∈ A(x)} .

The inverse operator of A, denoted by A−1, is the operator whose graph is given by
graA−1 = {(u, x) ∈ H ×H : u ∈ A(x)}. The identity operator is denoted by Id. When
L : H → G is a bounded linear operator, we use L∗ : G → H to denote its adjoint, which is
the unique bounded linear operator such that 〈Lx, y〉 = 〈x, L∗y〉, for all x ∈ H and y ∈ G.

To simplify the notation, we will use Jk, lK to denote the set of integers between k, l ∈ N,
i.e.,

Jk, lK :=

{
{k, k + 1, . . . , l} if k ≤ l,
∅ otherwise.

Definition 2.1. An operator T : H → H is said to be

(i) κ-Lipschitz continuous for κ > 0 if

‖T (x)− T (y)‖ ≤ κ‖x− y‖ ∀x, y ∈ H;

(ii) nonexpansive if it is 1-Lipschitz continuous, i.e.,

‖T (x)− T (y)‖ ≤ ‖x− y‖ ∀x, y ∈ H;

(iii) α-averaged nonexpansive for α ∈ ]0, 1[ if

‖T (x)− T (y)‖2 +
1− α
α
‖(Id−T )(x)− (Id−T )(y)‖2 ≤ ‖x− y‖2 ∀x, y ∈ H.
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Definition 2.2. A set-valued operator A : H⇒ H is monotone if

〈x− y, u− v〉 ≥ 0 ∀(x, u), (y, v) ∈ graA.

Furthermore, A is said to be maximally monotone if there exists no monotone operator
B : H⇒ H such that graB properly contains graA.

Definition 2.3. Given an operator A : H ⇒ H, the resolvent of A with parameter γ > 0
is the operator JγA : H⇒ H defined by JγA := (Id +γA)−1.

The next result contains Minty’s theorem [17].

Proposition 2.4 ([2, Proposition 23.10]). Let A : H ⇒ H be monotone and let γ > 0.
Then,

(i) JγA is single-valued,

(ii) dom JγA = H if and only if A is maximally monotone.

2.1 Parametrized resolvent splitting

Besides developing lifted splitting algorithms with reduced dimension, different works have
been devoted to determine the minimal dimension reduction that can be achieved under
some conditions. This is the case of [16, 19], where a minimality result is obtained for
the classical monotone inclusion Problem 1.2. In what follows, we employ T for denoting
a fixed point operator and S for a solution operator, both depending on the maximally
monotone operators appearing in the problem.

Definition 2.5 (Fixed point encoding [19]). A pair of operators (T, S) is a fixed point
encoding for Problem 1.2 if, for all particular instance of the problem,

FixT 6= ∅ ⇐⇒ zer

(
n∑
i=1

Ai

)
6= ∅ and z ∈ FixT =⇒ S(z) ∈ zer

(
n∑
i=1

Ai

)
.

Previous works on minimality are based on the concept of resolvent splitting, which
does not allow employing parametrized resolvents (i.e., it only permits computation of
the resolvents JA1 , . . . , JAn). In this work, we introduce the notion of parametrized re-
solvent splitting and adapt the minimality result in [16, Section 3] to the more general
parametrized setting. Since the reasoning is very similar to the one in the mentioned
reference, we only present the results here and refer the interested reader to Appendix A
for a detailed demonstration.

Definition 2.6 (Parametrized resolvent splitting). A fixed point encoding (T, S) for Prob-
lem 1.2 is a parametrized resolvent splitting if, for all particular instances of the problem,
there is a finite procedure that evaluates T and S at a given point which only uses vector
addition, scalar multiplication, and the parametrized resolvents of A1, . . . , An.

Definition 2.7 (Frugality). A parametrized resolvent splitting (T, S) for Problem 1.2 is
frugal if, in addition, each of the parametrized resolvents of A1, . . . , An is used exactly
once.

Definition 2.8 (Lifting [19]). Let d ∈ N. A fixed point encoding (T, S) is a d-fold lifting
for Problem 1.2 if T : Hd → Hd and S : Hd → H.
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Example 2.9. In [8], a product space reformulation with reduced dimension is proposed,
which applied to Problem 1.2 yields the following lifted splitting. Given any γ > 0 and
λ ∈ ]0, 2], the algorithm in [8, Theorem 5.1] can be defined by the operator R : Hn−1 →
Hn−1 given by

R(z) := z + λ


x1 − x0
x2 − x0

...
xn−1 − x0

 ,

where z = (z0, z1, . . . , zn−1) and x = (x0, x1, . . . , xn−1) ∈ Hn is the vector defined as
x0 = J γ

n−1
An

(
1

n− 1

n−1∑
i=1

zi

)
,

xi = JγAi(2x0 − zi) ∀i ∈ J1, n− 1K.

Moreover, if we let S : Hn−1 → H be the operator given by

S(z) := J γ
n−1

An

(
1

n− 1

n−1∑
i=1

zi

)
,

then the pair (R,S) is a frugal parametrized resolvent splitting with (n − 1)-fold lifting
which is not a resolvent splitting, since it makes use of resolvent parameters.

Malitsky and Tam prove in [16, Theorem 3.3] that the minimal lifting that one can
achieve for Problem 1.2 with frugal resolvent splittings is n − 1. From their proof, it
cannot be directly determined whether the same result holds when the resolvents are
allowed to have different parameters. The next theorem provides an affirmative answer to
this question.

Theorem 2.10 (Minimal lifting for frugal parametrized splittings). Let n ≥ 2 and let
(T, S) be a frugal parametrized resolvent splitting with d-fold lifting for Problem 1.2. Then,
d ≥ n− 1.

Proof. See Theorem A.3 in Appendix A.

3 A primal-dual splitting with minimal lifting

In this section we devise a primal-dual splitting algorithm for Problem 1.1 with minimal
lifting. We base our analysis in the case in which the primal problem involves only one
linear composition, i.e. m = 1, and later extend to an arbitrary finite number of linearly
composed maximally monotone operators by appealing to a product space reformulation.
Lastly, we prove minimality of the algorithm by adapting the concept of lifted splitting to
primal-dual algorithms.

The case with one linear composition

Let n ≥ 2. We start by considering the primal-dual problem given by

find x ∈ H such that 0 ∈
n∑
i=1

Ai(x) + L∗B(Lx), (4)
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and

find u ∈ G such that 0 ∈ −L

(
n∑
i=1

Ai

)−1 (
−L∗u

)
+B−1(u), (5)

where A1, . . . , An : H ⇒ H and B : G ⇒ G are maximally monotone operators and
L : H → G is a bounded linear operator. Note that in this case (5) corresponds to the
Attouch–Théra dual problem of (4), see [1]. In the following, we denote the set of solutions
of (4) and (5) by P and D, respectively, and consider the set Z defined as

Z :=

{
(x, u) ∈ H × G : −L∗u ∈

n∑
i=1

Ai(x) and u ∈ B(Lx)

}
,

which is useful for tackling primal-dual inclusion problems. It is well-known that Z is a
subset of P ×D and that

P 6= ∅ ⇐⇒ Z 6= ∅ ⇐⇒ D 6= ∅.

Indeed, we have

∃x ∈ P ⇐⇒ (∃x ∈ H) 0 ∈
n∑
i=1

Ai(x) + L∗B(Lx)

⇐⇒ (∃ (x, u) ∈ H × G)

−L
∗(u) ∈

n∑
i=1

Ai(x),

u ∈ B(Lx),

⇐⇒ (∃ (x, u) ∈ H × G)


x ∈

(
n∑
i=1

Ai

)−1 (
−L∗u

)
,

Lx ∈ B−1(u),

⇐⇒ (∃u ∈ G) 0 ∈ −L

(
n∑
i=1

Ai

)−1 (
−L∗u

)
+B−1(u)⇐⇒ ∃u ∈ D.

We refer to an element of Z as a primal-dual solution of (4)-(5).
Now, we introduce a fixed point algorithm for solving the primal-dual problem given

by (4)-(5). Let λ, γ > 0 and let T : Hn−1 × G → Hn−1 × G be the operator given by

T

(
z
v

)
:=

(
z
v

)
+ λ


x2 − x1
x3 − x2

...
xn − xn−1
γ(y − Lxn)

 , (6)

where (x, y) = (x1, . . . , xn, y) ∈ Hn × G depends on (z, v) = (z1, . . . , zn−1, v) ∈ Hn−1 × G
in the following way 

x1 = JA1(z1),

xi = JAi(zi + xi−1 − zi−1), ∀i ∈ J2, n− 1K,
xn = JAn(x1 + xn−1 − zn−1 − L∗(γLx1 − v)),

y = JB/γ

(
L(x1 + xn)− v

γ

)
.

(7)
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In the next lemma we characterize the set of fixed points of the operator T by means
of the set of primal-dual solutions to (4)-(5).

Lemma 3.1. Let n ≥ 2 and λ, γ > 0. The following assertions hold.

(i) If (x̄, ū) ∈ Z, then there exists z̄ ∈ Hn−1 such that (z̄, γLx̄− ū) ∈ FixT .

(ii) If (z̄1, . . . , z̄n−1, v̄) ∈ FixT , then (JA1(z̄1), γLx̄− v̄) ∈ Z.

As a result,
FixT 6= ∅ ⇐⇒ Z 6= ∅.

Proof. (i) Let (x̄, ū) ∈ Z. Then, ū ∈ B(Lx̄) and there exists (a1, . . . , an) ∈ Hn such that
ai ∈ Ai(x̄) and −L∗ū =

∑n
i=1 ai. Consider the vectors (z̄1, . . . , z̄n−1, v̄) ∈ Hn−1×G defined

as 
z̄1 := x̄+ a1 ∈ (Id +A1)(x̄),

z̄i := ai + z̄i−1 = (Id +Ai)(x̄)− x̄+ z̄i−1, ∀i ∈ J2, n− 1K,
v̄ := γLx̄− ū ∈ (γ Id−B) (Lx̄).

Then, we deduce that x̄ = JA1(z̄1) and x̄ = JAi(z̄i + x̄ − z̄i−1) for all i ∈ J2, n− 1K.
Moreover, we have

2x̄− z̄n−1 − L∗(γLx̄− v̄) = 2x̄− z̄n−1 − L∗(ū)

= x̄+ an + x̄− z̄n−1 +

n−1∑
i=1

ai

= x̄+ an + x̄− z̄n−1 +
n−1∑
i=2

(z̄i − z̄i−1) + z̄1 − x̄ = (Id +An)(x̄).

Altogether, we obtain

x̄ = JA1(z̄1),

x̄ = JAi(z̄i + x̄− z̄i−1), ∀i ∈ J2, n− 1K,
x̄ = JAn(2x̄− z̄n−1 − L∗(γLx̄− v̄)),

Lx̄ = JB/γ

(
2Lx̄− v̄

γ

)
,

which implies that (z̄1, . . . , z̄n−1, v̄) ∈ FixT .
(ii) Let (z̄1, . . . , z̄n−1, v̄) ∈ FixT and set x̄ := JA(z̄1). By (6), y = Lx̄ and x̄i = x̄ for

all i = 1, . . . , n. Consequently, from (7) we derive
z̄1 − x̄ ∈ A1(x̄),
z̄i − z̄i−1 ∈ Ai(x̄), ∀i ∈ J2, n− 1K,
x̄− z̄n−1 − L∗(γLx̄− v̄) ∈ An(x̄),
γLx̄− v̄ ∈ B(Lx̄).

Summing together the first n inclusions above and setting ū := γLx̄− v̄, we deduce−L
∗ū ∈

n∑
i=1

Ai(x̄),

ū ∈ B(Lx̄),

which implies (x̄, ū) ∈ Z, as claimed.
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The following technical lemma provides nonexpansive properties of the operator T in
the Hilbert space Hn−1 × G with scalar product given by

〈(z1, . . . , zn−1, v), (z̄1, . . . , z̄n−1, v̄)〉γ :=
n−1∑
i=1

〈zi, z̄i〉H +
1

γ
〈v, v̄〉G , (8)

for (z1, . . . , zn−1, v), (z̄1, . . . , z̄n−1, v̄) ∈ Hn−1 × G and γ > 0.

Lemma 3.2. For all (z, v) = (z1, . . . , zn−1, v) ∈ Hn−1×G and (z̄, v̄) = (z̄1, . . . , z̄n−1, v̄) ∈
Hn−1 × G,

‖T (z, v)− T (z̄, v̄)‖2γ +
1− λ
λ
‖ (Id−T ) (z, v)− (Id−T ) (z̄, v̄)‖2γ

+
1− γ‖L‖2

λ

∥∥∥∥∥
n−1∑
i=1

(Id−T ) (z, v)i −
n−1∑
i=1

(Id−T ) (z̄, v̄)i

∥∥∥∥∥
2

γ

≤ ‖(z, v)− (z̄, v̄)‖2γ ,

(9)
where ‖ · ‖γ denotes the norm induced by the scalar product (8). In particular, if λ ∈ ]0, 1[

and γ ∈
]
0, 1
‖L‖2

]
, the operator T is λ-averaged nonexpansive.

Proof. Let (x1, . . . , xn, y) ∈ Hn × G and (x̄1, . . . , x̄n, ȳ) ∈ Hn × G be given by (7) from
(z, v) and (z̄, v̄), respectively. For simplicity, we denote (z+, v+) = T (z, v) and (z̄+, v̄+) =
T (z̄, v̄). Since z1 − x1 ∈ A1(x1) and z̄1 − x̄1 ∈ A1(x̄1), by monotonicity of A1

0 ≤ 〈(z1 − x1)− (z̄1 − x̄1), x1 − x̄1〉
= 〈(z1 − x1)− (z̄1 − x̄1), x1 − x2〉+ 〈(z1 − x1)− (z̄1 − x̄1), x2 − x̄1〉.

(10)

For every i ∈ J2, n− 1K, we have zi + xi−1− zi−1− xi ∈ Ai(xi) and z̄i + x̄i−1− z̄i−1− x̄i ∈
Ai(x̄i) and thus, by monotonicity of Ai

0 ≤ 〈(zi + xi−1 − zi−1 − xi)− (z̄i + x̄i−1 − z̄i−1 − x̄i), xi − x̄i〉
= 〈(zi − xi)− (z̄i − x̄i), xi − x̄i〉 − 〈(zi−1 − xi−1)− (z̄i−1 − x̄i−1), xi − x̄i〉
= 〈(zi − xi)− (z̄i − x̄i), xi − xi+1〉+ 〈(zi − xi)− (z̄i − x̄i), xi+1 − x̄i〉
− 〈(zi−1 − xi−1)− (z̄i−1 − x̄i−1), xi − x̄i−1〉
− 〈(zi−1 − xi−1)− (z̄i−1 − x̄i−1), x̄i−1 − x̄i〉.

(11)

Now, since x1 + xn−1 − zn−1 − xn −L∗ (γLx1 − v) ∈ An(xn) and x̄1 + x̄n−1 − z̄n−1 − x̄n −
L∗ (γLx̄1 − v̄) ∈ An(x̄n), again monotonicity of An results in the inequality

0 ≤ 〈x1 + xn−1 − zn−1 − xn − L∗ (γLx1 − v) , xn − x̄n〉
− 〈x̄1 + x̄n−1 − z̄n−1 − x̄n − L∗ (γLx̄1 − v̄) , xn − x̄n〉

= 〈(xn−1 − zn−1)− (x̄n−1 − z̄n−1), xn − x̄n〉+ 〈(x1 − x̄1)− (xn − x̄n), xn − x̄n〉
− 〈γ (Lx1 − Lx̄1)− (v − v̄), Lxn − Lx̄n〉

= 〈(xn−1 − zn−1)− (x̄n−1 − z̄n−1), xn − x̄n−1〉+ 〈(x1 − x̄1)− (xn − x̄n), xn − x̄n〉
+ 〈(xn−1 − zn−1)− (x̄n−1 − z̄n−1), x̄n−1 − x̄n〉
− 〈γ (Lx1 − Lx̄1)− (v − v̄), Lxn − Lx̄n〉.

(12)

Finally, we have γL(x1 + xn) − v − γy ∈ B(y) and γL(x̄1 + x̄n) − v̄ − γȳ ∈ B(ȳ), so by
monotonicity of B we get

0 ≤ 〈(γL(x1 + xn)− v − γ y)− (γL(x̄1 + x̄n)− v̄ − γ ȳ), y − ȳ〉. (13)
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Summing together (10)-(13) and rearranging, yields

0 ≤
n−1∑
i=1

〈(xi − xi+1)− (x̄i − x̄i+1), zi − z̄i〉+

n−1∑
i=1

〈(xi − x̄i)− (xi+1 − x̄i+1), x̄i − xi〉

+ 〈(x1 − x̄1)− (xn − x̄n), xn − x̄n〉+ 〈(Lxn − Lx̄n)− (y − ȳ), v − v̄〉
+ γ〈

(
L(x1 + xn)− L(x̄1 + x̄n)

)
− (y − ȳ), y − ȳ〉

− γ〈Lx1 − Lx̄1, Lxn − Lx̄n〉.

(14)

The sums in (14) can be written, respectively, as

n−1∑
i=1

〈(xi − xi+1)− (x̄i − x̄i+1), zi − z̄i〉

=
1

λ

n−1∑
i=1

〈(zi − z+i )− (z̄i − z̄+i ), zi − z̄i〉

=
1

λ
〈(z− z+)− (z̄− z̄+), z− z̄〉

=
1

2λ

(
‖(z− z+)− (z̄− z̄+)‖2 − ‖z+ − z̄+‖2 + ‖z− z̄‖2

)
,

(15)

and

n−1∑
i=1

〈(xi − x̄i)− (xi+1 − x̄i+1), x̄i − xi〉

=
1

2

n−1∑
i=1

(
‖xi+1 − x̄i+1‖2 − ‖xi − x̄i‖2 − ‖(xi − xi+1)− (x̄i − x̄i+1)‖2

)
=

1

2

(
‖xn − x̄n‖2 − ‖x1 − x̄1‖2 −

1

λ2

n−1∑
i=1

‖(zi − z+i )− (z̄i − z̄+i )‖2
)

=
1

2

(
‖xn − x̄n‖2 − ‖x1 − x̄1‖2 −

1

λ2
‖(z− z+)− (z̄− z̄+)‖2

)
.

(16)

The third term in (14), becomes

〈(x1−x̄1)−(xn−x̄n), xn−x̄n〉 =
1

2

(
‖x1 − x̄1‖2 − ‖xn − x̄n‖2 − ‖(x1 − x̄1)− (xn − x̄n)‖2

)
,

(17)
while the fourth term yields

〈(Lxn−Lx̄n)− (y − ȳ), v − v̄〉

=
1

γλ
〈(v − v+)− (v̄ − v̄+), v − v̄〉

=
1

2γλ

(
‖(v − v+)− (v̄ − v̄+)‖2 − ‖v+ − v̄+‖2 + ‖v − v̄‖2

)
.

(18)

Lastly, making use of the Cauchy–Schwarz and Young’s inequalities, the second last term
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of (14) gives

γ〈
(
L(x1 + xn)− L(x̄1 + x̄n)

)
− (y − ȳ), y − ȳ

〉
= γ (〈Lx1 − Lx̄1, y − ȳ〉+ 〈(Lxn − Lx̄n)− (y − ȳ), y − ȳ〉)

=
γ

2

(
‖Lxn − Lx̄n‖2 − ‖ (Lxn − Lx̄n)− (y − ȳ)‖2 − ‖y − ȳ‖2

)
+ γ〈Lx1 − Lx̄1, y − ȳ〉

≤ γ

2

(
‖Lxn − Lx̄n‖2 −

1

γ2λ2
‖(v − v+)− (v̄ − v̄+)‖2 − ‖y − ȳ‖2

)
+
γ

2
‖Lx1 − Lx̄1‖2 +

γ

2
‖y − ȳ‖2

=
γ

2
‖Lx1 − Lx̄1‖2 +

γ

2
‖Lxn − Lx̄n‖2 −

1

2γλ2
‖(v − v+)− (v̄ − v̄+)‖2,

(19)

while the last term can be rearranged as follows

−γ〈Lx1 − Lx̄1, Lxn − Lx̄n〉

=
γ

2

(
‖L(x1 − xn)− L(x̄1 − x̄n)‖2 − ‖Lx1 − Lx̄1‖2 − ‖Lxn − Lx̄n‖2

)
.

(20)

Summing together (19) and (20) and using the Lipschitz continuity of L, we get

γ〈
(
L(x1 + xn)− L(x̄1 + x̄n)

)
− (y − ȳ), y − ȳ〉 − γ〈Lx1 − Lx̄1, Lxn − Lx̄n〉

=
γ

2
‖L(x1 − xn)− L(x̄1 − x̄n)‖2 − 1

2γλ2
‖(v − v+)− (v̄ − v̄+)‖2

≤ γ‖L‖2

2
‖(x1 − xn)− (x̄1 − x̄n)‖2 − 1

2γλ2
‖(v − v+)− (v̄ − v̄+)‖2.

(21)

Multiplying (14) by 2λ and substituting equations (15)-(21), we obtain the final inequality

‖z+ − z̄+‖2 +

(
1

λ
− 1

)(
‖(z− z+)− (z̄− z̄+)‖2 +

1

γ
‖(v − v+)− (v̄ − v̄+)‖2

)
+

1

γ
‖v+ − v̄+‖2 + λ

(
1− γ‖L‖2

)
‖(x1 − xn)− (x̄1 − x̄n)‖2

≤ ‖z− z̄‖2 +
1

γ
‖v − v̄‖2.

To complete the proof, just note that

λ(x1 − xn)− λ(x̄1 − x̄n) = λ
n−1∑
i=1

(xi − xi+1)− λ
n−1∑
i=1

(x̄i − x̄i+1)

=

n−1∑
i=1

(zi − z+i )−
n−1∑
i=1

(z̄i − z̄+i ),

from where (9) finally follows.

Next we state our main result, which establishes the convergence of the iterative algo-
rithm defined by the operator T in (6)-(7).

11



Theorem 3.3. Let n ≥ 2, let L : H → G be a bounded linear operator and let A1, . . . , An :
H⇒ H and B : G ⇒ G be maximally monotone operators with zer (

∑n
i=1Ai + L∗BL) 6= ∅.

Further, let λ ∈ ]0, 1[ and γ ∈
]
0, 1
‖L‖2

]
. Given an initial point (z0, v0) = (z01 , . . . , z

0
n−1, v

0) ∈
Hn−1 × G, consider the sequences given by

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ


xk2 − xk1
xk3 − xk2

...
xkn − xkn−1
γ(yk − Lxkn)

 ∀k ≥ 0, (22)

with 

xk1 = JA1(zk1 ),

xki = JAi(z
k
i + xki−1 − zki−1), ∀i ∈ J2, n− 1K,

xkn = JAn(xk1 + xkn−1 − zkn−1 − L∗(γLxk1 − vk)),

yk = JB/γ

(
L(xk1 + xkn)− vk

γ

)
.

(23)

Then the following statements hold.

(i) The sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ FixT .

(ii) The sequence (xk1, . . . , x
k
n, y

k)k∈N converges weakly to (x̄, . . . , x̄, Lx̄) with x̄ ∈ P.

(iii) The sequence
(
γLxki − vk

)
k∈N converges weakly to γLx̄− v̄ ∈ D, for all i ∈ J1, nK.

Proof. (i) The sequence in (22) is the fixed point iteration generated as(
zk+1

vk+1

)
= T

(
zk

vk

)
∀k ≥ 0.

Since λ ∈ ]0, 1[ and γ ∈
]
0, ‖L‖−2

]
, T is averaged nonexpansive by Lemma 3.2 and,

moreover, FixT = ∅, due to Z 6= ∅ and Lemma 3.1(i). Then, by [2, Theorem 5.15] the
sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ FixT and limk→∞ ‖(zk+1, vk+1)−
(zk, vk)‖γ = 0.

(ii) From (i), the sequence (zk, vk)k∈N is bounded. Then, nonexpansivity of the re-
solvents and boundedness of the linear operator L imply that the sequence (xk, yk)k∈N =
(xk1, . . . , x

k
n, y

k)k∈N is also bounded. Further, the fact that (zk+1, vk+1)k∈N−(zk, vk)k∈N →
0, as k →∞, implies by (22) that

yk − Lxkn → 0 and xki+1 − xki → 0, for all i ∈ J1, n− 2K. (24)

Next, by making use of the definition of resolvents and (23), we can write

C



zk1 − xk1
(zk2 − xk2)− (zk1 − xk1)

...
(zkn−1 − xkn−1)− (zkn−2 − xkn−2)

xkn
γ
(
L(xk1 + xkn)− yk

)
− vk


3



xk1 − xkn
xk2 − xkn

...
xkn−1 − xkn

xk1 − xkn + γL∗
(
Lxkn − yk

)
yk − Lxkn


, (25)
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where the operator C : Hn × G ⇒ Hn × G is given by

C :=



A−11

A−12
...

A−1n−1
An
B−1


+



0 0 . . . 0 − Id 0
0 0 . . . 0 − Id 0
...

...
. . .

...
...

...
0 0 . . . 0 − Id 0
Id Id . . . Id 0 L∗

0 0 . . . 0 −L 0


. (26)

The operator C is maximally monotone as the sum of a maximally monotone operator
and a skew symmetric linear operator (see, e.g., [2, Corollary 25.5 (i) & Example 20.35]).
Thus, the graph of C is sequentially closed in the weak-strong topology, by demiclosedness
of maximally monotone operators [2, Corollary 20.38].

Now, let (x̄, ȳ) be a weak sequential cluster point of (xk, yk)k∈N. Due to (24), x̄ is
of the form x̄ = (x̄, . . . , x̄) ∈ Hn and ȳ = Lx̄. Taking the limit along a subsequence of
(xk, yk)k∈N which converges weakly to (x̄, ȳ) and using demiclosedness of C, equations (25)
and (26) yield the expression

z̄1 − x̄ ∈ A1(x̄),
z̄i − z̄i−1 ∈ Ai(x̄), ∀i ∈ J2, n− 1K,
x̄− z̄n−1 − L∗(γLx̄− v̄) ∈ An(x̄),
γLx̄− v̄ ∈ B(Lx̄),

which, by summing the first n equations, implies that (x̄, γLx̄− v̄) ∈ Z with x̄ = JA1(z̄1).
In particular, we have shown that (x̄, ȳ) is directly obtained from z̄, implying that it is
the unique weak sequential cluster point of the bounded sequence (xk, yk)k∈N. Thus, the
full sequence converges weakly to this point.

(iii) From (i)-(ii), for all i ∈ J1, nK, we deduce that the sequence (γLxki −vk)k∈N weakly
converges to γLx̄− v̄, which belongs to D since (x̄, γLx̄− v̄) ∈ Z.

Remark 3.4 (Malitsky–Tam resolvent splitting [16] as a special case). Consider Prob-
lem (4)-(5) in the particular case in which L = Id. Then, B : H ⇒ H and equation (4)
becomes the classical monotone inclusion problem with (n + 1)-operators. Furthermore,
by setting γ = 1 in Theorem 3.3, it is straightforward to see that the sequences in (22)-(23)
yield the Malitsky–Tam resolvent splitting with minimal lifting for (n+ 1)-operators.

Remark 3.5 (On the parameter γ in the definition of the norm ‖ · ‖γ). In Lemma 3.2, we
proved that the operator T is λ-averaged nonexpansice with respect to the norm ‖ · ‖γ
induced by the scalar product defined in (8). Although the use of this norm did not require
detours from the usual procedure to prove convergence of the fixed point algorithm in The-
orem 3.3, it may numerically affect the performance of the algorithm. To give an intuition
about this, consider the norm of the sequence of residuals

(
‖(zk+1, vk+1)− (zk, vk)‖γ

)
k∈N,

which converges to 0 as the algorithm reaches a fixed point, and note that we have∥∥∥(zk+1, vk+1)− (zk, vk)
∥∥∥2
γ

= ‖zk+1 − zk‖2 +
1

γ
‖vk+1 − vk‖2 ∀k ≥ 0.

Lemma 3.2 implies that this sequence is monotone decreasing, but if γ is very small, the
weight of the sequence of dual variables (vk+1− vk)k∈N in the norm would be much larger
than the one of the sequence of primal variables (zk+1− zk)k∈N, so a small decrease in the
value of ‖vk+1− vk‖ will readily imply a decrease of the norm of the sequence of residuals
even if ‖zk+1−zk‖ does not diminish much. Because of that, a larger number of iterations
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might be needed to achieve convergence of the primal sequence, which can slow down the
overall convergence of the algorithm. Nonetheless, it is possible to perform some sort of
pre-conditioning to prevent from having a large constant in the definition of the norm.
We will further comment on this in the numerical experiment in Section 4.

The case with multiple linear compositions

A standard product space reformulation permits to extend our method to the more general
inclusion Problem 1.1, which has finitely many linearly composed maximally monotone
operators. We detail this in the following corollary, while the resulting scheme is displayed
in Algorithm 1.

Algorithm 1 Primal-dual splitting for Problem 1.1 with (n− 1,m)-lifting, with n ≥ 2.

Require: λ ∈ ]0, 1[ and γ ∈
]
0, 1/

∑m
j=1 ‖Lj‖2

]
.

1: Choose z0 = (z01 , . . . , z
0
n−1) ∈ Hn−1 and v0 = (v01, . . . , v

0
m) ∈ G1 × · · · × Gm.

2: for k = 0, 1, . . . do
3: Compute

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ



xk2 − xk1
xk3 − xk2

...
xkn − xkn−1

γ(yk1 − L1x
k
n)

...
γ(ykm − Lmxkn)


, (27)

with xk = (xk1, . . . , x
k
n) ∈ Hn and yk = (yk1 , . . . , y

k
m) ∈ G1 × · · · × Gm computed as

xk1 = JA1(zk1 ),

xki = JAi(z
k
i + xki−1 − zi−1) ∀i ∈ J2, n− 1K,

xkn = JAn

xk1 + xkn−1 − zkn−1 −
m∑
j=1

L∗j (γLjx
k
1 − vkj )

 ,

ykj = JBj/γ

(
Lj(x

k
1 + xkn)−

vkj
γ

)
∀j ∈ J1,mK.

(28)

4: end for

Corollary 3.6. Let n ≥ 2 and assume that Problem 1.1 has a solution. Let λ ∈ ]0, 1[

and γ ∈
]
0, 1/

∑m
j=1 ‖Lj‖2

]
. Given some initial points z0 = (z1, . . . , zn−1) ∈ Hn−1 and

v0 = (v01, . . . , v
0
m) ∈ G1 × · · · × Gm, consider the sequences (zk,vk)k∈N and (xk,yk)k∈N

generated by Algorithm 1. Then, the following assertions hold:

(i) The sequence (zk,vk)k∈N converges weakly to a point (z̄, v̄) ∈ Hn−1 ×G1 × · · · × Gm.

(ii) The sequence (xk1, . . . , x
k
n, y

k
1 , . . . , y

k
m)k∈N converges weakly to (x̄, . . . , x̄, L1x̄, . . . , Lmx̄)

with x̄ ∈ H solving the primal inclusion (1).

(iii) For all i ∈ J1, nK, the sequence (γL1x
k
i − vk1 , . . . , γLmxki − vkm)k∈N converges weakly

to (γL1x̄− v̄1, . . . , γLmx̄− v̄m), which solves the dual inclusion (2).
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Proof. Just note that Problem 1.1 can be reformulated as an instance of Problem (4)-(5)
by replacing B by the operator B : G1× · · ·×Gm ⇒ G1× · · ·×Gm defined as the cartesian
product B :=×m

j=1Bj and L by the linear operator L :=×m
j=1 Lj . In particular, ‖L‖2 =∑n

j=1 ‖Lj‖2 and its adjoint operator is L∗ : G1×· · ·×Gm → H : (v1, . . . , vm)→
∑m

j=1 L
∗
jvj .

Hence, the result follows by considering the averaged nonexpansive operator T in (6) for
this choice of operators and applying Theorem 3.3.

Minimality for primal-dual parametrized resolvent splitting

We begin by extending the definition of fixed point encoding to englobe primal-dual prob-
lems. As in Section 2.1, we denote by T a fixed point operator and by S a solution
operator, both parametrized by the maximally monotone operators as well as the linear
and adjoint operators appearing in Problem 1.1.

Definition 3.7 (Fixed point encoding). A pair of operators (T, S) is a fixed point encod-
ing for Problem 1.1 if, for all particular instance of the problem,

FixT 6= ∅ ⇐⇒ zer

 n∑
i=1

Ai +

m∑
j=1

L∗jBjLj

 6= ∅ and w ∈ FixT =⇒ S(w) ∈ Z,

where we recall that Z denotes the set of primal-dual solutions of the problem.

When talking about lifting for primal-dual problems, the need to distinguish between
variables in the space of primal solutions and dual solutions arises. This motivates the
following definition.

Definition 3.8. Primal-dual lifting] Let d, f ∈ Z+. A fixed point encoding (T, S) is a
(d, f)-fold lifting for Problem 1.1 if

T : Hd × Gf11 × · · · × G
fm
m → Hd × Gf11 × · · · × G

fm
m

and

S : Hd × Gf11 × · · · × G
fm
m → H× G1 × · · · × Gm,

where fj ≥ 0 for all j ∈ J1,mK and f =
∑m

j=1 fj. We adopt the convention that the space
Gj vanishes from the equation when fj = 0.

The need to control the Lipschitz constants of the linear operators requires the in-
troduction of parameters in the resolvents of the maximally monotone operators. This
motivates the definition of parametrized resolvent splitting introduced in Section 2.1 and
which we now adapt to primal-dual splitting algorithms.

Definition 3.9 (Primal-dual parametrized resolvent splitting). A fixed point encoding
(T, S) for Problem 1.1 is a primal-dual parametrized resolvent splitting if, for all particular
instance of the problem, there is a finite procedure that evaluates T and S at a given point
which only uses vector addition, scalar multiplication and the parametrized resolvents of
A1, . . . An and B1, . . . , Bm.

Definition 3.10 (Frugality). A primal-dual parametrized resolvent splitting (T, S) for
Problem 1.1 is frugal if, in addition, each of the parametrized resolvents of A1, . . . , An
and B1, . . . , Bm is used exactly once.

15



Remark 3.11 (On the absence of restrictions on the evaluation of the linear operators).
Since in the finite case, a forward evaluation of a linear operator is computationally equiva-
lent to performing vector addition and scalar multiplication, this suggests that for practical
applications there is no computational need to control the number of evaluations of the
linear operators in the definition of frugality.

Example 3.12. Let n ≥ 2 and consider Problem 1.1. Let T : Hn−1×G1×· · ·×Gm → Hn−1×
G1 × · · · × Gm be the operator defined in (6) by setting B :=×m

j=1Bj and L :=×m
j=1 Lj .

Let S : Hn−1 × G1 × · · · × Gm → H× G1 × · · · × Gm be defined as

S

(
z
v

)
:=


JA1(z1)

γL1JA1(z1)− v1
...

γLmJA1(z1)− vm

 .

Then, by Lemma 3.1 and Corollary 3.6, the pair (T, S) is a frugal parametrized resolvent
splitting with (n− 1,m)-fold lifting.

The following result shows that the lifting of Algorithm 1 is minimal among frugal
primal-dual parametrized resolvent splitting algorithms with m dual variables.

Theorem 3.13 (Minimality theorem for frugal parametrized splitting). Let (T, S) be a
frugal primal-dual parametrized resolvent splitting for Problem 1.1 with (d,m)-fold lifting.
Then, if n ≥ 2, necessarily d ≥ n− 1.

Proof. By way of contradiction, let (T, S) be a frugal primal-dual parametrized resolvent
splitting for Problem 1.1 with (d,m) fold lifting and d < n− 1. Consider the instance of
the problem in which Lj = Id : H → H for all j ∈ J1,mK. Then, Problem 1.1 becomes
the classical monotone inclusion problem with n + m operators and (T, S) is a frugal
resolvent splitting with (d + m)-fold lifting for such problem with d + m < n + m − 1,
which contradicts Theorem 2.10.

Finally, we conclude this section by highlighting that Algorithm 1 can be applied with
n < 2, by setting Ai = 0 if required. However, a reduction in the lifting is not obtained in
this case.

Remark 3.14 (Algorithm 1 when n ≤ 1). Consider Algorithm 1 applied to Problem 1.1
with n ≤ 1. We distinguish the two cases:

(i) If n = 1, then Algorithm 1 has (1,m)-lifting. Indeed, equations (27) and (28) become

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ


xk − zk

γ(yk1 − L1x
k)

...
γ(ykm − Lmxk)

 ∀k ≥ 0, (29)

and 
xk = JA1

zk − m∑
j=1

L∗j (γLjz
k − vkj )

 ,

ykj = JBj/γ

(
Lj(z

k + xk)−
vkj
γ

)
, ∀j ∈ J1,mK,

(30)

respectively. This means that, in contrast with what happens when n ≥ 2, there is
no reduction in the lifting with respect to the number of operators involved.

16



(ii) If n = 0, the scheme also has (1,m)-lifting. In fact, the scheme is the same as in the
previous case but substituting JA1 by Id in (30). Note that this is also the lifting
obtained by the already known algorithms in the literature applied to this case.

4 Numerical experiments

In this section, we test our algorithm for solving an ill-conditioned linear inverse problem
which arises in image deblurring and denoising. Let b ∈ Rn be an observed blurred and
noisy image of size M ×N , with n = MN for grayscale and n = 3MN for color images,
and denote by A ∈ Rn×n the blur operator. The problem can be tackled by means of the
regularized convex non-differentiable problem

inf
s∈Rn

{
‖As− b‖1 + α1‖Ws‖1 + α2TV (s) + δ[0,1]n(s)

}
, (31)

where α1, α2 > 0 are regularization parameters, δ[0,1]n denotes the indicator function of
the set [0, 1]n, TV : Rn → R is the discrete isotropic total variation function and W is the
linear operator given by the normalized nonstandard Haar transform [21].

Recalling Remark 3.5, it is of interest to consider a mechanism which allows tuning
the parameter γ appearing in the definition of the norm given by the inner product in (8)
to an appropriate value. To this aim, we perform in (31) a change of variable of the form
s = µx, with µ > 0, and instead handle the problem

inf
x∈Rn

{
µ

∥∥∥∥Ax− b

µ

∥∥∥∥
1

+ α1µ‖Wx‖1 + α2TV (µx) + δ[0,1/µ]n(x)

}
. (32)

Below we will see the way in which the choice of µ can help setting a suitable parameter γ.
The minimization problem in (32) can be modeled as a composite monotone inclusion

problem.For this, define the operator L : Rn → Rn × Rn : x → (L1x, L2x) where L1 and
L2 are defined component-wise as

(L1x)i,j =

{
xi+1,j−xi,j

µ , if i < M,

0, otherwise,
and (L2x)i,j =

{
xi,j+1−xi,j

µ , if j < N,

0, otherwise.
(33)

Then the parametrized total variation function can be written as TV (µ ·) = ‖L(·)‖×,

with ‖(p, q)‖× :=
∑m

i=1

∑n
j=1

√
p2i,j + q2i,j . Furthermore, an upper bound of the Lipschitz

constant of L is given by ‖L‖2 ≤ 8µ2 (see [9] for details).
By [2, Proposition 27.5], obtaining a solution to the following problem is equivalent to

solving (32)

find x ∈ zer
(
N[0,1/µ]n +W ∗ ◦ ∂g1 ◦W +A∗ ◦ ∂g2 ◦A+ L∗ ◦ ∂g3 ◦ L

)
, (34)

with g1 : Rn → R, g1(y) = α1µ‖y‖1, g2 : Rn → R, g2(y) = µ‖y− b/µ‖1, g3 : Rn×Rn → R,
g3(p, q) = α2‖(p, q)‖×, and N[0,1/µ]n the normal cone operator to the set [0, 1/µ]n. In
order to implement Algorithm 1 for solving (34), we need the expression of the following
resolvents and proximity operators. By [2, Proposition 23.25 (iii)], the second term in (34)
is a maximally monotone operator and its resolvent can be expressed as

JW ∗◦∂g1◦W = Id−W ∗ ◦
(
Id−proxg1

)
◦W = Id−W ∗ ◦ proxg∗1 ◦W,

where proxg = J∂g denotes the proximity operator of a function g, and g∗1 is the conjugate
function to g1, which is equal to the indicator function δ[−α1µ,α1µ]n , and thus proxg∗1 =
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P[−α1µ,α1µ]n . Given σ > 0, the proximity operators of g2 and g3 are, respectively,

proxσg2(x) =
b

µ
+ proxσµ‖·‖1

(
x− b

µ

)
=
b

µ
+ sign

(
x− b

µ

)
�
[∣∣∣∣x− b

µ

∣∣∣∣− σµ]
+

,

where � denotes element-wise product and [ · ]+ and | · | are applied element-wise, and

proxσg3 = Id−σ prox 1
σ
g∗3
◦ 1

σ
Id = Id−σPS ◦

1

σ
Id,

since the conjugate function of g3 is g∗3 : Rn × Rn → Rn, g∗3 = δS , with the set S defined
as

S :=

{
(p, q) ∈ Rn × Rn : max

1≤i≤M,1≤j≤N

√
p2i,j + q2i,j ≤ α2

}
,

and the projection operator PS : Rn × Rn → S is given component-wise by

(pi,j , qi,j) 7→ α2
(pi,j , qi,j)

max {α2,
√
p2i,j + q2i,j}

, 1 ≤ i ≤M, 1 ≤ j ≤ N.

Hence, when choosing z0 ∈ Rn, v01 ∈ Rn and v02 ∈ Rn × Rn as starting values, and letting
λ ∈ ]0, 1[ and γ ∈

]
0, 1/(‖A‖2 + ‖L‖2)

]
, the iterative scheme in Algorithm 1 becomes

xk1 = P[0,1/µ]n(zk),

xk2 =
(
Id−W ∗ ◦ P[−α1µ,α1µ]n ◦W

) (
2xk1 − zk −A∗(γAxk1 − vk1 )− L∗(γLxk1 − vk2 )

)
,

yk1 =
b

µ
+ proxµ

γ
‖·‖1

(
A(xk1 + xk2)− vk1

γ
− b

µ

)
,

yk2 =

(
Id−1

γ
PS

)(
γL(xk1 + xk2)− vk2

)
,

zk+1 = zk + λ(xk2 − xk1),

vk+1
1 = vk1 + λγ(yk1 −Axk2),

vk+1
2 = vk2 + λγ(yk2 − Lxk2).

In our experiment, we replicate the problem in [5, Section 4.2], where an extensive com-
parison between different primal-dual algorithms is presented. Since the best performing
algorithm is the Douglas–Rachford type primal-dual method in [5, Algorithm 3.1], we limit
our comparison to this algorithm, whose detailed implementation is given in the cited
work. We ran our experiments in Matlab, making use of the inbuilt functions fspecial

and imfilter to define an operator A which is a Gaussian blur operator of size 9×9 with
standard deviation 4 and reflexive boundary conditions. In particular, A verifies ‖A‖ = 1
and A∗ = A. We employed as observed image b a picture taken at the Schönbrunn Palace
Gardens (Vienna) subjected to the already specified blur followed by the addition of a
zero-mean Gaussian noise with standard deviation 10−3 (see Figure 2). To test the in-
fluence on the performance of the picture size, we resized the original picture to different
pixel resolutions (see Table 1).

When measuring the quality of the restored images, we use the improvement in signal-
to-noise-ratio (ISNR), which is given by

ISNRk = 10 log10

(
‖x− b‖2

‖x− xk‖2

)
,
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where x and xk are the original and the reconstructed image at iteration k, respectively.
We tuned the regularization parameters in order to guarantee an adequate ISNR value for
the restored images, setting α1 := 0.005 and α2 := 0.009.

We recall that the stepsize parameter γ of Algorithm 1 must be taken in the interval
γ ∈

]
0, 1/(‖A‖2 + ‖L‖2)

]
=
]
0, 1/(1 + 8µ2)

]
. When µ = 1 (i.e., we solve (31)), this interval

is ]0, 0.111]. In our numerical experiments we empirically observed that a very small
stepsize negatively affects the performance of the algorithm, as mentioned in Remark 3.5.
After testing different options, the most convenient one seems to be µ = 1/

√
8, which

implies making the Lipschitz constant of both linear operators in the problem equal to 1.
The initialization of each of the methods was the following:

• DR1([5, Algorithm 3.1]): starting points x0 = b and (v1,0, v2,0, v3,0) = (0, 0, 0),
σ1 = 1, σ2 = 0.05, σ3 = 0.05, τ = 1(σ1 + σ2 + 8σ3)

−1 − 0.01, λn = 1.5 for al n ∈ N.

• Algorithm 1 with µ = 1: starting points z0 = b and (v01, v
0
2) = (0, 0), λ = 0.99 and

γ = 1/9;

• Algorithm 1 with µ = 1/
√

8: starting points z0 = b/µ and (v01, v
0
2) = (0, 0), λ = 0.99

and γ = 1/2.

We performed 400 iterations of each of the algorithms and compared the values of the
objective function in (32) and the ISNR with respect to the CPU time, which provides
a more realistic comparison than iteration count, since DR1 has a higher computational
cost per iteration than Algorithm 1. The tests were ran on a desktop of Intel Core i7-4770
CPU 3.40GHz with 32GB RAM, under Windows 10 (64-bit). The algorithms were ran 3
times, once for each of the RGB components of the picture. The evolution in CPU time of
adding these 3 values of the objective function and those of the ISNR for the 640×768-sized
picture are represented in Figure 1, where we observe that Algorithm 1 with µ = 1/

√
8

obtains slightly better values than those returned by DR1, but in significantly less time.
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Figure 1: The evolution of the values of the objective function and of the ISNR in CPU
time for 400 iterations of Algorithm 1 with µ = 1 and µ = 1

√
8 and DR1, using the

640× 768 pixels image displayed in Figure 2.

The restored images are presented in Figure 2. There is no much difference between
the ones corresponding to Algorithm 1 with µ = 1/

√
8 (bottom-middle) and DR1 (bottom-

right), but a close look at the image obtained with Algorithm 1 with µ = 1 permits to
observe its worse quality. To show that this trend in the performance of the algorithms is
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not affected by the image size, we present in Table 1 the results from running the algorithms
on the same picture for five different pixel resolutions. Overall, we notice that the CPU
time required for computing the 400 iterations is significantly lower for Algorithm 1, as
expected. On average, DR1 required 45% more time than Algorithm 1 to compute the 400
iterations, independently of the size of the image. Regarding the parameter µ, Algorithm 1
with µ = 1 is notably outperformed by the other two methods, making thus clear the
influence that this parameter has on it. The function values obtained were slightly lower
for DR1, while the ISNR was slightly lower for Algorithm 1 with µ = 1/

√
8, which implies

that both algorithms performed similarly with respect to the restored image quality.

Interpretation of the results of the experiments

The experimental results show that, after performing the same number of iterations, Algo-
rithm 1 with µ = 1/

√
8 obtains similar results in the function values and the measurement

in the quality of the image recovery than those obtained by DR1, but in considerably less
time. This decrease in the running time can be attributed to the reduction in the lifting
of the operator. Although in the first iterations DR1 achieves a larger reduction of the
objective function, the quality of the restored image is not sufficient, as assessed by the low
ISNR values. On the other hand, Algorithm 1 with µ = 1 can be discarded, as it obtains
higher objective and lower ISNR values. Consequently, Algorithm 1 with µ = 1/

√
8 is the

preferable choice to address problem (31).

Function values ISNR CPU time

Resolution µ = 1 µ = 1/
√
8 DR1 µ = 1 µ = 1/

√
8 DR1 µ = 1 µ = 1/

√
8 DR1

80× 96 55.0 43.2 42.8 9.7 15.8 15.8 5.9 5.8 8.7
160× 192 225.5 174.3 173.4 8.4 14.3 14.2 16.0 16.2 21.1
320× 384 920.3 711.2 706.0 8.7 14.9 14.8 54.7 51.5 74.0
640× 768 3630.3 2825.2 2804.5 9.8 16.5 16.4 294.4 293.1 465.4

1280× 1536 13 084.0 10 360.0 10 327.0 12.8 21.0 21.0 1654.2 1638.5 2349.6

Table 1: Results from running on the picture displayed in Figure 2 (for various pixel
resolutions) 400 iterations of Algorithm 1 with µ = 1 and µ = 1/

√
8, and DR1.

5 Conclusions and open questions

In this work, we have considered the composite monotone inclusion problem together with
its dual counterpart given by Problem 1.1. We have extended the definition of resolvent
splitting given in [19] to encompass primal-dual algorithms and the inclusion of parameters
in the resolvent and presented a definition of minimal lifting for frugal schemes of this form.
We have proposed the first primal-dual algorithm which presents minimal lifting in this
sense, and show its good performance with a numerical example.

To conclude, we outline possible directions for further research.

Establishing an optimal criterion for tuning the stepsize γ: We pointed out
in Remark 3.5 the influence that the parameter γ can have in the performance of the
algorithm. In Section 4 we presented a possibility for controlling this parameter, by
making use of a change of variable which modifies the Lipschitz constants of the linear
operators, and we empirically showed that it significantly affects the speed of performance
of the algorithm. However, there is no guarantee that this strategy is optimal. It would
be interesting to further investigate which is the best way for tuning the value of γ.
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Figure 2: On the top, the original 640×768 pixels image and the blurred and noisy image.
On the bottom the images restored after computing 400 iterations of Algorithm 1 with
µ = 1 (left) and µ = 1/

√
8 (middle), and DR1 (right).

Achieving lifting reduction in the dual variables: The reduction in the lifting with
respect to the number of operators achieved in the algorithm here presented only affects
the primal variables. It remains open the question of whether it is possible to reduce the
dimension of the underlying space associated to the linearly composed operators. More
precisely, if we consider the problem given by

find x ∈ H such that 0 ∈
m∑
j=1

L∗jBj(Ljx),

is it possible to obtain an algorithm for solving this problem with (0,m − 1)-fold lifting
(according to Definition 3.8)? Or even with (1,m − 1) or (0,m)-fold lifting? All these
questions remain open.
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[5] Boţ, R. I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions
with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4),
2541–2565 (2013)
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A Proof of the minimality theorem for parametrized resol-
vent splitting

Throughout this section, we assume that n ≥ 2 and we denote by An the set of all n-tuples of
maximally monotone operators on H. Hence, an element A ∈ An is of the form A = (A1, . . . , An),
where Ai : H ⇒ H are maximally monotone operators for all i ∈ J1, nK. Every instance of
Problem 1.2 is determined by the choice of A ∈ An. In particular, when considering a fixed
point encoding for this problem, the fixed point operator and the solution operator are both
parametrized in terms of A ∈ An. To emphasize this idea and to facilitate the exposition, we
denote these operators by TA and SA in the following.

Let (TA, SA) be a d-fold lifted frugal parametrized resolvent splitting for Problem 1.2. By
definition, there exists a finite procedure for evaluating TA and SA using only vector addition,
scalar multiplication and the resolvents Jδ1A1

, . . . , JδnAn
precisely once, where δ = (δ1, . . . , δn)T

is a vector of positive parameters. Following the same reasoning than in [16, Section 3], we can
completely describe the evaluation of a point z = (z1, . . . , zd) ∈ Hd by TA with a series of equations.
We directly present them here.

(i) There exists x = (x1, . . . , xn) ∈ Hn and y = (y1, . . . , yn) ∈ Hn such that

x = JδA(y)⇐⇒ 0 ∈ x− y + δA(x), (35)

where δA := (δ1A1, . . . , δnAn) ∈ An.

(ii) There exists Yz ∈ Rn×d and a lower-triangular matrix Yx ∈ Rn×n with zeros in the diagonal
such that1

y = Yzz + Yxx. (36)

(iii) By frugality, there exists Tz ∈ Rd×d and Tx ∈ Rd×n such that

TA(z) = Tzz + Txx. (37)

Similarly, also by frugality, the evaluation of z by the solution operator S can be expressed as

SA(z) = Szz + Sxx, (38)

where Sz ∈ R1×d and Sx ∈ R1×n.
The proof of the next technical lemma can be obtained by following the same steps than in [16,

Lemma 3.1], so we do not replicate it here.

Lemma A.1. Let (TA, SA) be a frugal parametrized resolvent splitting for Problem 1.2. Let M
denote the block matrix given by

M :=

 0 Id − Id δT Id
Yz Yx − Id 0

Tz − Id Tx 0 0

 .
If z ∈ FixTA, then there exists v = [z,x,y,a]

T ∈ kerM with a ∈ A(x). Conversely, if v =

[z,x,y,a]
T ∈ kerM and a ∈ A(x), then z ∈ FixTA, x = JδA(y) and SA(z) = Szz + Sxx.

Proposition A.2 (Solution operator). Let (TA, SA) be a frugal parametrized resolvent splitting
for Problem 1.2. Then, for all z̄ ∈ FixTA and x̄ = JδA(ȳ), we have

SA(z̄) =
1

n

n∑
i=1

(ȳi − δiāi) = x̄1 = · · · = x̄n, (39)

where ā = A(x̄).

1Here we make use of an abuse of notation. Indeed (36), should be written as y = (Yz⊗Id)z+(Yx⊗Id)x,
where ⊗ denotes the Kronecker product.
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Proof. Consider a particular instance of Problem 1.2 given by some operators A ∈ An. Let TA
and SA be the fixed point and solution operators of this particular instance, respectively. Let
z̄ ∈ FixTA and x∗ = SA(z̄). By Lemma A.1, there exists v := [z,x,y,a]

T ∈ kerM with ā ∈ A(x̄)
and x∗ = SA(z̄) = Sz z̄ + Szx̄.

Consider now the n+ 1 instances of Problem 1.2 given by the n-tuples of maximally monotone
operators A(0), A(1), . . . , A(n) ∈ An defined as

A(0)(x) := ā and A(j)(x) := ā +



0
...

xj − x̄j
...
0

 ∀j ∈ J1, nK.

Since v ∈ kerM and ā = A(j)(x̄), for all j ∈ J0, nK, Lemma A.1 implies that z̄ ∈ FixTA(j) ,
x̄ = JδA(j)(ȳ) and thus, SA(j)(z̄) = Sz z̄ + Sxx̄ = x∗ is a solution to every instance. Therefore, we

have 0 =
∑n
i=1A

(0)
i (x∗) =

∑n
i= āi and hence

0 =

n∑
i=1

A
(j)
i (x∗) =

n∑
i=1

āi + x∗ − x̄j = x∗ − x̄j ∀j ∈ J1, nK,

from where it follows that x∗ = x̄1 = · · · = x̄n. Finally, since x̄ = JδA(0)(ȳ), we have that
ȳ − x̄ = δA(0)(x̄) = (δ1ā1, . . . , δnān). Consequently,

∑n
i=1 ȳi − nx∗ =

∑n
i=1 δiāi, which completes

the proof.

Note that, although the expression for the solution operator given by (39) differs from the one
obtained in [16, Proposition 3.2], it still holds that the vector x̄ belongs to the diagonal subspace
of dimension n, which we denote by ∆n. This is what we employ to prove the following theorem.

Theorem A.3. Let (TA, SA) be a frugal parametrized resolvent splitting with d-fold lifting for
Problem 1.2. Then d ≥ n− 1.

Proof. Suppose, by contradiction, that (TA, SA) is a frugal parametrized resolvent splitting for
Problem 1.2 with d-fold lifting such that d ≤ n− 2. Consider a particular instance of the problem
given by A ∈ An such that zer (

∑n
i=1Ai) 6= ∅ and take z ∈ FixTA. By Lemma A.1, there exists

v := [z,x,y,a]
T ∈ kerM with a ∈ A(x). The last row of M implies that 0 = (Tz−Id)z+Txx. Since

Tx ∈ Rd×n and d ≤ n− 2, by the rank-nullity theorem, dim kerTx = n− dim rankTx ≥ n− d ≥ 2.
Since ∆n is a subspace of dimension 1, there exists x̄ /∈ ∆n such that Txx = Txx̄.

Now, set z̄ := z, ȳ := Yz z̄ + Yxx̄ and ā := ((ȳ1 − x̄1)/δ1, . . . , (ȳn − x̄n)/δn) and consider
the instance of the problem given by Ā ∈ An defined as Ā(s) := ā for all s ∈ Hn. Then,

v̄ := [z̄, x̄, ȳ, ā]
T ∈ kerM with ā = Ā(x̄). By Lemma A.1 and Proposition A.2, this implies that

x̄ ∈ ∆n, obtaining thus a contradiction which completes the proof.
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