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Abstract

This work aims to minimize a continuously differentiable convex function with Lipschitz
continuous gradient under linear equality constraints. The proposed inertial algorithm re-
sults from the discretization of the second-order primal-dual dynamical system with asymp-
totically vanishing damping term addressed by Boţ and Nguyen in [8], and it is formulated
in terms of the Augmented Lagrangian associated with the minimization problem. The
general setting we consider for the inertial parameters covers the three classical rules by
Nesterov, Chambolle-Dossal and Attouch-Cabot used in the literature to formulate fast gra-
dient methods. For these rules, we obtain in the convex regime convergence rates of order
O
`

1{k2
˘

for the primal-dual gap, the feasibility measure, and the objective function value.
In addition, we prove that the generated sequence of primal-dual iterates converges to a
primal-dual solution in a general setting that covers the two latter rules. This is the first
result which provides the convergence of the sequence of iterates generated by a fast algo-
rithm for linearly constrained convex optimization problems without additional assumptions
such as strong convexity. We also emphasize that all convergence results of this paper are
compatible with the ones obtained in [8] in the continuous setting.

Key Words. Augmented Lagrangian Method, primal-dual numerical algorithm, Nesterov’s
fast gradient method, convergence rates, iterates convergence
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1 Introduction

1.1 Problem formulation and motivation

Consider the optimization problem

min f pxq ,
subject to Ax “ b

(1.1)

where H,G are real Hilbert spaces, f : H Ñ R is a convex and Fréchet differentiable function
with L´Lipschitz continuous gradient, for L ą 0, A : H Ñ G is a continuous linear operator
and b P G. We assume that the set S of primal-dual optimal solutions of (1.1) (see Section 1.2
for a precise definition) is nonempty.
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Optimization problems of type (1.1) arise in many applications in areas like image recovery
[13, 23, 26, 28], machine learning [9, 17], and network optimization [30].

Other than in the unconstrained case, for which fast continuous and discrete time approaches
have been intensively investigated in the last years, the study of solution methods with fast
convergence rates for linearly constrained convex optimization problems of the form (1.1) is in
an incipient stage.

Zeng, Lei, and Chen (in [30]) and He, Hu, and Fang (in [16]) have investigated a dynamical
system with asymptotic vanishing damping attached to (1.1), and have shown a convergence
rate of order O

`

1{t2
˘

for the primal-dual gap, while Attouch, Chbani, Fadili and Riahi have
considered in [2] a more general dynamical system with time rescaling. More recently, for a
primal-dual dynamical system formulated in the spirit of [2, 16, 30], Boţ and Nguyen have
obtained in [8] fast convergence rates for the primal-dual gap, the feasibility measure and the
objective function value along the generated trajectory, and, additionally, have proved asymp-
totic convergence guarantees for the primal-dual trajectory to a primal-dual optimal solution.

Fast numerical methods for solving (1.1) have been mainly considered in the literature
under additional assumptions such as strong convexity, and in several cases the convergence
rate results have been formulated in terms of ergodic sequences. In the merely convex regime
no convergence result for the iterates has been provided so far for fast convergence algorithms.
To the works addressing fast converging methods for linearly constrained convex optimization
problems belong [11, 12, 13, 15, 19, 20, 23, 24, 26, 27, 28, 29], at which we will take a closer
look in Section 1.3.

The aim of this paper is to propose a numerical algorithm for solving (1.1), which results
from the discretization of the dynamical system in [8], exhibits fast convergence rates for the
primal-dual gap, the feasibility measure, and the objective function value as well as convergence
of the sequence of iterates without additional assumptions such as strong convexity. Although
there is an obvious interplay between continuous time dissipative dynamical systems and their
discrete counterparts, one cannot directly and straightforwardly transfer asymptotic results
from the continuous setting to numerical algorithms, thus, a separate analysis is needed for the
latter. In this paper we will also comment on the similarities and the differences between the
continuous and discrete time approaches.

1.2 Augmented Lagrangian formulation

Consider the saddle point problem associated to problem (1.1)

min
xPH

max
λPG

L px, λq ,

where L : Hˆ G Ñ R denotes the Lagrangian function

L px, λq :“ f pxq ` xλ,Ax´ by .

Since f is a convex function, L is convex with respect to x P H and affine with respect to λ P G.
A pair px˚, λ˚q P H ˆ G is said to be a saddle point of the Lagrangian function L if for every
px, λq P Hˆ G

L px˚, λq ď L px˚, λ˚q ď L px, λ˚q .

If px˚, λ˚q P HˆG is a saddle point of L, then x˚ P H is an optimal solution of (1.1) and λ˚ P G
is an optimal solution of its Lagrange dual problem. If x˚ P H is an optimal solution of (1.1)
and a suitable constraint qualification is fulfilled (see, for instance, [5, 7]), then there exists an
optimal solution λ˚ P G of the Lagrange dual problem of (1.1) such that px˚, λ˚q P H ˆ G is a
saddle point of L.

The set of saddle points of L, called also set of primal-dual optimal solutions of (1.1), will be
denoted by S and, as stated above, throughout this paper it will be assumed to be nonempty.
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The set of feasible points of (1.1) will be denoted by F :“ tx P H : Ax “ bu and the optimal
objective value of (1.1) by f˚.

The system of primal-dual optimality conditions for (1.1) reads

px˚, λ˚q P S ô

#

∇xL px˚, λ˚q “ 0

∇λL px˚, λ˚q “ 0
ô

#

∇f px˚q `A˚λ˚ “ 0

Ax˚ ´ b “ 0
, (1.2)

where A˚ : G Ñ H denotes the adjoint operator of A. This optimality system can be equivalently
written as

TL px˚, λ˚q “ 0,

where

TL : Hˆ G Ñ Hˆ G, TL px, λq “
ˆ

∇xL px, λq
´∇λL px, λq

˙

“

ˆ

∇f pxq `A˚λ
b´Ax

˙

,

is the maximally monotone operator associated to the convex-concave function L. Indeed, it is
immediate to verify that TL is monotone. Since it is also continuous, it is maximally monotone
(see, for instance, [5, Corollary 20.28]). Therefore S can be interpreted as the set of zeros of
the maximally monotone operator TL, which means that it is a closed convex subset of H ˆ G
(see, for instance, [5, Proposition 23.39]).

For β ě 0, we also consider the augmented Lagrangian Lβ : HˆG Ñ R associated with (1.1)

Lβ px, λq :“ L px, λq ` β

2
‖Ax´ b‖2 “ f pxq ` xλ,Ax´ by `

β

2
‖Ax´ b‖2 .

For every px, λq P F ˆ G it holds

f pxq “ Lβ px, λq “ L px, λq . (1.3)

If px˚, λ˚q P S, then for every px, λq P Hˆ G we have

L px˚, λq “ Lβ px˚, λq “ L px˚, λ˚q “ Lβ px˚, λ˚q ď L px, λ˚q ď Lβ px, λ˚q . (1.4)

In addition,

px˚, λ˚q P S ô

#

∇xLβ px˚, λ˚q “ 0

∇λLβ px˚, λ˚q “ 0
ô

#

∇f px˚q `A˚λ˚ “ 0

Ax˚ ´ b “ 0
.

1.3 Related works

In this section we will recall the most significant fast primal-dual numerical approaches for lin-
early constrained convex optimization problems and for convex optimization problems involving
compositions with continuous linear operators.

In [11], Chambolle and Pock have studied in a finite-dimensional setting the convergence
rates of their celebrated primal-dual algorithm for solving the minimax problem

min
xPH

max
λPG

Lpx, λq :“ f pxq ` xAx, λy ´ g˚ pλq , (1.5)

which is naturally attached to the convex optimization problem

min
xPH

fpxq ` gpAxq, (1.6)

with f : H Ñ R Y t`8u and g : G Ñ R Y t`8u proper, convex and lower semicontinuous
functions and g˚ : G Ñ RY t`8u the Fenchel conjugate of g. The problem (1.6) becomes (1.1)

3



for g the indicator function of the set tbu. For the primal-dual sequence of iterates tpxk, λkqukě0
the corresponding ergodic sequence

 

psxk, sλkq
(

kě0
is defined for every k ě 0 as

sxk :“
1

řk
i“0 σi

k
ÿ

i“0

σixi and sλk :“
1

řk
i“0 σi

k
ÿ

i“0

σiλi,

where tσkukě0 is a sequence of properly chosen positive step sizes. The Chambolle-Pock primal-
dual algorithm exhibits for the restricted primal-dual gap an ergodic convergence rate of

sup
px,λqPXˆY

`

L psxk, λq ´ L
`

x, sλk
˘˘

“ O
ˆ

1

k

˙

as k Ñ `8,

where X Ď H and Y Ď G are bounded sets. If f is strongly convex, then the accelerated
variant of this primal-dual algorithm exhibits for the same restricted primal-dual gap an ergodic
convergence rate of

sup
px,λqPXˆY

`

L psxk, λq ´ L
`

x, sλk
˘˘

“ O
ˆ

1

k2

˙

as k Ñ `8

whereas, if both f and g˚ are strongly convex, then even linear convergence can be achieved.
In [12], Chen, Lan and Ouyang have considered the same minimax problem (1.5), but for

f : HÑ R a convex and Fréchet differentiable function with L-Lipschitz continuous gradient, for
L ą 0, and have proposed a primal-dual algorithm that exhibits for the restricted primal-dual
gap an ergodic convergence rate of

sup
px,λqPXˆY

`

L psxk, λq ´ L
`

x, sλk
˘˘

“ O
ˆ

L

k2
`

‖A‖
k

˙

as k Ñ `8. (1.7)

A stochastic counterpart of the primal-dual algorithm along with corresponding convergence
rate results and, for both the deterministic and the stochastic setting, convergence rates when
either X or Y is unbounded have been also provided.

Later on, Ouyang, Chen, Lan and Pasiliao Jr. have developed in [23] an accelerated ADMM
algorithm for the optimization problem (1.6) with f assumed to be Fréchet differentiable with
L-Lipschitz continuous gradient, for L ą 0, on its effective domain. In the case when f and g˚

have bounded domains this method has been proved to exhibit an ergodic convergence rate for
the objective function value of type (1.7), with the coefficient of 1{k2 depending on L and the
diameter of domf and the coefficient of 1{k depends on }A} and of the diameter of domg˚. On
the other hand, without assuming boundedness for the domains of f and g˚, the accelerated
ADMM algorithms has been proved to exhibit ergodic convergence rates for the feasibility
measure and the objective function value of O p1{kq as k Ñ `8.

By using a smoothing approach, Tran-Dinh, Fercoq and Cevher have designed in [26] a
primal-dual algorithm for solving (1.6) and its particular formulation (1.1) that exhibits last
iterates convergence rates for the objective function value and the feasibility measure in the
convex regime of O p1{kq, and in the strongly convex regime of O

`

1{k2
˘

as k Ñ `8.
Goldstein, O’Donoghue, Setzer and Baraniuk have studied in [13] the two-block separable

optimization problem with linear constraints

min f pxq ` h pyq ,
subject to Ax`By “ b

(1.8)

where K is another real Hilbert space, f : H Ñ R Y t`8u and h : K Ñ R Y t`8u are proper,
convex and lower semicontinuous functions, A : H Ñ G and B : K Ñ G are continuous linear
operators and b P G. It is obvious that (1.1) can be reformulated as (1.8) and vice versa. In
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[13] a numerical algorithm for solving (1.8) has been proposed that exhibits, when f and h
are strongly convex, convergence rates for the dual objective function of O

`

1{k2
˘

and for the
feasibility measure of O p1{kq as k Ñ `8. For a fast version of the Alternating Minimization
Algorithm (see [27]) a convergence rate for the dual objective function of O

`

1{k2
˘

as k Ñ `8

has been also proved.
Xu has proposed in [28] a linearized Augmented Lagrangian Method for the optimization

problem (1.1) for which he has shown that it exhibits for constant step sizes ergodic convergence
rates of O p1{kq as k Ñ `8 for the feasibility measure and the objective function value, whereas
the sequence of primal-dual iterates has been shown to converge to a primal-dual solution. He
has also proved that for appropriately chosen variable step sizes, in particular when allowing
the dual step sizes to be unbounded, the convergence rates of the feasibility measure and the
objective function value can be improved to O

`

1{k2
˘

as k Ñ `8, without saying anything
about the convergence of the primal-dual iterates in this setting. In addition, a linearized
Alternating Direction Method of Multipliers for (1.8) has been proposed in [28], for which similar
statements as for the linearized Augmented Lagrangian Method have been proved, whereby
the fast convergence rates have been obtained by assuming that one of the summands in the
objective function is strongly convex.

In [14], He and Yuan have enhanced the Augmented Lagrangian Method for the linearly
constrained convex optimization problem (1.1) with a Nesterov’s momentum update rule for
the sequence of dual iterates. They have proved that the expression Lpx˚, λ˚q ´ L pxk, λkq has
an upper bound of order 1{k2, where pxk, λkqkě0 denotes the generated sequence of primal-dual
iterates and px˚, λ˚q is an arbitrary optimal solution of the Wolfe dual problem of (1.1).

In [29], Yan and He have proposed for optimization problems of type (1.1), with a proper,
convex and lower semicontinuous objective function, a numerical algorithm which combines the
Augmented Lagrangian Method with a Bregman proximal evaluation of the objective. When
choosing the sequence of proximal parameter to fulfil ηk :“ η pk ` 1qp for every k ě 0, where
η ą 0 and p ě 0, ergodic convergence rates of

sup
px,λqPXˆY

`

L psxk, λq ´ L
`

x, sλk
˘˘

“ O
ˆ

1

kp`2

˙

as k Ñ `8,

‖Asxk ´ b‖ “ O
ˆ

log pkq

kp`2

˙

and |f psxkq ´ f˚| “ O
ˆ

log pkq

kp`2

˙

as k Ñ `8

have been obtained.
In [24], Sabach and Teboulle have considered a unified algorithmic framework for proving

faster convergence rates for various Lagrangian-based methods designed to solve optimization
problems of type (1.1) with a proper, convex and lower semicontinuous objective function. In the
convex regime these methods exhibit a non-ergodic rate of convergence of O p1{kq as k Ñ `8

for the feasibility measure and the objective function value, namely,

f pxkq ´ f˚ has an upper bound of order O
ˆ

1

k

˙

and ‖Axk ´ b‖ “ O
ˆ

1

k

˙

as k Ñ `8.

In the strongly convex regime the convergence rates can be improved to O
`

1{k2
˘

as k Ñ `8.
For the same class of optimization problems, He, Hu, and Fang have proposed in [15] an

accelerated primal-dual Lagrangian-based method, with inertial parameters following the choice
of Chambolle-Dossal, that achieves a convergence rate of O

`

1{k2
˘

as k Ñ `8 for the feasibility
measure and the objective function value without any strong convexity assumption.

Recently, in [19], Lou have introduced in the same context an unifying algorithmic scheme
which covers both the convex and the strongly convex setting. In the convex regime a conver-
gence rate of O p1{kq as k Ñ `8 is obtained for the primal-dual gap, the feasibility measure,
and the objective function value, while in the strongly convex regime these rates are improved
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to O
`

1{k2
˘

as k Ñ `8. These results have been extended to optimization problems of type
(1.8) in [20], where it has been shown that, in order to achieve a convergence rate of O

`

1{k2
˘

as k Ñ `8, it is enough to assume that only one of the functions in the objective is strongly
convex.

Noticeably none of theses works has addressed to convergence of the sequences of primal-dual
iterates, with very few exceptions in the strongly convex regime. This phenomenon could be
noticed for unconstrained convex optimization problems, too. The convergence of the sequences
of iterates generated by fast numerical methods has been proved much later (by Chambolle and
Dossal in [10] and by Attouch and Peypouquet in [3]) after the derivation of the convergence
rates for Nesterov’s accelerated gradient method ([21]) and FISTA ([6]). One explanation for
this is that the analysis of the first is much more involved.

1.4 Our contributions

We consider as starting point a second-order dynamical system with asymptotic vanishing damp-
ing term associated with the optimization problem (1.1). This dynamical system is formulated
in terms of the augmented Lagrangian and it has been studied in [8]. By an appropriate time
discretization this system gives rise to an inertial primal-dual numerical algorithm, which al-
lows a flexible choice of the inertial parameters. This choice covers the three classical inertial
parameters rules by Nesterov ([6, 21]), Chambolle-Dossal ([10]) and Attouch-Cabot ([1]) used
in the literature to formulate fast gradient methods. We show that for these rules the resulting
algorithm exhibits in the convex regime convergence rates of order O

`

1{k2
˘

for the primal-dual
gap, the feasibility measure, and the objective function value. In addition, we prove that the
generated sequence of primal-dual iterates converges weakly to a primal-dual solution of the
underlying problem, which is nothing else than a saddle-point of the Lagrangian. The conver-
gence of the iterates is stated in a general setting that covers the inertial parameters rules by
Chambolle-Dossal and Attouch-Cabot. This is the first result which provides the convergence
of the sequence of iterates generated by a fast algorithm for linearly constrained convex opti-
mization problems without additional assumptions such as strong convexity. All convergence
and convergence rate results of this paper are compatible with the ones obtained in [8] in the
continuous setting.

The proposed Fast Augmented Lagrangian Method and all convergence results can be easily
extended by using the product space approach to two-block separable linearly constrained op-
timization problems of the form (1.8) with f and h convex and Fréchet differentiable functions
with Lipschitz continuous gradients.

1.5 Notations and preliminaries

We denote by B px; εq :“ ty P H : ‖x´ y‖ ď εu the closed ball centered at x P H with radius
ε ą 0.

Let x, y P H. We have

‖x` y‖2 “ ‖x‖2 ` ‖y‖2 ` 2 xx, yy . (1.9)

For every s, t P R such that s` t “ 1 it holds ([5, Corollary 2.15])

‖sx` ty‖2 “ s ‖x‖2 ` t ‖y‖2 ´ st ‖x´ y‖2 . (1.10)

From here one can easily deduce that for s, t P R such that s` t ‰ 0 it holds

1

s` t
‖sx` ty‖2 “ s ‖x‖2 ` t ‖y‖2 ´ st

s` t
‖x´ y‖2 . (1.11)
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We denote by S` pHq the family of self-adjoint and positive semidefinite continuous linear
operators W : HÑ H. Every W P S` pHq induces on H a semi-norm defined by

‖x‖2W “ xx, xyW :“ xWx, xy @x P H.

The Loewner partial ordering on S` pHq is defined for W,W 1 P S` pHq as

W ě W 1 ô ‖x‖2W ě ‖x‖2W 1 @x P H.

Thus W P S` pHq is nothing else than W ě 0. If there exists α ą 0 such that W ě αId then
the semi-norm ‖¨‖W becomes a norm.

In the spirit of (1.9) and (1.11), respectively, for every x, y P H it holds

‖x` y‖2W “ ‖x‖2W ` ‖y‖2W ` 2 xx, yyW , (1.12)

and for every real numbers s, t such that s` t ‰ 0

1

s` t
‖sx` ty‖2W “ s ‖x‖2W ` t ‖y‖

2
W ´

st

s` t
‖x´ y‖2W . (1.13)

Let f : H Ñ R be a continuously differentiable and convex function such that ∇f is
L´Lipschitz continuous, for L ą 0. For every x, y P H it holds (see [22, Theorem 2.1.5] or
[5, Theorem 18.15])

0 ď
1

2L
‖∇f pxq ´∇f pyq‖2 ď f pxq ´ f pyq ´ x∇f pyq , x´ yy ď L

2
‖x´ y‖2 . (1.14)

The second inequality is also known as the Descent Lemma.
The following result is a particular instance of [5, Lemma 5.31] and will be used several

times in this paper.

Lemma 1.1. Let takukě1, tbkukě1 and tdkukě1 be sequences of real numbers. Assume that
takukě1 is bounded from below, and tbkukě1 and tdkukě1 are nonnegative such that

ř

kě1 dk ă
`8. Suppose further that for every k ě 1 it holds

ak`1 ď ak ´ bk ` dk. (1.15)

Then the following statements are true

piq the sequence tbkukě1 is summable, namely
ř

kě1 bk ă `8;

piiq the sequence takukě1 is convergent.

In order to establish the weak convergence of the iterates, we will use Opial’s Lemma in
discrete form (see, for instance, [5, Theorem 5.5]), which we recall as follows.

Lemma 1.2. Let C be a nonempty subset of H and txkukě1 a sequence in H. Assume that

piq for every x˚ P C, lim
kÑ`8

‖xk ´ x˚‖ exists;

piiq every weak sequential cluster point of txkukě1 belongs to C.

Then the sequence txkukě1 converges weakly to an element in C as k Ñ `8.

2 Continuous time approaches and their discrete counterparts

In this section we want to derive by time discretization a primal-dual numerical algorithm from
the second-order dynamical system investigated in [8]. The employed discretization technique
replicates the one used when relating fast gradient algorithms with the second-order dynamical
system proposed by Su, Boyd and Candès in [25] in the unconstrained case.
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2.1 The primal-dual dynamical approach with vanishing damping

The second-order primal-dual dynamical system with asymptotically vanishing damping term
associated in [8] with the augmented Lagrangian formulation of (1.1) reads

$

’

’

’

’

&

’

’

’

’

%

:x ptq `
α

t
9x ptq `∇xLβ

´

x ptq , λ ptq ` θt 9λ ptq
¯

“ 0

:λ ptq `
α

t
9λ ptq ´∇λLβ

´

x ptq ` θt 9x ptq , λ ptq
¯

“ 0
´

x pt0q , λ pt0q
¯

“

´

x0, λ0

¯

and
´

9x pt0q , 9λ pt0q
¯

“

´

9x0, 9λ0

¯

, (PD-AVD)

where t0 ą 0, α ě 3, β ě 0, θ ą 0 and px0, λ0q ,
´

9x0, 9λ0

¯

P Hˆ G.

Plugging the expressions of the partial gradients of Lβ into the system leads to the following
formulation for (PD-AVD)

$

’

’

’

’

&

’

’

’

’

%

:x ptq `
α

t
9x ptq `∇f px ptqq `A˚

´

λ ptq ` θt 9λ ptq
¯

` βA˚
´

Ax ptq ´ b
¯

“ 0

:λ ptq `
α

t
9λ ptq ´

´

A
`

x ptq ` θt 9x ptq
˘

´ b
¯

“ 0
´

x pt0q , λ pt0q
¯

“

´

x0, λ0

¯

and
´

9x pt0q , 9λ pt0q
¯

“

´

9x0, 9λ0

¯

. (2.1)

In [8] it has been shown that, supposing that

α ě 3, β ě 0 and
1

2
ě θ ě

1

α´ 1
,

for a solution px, λq : rt0,`8q Ñ HˆG of (PD-AVD) and px˚, λ˚q P S it holds for every t ě t0

0 ď L px ptq , λ˚q ´ L px˚, λ ptqq ` ‖Ax ptq ´ b‖ ď
pC

θ2t2

and

´
‖λ˚‖ pC

θ2t2
ď f px ptqq ´ f˚ ď

p1` ‖λ˚‖q pC
θ2t2

,

where pC ą 0.

If, in addition, ∇f is L´Lipschitz continuous, α ą 3 and
1

2
ą θ ą

1

α´ 1
, then it holds

‖A˚ pλ ptq ´ λ˚q‖ “ o

ˆ

1
?
t

˙

and ‖∇f px ptqq ´∇f px˚q‖ “ o

ˆ

1
?
t

˙

as tÑ `8 (2.2)

and, consequently,

∥∥∇xL
`

x ptq , λ ptq
˘∥∥ “ ‖∇f px ptqq `A˚λ ptq‖ “ o

ˆ

1
?
t

˙

as tÑ `8,

whereas ∥∥∇λL
`

x ptq , λ ptq
˘∥∥ “ ‖Ax ptq ´ b‖ “ O

ˆ

1

t2

˙

as tÑ `8.

By additionally requiring that β ą 0, it has been also proved in [8] that the trajectory
`

x ptq , λ ptq
˘

converges weakly to a primal-dual optimal solution of (1.1) as tÑ `8.
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2.2 Fast gradient scheme: from continuous to discrete time

We recall in this section for reader’s convenience the connection between the second-order
dynamical system by Su, Boyd and Candès ([25]) and the fast gradient numerical methods
formulated in [10, 1] in the spirit of Nesterov’s accelerated gradient algorithm ([21]). To this
end we consider the unconstrained optimization problem

min
xPH

f pxq , (2.3)

where f : H Ñ R is a convex and Fréchet differentiable function with L-Lipschitz continuous
gradient, for L ą 0.

The continuous time approach proposed in [25] in connection with this optimization problem
reads

:x ptq `
α

t
9x ptq `∇f px ptqq “ 0, (AVD)

where t0 ą 0 and α ě 3. One can easily notice that for A “ 0 and b “ 0 the optimization
problem (1.1) becomes (2.3), while (PD-AVD) reduces to (AVD).

For every t ě t0, we define

z ptq :“ x ptq `
t

α´ 1
9x ptq .

This leads to

9z ptq “ 9x ptq `
1

α´ 1
9x ptq `

t

α´ 1
:x ptq “

t

α´ 1
:x ptq `

α

α´ 1
9x ptq “ ´

t

α´ 1
∇f px ptqq

and (AVD) can be written as a first-order ordinary differential equation

$

’

&

’

%

9z ptq “ ´
t

α´ 1
∇f px ptqq

z ptq “ x ptq `
t

α´ 1
9x ptq .

(2.4)

Let σ ą 0. For every k ě 1 we take as time step

σk :“ σ

ˆ

1`
α´ 1

k

˙

ą 0,

and set τk :“
?
σkk “

a

σk pk ` α´ 1q «
?
σ pk ` 1q, x pτkq « xk`1 and z pτkq « zk`1. We

“approximate” τk with
?
σ pk ` 1q since it is closer to this value than to

?
σk. This also explains

why we consider x pτkq « xk`1 and z pτkq « zk`1 instead of the seemingly more natural choices
x pτkq « xk and z pτkq « zk, respectively.

The implicit finite-difference scheme for (2.4) at time t :“ τk gives

$

’

’

&

’

’

%

zk`1 ´ zk
?
σk

“ ´

?
σkk

α´ 1
∇f pykq

zk`1 “ xk`1 `

?
σkk

α´ 1

xk`1 ´ xk
?
σk

or, equivalently,
$

’

’

&

’

’

%

zk`1 ´ zk “ ´σ

ˆ

1`
α´ 1

k

˙

k

α´ 1
∇f pykq

zk`1 “ xk`1 `
k

α´ 1
pxk`1 ´ xkq ,

(2.5)
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where the gradient ∇f is evaluated at the point yk, which is to be determined as a suitable
convex combination of xk and zk such that xk`1 ´ yk Ñ 0 as k Ñ `8. Notice that, since ∇f
is L´Lipschitz continuous, this implies that ∇f pxk`1q ´∇f pykq Ñ 0 as k Ñ `8.

The second equation in (2.5) is equivalent with

xk`1 “
α´ 1

k ` α´ 1
zk`1 `

k

k ` α´ 1
xk

and consequently suggests the following choice for yk

yk “
α´ 1

k ` α´ 1
zk `

k

k ` α´ 1
xk. (2.6)

From the second equation in (2.5) we further obtain

yk “
α´ 1

k ` α´ 1
zk `

k

k ` α´ 1
xk “

α´ 1

k ` α´ 1

ˆ

xk `
k ´ 1

α´ 1
pxk ´ xk´1q

˙

`
k

k ` α´ 1
xk

“ xk `
k ´ 1

k ` α´ 1
pxk ´ xk´1q .

In addition,

zk`1 ´ zk “
k ` α´ 1

α´ 1
pxk`1 ´ ykq “

ˆ

1`
k

α´ 1

˙

pxk`1 ´ ykq .

Consequently, (2.5) can be equivalently written as

$

&

%

yk :“ xk `
k ´ 1

k ` α´ 1
pxk ´ xk´1q

xk`1 :“ yk ´ σ∇f pykq .
(2.7)

This is nothing else than the algorithm considered by Chambolle and Dossal in [10] (see also
[3]).

Furthermore, if we write for every k ě 1

tk :“ 1`
k ´ 1

α´ 1
“
k ` α´ 2

α´ 1
, (2.8)

so that

tk`1 ´ 1 “
k

α´ 1
and

tk ´ 1

tk`1
“

k ´ 1

k ` α´ 1
,

then (2.7) becomes

p@k ě 1q

$

&

%

yk :“ xk `
tk ´ 1

tk`1
pxk ´ xk´1q

xk`1 :“ yk ´ σ∇f pykq .
(2.9)

Modifications of the sequence ttkukě1 which preserve its asymptotic behaviour lead to various
acceleration schemes from the literature.

For instance, the classical Nesterov’s accelerated gradient method ([21]) is precisely (2.9),
where the sequence ttkukě1 satisfies the recurrence rule

t1 :“ 1 and tk`1 :“
1`

b

1` 4t2k

2
@k ě 1. (2.10)

Another example is the algorithm proposed by Attouch and Cabot in [1] that corresponds
to (2.9) with the choice

tk :“
k ´ 1

α´ 1
@k ě 1. (2.11)
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It can also be interpreted as a discretization of (2.4) with time step

σk :“
σk

k ´ α` 1
@k ě 1,

and by setting τk :“
?
σk pk ´ α` 1q “

a

σk pk ´ α` 1q «
?
σ pk ` 1q , x pτkq « xk`1 and

z pτkq « zk`1.

2.3 The time discretization of (PD-AVD)

In order to provide a useful time discretization of the dynamical system (PD-AVD) we follow
the approach of the previous section and define for every t ě t0

z ptq :“ x ptq `
t

α´ 1
9x ptq and ν ptq :“ λ ptq `

t

α´ 1
9λ ptq . (2.12)

Further, we set

γ :“
1

θ pα´ 1q
P

„

2

α´ 1
, 1



. (2.13)

The parameter γ will play an essential role in our analysis. For every t ě t0 we define

zγ ptq :“ γ px ptq ` θt 9x ptqq “ γx ptq `
t

α´ 1
9x ptq “ z ptq ` pγ ´ 1qx ptq , (2.14a)

νγ ptq :“ γ
´

λ ptq ` θt 9λ ptq
¯

“ γλ ptq `
t

α´ 1
9λ ptq “ ν ptq ` pγ ´ 1qλ ptq . (2.14b)

Using these notations, the system (PD-AVD) (see also its equivalent formulation (2.1)) can be
written as

$

’

’

’

’

’

&

’

’

’

’

’

%

:x ptq `
α

t
9x ptq `∇f px ptqq ` 1

γ
A˚νγ ptq ` βA˚

´

Ax ptq ´ b
¯

“ 0

:λ ptq `
α

t
9λ ptq ´

1

γ

´

Azγ ptq ´ γb
¯

“ 0

´

x pt0q , λ pt0q
¯

“

´

x0, λ0

¯

and
´

9x pt0q , 9λ pt0q
¯

“

´

9x0, 9λ0

¯

. (2.15)

Using that for every t ě t0

9z ptq “
t

α´ 1

´

:x pxq `
α

t
9x ptq

¯

and 9ν ptq “
t

α´ 1

´

:λ pxq `
α

t
9λ ptq

¯

,

the first two lines in (2.15) can be equivalently written as
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

9z ptq “ ´
t

α´ 1
∇f px ptqq ´ t

α´ 1

1

γ
A˚νγ ptq ´

t

α´ 1
βA˚

´

Ax ptq ´ b
¯

9ν ptq “
1

γ

t

α´ 1

´

Azγ ptq ´ γb
¯

z ptq “ x ptq `
t

α´ 1
9x ptq

zγ ptq “ γx ptq `
t

α´ 1
9x ptq

ν ptq “ λ ptq `
t

α´ 1
9λ ptq

νγ ptq “ γλ ptq `
t

α´ 1
9λ ptq .

(2.16)

Let σ, ρ ą 0. For every k ě 1 we take for x and λ two different time steps

σk :“ σ

ˆ

1`
α´ 1

k

˙

ą 0 and ρk :“ ρ

ˆ

1`
α´ 1

k

˙

ą 0,
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respectively, and set τk :“
?
σkk «

?
σ pk ` 1q , x pτkq « xk`1, z pτkq « zk`1, z

γ pτkq « zγk`1, and
τ 1k :“

?
ρkk «

?
ρ pk ` 1q , λ pτ 1kq « λk`1, ν pτ

1
kq « νk`1 and νγ pτ 1kq « νγk`1.

The implicit finite-difference scheme for (2.16) at time t :“ τk for x and time t :“ τ 1k for λ
gives

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

zk`1 ´ zk
?
σk

“ ´

?
σkk

α´ 1
∇f pykq ´

?
σkk

α´ 1
A˚

1

γ
rνk`1 ´

?
σkk

α´ 1
βA˚ pAyk ´ bq

νk`1 ´ νk
?
ρk

“
1

γ

?
ρkk

α´ 1

`

Azγk`1 ´ γb
˘

zk`1 “ xk`1 `

?
σkk

α´ 1

xk`1 ´ xk
?
σk

zγk`1 “ γxk`1 `

?
σkk

α´ 1

xk`1 ´ xk
?
σk

νk`1 “ λk`1 `

?
σkk

α´ 1

λk`1 ´ λk
?
σk

νγk`1 “ γλk`1 `

?
σkk

α´ 1

λk`1 ´ λk
?
σk

,

(2.17)

where yk and rνk`1 will be chosen appropriately to obtain an easily implementable iterative
scheme. Notice that rνk`1 must be an approximation of νγk`1.

Once again we take as in the previous section (see (2.6))

yk “
α´ 1

k ` α´ 1
zk `

k

k ` α´ 1
xk “ xk `

k ´ 1

k ` α´ 1
pxk ´ xk´1q,

which, by using the third equation in (2.17), gives

zk`1 ´ zk “
k ` α´ 1

α´ 1
pxk`1 ´ ykq “

ˆ

1`
k

α´ 1

˙

pxk`1 ´ ykq .

Following (2.6) we set also for the sequence of dual variables

µk “
α´ 1

k ` α´ 1
νk `

k

k ` α´ 1
λk “ λk `

k ´ 1

k ` α´ 1
pλk ´ λk´1q ,

which, by using the fifth equation in (2.17), gives

νk`1 ´ νk “
k ` α´ 1

α´ 1
pλk`1 ´ µkq “ tk`1 pλk`1 ´ µkq . (2.18)

For these choices, and by taking into consideration the definition of ttkukě1 in (2.8), (2.17)
becomes

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

yk “ xk `
tk ´ 1

tk`1
pxk ´ xk´1q

xk`1 “ yk ´ σ∇f pykq ´
σ

γ
A˚rνk`1 ´ σβA

˚ pAyk ´ bq

µk “ λk `
tk ´ 1

tk`1
pλk ´ λk´1q

zγk`1 “ γxk`1 ` ptk`1 ´ 1q pxk`1 ´ xkq

λk`1 “ µk `
ρ

γ

`

Azγk`1 ´ γb
˘

νγk`1 “ γλk`1 ` ptk`1 ´ 1q pλk`1 ´ λkq ,

(2.19)
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where rνk`1 is still to be chosen such that rνk`1 ´ νγk`1 Ñ 0 as k Ñ `8. We will not opt for
rνk`1 “ νγk`1 in order to avoid an implicit iterative scheme, but choose instead (see also (2.18))

rνk`1 :“ νγk`1 ` p1´ γq pλk`1 ´ λkq “ γλk`1 ` ptk`1 ´ γq pλk`1 ´ λkq “ γλk ` tk`1 pλk`1 ´ λkq

“ γλk ` ptk ´ 1q pλk ´ λk´1q ` tk`1

ˆ

λk`1 ´ λk ´
tk ´ 1

tk`1
pλk ´ λk´1q

˙

“ νγk ` tk`1 pλk`1 ´ µkq “ νγk ` νk`1 ´ νk “ νγk `
ρ

γ
tk`1

`

Azγk`1 ´ γb
˘

“ νγk `
ρ

γ
tk`1 pptk`1 ´ 1` γqAxk`1 ´ ptk`1 ´ 1qAxk ´ γbq

“ νγk `
ρ

γ
tk`1 ptk`1 ´ 1` γq

ˆ

Axk`1 ´
1

tk`1 ´ 1` γ
pptk`1 ´ 1qAxk ` γbq

˙

,

Such a choice is reasonable as long as λk`1 ´ λk Ñ 0 as k Ñ `8, which will then imply that
rνk`1 ´ ν

γ
k`1 Ñ 0 as k Ñ `8. By setting

sk`1 :“
ρ

γ
tk`1 ptk`1 ´ 1` γq and ηk :“

1

tk`1 ´ 1` γ
pptk`1 ´ 1qAxk ` γbq ,

the second line in (2.19) becomes

xk`1 “ yk ´ σ∇f pykq ´
σ

γ
A˚

`

νγk ` sk`1 pAxk`1 ´ ηkq
˘

´ σβA˚ pAyk ´ bq

or, equivalently,

xk`1 `
σ

γ
sk`1A

˚Axk`1 “

ˆ

Id`
σ

γ
sk`1A

˚A

˙

xk`1

“ yk ´ σ∇f pykq ´
σ

γ
A˚νγk `

σ

γ
sk`1A

˚ηk ´ σβA
˚ pAyk ´ bq .

After rearranging the order in which the sequences are updated, (2.19) leads to the fast Aug-
mented Lagrangian Method which we propose in this paper, and also investigate from the point
of view of its convergence properties.

3 Fast Augmented Lagrangian Method

In this section we will give a precise formulation of the Augmented Lagrangian Method for
solving (1.1) and prove that it exhibits convergence rates of order O

`

1{k2
˘

for the primal-dual
gap, the feasibility measure, and the objective function value.

3.1 The algorithm

Algorithm 1. Let β ě 0 and m, γ, ρ, σ ą 0 be such that

0 ă m ď γ ď 1 and 0 ă σ ď
γ

L` γβ ‖A‖2
. (3.1)

Let ttkukě1 be a nondecreasing sequence such that

t1 :“ 1 and t2k`1 ´mtk`1 ď t2k @k ě 1. (3.2)
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Given x0 “ x1 P H and λ0 “ λ1 P G, for every k ě 1 we set

yk :“ xk `
tk ´ 1

tk`1
pxk ´ xk´1q , (3.3a)

µk :“ λk `
tk ´ 1

tk`1
pλk ´ λk´1q , (3.3b)

ηk :“ Axk `
γ

tk`1 ´ 1` γ
pb´Axkq, (3.3c)

νγk :“ γλk ` ptk ´ 1q pλk ´ λk´1q , (3.3d)

sk`1 :“
ρ

γ
tk`1 ptk`1 ´ 1` γq , (3.3e)

xk`1 :“ arg min
xPH

"

x∇f pykq ` βA˚ pAyk ´ bq , x´ yky `
1

γ

@

νγk , Ax´ b
D

`
1

2γ
sk`1 ‖Ax´ ηk‖2 `

1

2σ
‖x´ yk‖2

*

, (3.3f)

zγk`1 :“ γxk`1 ` ptk`1 ´ 1q pxk`1 ´ xkq , (3.3g)

λk`1 :“ µk `
ρ

γ

`

Azγk`1 ´ γb
˘

. (3.3h)

One can notice that Algorithm 1 can be written in a concise way only in terms of the
sequences of primal-dual iterates tpxk, λkqukě0, however, this elaborated formulation using aux-
iliary sequences is more convenient for its analysis.

Even though the choice γ “ 1 would give a simplified version of Algorithm 1, without
affecting its fast convergence properties, we will see that in order to guarantee the convergence
of tpxk, λkqukě0 to a primal-dual optimal solution it will be crucial to choose γ P p0, 1q. A
similar phenomenon is known from the continuous and discrete schemes in the unconstrained
case, where fast convergence rates have been obtained for α ě 3, while the convergence of the
sequence of iterates/trajectory could be shown only for α ą 3. In view of (2.13), in order to be
allowed to choose γ P p0, 1q, one must have α ą 3.

Example 3.1. (The case A “ 0 and b “ 0) If A “ 0 and b “ 0, then (1.1) becomes
the unconstrained optimization problems (2.3) and Algorithm 1 reduces to the well-known

accelerated gradient scheme which, given 0 ă σ ď
1

L
, ttkukě1 a nondecreasing sequence fulfilling

(3.2) and x0 “ x1 P H, reads for every k ě 1

yk :“ xk `
tk ´ 1

tk`1
pxk ´ xk´1q

xk`1 :“ yk ´ σ∇f pykq ,

as the dual sequence tλkukě0 can be neglected.

Remark 3.2. By denoting for every k ě 1

zk :“ xk ` ptk ´ 1q pxk ´ xk´1q (3.4a)

“ xk ` tk`1 pyk ´ xkq (3.4b)

“ tkxk ´ ptk ´ 1qxk´1, (3.4c)

it yields

yk “

ˆ

1´
1

tk`1

˙

xk `
1

tk`1
zk “

ˆ

1´
1

tk`1

˙

xk `
1

tk`1
pxk ` ptk ´ 1q pxk ´ xk´1qq . (3.5)
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On the other hand, (3.4c) with index k ` 1 reads

zk`1 “ tk`1xk`1 ´ ptk`1 ´ 1qxk, (3.6)

which is equivalent to

xk`1 “

ˆ

1´
1

tk`1

˙

xk `
1

tk`1
zk`1. (3.7)

Subtracting (3.5) from (3.7), we obtain

xk`1 ´ yk “
1

tk`1
pzk`1 ´ zkq . (3.8)

Furthermore, by the definition of zγk and zk in (3.3g) and (3.4a), it holds

zγk “ zk ` pγ ´ 1qxk,

which leads to

zγk`1 ´ z
γ
k “ zk`1 ´ zk ` pγ ´ 1q pxk`1 ´ xkq (3.9a)

“ tk`1 pxk`1 ´ ykq ` pγ ´ 1q pxk`1 ´ xkq . (3.9b)

By a similar argument, denoting for every k ě 1

νk :“ λk ` ptk ´ 1q pλk ´ λk´1q , (3.10)

we can derive that

νγk`1 ´ ν
γ
k “ tk`1 pλk`1 ´ µkq ` pγ ´ 1q pλk`1 ´ λkq and λk`1 ´ µk “

1

tk`1
pνk`1 ´ νkq . (3.11)

Example 3.3. (The choice γ “ 1) In case γ “ 1 we denote zk :“ z1k and νk :“ ν1k for every

k ě 1, which is consistent with the notations in the remark above. Given 0 ă σ ď
1

L` β}A}2
,

ttkukě1 a nondecreasing sequence fulfilling (3.2) x0 “ x1 P H and λ0 “ λ1 P G, Algorithm 1
simplifies for every k ě 1 to

yk :“ xk `
tk ´ 1

tk`1
pxk ´ xk´1q ,

µk :“ λk `
tk ´ 1

tk`1
pλk ´ λk´1q ,

ηk :“

ˆ

1´
1

tk`1

˙

Axk `
1

tk`1
b,

νk :“ λk ` ptk ´ 1q pλk ´ λk´1q ,

xk`1 :“ arg min
xPH

"

x∇f pykq ` βA˚ pAyk ´ bq , x´ yky ` xνk, Ax´ by

`
1

2
ρt2k`1 ‖Ax´ ηk‖

2
`

1

2σ
‖x´ yk‖2

*

,

λk`1 :“ µk ` ρ pAxk`1 ´ b` ptk`1 ´ 1qA pxk`1 ´ xkqq .

The fact that this iterative scheme exhibits fast convergence rates for the primal-dual gap, the
feasibility measure, and the objective function value will follow from the analysis we will do for
Algorithm 1. However, nothing can be said about the convergence of the primal-dual iterates.
To this end we will have to assume that γ P p0, 1q, which will be a crucial assumption.
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Remark 3.4. He, Hu and Fang have considered in [15] for α ą 3, σ, σ1 ą 0 and

tk :“ 1`
k ´ 2

α´ 1
@k ě 1

the following iterative scheme which reads for every k ě 1

yk :“ xk `
tk ´ 1

tk`1
pxk ´ xk´1q ,

µk :“ λk `
tk ´ 1

tk`1
pλk ´ λk´1q ,

ηk :“

ˆ

1´
1

tk`1

˙

Axk `
1

tk`1
b,

νk :“ λk ` ptk ´ 1q pλk ´ λk´1q ,

xk`1 :“ arg min
xPH

"

x∇f pykq , x´ yky ` xνk, Ax´ by `
σ ptk`2 ´ 1q tk`1

2
‖Ax´ ηk‖2

`
σ1tk`1

σ ptk`2 ´ 1q
‖x´ yk‖2

*

,

λk`1 :“ µk `
σ ptk`2 ´ 1q

tk`1
pAxk`1 ´ b` ptk`1 ´ 1qA pxk`1 ´ xkqq .

This algorithm differs from Algorithm 1 for the choice γ “ 1 (as formulated in the above
example) in the way the primal-dual iterates tpxk, λkqukě0 are defined. The formulation of the
first allows a more direct derivation of the fast convergence rates for the feasibility measure and
the objective function value. The convergence of tpxk, λkqukě0 has been not addressed in [15],
and it is by far not clear whether this sequence converges.

The following lemma collects some properties of the sequence ttkukě1 fulfilling (3.2).

Lemma 3.5. Let 0 ă m ď 1 and ttkukě1 a nondecreasing sequence fulfilling

t1 :“ 1 and t2k`1 ´mtk`1 ď t2k @k ě 1.

Then for every k ě 1 it holds

tk`1 ´ tk ď ϕm :“
m´ 2`

?
m2 ` 4

2
ď

?
5´ 1

2
ă 1, (3.13)

tk`1 ď p1` ϕmq tk and tk`1 ď 1` kϕm ď p1` ϕmq k. (3.14)

Proof. Let k ě 1. From the assumption we have that

1 ď tk`1 ď
m`

b

m2 ` 4t2k

2
,

which further gives

tk`1 ´ tk ď
m`

b

m2 ` 4t2k

2
´ tk.

We define the function ψ : r1,`8q Ñ R as s ÞÑ
m`

?
m2 ` 4s2

2
´ s. Since

ψ1 psq “
2s

?
m2 ` 4s2

´ 1 ă 0,

ψ is nonincreasing, consequently

tk`1 ´ tk ď ψ p1q “
m`

?
m2 ` 4

2
´ 1 “ ϕm ď

?
5´ 1

2
.

The statements in (3.14) follow from the fact that tk ě 1 for every k ě 1 and ϕm ě 0 and by
telescoping arguments, respectively.
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3.2 Some important estimates and an energy function

In this section we will provide some important estimates which will be useful when proving that
the sequence of values of a discrete energy function, which we will associate with Algorithm 1,
takes at a saddle point is nonincreasing.

Lemma 3.6. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1. Then for every x P H
and every k ě 1 the following inequality holds

f pxk`1q ď f pxq ´
1

γ

@

νγk`1, Axk`1 ´Ax
D

`
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´Axy

`
1

σ
xyk ´ xk`1, xk`1 ´ xy ´ β xAyk ´ b, Axk`1 ´Axy

`
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxq‖2 . (3.15)

Proof. Let x P H and k ě 1 be fixed. According to (3.3f) we have that

∇f pykq `
1

γ
A˚νγk `

1

γ
sk`1A

˚pAxk`1 ´ ηkq `
1

σ
pxk`1 ´ ykq ` βA

˚ pAyk ´ bq “ 0. (3.16)

On the other hand, from (3.3c), (3.3e) and (3.3h) we have

1

γ
sk`1 pAxk`1 ´ ηkq “

ρ

γ2
tk`1 pptk`1 ´ 1` γqAxk`1 ´ ptk`1 ´ 1qAxk ´ γbq

“
ρ

γ2
tk`1

`

Azγk`1 ´ γb
˘

“
1

γ
tk`1 pλk`1 ´ µkq

“
1

γ

`

νγk`1 ´ ν
γ
k ` p1´ γq pλk`1 ´ λkq

˘

, (3.17)

where the last equation follows from (3.11). Hence, replacing (3.17) in (3.16) we have

∇f pykq “ ´
1

γ
A˚νγk`1 `

1

γ
p1´ γqA˚ pλk ´ λk`1q `

1

σ
pyk ´ xk`1q ´ βA

˚ pAyk ´ bq . (3.18)

The Descent Lemma inequality (1.14) provides

f pxk`1q ď f pykq ` x∇f pykq , xk`1 ´ yky `
L

2
‖xk`1 ´ yk‖2

and

f pykq ď f pxq ` x∇f pykq , yk ´ xy ´
1

2L
‖∇f pykq ´∇f pxq‖2 .

By summing up these relations it yields

f pxk`1q ď f pxq ` x∇f pykq , xk`1 ´ xy `
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxq‖2

“ f pxq ´
1

γ

@

νγk`1, Axk`1 ´Ax
D

`
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´Axy

`
1

σ
xyk ´ xk`1, xk`1 ´ xy ´ β xAyk ´ b, Axk`1 ´Axy

`
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxq‖2 ,

which is nothing else than (3.15).
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In the following we denote

Q :“
1

σ
Id´ βA˚A. (3.19)

Assumption (3.1) guarantees that γQ´ LId P S` pHq, as

γQ´ LId “
´γ

σ
´ L

¯

Id´ γβA˚A ě

´γ

σ
´ L´ γβ ‖A‖2

¯

Id. (3.20)

Lemma 3.7. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1. Then for every
px, λq P F ˆ G and every k ě 1 the following two inequalities hold

Lβ pxk`1, λq ´ Lβ px, λk`1q

ď
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´ by ` xyk ´ xk`1, xk`1 ´ xyQ `

1

ρ
xµk ´ λk`1, λk`1 ´ λy

´
β

2
‖Axk`1 ´ b‖2 `

L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxq‖2

´
1

γ
ptk`1 ´ 1q xλk`1 ´ λk, Axk`1 ´ by `

1

γ
ptk`1 ´ 1q xλk`1 ´ λ,Axk`1 ´Axky , (3.21)

and

Lβ pxk`1, λq ´ Lβ px, λk`1q

ď Lβ pxk, λq ´ Lβ px, λkq `
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´Axky ` xyk ´ xk`1, xk`1 ´ xkyQ

`
1

ρ
xµk ´ λk`1, λk`1 ´ λky ´

β

2
‖Axk`1 ´Axk‖2 `

L

2
‖xk`1 ´ yk‖2

´
1

2L
‖∇f pykq ´∇f pxkq‖2 ` xλ´ λk`1, Axk`1 ´Axky ` xλk`1 ´ λk, Axk`1 ´ by . (3.22)

Proof. Let x P F , which means that Ax “ b, λ P G, and k ě 1 be fixed. We deduce from
Lemma 3.6 that

f pxk`1q ` xλ,Axk`1 ´ by

ď f pxq ` xλk`1, Ax´ by `
β

2
‖Ax´ b‖2 `

B

λ´
1

γ
νγk`1, Axk`1 ´ b

F

`
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´ by `

1

σ
xyk ´ xk`1, xk`1 ´ xy

´ β xAyk ´ b, Axk`1 ´Axy `
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxq‖2

“ f pxq ` xλk`1, Ax´ by `
β

2
‖Ax´ b‖2 `

B

λ´
1

γ
νγk`1, Axk`1 ´ b

F

`
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´ by ` xyk ´ xk`1, xk`1 ´ xyQ

´ β ‖Axk`1 ´ b‖2 `
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxq‖2 , (3.23)

where, by using the definition of Q, the last identity follows from

1

σ
xyk ´ xk`1, xk`1 ´ xy ´ β xAyk ´ b, Axk`1 ´Axy

“
1

σ
xyk ´ xk`1, xk`1 ´ xy ´ β xAyk ´Axk`1, Axk`1 ´Axy ´ β ‖Axk`1 ´ b‖2

“
1

σ
xyk ´ xk`1, xk`1 ´ xy ´ β xyk ´ xk`1, A

˚Apxk`1 ´ xqy ´ β ‖Axk`1 ´ b‖2

“ xyk ´ xk`1, xk`1 ´ xyQ ´ β ‖Axk`1 ´ b‖
2 .
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Recall that from (3.3h) we have

0 “ µk ´ λk`1 `
ρ

γ

`

Azγk`1 ´ γb
˘

,

which yields further

0 “
1

ρ
xµk ´ λk`1, λk`1 ´ λy `

1

γ

@

λk`1 ´ λ,Az
γ
k`1 ´ γb

D

. (3.24)

Moreover, from (3.3d) and (3.3g) we have
B

λ´
1

γ
νγk`1, Axk`1 ´ b

F

`
1

γ

@

λk`1 ´ λ,Az
γ
k`1 ´ γb

D

“

B

λ´ λk`1 ´
1

γ
ptk`1 ´ 1qpλk`1 ´ λkq, Axk`1 ´ b

F

`

B

λk`1 ´ λ,Axk`1 `
1

γ
ptk`1 ´ 1qApxk`1 ´ xkq ´ b

F

“ xλ´ λk`1, Axk`1 ´ by ´
1

γ
ptk`1 ´ 1q xλk`1 ´ λk, Axk`1 ´ by

` xλk`1 ´ λ,Axk`1 ´ by `
1

γ
ptk`1 ´ 1q xλk`1 ´ λ,Axk`1 ´Axky

“ ´
1

γ
ptk`1 ´ 1q xλk`1 ´ λk, Axk`1 ´ by `

1

γ
ptk`1 ´ 1q xλk`1 ´ λ,Axk`1 ´Axky ,

therefore, by summing up (3.23) and (3.24) and after rearranging the terms, the estimate (3.21)
follows.

Next we will prove the second estimate. By take x :“ xk in inequality (3.15) we get

f pxk`1q ` xλ,Axk`1 ´ by

ď f pxkq ` xλ,Axk ´ by `

B

λ´
1

γ
νγk`1, Axk`1 ´Axk

F

`
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´Axky

`
1

σ
xyk ´ xk`1, xk`1 ´ xky ´ β xAyk ´ b, Axk`1 ´Axky

`
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxkq‖2

“ f pxkq ` xλ,Axk ´ by `

B

λ´
1

γ
νγk`1, Axk`1 ´Axk

F

`
1

γ
p1´ γq xλk ´ λk`1, Axk`1 ´Axky

` xyk ´ xk`1, xk`1 ´ xkyQ ´ β xAxk`1 ´ b, Axk`1 ´Axky

`
L

2
‖xk`1 ´ yk‖2 ´

1

2L
‖∇f pykq ´∇f pxkq‖2 , (3.25)

where, by using again the definition of Q, the last identity follows from

1

σ
xyk ´ xk`1, xk`1 ´ xky ´ β xAyk ´ b, Axk`1 ´Axky

“
1

σ
xyk ´ xk`1, xk`1 ´ xky ´ β xAyk ´Axk`1, Axk`1 ´Axky ´ β xAxk`1 ´ b, Axk`1 ´Axky

“
1

σ
xyk ´ xk`1, xk`1 ´ xky ´ β xyk ´ xk`1, A

˚Apxk`1 ´ xkqy ´ β xAxk`1 ´ b, Axk`1 ´Axky

“ xyk ´ xk`1, xk`1 ´ xkyQ ´ β xAxk`1 ´ b, Axk`1 ´Axky .

The identity (1.9) gives us

´β xAxk`1 ´ b, Axk`1 ´Axky “ ´
β

2
‖Axk`1 ´ b‖2 ´

β

2
‖Axk`1 ´Axk‖2 `

β

2
‖Axk ´ b‖2 ,
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hence, by recalling relation (1.3), (3.25) can be equivalently written as

Lβ pxk`1, λq ´ Lβ px, λk`1q

ď Lβ pxk, λq ´ Lβ px, λkq `
B

λ´
1

γ
νγk`1, Axk`1 ´Axk

F

`
1

γ
pγ ´ 1q xλk`1 ´ λk, Axk`1 ´Axky

` xyk ´ xk`1, xk`1 ´ xkyQ ´
β

2
‖Axk`1 ´Axk‖2 `

L

2
‖xk`1 ´ yk‖2

´
1

2L
‖∇f pykq ´∇f pxkq‖2 . (3.26)

In addition, by taking λ :“ λk in (3.24) gives

0 “
1

ρ
xµk ´ λk`1, λk`1 ´ λky `

1

γ

@

λk`1 ´ λk, Az
γ
k`1 ´ γb

D

. (3.27)

Moreover, we have from (3.3d) and (3.3g)

B

λ´
1

γ
νγk`1, Axk`1 ´Axk

F

`
1

γ

@

λk`1 ´ λk, Az
γ
k`1 ´ γb

D

“ xλ´ λk`1, Axk`1 ´Axky ´
1

γ
ptk`1 ´ 1q xλk`1 ´ λk, Axk`1 ´Axky

` xλk`1 ´ λk, Axk`1 ´ by `
1

γ
ptk`1 ´ 1q xλk`1 ´ λk, Axk`1 ´Axky

“ xλ´ λk`1, Axk`1 ´Axky ` xλk`1 ´ λk, Axk`1 ´ by ,

therefore, by summing up (3.26) and (3.27) and after rearranging terms, the estimate (3.22)
follows.

For px, λq P F ˆ G and k ě 1 we introduce the following energy function associated with
Algorithm 1

Ek px, λq :“ tk ptk ´ 1` γq pLβ pxk, λq ´ Lβ px, λkqq `
1

2

∥∥zγk ´ γx∥∥2Q ` 1

2ρ

∥∥νγk ´ γλ∥∥2
`

1

2
γ p1´ γq ‖xk ´ x‖2Q `

1

2ρ
γ p1´ γq ‖λk ´ λ‖2 `

1´ γ

2ρ
ptk ´ 1q ‖λk ´ λk´1‖2 .

According to (1.4), for every px˚, λ˚q P S and every k ě 1 it holds

Ek px˚, λ˚q ě 0.

The following estimate for the energy function will play a fundamental role in our analysis.

Proposition 3.8. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1. Then for every
px, λq P F ˆ G and every k ě 1 it holds

Ek`1 px, λq ď Ek px, λq `
`

t2k`1 ´ tk`1 ´ t
2
k ` p1´ γq tk

˘ `

Lβ pxk, λq ´ Lβ px, λkq
˘

´
βγ

2
tk`1 ‖Axk`1 ´ b‖2 ´

β

2
tk`1 ptk`1 ´ 1q ‖Axk`1 ´Axk‖2

´
γ

2L
tk`1 ‖∇f pykq ´∇f pxq‖2 ´ 1

2L
tk`1 ptk`1 ´ 1q ‖∇f pykq ´∇f pxkq‖2

´ p1´ γq ptk`1 ´ 1q ‖xk`1 ´ xk‖2Q ´
1´ γ

2ρ
p2tk`1 ´ 1q ‖λk`1 ´ λk‖2

´
1

2
t2k`1 ‖xk`1 ´ yk‖

2
γQ´LId ´

γ

2ρ
t2k`1 ‖λk`1 ´ µk‖

2 . (3.28)
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Proof. Let px, λq P F ˆ G and k ě 1 be fixed. Multiplying (3.22) by tk`1 ptk`1 ´ 1q ě 0 and
(3.21) by γtk`1, and adding the resulting inequalities, yields

tk`1 ptk`1 ´ 1` γq
`

Lβ pxk`1, λq ´ Lβ px, λk`1q
˘

ď tk`1 ptk`1 ´ 1q
`

Lβ pxk, λq ´ Lβ px, λkq
˘

`
1

γ
p1´ γq tk`1 xλk ´ λk`1, γ pAxk`1 ´ bq ` ptk`1 ´ 1q pAxk`1 ´Axkqy

` tk`1 xyk ´ xk`1, γ pxk`1 ´ xq ` ptk`1 ´ 1q pxk`1 ´ xkqyQ

`
1

ρ
tk`1 xµk ´ λk`1, γ pλk`1 ´ λq ` ptk`1 ´ 1q pλk`1 ´ λkqy

´
βγ

2
tk`1 ‖Axk`1 ´ b‖2 ´

β

2
tk`1 ptk`1 ´ 1q ‖Axk`1 ´Axk‖2

´
γ

2L
tk`1 ‖∇f pykq ´∇f pxq‖2 ´ 1

2L
tk`1 ptk`1 ´ 1q ‖∇f pykq ´∇f pxkq‖2

`
L

2
tk`1 ptk`1 ´ 1` γq ‖xk`1 ´ yk‖2 . (3.29)

According to (3.3b), (3.3g) and (3.3h) we have

1

γ
p1´ γq tk`1 xλk ´ λk`1, γ pAxk`1 ´ bq ` ptk`1 ´ 1q pAxk`1 ´Axkqy

“
1

γ
p1´ γq tk`1

@

λk ´ λk`1, Az
γ
k`1 ´ γb

D

“
1

ρ
p1´ γq tk`1 xλk ´ λk`1, λk`1 ´ µky

“ ´
1´ γ

2ρ
tk`1 ‖λk`1 ´ λk‖2 ´

1´ γ

2ρ
tk`1 ‖λk`1 ´ µk‖2 `

1´ γ

2ρ
tk`1 ‖µk ´ λk‖2

ď ´
1´ γ

2ρ
tk`1 ‖λk`1 ´ λk‖2 `

1´ γ

2ρ

ptk ´ 1q2

tk`1
‖λk ´ λk´1‖2

ď ´
1´ γ

2ρ
tk`1 ‖λk`1 ´ λk‖2 `

1´ γ

2ρ
ptk ´ 1q ‖λk ´ λk´1‖2 , (3.30)

where in the last inequality we use that ttkukě1 is nondecreasing and that tk ě 1 for every
k ě 1.

On the other hand, (3.3g), (3.9a) and (1.12) give

tk`1 xyk ´ xk`1, γ pxk`1 ´ xq ` ptk`1 ´ 1q pxk`1 ´ xkqyQ
“
@

zγk ´ z
γ
k`1, z

γ
k`1 ´ γx

D

Q ` pγ ´ 1q xxk`1 ´ xk, γ pxk`1 ´ xq ` ptk`1 ´ 1q pxk`1 ´ xkqyQ

“´
1

2

∥∥zγk`1 ´ zγk∥∥2Q ´ 1

2

∥∥zγk`1 ´ γx∥∥2Q ` 1

2

∥∥zγk ´ γx∥∥2Q ` 1

2
γ pγ ´ 1q ‖xk`1 ´ xk‖2Q

`
1

2
γ pγ ´ 1q ‖xk`1 ´ x‖2Q ´

1

2
γ pγ ´ 1q ‖xk ´ x‖2Q ` pγ ´ 1q ptk`1 ´ 1q ‖xk`1 ´ xk‖2Q .

(3.31)

From (1.13), (3.9b) and (3.8) we have

´
1

2

∥∥zγk`1 ´ zγk∥∥2Q “´ 1

2
‖zk`1 ´ zk ` pγ ´ 1q pxk`1 ´ xkq‖2Q

“´
1

2
γ ‖zk`1 ´ zk‖2Q ´

1

2
γ pγ ´ 1q ‖xk`1 ´ xk‖2Q

`
1

2
pγ ´ 1q ‖zk`1 ´ zk ´ pxk`1 ´ xkq‖2Q

ď´
1

2
γt2k`1 ‖xk`1 ´ yk‖

2
Q ´

1

2
γ pγ ´ 1q ‖xk`1 ´ xk‖2Q ,
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which we combine with (3.31) to obtain

tk`1 xyk ´ xk`1, γ pxk`1 ´ xq ` ptk`1 ´ 1q pxk`1 ´ xkqyQ

ď´
1

2
γt2k`1 ‖xk`1 ´ yk‖

2
Q ´

1

2

∥∥zγk`1 ´ γx∥∥2Q ` 1

2

∥∥zγk ´ γx∥∥2Q ´ 1

2
γ p1´ γq ‖xk`1 ´ x‖2Q

`
1

2
γ p1´ γq ‖xk ´ x‖2Q ` pγ ´ 1q ptk`1 ´ 1q ‖xk`1 ´ xk‖2Q . (3.32)

By using the same technique, we can derive that

1

ρ
tk`1 xµk ´ λk`1, γ pλk`1 ´ λq ` ptk`1 ´ 1q pλk`1 ´ λkqy

ď ´
γ

2ρ
t2k`1 ‖λk`1 ´ µk‖

2
´

1

2ρ

∥∥νγk`1 ´ γλ∥∥2 ` 1

2

∥∥νγk ´ γλ∥∥2 ´ γ

2ρ
p1´ γq ‖λk`1 ´ λ‖2

`
γ

2ρ
p1´ γq ‖λk ´ λ‖2 `

1

ρ
pγ ´ 1q ptk`1 ´ 1q ‖λk`1 ´ λk‖2 . (3.33)

Plugging (3.30), (3.32) and (3.33) into (3.29), and taking into consideration the fact that γ P
p0, 1s, gives the desired statement.

Next we record some direct consequences of the above estimate.

Proposition 3.9. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 and px˚, λ˚q P S.
Then the sequence tEk px˚, λ˚qukě1 is nonincreasing and the following statements are true

ˆ

1´
m

γ

˙

ÿ

kě1

tk
`

Lβ pxk, λ˚q ´ Lβ px˚, λkq
˘

ă `8

ÿ

kě1

tk`1

ˆ

β ‖Axk`1 ´ b‖2 `
1

L
‖∇f pykq ´∇f px˚q‖2

˙

ă `8

ÿ

kě1

tk`1 ptk`1 ´ 1q

ˆ

β ‖Axk`1 ´Axk‖2 `
1

L
‖∇f pykq ´∇f pxkq‖2

˙

ă `8

p1´ γq
ÿ

kě1

ptk`1 ´ 1q ‖xk`1 ´ xk‖2Q ă `8

p1´ γq
ÿ

kě1

p2tk`1 ´ 1q ‖λk`1 ´ λk‖2 ă `8

ÿ

kě1

t2k`1

ˆ

‖xk`1 ´ yk‖2γQ´LId `
γ

ρ
‖λk`1 ´ µk‖2

˙

ă `8.

Proof. Since ttkukě1 is an nondecreasing sequence that satisfies (3.2) and 0 ă m ď γ ď 1, we
have for every k ě 1

t2k`1 ´ tk`1 ´ t
2
k ` p1´ γq tk ď pm´ 1q tk`1 ` p1´ γq tk ď pm´ γq tk ď 0.

Moreover, as px˚, λ˚q P S, we must have x˚ P F and Lβ pxk, λ˚q ´ Lβ px˚, λkq ě 0 for every
k ě 1 due to (1.4). Combining these observations, we deduce from the inequality (3.28) applied
to px, λq “ px˚, λ˚q that for every k ě 1

Ek`1 px˚, λ˚q ď Ek px˚, λ˚q ´ pγ ´mq tk
`

Lβ pxk, λ˚q ´ Lβ px˚, λkq
˘

´
βγ

2
tk`1 ‖Axk`1 ´ b‖2 ´

β

2
tk`1 ptk`1 ´ 1q ‖Axk`1 ´Axk‖2

´
γ

2L
tk`1 ‖∇f pykq ´∇f px˚q‖2 ´

1

2L
tk`1 ptk`1 ´ 1q ‖∇f pykq ´∇f pxkq‖2

´ p1´ γq ptk`1 ´ 1q ‖xk`1 ´ xk‖2Q ´
1´ γ

2ρ
p2tk`1 ´ 1q ‖λk`1 ´ λk‖2

´
1

2
t2k`1 ‖xk`1 ´ yk‖

2
γQ´LId ´

γ

2ρ
t2k`1 ‖λk`1 ´ µk‖

2 . (3.35)
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By applying Lemma 1.1 we obtain all conclusions.

Remark 3.10. Since the sequence tEk px˚, λ˚qukě1 is nonincreasing and for every k ě 1

γt2k ď tk ptk ´ 1` γq ô tk ě 1, (3.36)

we deduce that

βγ

2
t2k ‖Axk ´ b‖

2
ď γt2k

`

Lβ pxk, λ˚q ´ Lβ px˚, λkq
˘

ď tk ptk ´ 1` γq
`

Lβ pxk, λ˚q ´ Lβ px˚, λkq
˘

ď Ek px˚, λ˚q ď ¨ ¨ ¨ ď E1 px˚, λ˚q .

Consequently, for every k ě 1 we have

t2k

´

L pxk, λ˚q ´ L px˚, λkq
¯

ď t2k

´

Lβ pxk, λ˚q ´ Lβ px˚, λkq
¯

ď
E1 px˚, λ˚q

γ

and, when β ą 0, tk ‖Axk ´ b‖ ď

d

2E1 px˚, λ˚q
βγ

. (3.37)

Remark 3.11. Recall that from Proposition 3.9 we have

ÿ

kě1

ptk`1 ´ 1q

ˆ

‖xk`1 ´ xk‖2Q `
1

2ρ
‖λk`1 ´ λk‖2

˙

ă `8, (3.38)

whenever γ ă 1. Taking into account the way γ has arisen in the context of the dynamical
system (PD-AVD) (see (2.13)), this corresponds to

γ “
1

θ pα´ 1q
ă 1 ô

1

α´ 1
ă θ.

In the continuous case it has been proved (see [8, Theorem 3.2]) that, if
1

α´ 1
ă θ, then

ż `8

t0

t
∥∥∥´ 9x ptq , 9λ ptq

¯
∥∥∥2 ă `8,

which can be seen as the continuous counterpart of (3.38). Both statements play a crucial role
in the proof of the convergence of the sequence of iterates generated by Algorithm 1 and of the
trajectory generated by (PD-AVD), respectively.

The following result, which complements the statements of Proposition 3.9, will also play a
crucial role in the proof of the convergence of the sequence of iterates.

Proposition 3.12. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 with

0 ă σ ă
γ

L` γβ}A}2
,

and px˚, λ˚q P S. Then the following statements are true
ˆ

1´
m

γ

˙

ÿ

kě1

tk ‖A˚ pλk ´ λ˚q‖2 ă `8, (3.39a)

tk`1 ptk`1 ´ 1q2
ÿ

kě1

‖A˚ pλk`1 ´ λkq‖2 ă `8. (3.39b)

In addition, there exists C0 ą 0 such that for every k ě 1

‖A˚ pλk ´ λ˚q‖ ď
C0

tk
.
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Proof. From (3.18), after rearranging some terms, we have for every k ě 1

A˚
ˆ

1

γ
νγk`1 ´ λ˚

˙

“
1

γ
p1´ γqA˚ pλk ´ λk`1q `∇f px˚q ´∇f pykq `

1

σ
pyk ´ xk`1q

` βA˚A pxk`1 ´ ykq ´ βA
˚ pAxk`1 ´ bq .

It follows from Proposition 3.9, by using (3.20) and the fact that tk ě 1, that for every k ě 1

ÿ

kě1

tk`1

∥∥∥∥A˚ˆ1

γ
νγk`1 ´ λ˚

˙
∥∥∥∥2

ď
5

γ2
p1´ γq2 ‖A‖2

ÿ

kě1

tk`1 ‖λk`1 ´ λk‖2 ` 5
ÿ

kě1

tk`1 ‖∇f pykq ´∇f px˚q‖2

`
5

σ2

ÿ

kě1

tk`1 ‖xk`1 ´ yk‖2 ` 5β2 ‖A˚A‖2
ÿ

kě1

tk`1 ‖xk`1 ´ yk‖2

` 5β2 ‖A‖2
ÿ

kě1

tk`1 ‖Axk`1 ´ b‖2 ă `8.

According to (3.3d) we have for every k ě 1

A˚
ˆ

1

γ
νγk`1 ´ λ˚

˙

“

ˆ

1`
1

γ
ptk`1 ´ 1q

˙

A˚ pλk`1 ´ λ˚q ´
1

γ
ptk`1 ´ 1qA˚ pλk ´ λ˚q ,

hence, by applying the identity (1.10), we get∥∥∥∥A˚ˆ1

γ
νγk`1 ´ λ˚

˙∥∥∥∥2 “ˆ

1`
1

γ
ptk`1 ´ 1q

˙

‖A˚ pλk`1 ´ λ˚q‖2 ´
1

γ
ptk`1 ´ 1q ‖A˚ pλk ´ λ˚q‖2

`
1

γ
ptk`1 ´ 1q

ˆ

1`
1

γ
ptk`1 ´ 1q

˙

‖A˚ pλk`1 ´ λkq‖2 . (3.40)

On the other hand, it follows from condition (3.2) and the fact that ttkukě1 is nondecreasing
that for every k ě 1

1

γ
tk`1 ptk`1 ´ 1q ´ tk

ˆ

1`
1

γ
ptk ´ 1q

˙

“
1

γ

`

t2k`1 ´ tk`1 ´ t
2
k ` tk

˘

´ tk

ď
1

γ
ppm´ 1q tk`1 ` tkq ´ tk

“
m´ 1

γ
ptk`1 ´ tkq `

ˆ

m

γ
´ 1

˙

tk

ď

ˆ

m

γ
´ 1

˙

tk, (3.41)

Combining (3.40) and (3.41), it yields for every k ě 1

tk`1

ˆ

1`
1

γ
ptk`1 ´ 1q

˙

‖A˚ pλk`1 ´ λ˚q‖2

“ tk

ˆ

1`
1

γ
ptk ´ 1q

˙

‖A˚ pλk ´ λ˚q‖2 `
ˆ

1

γ
tk`1 ptk`1 ´ 1q ´ tk

ˆ

1`
1

γ
ptk ´ 1q

˙˙

‖A˚ pλk ´ λ˚q‖2

´
1

γ
tk`1 ptk`1 ´ 1q

ˆ

1`
1

γ
ptk`1 ´ 1q

˙

‖A˚ pλk`1 ´ λkq‖2 ` tk`1
∥∥∥∥A˚ˆ1

γ
νγk`1 ´ λ˚

˙∥∥∥∥2
ď tk

ˆ

1`
1

γ
ptk ´ 1q

˙

‖A˚ pλk ´ λ˚q‖2 ´
ˆ

1´
m

γ

˙

tk ‖A˚ pλk ´ λ˚q‖2

´
1

γ2
tk`1 ptk`1 ´ 1q2 ‖A˚ pλk`1 ´ λkq‖2 ` tk`1

∥∥∥∥A˚ˆ1

γ
νγk`1 ´ λ˚

˙∥∥∥∥2 .
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We are in the setting of inequality (1.15) with

ak :“ tk

ˆ

1`
1

γ
ptk ´ 1q

˙

‖A˚ pλk ´ λ˚q‖2 ě 0,

bk :“

ˆ

1´
m

γ

˙

tk ‖A˚ pλk ´ λ˚q‖2 `
1

γ2
tk`1 ptk`1 ´ 1q2 ‖A˚ pλk`1 ´ λkq‖2 ě 0,

dk :“ tk`1

∥∥∥∥A˚ˆ1

γ
νγk`1 ´ λ˚

˙
∥∥∥∥2 ě 0,

for every k ě 1. According to Lemma 1.1, (3.39a) and (3.39b) are fulfilled and the sequence
"

tk

ˆ

1`
1

γ
ptk ´ 1q

˙

‖A˚ pλk ´ λ˚q‖2
*

kě1

is convergent, therefore it is bounded. Consequently,

there exists C0 ą 0 such that for every k ě 1

t2k ‖A˚ pλk ´ λ˚q‖
2
ď tk

ˆ

1`
1

γ
ptk ´ 1q

˙

‖A˚ pλk ´ λ˚q‖2 ď C0,

which provides the conclusion.

3.3 On the boundedness of the sequences

In this section we will discuss the boundedness of the sequence of primal-dual iterates tpxk, λkqukě0
and also of other related sequences which play a role in the convergence analysis.

To this end we define on Hˆ G the inner product

@

u, u1
D

W “
@

px, λq ,
`

x1, λ1
˘D

W “
@

x, x1
D

Q `
1

ρ

@

λ, λ1
D

@u :“ px, λq , u1 :“
`

x1, λ1
˘

P Hˆ G,

where Q is the operator defined in (3.19) which we proved to be positive definite under assump-
tion (3.1). The norm induced by this scalar product is

‖u‖W “ ‖px, λq‖W “
c

‖x‖2Q `
1

ρ
‖λ‖2 @u :“ px, λq .

The condition on the sequence ttkukě1 which we will assume in the next proposition in order
to guarantee boundedness for the sequences generated by Algorithm 1 has been proposed in [4].
Later we will see that it is satisfied by the three classical inertial parameters rules by Nesterov,
Chambolle-Dossal and Attouch-Cabot.

Proposition 3.13. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1. Suppose that

κ :“ inf
kě1

tk
k
ą 0. (3.42)

Then the sequences tpxk, λkqukě0,
 `

zγk , ν
γ
k

˘(

kě1
and tptk`1 pxk`1 ´ xkq , tk`1 pλk`1 ´ λkqqukě0

are bounded. If, in addition β ą 0, then the sequence ttk`1 ptk`1 ´ 1q pAxk`1 ´Axkqukě0 is
also bounded.

Proof. Let px˚, λ˚q P S be fixed. For brevity we will write

u˚ :“ px˚, λ˚q P S and uk :“ pxk, λkq P Hˆ G @k ě 0.

By applying (1.13), we have from (3.3g) that for every k ě 1∥∥zγk ´ γx˚∥∥2Q “ ‖ptk ´ 1` γq pxk ´ x˚q ´ ptk ´ 1q pxk´1 ´ x˚q‖2Q
“ γ ptk ´ 1` γq ‖xk ´ x˚‖2Q ´ γ ptk ´ 1q ‖xk´1 ´ x˚‖2Q
` ptk ´ 1` γq ptk ´ 1q ‖xk ´ xk´1‖2Q .
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By applying (1.11), we have from (3.3d) that for every k ě 1∥∥νγk ´ γλ˚∥∥2 “ ‖ptk ´ 1` γq pλk ´ λ˚q ´ ptk ´ 1q pλk´1 ´ λ˚q‖2

“ γ ptk ´ 1` γq ‖λk ´ λ˚‖2 ´ γ ptk ´ 1q ‖λk´1 ´ λ˚‖2

` ptk ´ 1` γq ptk ´ 1q ‖λk ´ λk´1‖2 .

This means the energy function at px˚, λ˚q can be written for every k ě 1 as

Ek px˚, λ˚q “ tk ptk ´ 1` γq pLβ pxk, λ˚q ´ Lβ px˚, λkqq

`
γ

2
tk ‖uk ´ u˚‖2W ´

γ

2
ptk ´ 1q ‖uk´1 ´ u˚‖2W

`
1

2
ptk ´ 1` γq ptk ´ 1q ‖uk ´ uk´1‖2W `

1´ γ

2ρ
ptk ´ 1q ‖λk ´ λk´1‖2 . (3.43)

According to Proposition 3.9, the sequence tEk px˚, λ˚qukě1 is nonincreasing, therefore for every
k ě 1

γ

2
tk ‖uk ´ u˚‖2W ´

γ

2
ptk ´ 1q ‖uk´1 ´ u˚‖2W `

1

2
ptk ´ 1` γq ptk ´ 1q ‖uk ´ uk´1‖2W

ď
1

2

∥∥zγk ´ γx˚∥∥2Q ` 1

2ρ

∥∥νγk ´ γλ˚∥∥2 ď Ek px˚, λ˚q ď ¨ ¨ ¨ ď E1 px˚, λ˚q ă `8.

From here we conclude that the sequence
 `

zγk , ν
γ
k

˘(

kě1
is bounded. In addition, for every k ě 1

it holds

γ

2
tk ‖uk ´ u˚‖2W ď

γ

2
ptk ´ 1q ‖uk´1 ´ u˚‖2W ` E1 px˚, λ˚q ď

γ

2
tk´1 ‖uk´1 ´ u˚‖2W ` E1 px˚, λ˚q ,

where the last inequality is due to (3.13), with the convention t0 :“ 0. After telescoping, we get

γ

2
tk ‖uk ´ u˚‖2W ď kE1 px˚, λ˚q @k ě 1.

Then thanks to (3.42) we obtain

‖uk ´ u˚‖2W ď
2k

γtk
E1 px˚, λ˚q ď

2

γκ
E1 px˚, λ˚q ă `8,

which means that tuk :“ pxk, λkqukě0 is bounded. That tptk`1 pxk`1 ´ xkq , tk`1 pλk`1 ´ λkqqukě0
is bounded follows from the fact that for all k ě 1

tk pxk ´ xk´1q “ zγk ´ pγ ´ 1qxk ´ xk´1,

tk pλk ´ λk´1q “ νγk ´ pγ ´ 1qλk ´ λk´1

Finally, recall that from (3.11), (3.3h) and (3.3g), we have for every k ě 1

νγk`1 ´ ν
γ
k ` p1´ γq pλk`1 ´ λkq “ tk`1 pλk`1 ´ µkq “

ρ

γ
tk`1

`

Azγk`1 ´ γb
˘

“
ρ

γ
pγtk`1 pAxk`1 ´ bq ` tk`1 ptk`1 ´ 1q pAxk`1 ´Axkqq .

The last statement of the proposition follows from here and (3.37).

In the following, we will see that the two most prominent choices for the sequence ttkukě1
from the literature, namely, the ones following the rules by Nesterov and by Chambolle-Dossal
satisfy not only (3.2), but also (3.42).
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Example 3.14. (Nesterov rule) The classical construction proposed Nesterov in [21] for
ttkukě1 satisfies the following rule

t1 :“ 1 and tk`1 :“
1`

b

1` 4t2k

2
@k ě 1. (3.44)

The sequence ttkukě1 is strictly increasing and verifies relation (3.2) for m :“ 1 with equality.

In addition (see, for instance, [6, Lemma 4.3]), it holds tk ě
k ` 1

2
for every k ě 1, which means

that (3.42) is satisfied for κ ě
1

2
.

Example 3.15. (Chambolle-Dossal rule) The construction proposed by Chambolle and
Dossal in [10] (see also [3]) for ttkukě1 satisfies for α ě 3 the following rule

tk :“ 1`
k ´ 1

α´ 1
“
k ` α´ 2

α´ 1
@k ě 1. (3.45)

First we show that this sequence fulfills (3.2) with m :“
2

α´ 1
ď 1. Indeed, for every k ě 1 we

have

t2k`1 ´mtk`1 ´ t
2
k “ ptk`1 ´ tkq ptk`1 ` tkq ´mtk`1 “

1

α´ 1

ˆ

2`
2k ´ 1

α´ 1

˙

´
2

α´ 1

k ` α´ 1

α´ 1

“ ´
1

pα´ 1q2
ă 0. (3.46)

Furthermore, one can see that for every k ě 1 it holds

tk
k
“

1

α´ 1
`

α´ 2

k pα´ 1q
,

which proves that (3.42) is verified for κ “
1

α´ 1
.

Finally, we observe that, by taking into consideration the choice of γ in (2.13) in the context
of the dynamical system (PD-AVD) and assumption (3.1) in Algorithm 1, it holds

m “
2

α´ 1
ď γ “

1

θ pα´ 1q
ô θ ď

1

2
. (3.47)

This connects the choice of the parameter m in Algorithm 1 with the one of the parameter θ in
(PD-AVD).

3.4 Fast convergence rates for the primal-dual gap, the feasibility measure
and the objective function value

We have seen in Remark 3.10 that, for the general choice of the sequence ttkukě1 in (3.2),
the convergence rate of the primal-dual gap is of order O

`

1{t2k
˘

as k Ñ `8. In addition, if
β ą 0, then the convergence rate of the feasibility measure is of order O p1{tkq as k Ñ `8. In
this section we will prove that convergence rates of the feasibility measure and of the objective
function value are O

`

1{t2k
˘

as k Ñ `8 when the sequence ttkukě1 is chosen by following the
rules by Nesterov, Chambolle-Dossal and also Attouch-Cabot.

In view of (3.42), this will lead for the primal-dual sequence tpxk, λkqukě0 generated by
Algorithm 1 and a given primal-dual solution px˚, λ˚q to the following fast convergence rates

L pxk, λ˚q ´ L px˚, λkq “ O
ˆ

1

k2

˙

as k Ñ `8,
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‖Axk ´ b‖ “ O
ˆ

1

k2

˙

and |f pxkq ´ f˚| “ O
ˆ

1

k2

˙

as k Ñ `8.

We start with the following lemma which holds in the very general setting of Algorithm 1.

Lemma 3.16. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 and px˚, λ˚q P S.
Then the quantity

C1 :“ sup
µPBpλ˚;1q

E1 px˚, µq ă `8.

Proof. Let px˚, λ˚q P S and µ P B pλ˚; 1q. The Cauchy-Schwarz inequality gives

Lβ px1, µq ´ Lβ px˚, λ1q “ f px1q ´ f px˚q ` xµ,Ax1 ´ by `
β

2
‖Ax1 ´ b‖2

ď f px1q ´ f px˚q ` ‖µ‖ ‖Ax1 ´ b‖`
β

2
‖Ax1 ´ b‖2

ď C2 :“ f px1q ´ f px˚q ` p1` ‖λ˚‖q ‖Ax1 ´ b‖`
β

2
‖Ax1 ´ b‖2 .

On the other hand, as νγ1 “ γλ1 and µ P B pλ˚; 1q, it holds

1

2ρ
‖νγ1 ´ γµ‖

2
`

γ

2ρ
p1´ γq ‖λ1 ´ µ‖2

ď
1

ρ

´

‖νγ1 ´ γλ˚‖
2
` γ2 ‖µ´ λ˚‖2

¯

`
γ

ρ
p1´ γq

´

‖λ1 ´ λ˚‖2 ` ‖µ´ λ˚‖2
¯

ď C3 :“
γ2

ρ
‖λ1 ´ λ˚‖2 `

γ

ρ
p1´ γq ‖λ1 ´ λ˚‖2 `

γ

ρ
“
γ

ρ

´

‖λ1 ´ λ˚‖2 ` 1
¯

.

Combining these estimates, as zγ1 “ γx1, we have

E1 px˚, µq “ t1 pt1 ´ 1` γq pLβ px1, µq ´ Lβ px˚, λ1qq `
1

2
‖zγ1 ´ γx˚‖

2
Q `

1

2ρ
‖νγ1 ´ γµ‖

2

`
1

2
γ p1´ γq ‖x1 ´ x˚‖2Q `

γ

2ρ
p1´ γq ‖λ1 ´ µ‖2 `

1´ γ

2ρ
pt1 ´ 1q ‖λ1 ´ λ0‖2

ď γC2 ` C3 `
γ

2
‖x1 ´ x˚‖2Q ă `8,

which proves the statement.

3.4.1 The Nesterov ([21]) rule

We have seen that by choosing ttkukě1 as in (3.44), (3.2) is fulfilled as equality for m “ 1, which
also yields γ “ 1 due to (3.1). Consequently, from Proposition 3.8 it follows that for every
px, λq P F ˆ G and every k ě 1 it holds

Ek`1 px, λq ď Ek px, λq , (3.48)

which means that the sequence tEk px, λqukě1 is nonincreasing. This statement is stronger than
the one in Proposition 3.9, where we have proved that the sequence of function values of the
energy function taken at a primal-dual optimal solution is nonincreasing, and will play an
important role in the following.

Theorem 3.17. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1, with the sequence
ttkukě1 chosen to satisfy Nesterov rule (3.44), and px˚, λ˚q P S. Then for every k ě 1 it holds

0 ď L pxk, λ˚q ´ L px˚, λkq ` ‖Axk ´ b‖ ď
C1

t2k
(3.49)

and

´
‖λ˚‖C1

t2k
ď f pxkq ´ f px˚q ď

p1` ‖λ˚‖qC1

t2k
. (3.50)
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Proof. As mentioned earlier in (3.48), for every px, λq P F ˆ G and every k ě 1 we have (take
into account that γ “ 1)

t2k pf pxkq ´ f pxq ` xλ,Axk ´ byq ď Ek px, λq ď ¨ ¨ ¨ ď E1 px, λq . (3.51)

We fix n ě 1 and define

rn :“

$

&

%

λ˚, if Axn ´ b “ 0

λ˚ `
Axn ´ b

‖Axn ´ b‖
, if Axn ´ b ‰ 0

.

Then x˚ P F and rn P B pλ˚; 1q. Hence, px˚, rnq P F ˆ B pλ˚; 1q, therefore, according to (3.51)
and Lemma 3.16,

t2n pf pxnq ´ f px˚q ` xrn, Axn ´ byq ď E1 px˚, rnq ď sup
µPBpλ˚;1q

E1 px˚, µq “ C1. (3.52)

If Axn ´ b ‰ 0, then

f pxnq ´ f px˚q ` xrn, Axn ´ by “ f pxnq ´ f px˚q ` xλ˚, Axn ´ by ` ‖Axn ´ b‖
“ L pxn, λ˚q ´ L px˚, λnq ` ‖Axn ´ b‖ .

On the other hand, if Axn ´ b “ 0, we have

f pxnq ´ f px˚q ` xrn, Axn ´ by “ f pxnq ´ f px˚q ` xλ˚, Axn ´ by “ L pxn, λ˚q ´ L px˚, λnq
“ L pxn, λ˚q ´ L px˚, λnq ` ‖Axn ´ b‖ ,

thus, in both scenarios, (3.52) becomes

0 ď t2n pL pxn, λ˚q ´ L px˚, λnq ` ‖Axn ´ b‖q ď C1.

Since n ě 1 has been arbitrarily chosen, we obtain (3.49).
As L pxk, λ˚q ´ L px˚, λkq ě 0, a direct consequent of (3.49) is that for every k ě 1

0 ď ‖Axk ´ b‖ ď
C1

t2k
.

From (3.49) and the Cauchy-Schwarz inequality, we deduce from here that for every k ě 1

f pxkq ´ f px˚q ď
C1

t2k
´ xλ˚, Axk ´ by ď

C1

t2k
` ‖λ˚‖ ‖Axk ´ b‖

ď
p1` ‖λ˚‖qC1

t2k
. (3.53)

On the other hand, the convexity of f together with (1.2) guarantee that for every k ě 1

f pxkq ´ f px˚q ě x∇f px˚q , xk ´ x˚y “ ´ xA˚λ˚, xk ´ x˚y

“ ´ xλ˚, Axk ´ by ě ´ ‖λ˚‖ ‖Axk ´ b‖ ě ´
‖λ˚‖C1

t2k
. (3.54)

By combining (3.53) and (3.54), we obtain (3.50).
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3.4.2 The Chambolle-Dossal ([10]) rule

In this section we prove fast convergence rates for the primal-dual gap, the feasibility measure
and the objective function value for the sequence of inertial parameters ttkukě1 following for
α ě 3 the Chambole-Dossal rule (3.45). We have seen in Example 3.15 that in this case ttkukě1
fulfills (3.2) for m :“ 2

α´1 and (3.42) for κ :“ 1
α´1 .

For the beginning we observe that for 2
α´1 “ m ď γ ď 1 and every k ě 1 it holds (see

(3.46))

tk ptk ´ 1` γq ´ tk`1 ptk`1 ´ 1q “ t2k ´ t
2
k`1 ` p1´ γq ptk`1 ´ tkq ` γtk`1

“ ´
2

α´ 1
tk`1 `

1

pα´ 1q2
`

1´ γ

α´ 1
` γtk`1

“
1

α´ 1
pγpα´ 1q ´ 2qtk`1 `

1

pα´ 1q2
p1´ γpα´ 1qq `

1

α´ 1

“
1

pα´ 1q2

´

pγpα´ 1q ´ 2q k ` pγpα´ 1q ´ 1q pα´ 2q
¯

“
1

pα´ 1q2

´

pγpα´ 1q ´ 2q pk ` α´ 2q ` α´ 2
¯

. (3.55)

Next we are going to consider two separate cases depending on the relation between m :“ 2
α´1

and γ. First we will assume that they are equal, which will then also cover the case α “ 3.

Theorem 3.18. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 with the sequence
ttkukě1 chosen to satisfy Chambolle-Dossal rule (3.45), m :“ 2

α´1 “ γ ď 1, β ą 0, and
px˚, λ˚q P S. Then for every k ě 2 it holds

0 ď L pxk, λ˚q ´ L px˚, λkq ` ‖Axk ´ b‖ ď
C4

t2k
(3.56)

and

´
‖λ˚‖C5

t2k
ď f pxkq ´ f px˚q ď

p1` ‖λ˚‖qC5

t2k
, (3.57)

where

C5 :“
C1

γ
`

2pα´ 2q

γ2κ2 pα´ 1q2

˜

C1 `
α´ 2

κ pα´ 1q2

d

2E1 px˚, λ˚q
βγ

¸

ÿ

iě1

1

i3{2
P R`.

Proof. We fix n ě 2 and define

rn :“

$

&

%

λ˚, if Axn ´ b “ 0

λ˚ `
Axn ´ b

‖Axn ´ b‖
, if Axn ´ b ‰ 0

.

Then x˚ P F and rn P B pλ˚; 1q. Since γpα ´ 1q “ 2, according to (3.55), we have for every
k ě 1

`

t2k`1 ´ tk`1 ´ t
2
k ` p1´ γq tk

˘ `

Lβ pxk, rnq ´ Lβ px˚, λkq
˘

“´
α´ 2

pα´ 1q2
`

Lβ pxk, λ˚q ´ Lβ px˚, λkq ` xrn ´ λ˚, Axk ´ by
˘

ď´
α´ 2

pα´ 1q2
xrn ´ λ˚, Axk ´ by .
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By taking px, λq :“ px˚, rnq P F ˆ B pλ˚; 1q in (3.28), we obtain for every k ě 1

Ek`1 px˚, rnq ď Ek px˚, rnq `
`

t2k`1 ´ tk`1 ´ t
2
k ` p1´ γq tk

˘ `

Lβ pxk, rnq ´ Lβ px˚, λkq
˘

ď Ek px˚, rnq ´
α´ 2

pα´ 1q2
xrn ´ λ˚, Axk ´ by

ď Ek px˚, rnq `
α´ 2

pα´ 1q2
‖rn ´ λ˚‖ ‖Axk ´ b‖ (3.58a)

ď Ek px˚, rnq `
α´ 2

pα´ 1q2

d

2E1 px˚, λ˚q
βγ

1

tk
(3.58b)

ď Ek px˚, rnq `
α´ 2

κ pα´ 1q2

d

2E1 px˚, λ˚q
βγ

1

k
, (3.58c)

where (3.58b) follows from (3.37) and(3.58c) is due to (3.42). By a telescoping sum argument
and Lemma 3.16 we conclude that for every k ě 1

Ek`1 px˚, rnq ď E1 px˚, rnq `
α´ 2

κ pα´ 1q2

d

2E1 px˚, λ˚q
βγ

k
ÿ

i“1

1

i

ď C1 `
α´ 2

κ pα´ 1q2

d

2E1 px˚, λ˚q
βγ

´

log pkq ` 1
¯

ď C4

´

logpkq ` 1
¯

,

where

C4 :“ C1 `
α´ 2

κ pα´ 1q2

d

2E1 px˚, λ˚q
βγ

ą 0.

By choosing k :“ n´ 1, it yields

tn ptn ´ 1` γq pf pxnq ´ f px˚q ` xrn, Axn ´ byq ď En px˚, rnq ď C4

´

logpn´ 1q ` 1
¯

.

We have seen in the proof of Theorem 3.17 that

f pxnq ´ f px˚q ` xrn, Axn ´ by “ L pxn, λ˚q ´ L px˚, λnq ` ‖Axn ´ b‖ , (3.59)

thus, by taking into account (3.42), we obtain

γκ2n2 ‖Axn ´ b‖ ď γt2n ‖Axn ´ b‖ ď tn ptn ´ 1` γq pL pxn, λ˚q ´ L px˚, λnq ` ‖Axn ´ b‖q

ď En px˚, rnq ď C4

´

logpn´ 1q ` 1
¯

,

therefore, since 2` logpn´ 1q ď 2pn´ 1q1{2,

‖Axn ´ b‖ ď
C4

´

logpn´ 1q ` 1
¯

γκ2n2
ď

2C4

γκ2n3{2
.

Taking into account also Lemma 3.16 and the definition of C4, we have that for every k ě 1

‖Axk ´ b‖ ď
2C4

γκ2k3{2
.

Using this estimate in (3.58a), we obtain for every k ě 1

Ek`1 px˚, rnq ď Ek px˚, rnq `
α´ 2

pα´ 1q2
2C4

γκ2k3{2
.
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By using once again a the telescoping sum argument, we conclude that for every k ě 1

Ek`1 px˚, rnq ď E1 px˚, rnq `
2C4pα´ 2q

γκ2 pα´ 1q2

k
ÿ

i“1

1

i3{2

ď C1 `
2C4pα´ 2q

γκ2 pα´ 1q2

ÿ

iě1

1

i3{2
ă `8.

From here, (3.56) follows by choosing k :“ n ´ 1, and by using that γt2n ď tnptn ´ 1 ` γq and
(3.59). Statement (3.57) follows from (3.56) by repeating the arguments at the end of the proof
of Theorem 3.17.

Now we come to the second case, namely, when m :“ 2
α´1 ă γ ď 1, which implicitly requires

that α ą 3. For the proof of the fast convergence rates we will make use of the following result
which can be found in [18, Lemma 2] (see, also, [17, Lemma 3.18]).

Lemma 3.19. Let tζkukě1 Ď G be a sequence such that there exist δ ą 1 and M ą 0 with the
property that for every K ě 1∥∥∥∥∥ppδ ´ 1qK ` δq ζK`1 `

K
ÿ

k“1

ζk

∥∥∥∥∥ ďM.

Then for every K ě 1 it holds ∥∥∥∥∥ K
ÿ

k“1

ζk

∥∥∥∥∥ ďM.

Theorem 3.20. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 with the sequence
ttkukě1 chosen to satisfy Chambolle-Dossal rule (3.45), m :“ 2

α´1 ă γ ď 1, β ą 0, and
px˚, λ˚q P S. Then for every k ě 1 it holds

0 ď L pxk, λ˚q ´ L px˚, λkq ď
E1 px˚, λ˚q

γt2k
, (3.60)

0 ď ‖Axk ´ b‖ ď
C6

t2k
, (3.61)

and

´
‖λ˚‖C6

t2k
ď f pxkq ´ f px˚q ď

1

t2k

ˆ

E1 px˚, λ˚q
γ

` ‖λ˚‖C6

˙

, (3.62)

where

C6 :“ 2 p1` ϕmq
2

˜

2 pα´ 1q2
γ

ρ
sup
kě1

‖νk‖` pα´ 1q2γ ‖Ax1 ´ b‖`
1

κ
p|ω0|` |ω1|q

d

2E1 px˚, λ˚q
βγ

¸

,

with

δ :“ 1`
1

γpα´ 1q ´ 2
ą 1,

ω0 :“ δ pα´ 2q ´ 2 pα´ 1q and ω1 :“ pδ ´ 1q pα´ 2q ´ 1.

Proof. Relation (3.60) follows from (3.37). We fix K ě 1. For every 1 ď k ď K, according to
(3.3g), we have

tk`1
`

Azγk`1 ´ γb
˘

“ tk`1 ptk`1 ´ 1` γq pAxk`1 ´ bq ´ tk`1 ptk`1 ´ 1q pAxk ´ bq

“ tk`1 ptk`1 ´ 1` γq pAxk`1 ´ bq ´ tk ptk ´ 1` γq pAxk ´ bq

`
`

tk ptk ´ 1` γq ´ tk`1 ptk`1 ´ 1q
˘

pAxk ´ bq .
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Taking into consideration (3.11), (3.3h) and (3.55), by a telescoping argument it yields

pα´ 1q2
γ

ρ
pνK`1 ´ ν1q “ pα´ 1q2

γ

ρ

K
ÿ

k“1

pνk`1 ´ νkq “ pα´ 1q2
K
ÿ

k“1

tk`1
`

Azγk`1 ´ γb
˘

“pα´ 1q2 tK`1 ptK`1 ´ 1` γq pAxK`1 ´ bq ´ pα´ 1q2 γ pAx1 ´ bq

` pα´ 1q2
K
ÿ

k“1

`

tk ptk ´ 1` γq ´ tk`1 ptk`1 ´ 1q
˘

pAxk ´ bq

“ pK ` α´ 1q pK ` γpα´ 1qq pAxK`1 ´ bq ´ pα´ 1q2 γ pAx1 ´ bq

`

K
ÿ

k“1

´

pγpα´ 1q ´ 2q pk ` α´ 2q ` α´ 2
¯

pAxk ´ bq . (3.63)

We define

δ :“ 1`
1

γpα´ 1q ´ 2
ą 1,

ω0 :“ δ pα´ 2q ´ 2 pα´ 1q and ω1 :“ pδ ´ 1q pα´ 2q ´ 1,

and
ζk :“

´

pγpα´ 1q ´ 2q pk ` α´ 2q ` α´ 2
¯

pAxk ´ bq for k “ 1, ...,K.

It holds

pK ` α´ 1q pK ` γpα´ 1qq pAxK`1 ´ bq

“ pδ ´ 1qK
´

pγpα´ 1q ´ 2q pK ` α´ 1q ` α´ 2
¯

pAxK`1 ´ bq

` δ
´

pγpα´ 1q ´ 2q pK ` α´ 1q ` α´ 2
¯

pAxK`1 ´ bq ´ pω1K ` ω0q pAxK`1 ´ bq

“ ppδ ´ 1qK ` δq ζK`1 ´ pω1K ` ω0q pAxK`1 ´ bq . (3.64)

Furthermore, it follows from (3.42) and (3.37) that

‖pω1K ` ω0q pAxK`1 ´ bq‖ ď p|ω0|` |ω1|q pK ` 1q ‖AxK`1 ´ b‖

ď
1

κ
p|ω0|` |ω1|q tK`1 ‖AxK`1 ´ b‖

ď
1

κ
p|ω0|` |ω1|q

d

2E1 px˚, λ˚q
βγ

. (3.65)

Combining the relations (3.63), (3.64) and (3.65), we get via the triangle inequality∥∥∥∥∥ppδ ´ 1qK ` δq ζK`1 `
K
ÿ

k“1

ζk

∥∥∥∥∥
“

∥∥∥∥pα´ 1q2
γ

ρ
pνK`1 ´ ν1q ` pα´ 1q2γ pAx1 ´ bq ` pω1K ` ω0q pAxK`1 ´ bq

∥∥∥∥
ď pα´ 1q2

γ

ρ
‖νK`1 ´ ν1‖` pα´ 1q2γ ‖Ax1 ´ b‖` ‖pω1K ` ω0q pAxK`1 ´ bq‖

ď C7 :“ 2 pα´ 1q2
γ

ρ
sup
kě1

‖νk‖` pα´ 1q2γ ‖Ax1 ´ b‖`
1

κ
p|ω0|` |ω1|q

d

2E1 px˚, λ˚q
βγ

ă `8,

(3.66)

where we also recall that, due to Proposition 3.13, it holds sup
kě1

‖νk‖ ă `8.
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Inequality (3.66) holds for every K ě 1 (notice that C7 is independent of K), consequently,

we can apply Lemma 3.19 to conclude that

∥∥∥∥∥ K
ÿ

k“1

ζk

∥∥∥∥∥ ď C7 for every K ě 1. By using again the

triangle inequality and (3.66), we obtain for every K ě 1 that

pδ ´ 1qK ‖ζK`1‖ ď ‖ppδ ´ 1qK ` δq ζK`1‖ ď 2C7. (3.67)

Using the inequality (3.14) in Lemma 3.5, we see that for every K ě 1 it holds

t2K`1

p1` ϕmq
2 ‖AxK`1 ´ b‖ ď K2 ‖AxK`1 ´ b‖ ď pδ ´ 1qK ‖ζK`1‖ . (3.68)

By combining (3.67) and (3.68), we obtain (3.61).
Statement (3.62) follows from (3.60) and (3.61) by repeating the arguments at the end of

the proof of Theorem 3.17.

3.4.3 The Attouch-Cabot ([1]) rule

Another inertial parameter rule used in the literature in the context of fast numerical algorithms
is the one proposed by Attouch and Cabot in [1], which reads for α ě 3

tk :“
k ´ 1

α´ 1
@k ě 1.

This sequence is monotonically increasing and it fulfills (3.2) with m :“
2

α´ 1
ď 1 as, for every

k ě 1, it holds

t2k`1 ´mtk`1 ´ t
2
k “ ptk`1 ´ tkq ptk`1 ` tkq ´mtk`1 “

1

α´ 1

2k ´ 1

α´ 1
´

2

α´ 1

k

α´ 1

“ ´
1

pα´ 1q2
ă 0.

This shows that the sequence ttkukě1 has very much in common with the Chambolle-Dossal
parameter rule. The only significant difference is that is starts at 0 and that tk ě 1 holds
only for k ě k1 :“ tαu` 1. Consequently, the fast convergence rate results for the primal-dual
gap, the feasibility measure and the objective function value are valid also for the Attouch-
Cabot rule. This can be easily seen by slightly adapting the proofs made in the setting of the
Chambolle-Dossal rule by taking into consideration that some of the estimates hold only for
k ě k1. This exercise is left to the reader.

4 Convergence of the iterates

In this section we will turn our attention to the convergence of the sequence of primal-dual
iterates generated by Algorithm 1 to a primal-dual solution of (1.1). First, we will prove that
the first assumption in the Opial Lemma is verified and to this end we will need the following
technical lemma.

Lemma 4.1. Let tθkukě1 , takukě1 , ttkukě1 be real sequences such that takukě1 is bounded from
below and ttkukě1 is nondecreasing and bounded from below by 1, and tdkukě1 be a nonnegative
sequence such that for every k ě 1

ak`1 ď ak ` θk`1, (4.1a)

tk`1θk`1 ď ptk ´ 1q θk ` dk. (4.1b)

If
ř

kě1 dk ă `8, then the sequence takukě1 is convergent.
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Proof. It follows from (4.1b) that for every k ě 1

tk`1θk`1 ď ptk ´ 1q θk ` dk ď ptk ´ 1q rθks` ` dk, (4.2)

where r¨s` denotes the positive part. Since the right-hand side of this inequality is nonnegative,
it yields that for every k ě 1

rθks` ď tk rθks` ´ tk`1 rθk`1s` ` dk.

which, by telescoping cancellation, gives
ř

kě1 rθks` ă `8.
According to (4.1a), we have that for every k ě 1 it holds

ak`1 ď ak ` θk`1 ď ak ` rθk`1s` .

By using Lemma 1.1 we obtain from here that the sequence takukě1 is convergent.

Proposition 4.2. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 with 0 ă m ă

γ ă 1. Then for every px˚, λ˚q P S the limit lim
kÑ`8

‖pxk, λkq ´ px˚, λ˚q‖W exists.

Proof. Let px˚, λ˚q P S be fixed. For brevity we will write

u˚ :“ px˚, λ˚q P S and uk :“ pxk, λkq P Hˆ G @k ě 0.

It follows from (3.35) that Ek`1 px˚, λ˚q ď Ek px˚, λ˚q for every k ě 1. In view of (3.43), after
rearranging some terms, we get for every k ě 1

tk`1 ptk`1 ´ 1` γq

ˆ

Lβ pxk`1, λ˚q ´ Lβ px˚, λk`1q `
1

2
‖uk`1 ´ uk‖2W

˙

`
γ

2
tk`1

´

‖uk`1 ´ u˚‖2W ´ ‖uk ´ u˚‖2W
¯

`
1´ γ

2ρ
tk`1 ‖λk`1 ´ λk‖2

ď ptk ´ 1q ptk ´ 1` γq

ˆ

Lβ pxk, λ˚q ´ Lβ px˚, λkq `
1

2
‖uk ´ uk´1‖2W

˙

`
γ

2
ptk ´ 1q

´

‖uk ´ u˚‖2W ´ ‖uk´1 ´ u˚‖2W
¯

`
1´ γ

2ρ
ptk ´ 1q ‖λk ´ λk´1‖2

` ptk ´ 1` γq pLβ pxk, λ˚q ´ Lβ px˚, λkqq `
1

2
ptk`1 ´ 1` γq ‖uk`1 ´ uk‖2W

`
1´ γ

2ρ
‖λk`1 ´ λk‖2 . (4.3)

Set a0 :“
γ

2
‖u0 ´ u˚‖2W ě 0 and for every k ě 1

ak :“
γ

2
‖uk ´ u˚‖2W ě 0,

θk :“ptk ´ 1` γq

ˆ

Lβ pxk, λ˚q ´ Lβ px˚, λkq `
1

2
‖uk ´ uk´1‖2W

˙

` pak ´ ak´1q `
1´ γ

2ρ
‖λk ´ λk´1‖2 ,

dk :“ptk ´ 1` γq pLβ pxk, λ˚q ´ Lβ px˚, λkqq `
1

2
ptk`1 ´ 1` γq ‖uk`1 ´ uk‖2W

`
1´ γ

2ρ
‖λk`1 ´ λk‖2 ě 0.

We notice that for every k ě 1 the estimate (4.3) becomes (4.1b), while (4.1a) obviously holds.
As 0 ă m ă γ ă 1, it follows from Proposition 3.9 that

ř

kě1 dk ă `8.
Hence, we can apply Lemma 4.1 to conclude that t‖pxk, λkq ´ px˚, λ˚q‖Wukě1 is convergent.
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The following result is the discrete counterpart of [8, Theorem 4.7] (see (2.2)). Its proof is
a direct consequence of Proposition 3.9 and Proposition 3.12.

Theorem 4.3. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 with the sequence

ttkukě1 chosen to satisfy (3.42), 0 ă m ă γ ď 1, 0 ă σ ă
γ

L` γβ}A}2
, β ą 0, and px˚, λ˚q P S.

Then it holds

‖∇f pxkq ´∇f px˚q‖ “ o

ˆ

1
?
k

˙

and ‖A˚λk ´A˚λ˚‖ “ o

ˆ

1
?
k

˙

as k Ñ `8.

consequently,

‖∇xL pxk, λkq‖ “ ‖∇f pxkq `A˚λk‖ “ o

ˆ

1
?
k

˙

as k Ñ `8,

and

‖∇λL pxk, λkq‖ “ ‖Axk ´ b‖ “ o

ˆ

1
?
k

˙

as k Ñ `8.

As seen in Section 3.4, if, in addition, ttkukě1 is chosen to satisfy Chambolle-Dossal or Attouch-
Cabot rule and m :“ 2

α´1 , then

‖∇λL pxk, λkq‖ “ ‖Axk ´ b‖ “ O
ˆ

1

k2

˙

as k Ñ `8.

Now we can prove the main theorem of this section establishing the convergence of the
sequence of iterates generated by Algorithm 1.

Theorem 4.4. Let tpxk, λkqukě0 be the sequence generated by Algorithm 1 with the sequence

ttkukě1 chosen to satisfy (3.42), 0 ă m ă γ ă 1, 0 ă σ ă
γ

L` γβ}A}2
and β ą 0. Then the

sequence tpxk, λkqukě0 converges weakly to a primal-dual optimal solution of (1.1).

Proof. From Proposition 4.2 it follows that the limit lim
kÑ`8

‖pxk, λkq ´ px˚, λ˚q‖ exists for every

px˚, λ˚q P S. This proves the first condition of Lemma 1.2.

In order to prove condition (ii), let
´

rx, rλ
¯

P H ˆ G be an arbitrary weak sequential cluster

point of tpxk, λkqukě0. This means that there exists a subsequence tpxkn , λknquně0 which con-

verges weakly to
´

rx, rλ
¯

as n Ñ `8. According to Theorem 4.3 we have ∇f pxkq ` A˚λk Ñ 0

and Axk ´ bÑ 0 as k Ñ `8, hence,

∇f pxknq `A˚λkn Ñ 0 and Axkn ´ bÑ 0 as nÑ `8.

Since the graph of the operator TL is sequentially closed in pHˆ Gqweak ˆ pHˆ Gqstrong (cf. [5,
Proposition 20.38]), it follows from here that

#

∇f prxq `A˚rλ “ 0

Arx´ b “ 0
.

In other words,
´

rx, rλ
¯

P S and the proof is complete.

Remark 4.5. If the sequence ttkukě1 is chosen to satisfy the Chambolle-Dossal or the Attouch-
Cabot rule with

α ą 3, m :“
1

α´ 2
ă γ ă 1, 0 ă σ ă

γ

L` γβ}A}2
and β ą 0,
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then Theorem 4.4 guarantees that the sequence tpxk, λkqukě0 converges weakly to a primal-dual
optimal solution of (1.1). This statement is in addition to the fast convergence rates of order
O
`

1{k2
˘

for the primal-dual gap, the feasibility measure, and the objective function value.
If the sequence ttkukě1 is chosen to satisfy the Nesterov rule, then, as we have seen, the fast

convergence rate results also hold, however, since in this setting m “ γ “ 1, one cannot apply
Theorem 4.4 to obtain the convergence of the iterates. This is consistent with the unconstrained
case for which it is also not known if the sequence of iterates generated by the fast gradient
method with inertial parameters following the Nesterov rule converges.

Acknowledgements. The authors are thankful to the two anonymous reviewers for their
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