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Abstract

In this work we aim to solve a convex-concave saddle point problem, where the convex-concave coupling
function is smooth in one variable and nonsmooth in the other and not assumed to be linear in either.
The problem is augmented by a nonsmooth regulariser in the smooth component. We propose and
investigate a novel algorithm under the name of OGAProx, consisting of an optimistic gradient ascent
step in the smooth variable coupled with a proximal step of the regulariser, and which is alternated
with a proximal step in the nonsmooth component of the coupling function. We consider the situations
convex-concave, convex-strongly concave and strongly convex-strongly concave related to the saddle
point problem under investigation. Regarding iterates we obtain (weak) convergence, a convergence
rate of order O( 1

K ) and linear convergence like O(θK) with θ < 1, respectively. In terms of function
values we obtain ergodic convergence rates of order O( 1

K ), O( 1
K2 ) and O(θK) with θ < 1, respectively.

We validate our theoretical considerations on a nonsmooth-linear saddle point problem, the training
of multi kernel support vector machines and a classification problem incorporating minimax group
fairness.
Key words. saddle point problem, convex-concave, minimax algorithm, convergence rate, acceleration,
linear convergence

1 Introduction

Saddle point – or minimax – problems arise traditionally in game theory [23] or for example in the context
of determining primal-dual pairs of optimal solutions of constrained convex optimisation problems [1].
However, in recent years they have witnessed increased interest due to many relevant and challenging
applications in the field of machine learning, with the most prominent being the training of Generative
Adversarial Networks (GANs) [10]. Even though the problems in reality are often not of this form, in
the classical setting the minimax objective comprises a smooth convex-concave coupling function with
Lipschitz continuous gradient and a (potentially nonsmooth) regulariser in each variable, leading to a
convex-concave objective in total.

One well established method in practice due to its simplicity and computational efficiency is Gradient
Descent Ascent (GDA), either in a simultaneous or in an alternating variant (for a recent comparison
of the convergence behaviour of the two schemes we refer to [24]). However, naive application of GDA
is known to lead to oscillatory behaviour or even divergence already in simple cases such as bilinear
objectives. Most algorithms with convergence guarantees in the general convex-concave setting make use
of the formulation of the first order optimality conditions as monotone inclusion or variational inequality,
treating both components in a symmetric fashion. For example we have the Extragradient method [12]
whose application to minimax problems has been studied in [19] under the name of Mirror Prox, and the
Forward-Backward-Forward method (FBF) [22] with application to saddle point problems in [3]. Both
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algorithms have even been successfully applied to the training of GANs (see [9, 3]), but, though being
single-loop methods, suffer in practice from requiring two gradient evaluations per iteration. A possible
way to avoid this is to reuse previous gradients. Doing this for FBF – as shown in [3] – recovers the Forward-
Reflected Backward method [15] which was applied to saddle point problems under the name of Optimistic
Mirror Descent and to GAN training under the name of Optimistic Gradient Descent Ascent [6, 5, 14].

The first method treating general coupling functions with an asymmetric scheme is the Accelerated
Primal-Dual Algorithm (APD) by [11], involving an optimistic gradient ascent step in one component
which is followed by a gradient descent step in the other one. In the special case of a bilinear coupling
function APD recovers the Primal-Dual Hybrid Gradient Method (PDHG) [4]. In the case of the minimax
objective being strongly convex-concave acceleration of PDHG is obtained in [4], which is also done for
APD in [11], however only under the rather limiting assumption of linearity of the coupling function in
one component.

In this paper we introduce a novel algorithm OGAProx for solving a convex-concave saddle point
problem, where the convex-concave coupling function is smooth in one variable and nonsmooth in the
other, and it is augmented by a nonsmooth regulariser in the smooth component. OGAProx consists
of an optimistic gradient ascent step in the smooth component of the coupling function combined with
a proximal step of the regulariser, which is followed by a proximal step of the coupling function in the
nonsmooth component. We will be also able to accelerate our method in the convex-strongly concave
setting without linearity assumption on the coupling function. Furthermore, we prove linear convergence
if the problem is strongly convex-strongly concave, yielding similar results as for PDHG [4] in the bilinear
case.

So far in most works nonsmoothness is only introduced via regularisers, as the coupling function is
typically accessed through gradient evaluations. Recently there is another development, although with the
saddle point problem not being convex-concave, where the assumption on differentiability of the coupling
function in both components is weakened to only one component [2]. As the evaluation of the proximal
mapping does not require differentiability we will assume the coupling function to be smooth in only one
component, too.

The remainder of the paper is organised as follows. Next we will introduce the precise problem
formulation and the setting we will work with, formulate the proposed algorithm OGAProx and state
our contributions. This will be followed by preliminaries in Section 2. Afterwards we will discuss the
properties of our algorithm in the convex-concave and convex-strongly concave setting and state respective
convergence results in Section 3. After that we will investigate the convergence of the method under the
additional assumption of strong convexity-strong concavity in Section 4. The paper will be concluded by
numerical experiments in Section 5, where we treat a simple nonsmooth-linear saddle point problem, the
training of multi kernel support vector machines and a classification problem taking into account minimax
group fairness.

1.1 Problem description

Consider the saddle point problem

min
x∈H

max
y∈G

Ψ(x, y) := Φ(x, y)− g(y), (1)

where H, G are real Hilbert spaces, Φ : H×G → R∪{+∞} is a coupling function with dom Φ := {(x, y) ∈
H×G | Φ(x, y) < +∞} 6= ∅ and g : G → R∪{+∞} a regulariser. Throughout the paper (unless otherwise
specified) we will make the following assumptions:

• g is proper, lower semicontinuous and convex with modulus ν ≥ 0, i.e. g − ν
2 ‖ · ‖

2 is convex (notice
that we also allow and consider the situation ν = 0, in which case g is convex; otherwise g is strongly
convex);

• for all y ∈ dom g, Φ( · , y) : H → R ∪ {+∞} is proper, convex and lower semicontinuous;
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• for all x ∈ PrH(dom Φ) := {u ∈ H | ∃y ∈ G such that (u, y) ∈ dom Φ} we have that dom Φ(x, · ) = G
and Φ(x, · ) : G → R is concave and Fréchet differentiable. Moreover, PrH(dom Φ) is closed;

• there exist Lyx, Lyy ≥ 0 such that for all (x, y), (x′, y′) ∈ PrH(dom Φ)× dom g it holds∥∥∇yΦ(x, y)−∇yΦ(x′, y′)
∥∥ ≤ Lyx ∥∥x− x′∥∥+ Lyy

∥∥y − y′∥∥ . (2)

By convention we set +∞− (+∞) := +∞. Thus, the situation can be summarised by

Ψ(x, y) =


−∞ if x ∈ PrH(dom Φ) and y /∈ dom g,

Φ(x, y)− g(y) if x ∈ PrH(dom Φ) and y ∈ dom g,

+∞ if x /∈ PrH(dom Φ).

(3)

We are interested in finding a saddle point of (1), which is a point (x∗, y∗) ∈ H × G that fulfils the
inequalities

Ψ(x∗, y) ≤ Ψ(x∗, y∗) ≤ Ψ(x, y∗) ∀(x, y) ∈ H × G. (4)

For the remainder we assume that such a saddle point exists.
The assumptions considered above ensure that for any saddle point (x∗, y∗) ∈ H × G we have

x∗ ∈ PrH(dom Φ), y∗ ∈ dom g and Ψ(x∗, y∗) = Φ(x∗, y∗)− g(y∗) ∈ R.

Finding a saddle point of (1) amounts to solving the necessary and sufficient first order optimality
conditions, given by the following coupled inclusion problems

0 ∈ ∂ [Φ( · , y∗)] (x∗) and 0 ∈ −∇yΦ(x∗, y∗) + ∂g(y∗).

Remark 1. In case Φ and g have full domain, Ψ is a convex-concave function with full domain and the set
PrH(dom Φ) is obviously closed. However, in order to allow more flexibility and to cover a wider range of
problems (see also the last section with numerical experiments), our investigations are carried out in the
more general setting given by the assumptions described above. Furthermore, these assumptions allow us
to stay in the rigorous setting of the theory of convex-concave saddle functions as described by Rockafellar
in [21] (see Definition 4 and Proposition 5 below).

Example 2. Consider the nonsmooth convex optimisation problem with inequality constraints

min f(x),
subject to hi(x) ≤ 0, i = 1, ...,m

(5)

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function and hi : H → R, i =
1, ...,m, are convex and continuous functions. The Lagrangian attached to (5) reads

L : H× Rm → R ∪ {+∞}, L(x, λ1, ..., λm) = f(x) +

m∑
i=1

λihi(x).

Then the saddle point problem

min
x∈H

max
(λ1,...,λm)∈Rm

+

L(x, λ1, ..., λm) = min
x∈H

max
(λ1,...,λm)∈Rm

L(x, λ1, ..., λm)− δR+
m

(λ1, ..., λm) (6)

exhibits the structure of saddle point problem (1). It is known that if (x∗, λ∗1, ..., λ
∗
m) is a saddle point of

(6), then x∗ is an optimal solution of the constrained convex optimisation problem (5) and (λ∗1, ..., λ
∗
m) is

an optimal solution of its Lagrange dual.
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1.2 Algorithm

The algorithm we investigate performs an optimistic gradient ascent step of Φ followed by an evaluation
of the proximal mapping g in the variable y, while it carries out a purely proximal step of Φ in x. We will
call this method Optimistic Gradient Ascent – Proximal Point algorithm (OGAProx) in the following. For
all k ≥ 0 we define{

yk+1 = proxσkg (yk + σk [(1 + θk)∇yΦ(xk, yk)− θk∇yΦ(xk−1, yk−1)]) , (7)

xk+1 = proxτkΦ( · ,yk+1) (xk) , (8)

with the conventions x−1 := x0 and y−1 := y0 for starting points x0 ∈ PrH(dom Φ) and y0 ∈ dom g. The
particular choices of the sequences (σk)k≥0, (τk)k≥0 ⊆ R++ and (θk)k≥0 ⊆ (0, 1] will be specified later.

1.3 Contribution

Let us summarize the main results of this paper:

1. We introduce a novel algorithm to solve saddle point problems with nonsmooth coupling functions,
which in general is not assumed to be linear in either component.

2. We prove for the saddle function Ψ being

(a) convex-concave (see Theorem 9):

• weak convergence of the generated sequence (xk, yk)k≥0 to a saddle point (x∗, y∗) as k →
+∞;

• convergence of the minimax gap Ψ(x̄K , y
∗) − Ψ(x∗, ȳK) to zero like O( 1

K ) as K → +∞,
where (x̄K)K≥1 and (ȳK)K≥1 are the ergodic sequences obtained by averaging (xk)k≥1 and
(yk)k≥1, respectively;

(b) convex-strongly concave (see Theorem 12):

• strong convergence of (yk)k≥0 to y∗ like O( 1
k ) as k → +∞;

• convergence of the minimax gap Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) to zero like O( 1

K2 ) as K → +∞;

(c) strongly convex-strongly concave (see Theorem 14):

• linear convergence of (xk, yk)k≥0 to (x∗, y∗) like O(θk), with 0 < θ < 1, as k → +∞;
• linear convergence of the minimax gap Ψ(x̄K , y

∗)−Ψ(x∗, ȳK) to zero like O(θK) as K →
+∞.

2 Preliminaries

We recall some basic notions in convex analysis and monotone operator theory (see for example [1]). The
real Hilbert spaces H and G are endowed with inner products 〈 · , · 〉H and 〈 · , · 〉G , respectively. As it will
be clear from the context which one is meant, we will drop the index for ease of notation and write 〈 · , · 〉
for both. The norm induced by the respective inner products is defined by ‖ · ‖ :=

√
〈 · , · 〉.

A function f : H → R ∪ {+∞} is said to be proper if dom f := {x ∈ H : f(x) < +∞} 6= ∅. The
(convex) subdifferential of the function f : H → R ∪ {+∞} at x ∈ H is defined by ∂f(x) := {u ∈
H | 〈y − x, u〉+f(x) ≤ f(y) ∀y ∈ H} if f(x) ∈ R and by ∂f(x) := ∅ otherwise. If the function f is convex
and Fréchet differentiable at x ∈ H, then ∂f(x) = {∇f(x)}. For the sum of a proper, convex and lower
semicontinuous function f : H → R ∪ {+∞} and a convex and Fréchet differentiable function h : H → R
we have ∂(f + h)(x) = ∂f(x) +∇h(x) for all x ∈ H. The subdifferential of the indicator function δC of a
nonempty closed convex set C ⊆ H, that is defined as δC(x) = 0 for x ∈ C and δC(x) = +∞ otherwise,
is denoted by NC := ∂δC and is called the normal cone of the set C.
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Let f : H → R ∪ {+∞} be proper, convex and lower semicontinuous. The proximal operator of f is
defined by

proxf : H → H, proxf (x) := arg min
y∈H

{
f(y) +

1

2
‖y − x‖2

}
.

The proximal operator of the indicator function δC of a nonempty closed convex set C ⊆ H is the orthogonal
projection PC : H → C of the set C.

A set-valued operator A : H ⇒ H is said to be monotone if for all (x, u), (y, v) ∈ graA := {(z, w) ∈
H × H | w ∈ Az} we have 〈x− y, u− v〉 ≥ 0. Furthermore, A is said to be maximal monotone if it is
monotone and there exists no monotone operator B : H ⇒ H such that graA $ graB. The graph of a
maximal monotone operator A : H⇒ H is sequentially closed in the strong × weak topology, which means
that if (xk, uk)k≥0 is a sequence in graA such that xk → x and uk ⇀ u as k → +∞, then (x, u) ∈ graA.
The notation uk ⇀ u as k → +∞ is used to denote convergence of the sequence (uk)k≥0 to u in the weak
topology.

To show weak convergence of sequences in Hilbert spaces we use the following so-called Opial Lemma.

Lemma 3. (Opial Lemma [20]) Let C ⊆ H be a nonempty set and (xk)k≥0 a sequence in H such that the
following two conditions hold:

(a) for every x ∈ C, limk→+∞ ‖xk − x‖ exists;

(b) every weak sequential cluster point of (xk)k≥0 belongs to C.

Then (xk)k≥0 converges weakly to an element in C.

In the following definition we adjust the term proper to the saddle point setting and refer to [21] for
further considerations related to saddle functions.

Definition 4. A function Ψ : H × G → R ∪ {±∞} is called a saddle function, if Ψ( · , y) is convex for
all y ∈ G and Ψ(x, · ) is concave for all x ∈ G. A saddle function Ψ is called proper, if there exists
(x′, y′) ∈ H × G such that Ψ(x′, y) < +∞ for all y ∈ G and −∞ < Ψ(x, y′) for all x ∈ H.

We conclude the preliminary section with a useful result regarding the minimax objective from (1).

Proposition 5. The function Ψ : H × G → R ∪ {±∞} defined via (3) is a proper saddle function such
that Ψ( · , y) is lower semicontinuous for each y ∈ G and Ψ(x, · ) is upper semicontinuous for each x ∈ H.
Consequently, the operator

(x, y) 7→ ∂[Ψ( · , y)](x)× ∂[−Ψ(x, · )](y)

is maximal monotone.

Proof. We choose (x′, y′) ∈ H × G and distinguish four cases.
Firstly, we look at the case y′ /∈ dom g. Then

Ψ(x, y′) =

{
−∞ if x ∈ PrH(dom Φ),

+∞ if x /∈ PrH(dom Φ),

thus x 7→ Ψ(x, y′) is convex and lower semicontinuous, since PrH(dom Φ) is convex and closed. Secondly,
if y′ ∈ dom g, then g(y′) ∈ R and

Ψ(x, y′) = Φ(x, y′)− g(y′) ∀x ∈ H,

which means that x 7→ Ψ(x, y′) is convex and lower semicontinuous. This proves that Ψ( · , y) is convex
and lower semicontinuous for all y ∈ G.

On the other hand, if x′ /∈ PrH(dom Φ), then

Ψ(x′, y) = +∞ ∀y ∈ G,
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which means that y 7→ Ψ(x′, y) is upper semicontinuous and concave. Finally, if x′ ∈ PrH(dom Φ), then

Φ(x′, y) ∈ R and −Ψ(x′, y) = −Φ(x′, y) + g(y) ∀y ∈ G.

Hence y 7→ −Ψ(x′, y) is proper, convex and lower semicontinuous, and so y 7→ Ψ(x′, y) is concave and
upper semicontinuous. This proves that Ψ(x, · ) is concave and upper semicontinuous for all x ∈ H.

Moreover, Ψ is a proper saddle function. By assumption we have g(y) > −∞ for all y ∈ G and there
exists x′ ∈ PrH(dom Φ) 6= ∅ such that dom Φ(x′, · ) = G. Thus

Ψ(x′, y) = Φ(x′, y)− g(y) < +∞ ∀y ∈ G.

Furthermore, by assumption there exist y′ ∈ dom g ⊆ G such that g(y′) < +∞ and for all x ∈ H we have
Φ(x, y′) > −∞. Hence,

Ψ(x, y′) = Φ(x, y′)− g(y′) > −∞ ∀x ∈ H.
The maximal monotonicity of (x, y) 7→ ∂[Ψ( · , y)](x)×∂[−Ψ(x, · )](y) follows from Corollary 1 and Theorem
3 in [21, pages 248-249].

3 Convex-(strongly) concave setting

First we will treat the case when the coupling function Φ is convex-concave and g is convex with modulus
ν ≥ 0. In the case ν = 0 this corresponds to Ψ(x, y) = Φ(x, y) − g(y) being convex-concave, while for
ν > 0 the saddle function Ψ(x, y) is convex-strongly concave.

We will start with stating two assumptions on the step sizes of the algorithm which will be needed in
the convergence analysis. These will be followed by a unified preparatory analysis for general ν ≥ 0 that
will be the base to show convergence of the iterates as well as of the minimax gap. After that we will
introduce a choice of parameters that satisfy the aforementioned assumptions. The section will be closed
by convergence results for the convex-concave (ν = 0) and the convex-strongly concave (ν > 0) setting.

Assumption 1. We assume that the step sizes τk, σk and the momentum parameter θk satisfy

τk+1 ≥
τk
θk+1

and σk+1 ≥
σk

θk+1(1 + νσk)
for all k ≥ 0. (9)

Furthermore, we assume that there exist δ > 0 and (αk)k≥0 ⊆ R++ such that

1− δ
τk
≥ Lyx
αk+1

and
1− δ
σk

≥ Lyxαkθk + Lyy(1 + θk) for all k ≥ 0, (10)

where θ0 := 1.

3.1 Preliminary considerations

In this subsection we will make some preliminary considerations that will play an important role when
proving the convergence properties of the numerical scheme given by (7)-(8). For all k ≥ 0 we will use the
notations

qk := ∇yΦ(xk, yk)−∇yΦ(xk−1, yk−1) and sk := θkqk +∇yΦ(xk, yk). (11)

We take an arbitrary (x, y) ∈ H × G and let k ≥ 0 be fixed. From (7) we derive

0 ∈ ∂g(yk+1) +
1

σk
(yk+1 − yk)− sk, (12)

and, as g is convex with modulus ν, this implies

g(y) ≥ g(yk+1) + 〈sk, y − yk+1〉+
1

σk
〈yk − yk+1, y − yk+1〉+

ν

2
‖y − yk+1‖2

= g(yk+1) + 〈sk, y − yk+1〉+
1

2σk

(
‖yk − yk+1‖2 + ‖y − yk+1‖2 − ‖y − yk‖2

)
+
ν

2
‖y − yk+1‖2 .

(13)
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From (8) we get

0 ∈ ∂[Φ( · , yk+1)](xk+1) +
1

τk
(xk+1 − xk), (14)

hence the convexity of Φ( · , y) for y ∈ dom g yields

Φ(x, yk+1) ≥ Φ(xk+1, yk+1) +
1

τk
〈xk − xk+1, x− xk+1〉

= Φ(xk+1, yk+1) +
1

2τk

(
‖xk − xk+1‖2 + ‖x− xk+1‖2 − ‖x− xk‖2

)
.

(15)

Combining (13) and (15) we obtain

Ψ(xk+1, y)−Ψ(x, yk+1) = Φ(xk+1, y)− g(y)− Φ(x, yk+1) + g(yk+1)

≤ Φ(xk+1, y)− Φ(x, yk+1) + 〈sk, yk+1 − y〉 −
ν

2
‖y − yk+1‖2

+
1

2σk

(
− ‖yk − yk+1‖2 − ‖y − yk+1‖2 + ‖y − yk‖2

)
≤ Φ(xk+1, y)− Φ(xk+1, yk+1) + 〈sk, yk+1 − y〉 −

ν

2
‖y − yk+1‖2

+
1

2τk

(
− ‖xk − xk+1‖2 − ‖x− xk+1‖2 + ‖x− xk‖2

)
+

1

2σk

(
− ‖yk − yk+1‖2 − ‖y − yk+1‖2 + ‖y − yk‖2

)
,

which, together with the concavity of Φ in the second variable and (11), gives

Ψ(xk+1, y)−Ψ(x, yk+1) ≤ θk 〈qk, yk+1 − y〉 −
ν

2
‖y − yk+1‖2

− 〈∇yΦ(xk+1, yk+1), yk+1 − y〉+ 〈∇yΦ(xk, yk), yk+1 − y〉

+
1

2τk

(
− ‖xk − xk+1‖2 − ‖x− xk+1‖2 + ‖x− xk‖2

)
+

1

2σk

(
− ‖yk − yk+1‖2 − ‖y − yk+1‖2 + ‖y − yk‖2

)
= − 〈qk+1, yk+1 − y〉+ θk 〈qk, yk − y〉 −

ν

2
‖y − yk+1‖2

+
1

2τk

(
− ‖xk − xk+1‖2 − ‖x− xk+1‖2 + ‖x− xk‖2

)
+

1

2σk

(
− ‖yk − yk+1‖2 − ‖y − yk+1‖2 + ‖y − yk‖2

)
+ θk 〈qk, yk+1 − yk〉 .

(16)

By using (2) we can evaluate the last term in the above expression as follows

| 〈qk, y − yk〉 | ≤ ‖qk‖ ‖y − yk‖ ≤ (Lyx ‖xk − xk−1‖+ Lyy ‖yk − yk−1‖) ‖y − yk‖

≤ Lyx
2

(
αk ‖y − yk‖2 +

1

αk
‖xk − xk−1‖2

)
+
Lyy
2

(
‖y − yk‖2 + ‖yk − yk−1‖2

)
,

(17)

with αk > 0 chosen such that (10) holds.
Writing (17) for y := yk+1 and combining the resulting inequality with (16) we derive

Ψ(xk+1, y)−Ψ(x, yk+1) ≤ ak(x, y)− bk+1(x, y)− ck, (18)

where

ak(x, y) :=
1

2τk
‖x− xk‖2 +

1

2σk
‖y − yk‖2 + θk 〈qk, yk − y〉+ θk

Lyx
2αk
‖xk − xk−1‖2

+ θk
Lyy
2
‖yk − yk−1‖2 ,
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bk+1(x, y) :=
1

2τk
‖x− xk+1‖2 +

1

2

(
1

σk
+ ν

)
‖y − yk+1‖2 + 〈qk+1, yk+1 − y〉

+
Lyx

2αk+1
‖xk+1 − xk‖2 +

Lyy
2
‖yk+1 − yk‖2 ,

and

ck :=
1

2

(
1

τk
− Lyx
αk+1

)
‖xk+1 − xk‖2 +

1

2

(
1

σk
− Lyy − θk(Lyxαk + Lyy)

)
‖yk+1 − yk‖2 .

Now, let us define for all k ≥ 0

tk :=
θ0

θ0θ1 · · · θk
(19)

and notice that
tk
tk+1

= θk+1.

Relation (9) from Assumption 1 is equivalent to

tk
τk
≥ tk+1

τk+1
and tk

(
1

σk
+ ν

)
≥ tk+1

σk+1
, (20)

which will be used in telescoping arguments in the following.
Let K ≥ 1 and denote

TK :=
K−1∑
k=0

tk, x̄K :=
1

TK

K−1∑
k=0

tkxk+1, ȳK :=
1

TK

K−1∑
k=0

tkyk+1. (21)

Multiplying both sides of (18) by tk > 0 as defined in (19), followed by summing up the inequalities
for k = 0, . . . ,K − 1 gives

K−1∑
k=0

tk (Ψ(xk+1, y)−Ψ(x, yk+1)) ≤
K−1∑
k=0

tk (ak(x, y)− bk+1(x, y)− ck) .

By Jensen’s inequality, as Ψ( · , y)−Ψ(x, · ) is a convex function, we obtain

TK (Ψ(x̄K , y)−Ψ(x, ȳK)) ≤
K−1∑
k=0

tk (Ψ(xk+1, y)−Ψ(x, yk+1)) ,

and thus

TK (Ψ(x̄K , y)−Ψ(x, ȳK)) ≤
K−1∑
k=0

tk (ak(x, y)− bk+1(x, y)− ck) . (22)

Furthermore, using (20), we get for all k ≥ 0

tkbk+1(x, y) =
tk

2τk
‖x− xk+1‖2 +

tk
2

(
1

σk
+ ν

)
‖y − yk+1‖2 + tk 〈qk+1, yk+1 − y〉

+ tk
Lyx

2αk+1
‖xk+1 − xk‖2 + tk

Lyy
2
‖yk+1 − yk‖2

≥ tk+1

2τk+1
‖x− xk+1‖2 +

tk+1

2σk+1
‖y − yk+1‖2 + tk+1θk+1 〈qk+1, yk+1 − y〉

+ tk+1θk+1
Lyx

2αk+1
‖xk+1 − xk‖2 + tk+1θk+1

Lyy
2
‖yk+1 − yk‖2

= tk+1ak+1(x, y).

8



Notice that by (10) in Assumption 1 there exists δ > 0 such that for all k ≥ 0

ck ≥ δ
(

1

2τk
‖xk+1 − xk‖2 +

1

2σk
‖yk+1 − yk‖2

)
≥ 0. (23)

For the following recall that x−1 = x0 and y−1 = y0, which implies q0 = 0. By using the above two
inequalities in (22) and writing (17) for k = K we obtain

Ψ(x̄K , y)−Ψ(x, ȳK) ≤ 1

TK

K−1∑
k=0

(tkak(x, y)− tk+1ak+1(x, y)) =
1

TK
(t0a0(x, y)− tKaK(x, y))

=
1

TK

(
t0

2τ0
‖x− x0‖2 +

t0
2σ0
‖y − y0‖2

)
− tK
TK

(
1

2τK
‖x− xK‖2 +

1

2σK
‖y − yK‖2

)
− tKθK

TK

(
〈qK , yK − y〉+

Lyx
2αK

‖xK − xK−1‖2 +
Lyy
2
‖yK − yK−1‖2

)
≤ 1

TK

(
t0

2τ0
‖x− x0‖2 +

t0
2σ0
‖y − y0‖2

)
− tK
TK

(
1

2τK
‖x− xK‖2 +

1

2

(
1

σK
− θK(LyxαK + Lyy)

)
‖y − yK‖2

)
.

(24)

By definition we have t0 = 1 and by (10) that the last term of the above inequality is nonpositive, hence
the following estimate for the minimax gap function evaluated at the ergodic sequences holds

Ψ(x̄K , y)−Ψ(x, ȳK) ≤ 1

TK

(
1

2τ0
‖x− x0‖2 +

1

2σ0
‖y − y0‖2

)
∀K ≥ 1. (25)

With these considerations at hand – in specific we want to point out (18), (24) and (25) – we will be able
to obtain convergence statements for the two settings ν = 0 and ν > 0.

3.2 Fulfilment of step size assumptions

In this subsection we will investigate a particular choice of parameters to fulfil Assumption 1 which is
suitable for both cases of ν = 0 and ν > 0.

Proposition 6. Let ν ≥ 0, cα > Lyx ≥ 0, θ0 = 1 and τ0, σ0 > 0 such that

(cαLyxτ0 + 2Lyy)σ0 < 1.

We define

θk+1 :=
1√

1 + νσk
, τk+1 :=

τk
θk+1

, σk+1 := θk+1σk for all k ≥ 0. (26)

Then the sequence (τk)k≥0, (σk)k≥0 and (θk)k≥0 fulfil (9) in Assumption 1 with equality and (10) for

αk :=

{
cατ0 if k = 0,

cατk−1 if k ≥ 1,
(27)

and
δ := min

{
1− Lyx

cα
, 1− (cαLyxτ0 + 2Lyy)σ0

}
> 0. (28)

Furthermore, for (tk)k≥0 defined as in (19) we have

tk =
θ0

θ0θ1 · · · θk
=
τk
τ0

∀k ≥ 0. (29)

9



Proof. First, we show that the particular choice (26) fulfils (9) in Assumption 1 with equality. We see
that for all k ≥ 0

τk+1 =
τk
θk+1

,

as well as
σk+1 = θk+1σk =

σk

θk+1
1

θ2k+1

=
σk

θk+1(1 + νσk)
,

follow straight forward by definition.
Next, we show that (10) in Assumption 1 holds for δ defined in (28) with the choices (26) and (27).

The first inequality of (10) is equivalent to

1− δ ≥ Lyx
αk+1

τk =
Lyx
cα

∀k ≥ 0,

which clearly is fulfilled as

δ ≤ 1− Lyx
cα

.

On the other hand, the second inequality of (10) is equivalent to

1− δ ≥ Lyxαkθkσk + Lyy(1 + θk)σk ∀k ≥ 0.

By definition of the step size parameters (26) we have for all k ≥ 0

τk+1σk+1 = τ0σ0, θk+1 ≤ 1 = θ0, σk+1 ≤ σ0, θk+1τk+1 = τk,

and thus

1− δ ≥ Lyxα0θ0σ0 + Lyy(1 + θ0)σ0 = cαLyxτ0σ0 + 2Lyyσ0 ≥ cαLyxθ2
k+1τk+1σk+1 + Lyy(1 + θk+1)σk+1

= Lyxcατkθk+1σk+1 + Lyy(1 + θk+1)σk+1 = Lyxαk+1θk+1σk+1 + Lyy(1 + θk+1)σk+1.

This chain of inequalities holds since

δ ≤ 1− (cαLyxτ0 + 2Lyy)σ0.

Finally, using the definition of tk and (26) we conclude that for all k ≥ 0

tk =
θ0

θ0θ1 · · · θk
=

τ0
τ0

τ0
τ0
τ0
τ1
· · · τk−1

τk

=
τk
τ0
.

Remark 7. The choice Lyy = 0 in (2) which was considered in [11] in the convex-strongly concave setting
corresponds to the case when the coupling function Φ is linear in y. We will prove convergence also for
Lyy positive, which makes our algorithm applicable to a much wider range of problems, as we will see in
the section with the numerical experiments.

When the coupling function Φ : H × G → R is bilinear, that is Φ(x, y) = 〈y,Ax〉 for some nonzero
continuous linear operator A : H → G then we are in the setting of [4]. In this situation one can choose
Lyy = 0 and Lyx = ‖A‖, and (28) yields

δ = min

{
1− ‖A‖

cα
, 1− cα‖A‖τ0σ0

}
,

with cα > ‖A‖. To guarantee δ > 0 we fix 0 < ε < 1 and set

cα = (1− ε)−1‖A‖.
Hence, we need to satisfy

τ0σ0‖A‖2 < 1− ε,
which heavily resembles the step size condition of [4, Algorithm 2]. Since proxγΦ(·,y) (x) = x−γA∗y for all
(x, y) ∈ H × G and all γ > 0, our OGAProx scheme becomes the primal-dual algorithm PDHG from [4].
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3.3 Convergence results

In this subsection we combine the preliminary considerations with the choice of parameters (26) from
Proposition 6.

We will start with the case ν = 0 and constant step sizes, which gives weak convergence of the iterates
to a saddle point (x∗, y∗) and convergence of the minimax gap evaluated at the ergodic iterates to zero like
O( 1

K ). Afterwards we will consider the case ν > 0, which leads to an accelerated version of the algorithm
with improved convergence results. In this setting we obtain convergence of (yk)k≥0 to y∗ like O( 1

K ) and
convergence of the minimax gap evaluated at the ergodic iterates to zero like O( 1

K2 ).

3.3.1 Convex-concave setting

For the following we assume that the function g is convex with modulus ν = 0, meaning it is merely convex.
Using the results of the previous subsection we will show that with the choice (26) all the parameters are
constant.

Proposition 8. Let cα > Lyx ≥ 0 and τ, σ > 0 such that

(cαLyxτ + 2Lyy)σ < 1.

If ν = 0, then the sequences (τk)k≥0, (σk)k≥0 and (θk)k≥0 as defined in Proposition 6 are constant, in
particular we have

τk = τ0 := τ, σk = σ0 := σ, θk = θ0 = 1 for all k ≥ 0. (30)

Proof. As ν = 0, (26) gives for all k ≥ 0

θk+1 =
1√

1 + νσk
= 1, τk+1 =

τk
θk+1

= τ0, σk+1 = θk+1σk = σ0.

Next we will state and prove the convergence results in the convex-concave case.

Theorem 9. Let cα > Lyx ≥ 0 and τ, σ > 0 such that

(cαLyxτ + 2Lyy)σ < 1.

Then the sequence (xk, yk)k≥0 generated by OGAProx with the choice of constant parameters as in Propo-
sition 8, namely,

τk = τ0 := τ, σk = σ0 := σ, θk = θ0 = 1 for all k ≥ 0,

converges weakly to a saddle point (x∗, y∗) ∈ H × G of (1). Furthermore, let K ≥ 1 and denote

x̄K =
1

K

K−1∑
k=0

xk+1 and ȳK =
1

K

K−1∑
k=0

yk+1.

Then for all K ≥ 1 and any saddle point (x∗, y∗) ∈ H × G of (1) we have

0 ≤ Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) ≤ 1

K

(
1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2

)
.

Proof. First we will show weak convergence of the sequence of iterates (xk, yk)k≥0 to some saddle point
(x∗, y∗) ∈ H × G of (1). For this we will use the Opial Lemma (see Lemma 3).

Let k ≥ 0 and (x∗, y∗) ∈ H × G be an arbitrary but fixed saddle point. From (18) together with the
choice (30) of constant parameters θk = 1, τk = τ , σk = σ and αk = α we obtain

0 ≤ Ψ(xk+1, y
∗)−Ψ(x∗, yk+1) ≤ ak(x∗, y∗)− bk+1(x∗, y∗)− ck = ak(x

∗, y∗)− ak+1(x∗, y∗)− ck, (31)

11



since

ak(x
∗, y∗) =

1

2τ
‖x∗ − xk‖2 +

1

2σ
‖y∗ − yk‖2 + 〈qk, yk − y∗〉+

Lyx
2α
‖xk − xk−1‖2 +

Lyy
2
‖yk − yk−1‖2

= bk(x
∗, y∗),

(32)

and

ck =
1

2

(
1

τ
− Lyx

α

)
‖xk+1 − xk‖2 +

1

2

(
1

σ
− Lyy − (Lyxα+ Lyy)

)
‖yk+1 − yk‖2 .

We see that (32), writing (17) with y = y∗ and (9) in Assumption 1 yield

ak(x
∗, y∗) ≥ 1

2τ
‖x∗ − xk‖2 +

1

2σ
(1− σ(Lyxα+ Lyy)) ‖y∗ − yk‖2 ≥ 0. (33)

Furthermore, from (31) and (23) we deduce

ak(x
∗, y∗) ≥ ak+1(x∗, y∗) + δ

(
1

2τ
‖xk+1 − xk‖2 +

1

2σ
‖yk+1 − yk‖2

)
.

Telescoping this inequality and taking into account (33) give

lim
k→+∞

(xk+1 − xk) = lim
k→+∞

(yk+1 − yk) = 0, (34)

as well as the existence of the limit limk→+∞ ak(x
∗, y∗) ∈ R.

From (33) we get that (xk)k≥0 and (yk)k≥0 are bounded sequences. Moreover, by using (2) and (34)
in definition (11) we obtain that

(qk)k≥0 converges strongly to 0. (35)

From the definition of ak(x∗, y∗) in (32), (34) and (35) we derive that

∃ lim
k→+∞

(
1

2τ
‖xk − x∗‖2 +

1

2σ
‖yk − y∗‖2

)
∈ R.

Since this is true for an arbitrary saddle point (x∗, y∗) ∈ H × G, we have that the first statement of the
Opial Lemma holds.

Next we will show that all weak cluster points of (xk, yk)k≥0 are in fact saddle points of (1). Assume
that (xkn)n≥0 converges weakly to x∗ ∈ H and (ykn)n≥0 converges weakly to y∗ ∈ G as n → +∞.
From (14), (11) and (12) we have(

1

τ
(xkn − xkn+1),

1

σ
(ykn − ykn+1) + qkn − qkn+1

)
∈ ∂[Φ( · , ykn+1)](xkn+1)× (−∇yΦ(xkn+1, ykn+1) + ∂g(ykn+1))

= ∂[Ψ( · , ykn+1)](xkn+1)× ∂[−Ψ(xkn+1, · )](ykn+1),

(36)

where we used that for all k ≥ 0 we have xk ∈ PrH(dom Φ) and yk ∈ dom g. The sequence on the left hand
side of the inclusion (36) converges strongly to (0, 0) as n → +∞ (according to (34) and (35)). Notice
that the operator (x, y) 7→ ∂[Ψ( · , y)](x)× ∂[−Ψ(x, · )](y) is maximal monotone (see Proposition 5), hence
its graph is sequentially closed with respect to the strong × weak topology. From here we deduce

(0, 0) ∈ ∂[Ψ( · , y∗)](x∗)× ∂[−Ψ(x∗, · )](y∗),

from which we easily derive that (x∗, y∗) is a saddle point as it satisfies (4). This means that also the
second statement of the Opial Lemma is fulfilled and we have weak convergence of (xk, yk)k≥0 to a saddle
point (x∗, y∗).
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The remaining part is to show the convergence rate of the minimax gap of the ergodic sequences. Let
K ≥ 1 and (x∗, y∗) ∈ H × G be an arbitrary but fixed saddle point. Writing (25) for (x∗, y∗) yields

0 ≤ Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) ≤ 1

TK

(
1

2τ
‖x∗ − x0‖2 +

1

2σ
‖y∗ − y0‖2

)
,

with

TK =

K−1∑
k=0

tk, x̄K =
1

TK

K−1∑
k=0

tkxk+1, ȳK =
1

TK

K−1∑
k=0

tkyk+1.

Using (29) to get tk = 1 for all k ≥ 0 in the above expressions gives

TK =

K−1∑
k=0

tk = K, x̄K =
1

K

K−1∑
k=0

xk+1, ȳK =
1

K

K−1∑
k=0

yk+1.

Finally we derive for all K ≥ 1

0 ≤ Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) ≤ 1

K

(
1

2τ
‖x∗ − x0‖2 +

1

2σ
‖y∗ − y0‖2

)
.

3.3.2 Convex-strongly concave setting

For the remainder of this section we assume that the function g is convex with modulus ν > 0, meaning it
is ν-strongly convex. In this case the choice (26) leads to adaptive parameters and accelerated convergence.

Proposition 10. Let cα > Lyx ≥ 0, θ0 = 1 and τ0, σ0 > 0 such that

(cαLyxτ0 + 2Lyy)σ0 < 1.

If ν > 0 then (τk)k≥0, (σk)k≥0 and (θk)k≥0 as defined in Proposition 6 are adaptive, in particular we have

θk+1 =
1√

1 + νσk
< 1, τk+1 =

τk
θk+1

> τk, σk+1 = θk+1σk < σk for all k ≥ 0. (37)

Proof. The statements follow directly from Proposition 6 for ν > 0.

To obtain statements regarding the (accelerated) convergence rates in the convex-strongly concave
setting, we look at the behaviour of the sequences of step size parameters (τk)k≥0 and (σk)k≥0 for k → +∞.

Proposition 11. Let θ0 = 1, τ0 > 0,

0 < σ0 ≤
9 + 3

√
13

2ν
,

and for all k ≥ 0 denote
γk :=

τk
σk
.

Then with the choice of adaptive parameters (37) we have for all k ≥ 0

γk ≥
ν2τ0σ0

9
k2 and τk ≥

ντ0σ0

3
k,

and for all k ≥ 1

σk ≤
3

ν

1

k
.

13



Proof. By (26) we conclude that for all k ≥ 0

γk+1 = γk(1 + νσk),

and further
σk+1 = σk

√
γk
γk+1

,

which, applied recursively, gives

σk = σ0

√
γ0

γk
=
√
τ0σ0

1√
γk
.

We obtain
γk+1 = γk(1 + νσk) = γk + ν

√
τ0σ0
√
γk,

which we will use to show by induction that for all k ≥ 0

γk ≥
ν2τ0σ0

9
k2. (38)

For k = 0 the statement trivially holds, whereas for k = 1 we need to verify that

γ1 = γ0 + ν
√
τ0σ0
√
γ0 =

τ0

σ0
(1 + νσ0) ≥ ν2τ0σ0

9
,

which is equivalent to the following quadratic inequality

σ2
0 −

9

ν
σ0 −

9

ν2
≤ 0,

and guaranteed to hold by our initial choice of σ0 > 0. Now let k ≥ 1 and assume that (38) holds. Then

γk+1 = γk + ν
√
τ0σ0
√
γk ≥

ν2τ0σ0

9
k2 +

ν2τ0σ0

3
k ≥ ν2τ0σ0

9
(k + 1)2.

This shows the validity of (38) for all k ≥ 0.
Now we can use inequality (38) to deduce the convergence behaviour of the sequences (τk)k≥0 and

(σk)k≥0 for k → +∞. We get for all k ≥ 0

τk = σkγk =
√
τ0σ0
√
γk ≥

ντ0σ0

3
k, (39)

which, combined with

τkσk =
τ2
k

γk
= τ0σ0,

gives for all k ≥ 1

σk ≤
3

ν

1

k
.

Now we are ready to prove the convergence results in the convex-strongly concave setting.

Theorem 12. Let cα > Lyx ≥ 0, θ0 = 1 and τ0, σ0 > 0 such that

(cαLyxτ0 + 2Lyy)σ0 < 1 and 0 < σ0 ≤
9 + 3

√
13

2ν
.

Let (x∗, y∗) ∈ H×G be a saddle point of (1). Then for (xk, yk)k≥0 being the sequence generated by OGAProx
with the choice of adaptive parameters

θk+1 =
1√

1 + νσk
< 1, τk+1 =

τk
θk+1

> τk, σk+1 = θk+1σk < σk for all k ≥ 0,
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we have for all K ≥ 1

‖y∗ − yK‖ ≤
c1

K

(
1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2

) 1
2

,

with c1 :=
√

18
ν2σ0δ

, where δ > 0 is defined in (28). Furthermore, for K ≥ 1, denote

TK =
K−1∑
k=0

tk, x̄K =
1

TK

K−1∑
k=0

tkxk+1, ȳK =
1

TK

K−1∑
k=0

tkyk+1,

where tk = τk
τ0

for all k ≥ 0 (see also (29)). Then for all K ≥ 2 it holds

0 ≤ Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) ≤ c2

K2

(
1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2

)
,

with c2 := 12
νσ0

.

Proof. Let K ≥ 1 and let (x∗, y∗) ∈ H × G be an arbitrary but fixed saddle point. First we will prove
the convergence rate of the sequence of iterates (yk)k≥0. Plugging the particular choice of parameters (37)
into (24) for (x∗, y∗), we obtain

1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2 ≥

1

2τ0
‖x∗ − xK‖2 +

τK
σK

(1− σKθK(LyxαK + Lyy))
1

2τ0
‖y∗ − yK‖2

≥ γK
δ

2τ0
‖y∗ − yK‖2 ,

where we use (10) in Assumption 1 for the last inequality. Combining this with (38) we derive

‖y∗ − yK‖ ≤
c1

K

(
1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2

) 1
2

,

with c1 :=
√

18
ν2σ0δ

.
Next we will show the convergence rate of the minimax gap at the ergodic sequences. Writing (25) for

(x∗, y∗), we obtain

0 ≤ Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) ≤ 1

TK

(
1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2

)
. (40)

Plugging the particular choice of tk = τk
τ0

for all k ≥ 0 from (29) into the definition of TK , together
with (39) yields

TK =
1

τ0

K−1∑
k=0

τk ≥
νσ0

3

K−1∑
k=0

k =
νσ0

6
K(K − 1).

Combining this inequality with (40), we obtain for all K ≥ 2

0 ≤ Ψ(x̄K , y
∗)−Ψ(x∗, ȳK) ≤ c2

K2

(
1

2τ0
‖x∗ − x0‖2 +

1

2σ0
‖y∗ − y0‖2

)
,

with c2 := 12
νσ0

, which concludes the proof.
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4 Strongly convex-strongly concave setting

For this section we assume that the function g is convex with modulus ν > 0, meaning it is ν-strongly
convex. In addition to the assumptions we had until now, for this section we also assume that for all
y ∈ dom g the function Φ( · , y) : H → R ∪ {+∞} is µ-strongly convex with modulus µ > 0. This means
that the saddle function (x, y) 7→ Ψ(x, y) is strongly convex-strongly concave.

As in the previous section we will state two step size assumptions that will be needed for the convergence
analysis. These again will be followed by preparatory observations and a result to guarantee the validity of
the stated assumptions. The section will be closed with the formulation and proof of convergence results.

Assumption 2. We assume that the step sizes τk, σk and the momentum parameter θk are constant

θk = θ0 =: θ, τk = τ0 =: τ, σk = σ0 =: σ ∀k ≥ 0,

and satisfy

1 + µτ =
1

θ
, 1 + νσ =

1

θ
, (41)

with
0 < θ < 1. (42)

Furthermore, we assume that there exists α > 0 such that

Lyx
α
≤ 1

τ
, Lyy ≤

1− θσ(αLyx + Lyy)

σ
, (43)

with
1− θσ(αLyx + Lyy) > 0. (44)

4.1 Preliminary considerations

We take an arbitrary (x, y) ∈ H × G and let k ≥ 0. Following similar considerations along (13)-(15),
additionally taking into account the µ-strong convexity of Φ( · , y) for y ∈ dom g, instead of (16) we derive

Ψ(xk+1, y)−Ψ(x, yk+1) ≤ θ 〈qk, yk − y〉 − 〈qk+1, yk+1 − y〉
− µ

2
‖x− xk+1‖2 −

ν

2
‖y − yk+1‖2 + θ 〈qk, yk+1 − yk〉

+
1

2τ

(
−‖xk − xk+1‖2 − ‖x− xk+1‖2 + ‖x− xk‖2

)
+

1

2σ

(
−‖yk − yk+1‖2 − ‖y − yk+1‖2 + ‖y − yk‖2

)
≤ 1

2τ
‖x− xk‖2 +

1

2σ
‖y − yk‖2 + θ 〈qk, yk − y〉

− 1 + µτ

2τ
‖x− xk+1‖2 −

1 + νσ

2σ
‖y − yk+1‖2 − 〈qk+1, yk+1 − y〉

+
θLyx
2α
‖xk − xk−1‖2 −

1

2τ
‖xk+1 − xk‖2

+
θLyy

2
‖yk − yk−1‖2 −

1− θσ(αLyx + Lyy)

2σ
‖yk+1 − yk‖2 .

By (41) in Assumption 2 and for α > 0 fulfilling (43)-(44), we obtain

Ψ(xk+1, y)−Ψ(x, yk+1) ≤ 1

2τ
‖x− xk‖2 +

1

2σ
‖y − yk‖2 + θ 〈qk, yk − y〉

− 1

2τ

1

θ
‖x− xk+1‖2 −

1

2σ

1

θ
‖y − yk+1‖2 − 〈qk+1, yk+1 − y〉

+
θLyx
2α
‖xk − xk−1‖2 −

1

2τ
‖xk+1 − xk‖2

+
θLyy

2
‖yk − yk−1‖2 −

1− θσ(αLyx + Lyy)

2σ
‖yk+1 − yk‖2 ,
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which together with (43) and (44) gives

Ψ(xk+1, y)−Ψ(x, yk+1) ≤ 1

2τ

(
‖x− xk‖2 −

1

θ
‖x− xk+1‖2

)
+

1

2σ

(
‖y − yk‖2 −

1

θ
‖y − yk+1‖2

)
+ θ 〈qk, yk − y〉 − 〈qk+1, yk+1 − y〉+

1

2τ

(
θ ‖xk − xk−1‖2 − ‖xk+1 − xk‖2

)
+

1

2σ̃

(
θ ‖yk − yk−1‖2 − ‖yk+1 − yk‖2

)
,

(45)

where
σ̃ :=

σ

1− θσ(αLyx + Lyy)
.

Let K ≥ 1 and as in (21) denote

TK =
K−1∑
k=0

tk, x̄K =
1

TK

K−1∑
k=0

tkxk+1, ȳK =
1

TK

K−1∑
k=0

tkyk+1.

with tk > 0 defined as in (19), in other words

tk = θ−k ∀k ≥ 0.

Multiplying both sides of (45) by tk > 0 yields

1

θk
(Ψ(xk+1, y)−Ψ(x, yk+1)) ≤ 1

2τ

(
1

θk
‖x− xk‖2 −

1

θk+1
‖x− xk+1‖2

)
+

1

2σ

(
1

θk
‖y − yk‖2 −

1

θk+1
‖y − yk+1‖2

)
+

1

θk−1
〈qk, yk − y〉 −

1

θk
〈qk+1, yk+1 − y〉

+
1

2τ

(
1

θk−1
‖xk − xk−1‖2 −

1

θk
‖xk+1 − xk‖2

)
+

1

2σ̃

(
1

θk−1
‖yk − yk−1‖2 −

1

θk
‖yk+1 − yk‖2

)
.

Summing up the above inequality for k = 0, . . . ,K − 1 and taking into account Jensen’s inequality for the
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convex function Ψ( · , y)−Ψ(x, · ) give

TK (Ψ(x̄K , y)−Ψ(x, ȳK)) ≤
K−1∑
k=0

1

θk
(Ψ(xk+1, y)−Ψ(x, yk+1))

≤ 1

2τ

(
‖x− x0‖2 −

1

θK
‖x− xK‖2

)
+

1

2σ

(
‖y − y0‖2 −

1

θK
‖y − yK‖2

)
− 1

θK−1
〈qK , yK − y〉 −

1

θK−1

1

2τ
‖xK − xK−1‖2 −

1

θK−1

1

2σ̃
‖yK − yK−1‖2

≤ 1

2τ

(
‖x− x0‖2 −

1

θK
‖x− xK‖2

)
+

1

2σ

(
‖y − y0‖2 −

1

θK
‖y − yK‖2

)
+

1

θK−1

Lyx
2

(
1

α
‖xK − xK−1‖2 + α ‖yK − y‖2

)
− 1

θK−1

1

2τ
‖xK − xK−1‖2

+
1

θK−1

Lyy
2

(
‖yK − yK−1‖2 + ‖yK − y‖2

)
− 1

θK−1

1

2σ̃
‖yK − yK−1‖2

=
1

2τ
‖x− x0‖2 +

1

2σ
‖y − y0‖2

− 1

θK
1

2τ
‖x− xK‖2 −

1

θK
1− θσ(αLyx + Lyy)

2σ
‖y − yK‖2

− 1

2θK−1

(
1

τ
− Lyx

α

)
‖xK − xK−1‖2 −

1

2θK−1

(
1

σ̃
− Lyy

)
‖yK − yK−1‖2 ,

where in the second inequality we use (17). Omitting the last two terms which are non positive by (43),
we obtain for all K ≥ 1

TKθ
K
(
Ψ(x̄K , y)−Ψ(x, ȳK)

)
+

1

2τ
‖x− xK‖2 +

1

2σ̃
‖y − yK‖2 ≤ θK

(
1

2τ
‖x− x0‖2 +

1

2σ
‖y − y0‖2

)
,

(46)

which we will use to obtain our convergence results in the following.

4.2 Fulfilment of step size assumptions

In this subsection we will investigate a particular choice of parameters τ , σ and θ such that Assumption 2
holds.

Proposition 13. For α > 0 define

θ̃ := max

{
Lyx

αµ+ Lyx
,

αLyx + 2Lyy
ν + αLyx + 2Lyy

}
. (47)

Let θ > 0 such that
0 ≤ θ̃ < θ < 1, (48)

and set
τ =

1

µ

1− θ
θ

and σ =
1

ν

1− θ
θ

. (49)

Then τ , σ and θ fulfil Assumption 2.

Proof. If Lyx = Lyy = 0, then the conclusion follows immediately. Assume that Lyx + Lyy > 0. It is easy
to verify that definition (47) yields

0 < θ̃ < 1
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and that (49) is equivalent to (41) where (42) is ensured by (48). Furthermore, plugging the specific form
of the step sizes (49) into (43) we obtain for the first inequality of (43)

Lyx
α
≤ µθ

1− θ ,

which is equivalent to

θ ≥ Lyx
αµ+ Lyx

.

Note that by (48) we have

0 ≤ Lyx
αµ+ Lyx

≤ θ̃ < θ < 1.

Similarly, the second inequality of (43) is equivalent to the following quadratic inequality

θ2 − αLyx − ν
αLyx + Lyy

θ − Lyy
αLyx + Lyy

≥ 0.

The non negative solution of the associated quadratic equation reads

ρ :=
1

2

 αLyx − ν
αLyx + Lyy

+

√(
αLyx − ν
αLyx + Lyy

)2

+
4Lyy

αLyx + Lyy

 ≥ 0.

Since
0 ≤ ρ < αLyx + 2Lyy

ν + αLyx + 2Lyy
≤ θ̃ < θ < 1,

the second inequality of (43) is also fulfilled. In order to see that

ρ <
αLyx + 2Lyy

ν + αLyx + 2Lyy
,

we notice that this inequality is equivalent to(
αLyx − ν
αLyx + Lyy

)2

+
4Lyy

αLyx + Lyy
<

(
ν2 + 2νLyy + (αLyx + 2Lyy)

2
)2

(ν + αLyx + 2Lyy)2(αLyx + Lyy)2
,

which holds if and only if(
(αLyx − ν)2 + 4Lyy(αLyx + Lyy)

)
(ν + αLyx + 2Lyy)

2

< (ν2 + 2νLyy)
2 + 2(ν2 + 2νLyy)(αLyx + 2Lyy)

2 + (αLyx + 2Lyy)
4

or, equivalently,
0 < 4ν2(αLyx + Lyy)

2.

For the remaining condition (44) to hold we need to ensure

θ >
αLyx + Lyy − ν
αLyx + Lyy

.

For this we observe that

ρ ≥ 1

2

 αLyx − ν
αLyx + Lyy

+

√(
αLyx + 2Lyy − ν
αLyx + Lyy

)2


≥ 1

2

αLyx − ν + αLyx + 2Lyy − ν
αLyx + Lyy

=
αLyx + Lyy − ν
αLyx + Lyy

.

In conclusion, we obtain the following chain of inequalities

αLyx + Lyy − ν
αLyx + Lyy

≤ ρ < αLyx + 2Lyy
ν + αLyx + 2Lyy

≤ θ̃ < θ < 1,

which is satisfied by (48).
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4.3 Convergence results

Now we can combine the previous results and prove the convergence statements in the strongly convex-
strongly concave setting.

Theorem 14. Let (x∗, y∗) ∈ H × G be a saddle point of (1). Then for (xk, yk)k≥0 being the sequence
generated by OGAProx with the choice of parameters

τ =
1

µ

1− θ
θ

, σ =
1

ν

1− θ
θ

, 0 ≤ θ̃ < θ < 1,

with
θ̃ = max

{
Lyx

αµ+ Lyx
,

αLyx + 2Lyy
ν + αLyx + 2Lyy

}
,

for α > 0, we denote for K ≥ 1

TK =
K−1∑
k=0

θ−k, x̄K =
1

TK

K−1∑
k=0

θ−kxk+1, ȳK =
1

TK

K−1∑
k=0

θ−kyk+1,

for which the following holds

0 ≤ θ
(
Ψ(x̄K , y

∗)−Ψ(x∗, ȳK)
)

+
1

2τ
‖x∗ − xK‖2 +

1

2σ̃
‖y∗ − yK‖2 ≤ θK

(
1

2τ
‖x∗ − x0‖2 +

1

2σ
‖y∗ − y0‖2

)
,

where σ̃ := σ
1−θσ(αLyx+Lyy) .

Proof. Let K ≥ 1 and (x∗, y∗) ∈ H × G be an arbitrary but fixed saddle point of (1). Writing (46) for
(x∗, y∗) we get

0 ≤ TKθ
K
(
Ψ(x̄K , y

∗)−Ψ(x∗, ȳK)
)

+
1

2τ
‖x∗ − xK‖2 +

1

2σ̃
‖y∗ − yK‖2

≤ θK
(

1

2τ
‖x∗ − x0‖2 +

1

2σ
‖y∗ − y0‖2

)
.

Using

TK =

K−1∑
k=0

1

θk
=

1

θK−1

1− θK
1− θ ≥

1

θK−1
,

finally we obtain for all K ≥ 1

0 ≤ θ
(
Ψ(x̄K , y

∗)−Ψ(x∗, ȳK)
)

+
1

2τ
‖x∗ − xK‖2 +

1

2σ̃
‖y∗ − yK‖2 ≤ θK

(
1

2τ
‖x∗ − x0‖2 +

1

2σ
‖y∗ − y0‖2

)
,

with 0 < θ < 1 as defined in (48).

5 Numerical experiments

In this section we will treat three numerical applications of our method. The first one is of rather simple
structure and has the purpose to highlight the convergence rates we obtained in the previous sections.
The second one concerns multi kernel support vector machines to validate OGAProx on a more relevant
application in practice, even though there are no theoretical guarantees for the “metric” reported there.
The third numerical application addresses a classification problem incorporating minimax group fairness,
which traces back to the solving of a minimax problem with nonsmooth coupling function.
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5.1 Nonsmooth-linear problem

The first application we treat is to showcase the convergence rates we obtained in the previous sections
and make a simple proof of concept. We look at the following nonsmooth-linear saddle point problem

min
x∈Rd

max
y∈Rn

Ψ(x, y) := 〈[x]+, Ay〉 −
(
δC(y) +

ν

2
‖y‖2

)
, (50)

with ν ≥ 0 and A ∈ Rd×n, [ · ]+ being the component-wise positive part,

[x]+ =
(

max{0, xi}
)d
i=1
,

and C being the following convex polytope

C := {y ∈ Rn | Ay = 0}.

For u = (ui)
d
i=1, v = (vi)

d
i=1 ∈ Rd the relation u = v denotes component-wise inequalities, namely,

u = v ⇔ ui ≥ vi for 1 ≤ i ≤ d.

Then g : Rn → R ∪ {+∞} with
g(y) := δC(y) +

ν

2
‖y‖2

is proper, lower semicontinuous and convex with modulus ν ≥ 0 and dom g = C. Moreover, Φ : Rd×Rn →
R with

Φ(x, y) =

d∑
i=1

max{0, xi}(Ay)i

has full domain, for all x ∈ Rd we have that Φ(x, · ) is linear and for all y ∈ dom g = C the function
Φ( · , y) is convex and continuous.

Furthermore, we obtain for all (x, y), (x′, y′) ∈ Rd × dom g∥∥∇yΦ(x, y)−∇yΦ(x′, y′)
∥∥ =

∥∥AT ([x]+ − [x′]+
)∥∥ ≤ ‖A‖∥∥x− x′∥∥ ,

hence (2) holds with Lyx = ‖A‖ and Lyy = 0.
The algorithm (7)-(8) iterates for k ≥ 0
vk = yk + σk [(1 + θk)∇yΦ(xk, yk)− θk∇yΦ(xk−1, yk−1)] = yk + σkA

T
(
(1 + θk)[xk]+ − θk[xk−1]+

)
,

yk+1 = proxσkg (vk) = PC

(
1

1+νσk
vk

)
,

xk+1 = proxτkΦ( · ,yk+1) (xk) ,

where the calculation of the orthogonal projection on the set C is a simple quadratic program and

proxτΦ( · ,y) (x) =
(

proxτ(Ay)i max{0, · } (xi)
)d
i=1

,

where, for i = 1, ..., d,

proxτ(Ay)i max{0, · } (xi) =


xi if xi ≤ 0,

0 if 0 < xi ≤ τ(Ay)i,

xi − τ(Ay)i if xi > τ(Ay)i.
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By writing the first order optimality conditions and using Lagrange duality we obtain the following
characterisation.

(x∗, y∗) is a saddle point of (50)⇔

 0 ∈ ∂
(
〈[ · ]+, Ay∗〉 − δC(y∗)− ν

2 ‖y∗‖
2
)

(x∗)

0 ∈ ∂
(
−
〈
AT [x∗]+, ·

〉
+ δC( · ) + ν

2 ‖ · ‖
2
)

(y∗)

⇔
{

0 ∈∑d
i=1(Ay∗)i ∂max{0, · }(x∗i )

AT [x∗]+ − νy∗ ∈ NC(y∗)

⇔


∀i = 1, . . . , d :

(
(Ay∗)i > 0 and x∗i ≤ 0

)
or(

(Ay∗)i = 0 and x∗i ∈ R
)〈

AT [x∗]+ − νy∗, y∗
〉

= 0

νy∗ −AT [x∗]+ ∈ AT
(
Rd+
)

⇔


∀i = 1, . . . , d :

(
(Ay∗)i > 0 and x∗i ≤ 0

)
or(

(Ay∗)i = 0 and x∗i ∈ R
)

ν ‖y∗‖2 =
〈
AT [x∗]+, y

∗〉 = 〈[x∗]+, Ay∗〉 = 0

νy∗ ∈ AT
(
[x∗]+ + Rd+

)
.

This means, that for ν = 0 we obtain

(x∗, y∗) is a saddle point of (50)⇔


∀i = 1, . . . , d :

(
(Ay∗)i > 0 and x∗i ≤ 0

)
or(

(Ay∗)i = 0 and x∗i ∈ R
)

0 ∈ AT
(
[x∗]+ + Rd+

) ,

whereas for ν > 0

(x∗, y∗) is a saddle point of (50)⇔
{
y∗ = 0

0 ∈ AT
(
[x∗]+ + Rd+

) .
If A ∈ Rd×n has full row rank the inclusion

0 ∈ AT
(

[x∗]+ + Rd+
)

is equivalent to
x∗ 5 0.

100 101 102 103 104 105

Iterations k

10−1

100

101

102

103
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Ψ
(x̄
k
,y
∗ )
−

Ψ
(x
∗ ,
ȳ k

)

ν = 0.0

Ergodic convergence of the saddle point gap

O(1/k)

Figure 1: Convergence of the minimax gap like O( 1
K ) for ν = 0.

For the experiments we choose dimensions d = 250 and n = 350. For easier validation of the solution
x∗ we ensure that the matrix A ∈ Rd×n with entries drawn from a uniform distribution on the interval
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[−3, 3] has full row rank. The starting points x0 = x−1 ∈ Rd and y0 ∈ Rn have entries drawn from a
uniform distribution on the interval [−5, 5].

In the case ν = 0, i.e., the regulariser g being merely convex, we proved weak asymptotic convergence
of the iterates to some saddle point (x∗, y∗) and convergence of the minimax gap at the ergodic sequences
to zero like O( 1

K ) for any saddle point. The latter is illustrated in Figure 1 for (x∗, y∗) ∈ Rd × Rn with
x∗ 5 0 and y∗ ∈ C with y∗ 6= 0 for a single random initialisation.
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Ergodic convergence of the saddle point gap

O(1/k2)
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10−2
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‖y
k
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y
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ν = 0.3

Convergence of the iterate in norm

O(1/k)

Figure 2: Convergence of the minimax gap like O( 1
K2 ) and of the sequence (yk)k≥0 in norm like O( 1

K ) for
ν > 0.

Let (x∗, y∗) ∈ Rd × Rn be a saddle point. In the case ν > 0, i.e., the regulariser g being ν-strongly
convex, we proved strong non-asymptotic convergence of the sequence (yk)k≥0 → y∗ like O( 1

K ) and
convergence of the minimax gap at the ergodic sequences to zero like O( 1

K2 ). The numerical behaviour of
our method validating the theoretical claims for ν > 0 is highlighted in Figure 2. The plots shown are for
a single random initialisation and with the choice ν = 3

10 .

5.2 Multi kernel support vector machine

The second application to test our method in practice is to learn a combined kernel matrix for a multi
kernel support vector machine (SVM). We have a set of labelled training data

Sn = {(a1, b1), . . . , (an, bn)} ⊆ Rm × {−1, 1},

where we call b = (bi)
n
i=1, and a set of unlabelled test data

Tl = {an+1, . . . , an+l} ⊆ Rm.

We consider embeddings of the data according to a kernel function κ : Rm×Rm → R with the corresponding
symmetric and positive semidefinite kernel matrix

K =

(
Ktr Ktr,t
Kt,tr Kt

)
,

where Kij = κ(ai, aj) for i, j = 1, . . . , n, n+ 1, . . . , n+ l.
In the following e is a vector of appropriate size consisting of ones. According to [13] the problem of

interest is
min
K∈K

trace(K)=c

max
05α5C
〈α,b〉=0

αT e− 1

2
αTG(Ktr)α− ν

2
‖α‖22 , (51)

where K is the model class of kernel matrices, c ∈ (0,+∞), C ∈ (0,+∞] and ν ∈ [0,+∞) are model
parameters and we define G(Ktr) := diag(b)Ktr diag(b).
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The set K is restricted to be the set of positive semidefinite matrices that can be written as a non
negative linear combination of kernel matrices K1, . . . ,Kd, i.e.,

K =

{
K ∈ Sm+

∣∣∣∣ K =
d∑
i=1

ηiKi, ηi ≥ 0 for i = 1, ..., d

}
.

With this choice (51) becomes

min
〈η,r〉=c
η=0

max
05α5C
〈α,b〉=0

αT e− 1

2

d∑
i=1

ηiα
TG(Ktri )α− ν

2
‖α‖2 , (52)

where η = (ηi)
d
i=1 and r = (ri)

d
i=1 with ri = trace(Ki) for i = 1, ..., d. Assume (η∗, α∗) ∈ Rd × Rn to be a

saddle point of (52) and write

K∗ =

d∑
j=1

η∗jKj .

Following the considerations of [11] we compute for ak ∈ Tl with k ∈ {n+ 1, . . . , n+ l},

L(ak) = sgn

(
n∑
i=1

biα
∗
iK∗ik + γ

)
= sgn

 n∑
i=1

d∑
j=1

biα
∗
i η
∗
j (Kj)ik + γ

 , (53)

with

γ = bj0(1− να∗j0)−
n∑
i=1

biα
∗
iK∗ij0 = bj0(1− να∗j0)−

n∑
i=1

d∑
j=1

biα
∗
i η
∗
j (Kj)ij0 ,

for some j0 ∈ {1, . . . , n} such that 0 < α∗j0 < C.
After writing xi = riηi

c for i = 1, ..., d and augmenting the objective with an additional (strongly)
convex penalisation term, we obtain

min
x∈Rd

max
y∈Rn

δ∆(x) +
µ

2
‖x‖2 − 1

2

d∑
i=1

xiy
TMiy + yT e−

(
δY (y) +

ν

2
‖y‖2

)
, (54)

where µ ≥ 0 and Mi := c
ri
G(Ktri ) for i = 1, ..., d,

∆ := {x ∈ Rd | x = 0, 〈x, e〉 = 1}

is the m-dimensional unit simplex and

Y := {y ∈ Rn | 0 5 y 5 C, 〈y, b〉 = 0}

is the intersection of a box and a hyperplane.
In the notation of (1) we have Φ : Rd × Rn → R ∪ {+∞} defined by

Φ(x, y) = δ∆(x) +
µ

2
‖x‖2 − 1

2

d∑
i=1

xiy
TMiy + yT e,

and g : Rn → R ∪ {+∞} given by
g(y) = δY (y) +

ν

2
‖y‖2 .

We see that Φ and g satisfy the assumptions considered for problem (1).
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The algorithm (7)-(8) iterates as follows for k ≥ 0
vk = yk + σk [(1 + θk)∇yΦ(xk, yk)− θk∇yΦ(xk−1, yk−1)] ,

yk+1 = proxσkg (vk) = PY

(
1

1+νσk
vk

)
,

xk+1 = proxτkΦ( · ,yk+1) (xk) = P∆

(
1

1+µτk
(xk + τkξ

yk+1)
)
,

where

∇yΦ(x, y) = −
(

1

2

d∑
i=1

xi(Mi +MT
i )

)
y + e = −

(
d∑
i=1

xiMi

)
y + e for (x, y) ∈ ∆× Rn

and

ξy :=

(
1

2
yTMiy

)d
i=1

.

To determine the correct step sizes and momentum parameter, we need to find Lipschitz constants for
∇yΦ, i.e., Lyx, Lyy ≥ 0 such that (2) holds. Recall, that we require for all (x, y), (x′, y′) ∈ PrH(dom Φ)×
dom g ∥∥∇yΦ(x, y)−∇yΦ(x′, y′)

∥∥ ≤ Lyx ∥∥x− x′∥∥+ Lyy
∥∥y − y′∥∥ ,

with PrH(dom Φ) = ∆ and dom g = Y .
Let (x, y), (x′, y′) ∈ ∆× Y . Then

∥∥∇yΦ(x, y)−∇yΦ(x′, y′)
∥∥ =

∥∥∥∥∥−
d∑
i=1

xiMiy + e+
d∑
i=1

x′iMiy
′ − e

∥∥∥∥∥
=

∥∥∥∥∥
d∑
i=1

xiMiy
′ −

d∑
i=1

xiMiy +

d∑
i=1

x′iMiy
′ −

d∑
i=1

xiMiy
′

∥∥∥∥∥
≤
∥∥∥∥∥

d∑
i=1

xiMi(y − y′)
∥∥∥∥∥+

∥∥∥∥∥
d∑
i=1

(xi − x′i)Miy
′

∥∥∥∥∥
≤

d∑
i=1

|xi| ‖Mi‖
∥∥y − y′∥∥+

d∑
i=1

|xi − x′i| ‖Mi‖
∥∥y′∥∥

≤
(
‖x‖1 max

1≤i≤d
‖Mi‖

)∥∥y − y′∥∥+

(∥∥y′∥∥ max
1≤i≤d

‖Mi‖
)∥∥x− x′∥∥

1

≤
(
‖x‖1 max

1≤i≤d
‖Mi‖

)∥∥y − y′∥∥+

(∥∥y′∥∥√d max
1≤i≤d

‖Mi‖
)∥∥x− x′∥∥ .

As x ∈ ∆, we have ‖x‖1 = 1 and since y′ ∈ Y we get ‖y′‖ ≤ C√n. Thus we obtain∥∥∇yΦ(x, y)−∇yΦ(x′, y′)
∥∥ ≤ Lyx ∥∥x− x′∥∥+ Lyy

∥∥y − y′∥∥ ,
with

Lyx = C
√
dn max

1≤i≤d
‖Mi‖ , Lyy = max

1≤i≤d
‖Mi‖ .

For our experiments we use four different data sets from the “UCI Machine Learning Repository” [8]: the
(original) Wisconsin breast cancer dataset [16] (699 total observations including 16 incomplete examples;
9 features), the Statlog heart disease data set (270 observations; 13 features), the Ionosphere data set (351
observations; 33 features) and the Connectionist Bench Sonar data set (208 observations; 60 features). All
the data sets are normalised such that each feature column has zero mean and standard deviation equal
to one.

Furthermore, we take d = 3 given kernel functions, namely a polynomial kernel function k1(a, a′) =
(1 + aTa′)2 of degree 2 for K1, a Gaussian kernel function k2(a, a′) = exp(−1

2(a − a′)T (a − a′)/ 1
10) for
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K2 and a linear kernel function k3(a, a′) = aTa′ for K3. The resulting kernel matrices are normalised
according to [13, Section 4.8], giving

ri = trace(Ki) = n+ l.

The model parameter c > 0 is chosen to be

c =
d∑
i=1

ri = d(n+ l),

and we set C = 1.
On this application we test the three proposed versions of OGAProx. We refer to the version of

OGAProx with constant parameters from Section 3.3.1 as OGAProx-C1, to the one with adaptive pa-
rameters from Section 3.3.2 as OGAProx-A and to the one from Section 4.3 giving linear convergence
with constant parameters as OGAProx-C2. The results are compared with those obtained by APD1 and
APD2 from [11]. In their experiments on multi kernel SVMs they showed superiority of their method
compared to Mirror Prox by [19] in terms of accuracy, runtime and relative error. They also argued that
with APD they are able to obtain decent approximations of solutions of (52) by interior point methods
such as MOSEK [18] taking about the same amount of runtime.

The main difference between APD and our method OGAProx is that for the first a gradient step in the
first component is employed whereas for the latter a purely proximal step is used. To be able to employ
APD2 with adaptive parameters for ν > 0, the roles of x and y in (54) have to be switched, giving a
different method than OGAProx-A. The runtime of both methods however is still very similar as both use
the same number of gradient computations/storages and projections per iteration.

All algorithms are initialised with

x0 = x−1 =
1

d
e, y0 = y−1 = 0.

Each data set is randomly partitioned into 80 % training and 20 % test set. The test set is used to
judge the quality of the obtained model by predicting the labels via (53) and computing the resulting test
set accuracy (TSA). Note that the TSA is not guaranteed to converge or increase at all by our theoretical
considerations, which only state convergence of the iterates and in terms of function values. The reported
TSA values are the average over 10 random partitions. Due to occasionally occurring rather dramatic
deflections of the TSA we actually compute 12 runs, but remove minimum and maximum values before
calculating the mean.

5.2.1 1-norm soft margin classifier

For µ = ν = 0 the formulation (52) realises the so-called 1-norm soft margin classifier. In this case g
is merely convex and we can only use the constant parameter choice from Section 3.3.1 with the name
OGAProx-C1. We compare the results with those obtained by APD1 from [11].

In the case of 1-norm soft margin classifier the results reported in Table 1 paint a clear picture.
OGAProx outperforms APD on three out of four data sets and ties on one data set, achieving maximum
TSA values of 97.45 %, 82.78 %, 93.24 % and 85.95 % on Breast cancer, Heart disease, Ionosphere and
Sonar, respectively.

5.2.2 2-norm soft margin classifier

For µ = 0 and ν > 0 from (52) we obtain the so-called 2-norm soft margin classifier with C = 1. In this
case g is ν-strongly convex and we can use both parameter choices from Section 3.3.1 and the one from
Section 3.3.2 giving OGAProx-C1 and OGAProx-A, respectively. This time we compare the results with
those obtained by APD1 as well as APD2 from [11].

We see in Table 2 that the situation for the 2-norm soft margin classifier is more diverse than previously
with the 1-norm soft margin classifier. Comparing the two constant methods – OGAProx-C1 and APD1
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TSA at iteration k
Method Data set k = 250 k = 500 k = 1000 k = 1500 k = 2000

OGAProx-C1

Breast cancer 97.15 97.37 97.08 93.94 97.45
Heart disease 74.63 74.07 80.00 81.30 82.78
Ionosphere 70.85 85.35 90.28 87.46 93.24
Sonar 70.00 75.24 83.81 84.52 85.95

APD1

Breast cancer 97.23 97.37 97.45 94.01 97.45
Heart disease 74.63 72.59 81.85 80.74 82.41
Ionosphere 70.85 85.35 85.49 88.73 92.68
Sonar 70.00 74.76 81.67 84.76 84.52

Table 1: TSA of 1-norm soft margin classifier (µ = 0, ν = 0, C = 1) trained with OGAProx-C1 and
APD1, averaged over 10 random partitions.

TSA at iteration k
Method Data set k = 250 k = 500 k = 1000 k = 1500 k = 2000

OGAProx-C1

Breast cancer 97.15 97.37 97.15 97.45 97.15
Heart disease 75.19 75.00 77.78 83.52 83.52
Ionosphere 70.99 85.35 89.86 87.89 91.27
Sonar 70.71 77.86 81.90 85.71 86.19

APD1

Breast cancer 97.23 97.37 97.30 97.37 97.37
Heart disease 75.37 67.78 80.74 82.22 84.81
Ionosphere 71.27 85.35 88.87 89.72 92.39
Sonar 70.48 76.43 83.33 84.76 85.71

OGAProx-A

Breast cancer 97.15 97.37 97.37 97.45 97.45
Heart disease 76.11 73.70 83.70 81.30 84.26
Ionosphere 70.85 85.21 86.34 90.42 93.52
Sonar 70.48 76.90 83.33 82.62 84.76

APD2

Breast cancer 97.23 97.37 97.59 97.01 96.72
Heart disease 76.11 71.30 81.48 78.70 83.15
Ionosphere 71.13 85.35 84.79 84.93 90.42
Sonar 70.24 75.95 84.05 84.52 86.19

Table 2: TSA of 2-norm soft margin classifier (µ = 0, ν = 1
2 , C = 1) trained with OGAProx-C1,

OGAProx-A, APD1 and APD2, averaged over 10 random partitions.

– with each other, as well as the two adaptive methods – OGAProx-A and APD2 – we see that in both
cases two out of four times OGAProx is better than APD and vice versa. Notice that the two data sets
with in general lower TSA, namely Heart disease and Sonar, seem to benefit from the regularising effect
of ν > 0, while those with already very good results on the other hand do not, compared to the results
of the 1-norm soft margin classifier with ν = 0. In addition note that the adaptive variant OGAProx-A
improves on the result of OGAProx-C1 on three out of four data sets.

5.2.3 Regularised 2-norm soft margin classifier

For µ > 0 and ν > 0 from (52) we again obtain the so-called 2-norm soft margin classifier with C = 1,
this time, however, in a regularised version. Now not only g is strongly convex, but also Φ( · , y) and we
can use all our parameter choices from Section 3.3.1, Section 3.3.2 and Section 4.3 yielding OGAProx-C1,
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OGAProx-A and OGAProx-C2, respectively. Once more we compare the results with those obtained by
APD1 as well as APD2 from [11], pointing out that that OGAProx-C2 has no APD counterpart harnessing
the additional strong convexity of the problem.

TSA at iteration k
Method Data set k = 250 k = 500 k = 1000 k = 1500 k = 2000

OGAProx-C1

Breast cancer 97.15 97.37 97.15 97.52 97.45
Heart disease 75.19 73.52 77.22 83.15 83.70
Ionosphere 70.99 85.35 87.89 91.41 91.97
Sonar 70.48 78.81 83.33 84.76 85.95

APD1

Breast cancer 97.23 97.37 97.37 97.01 97.30
Heart disease 75.19 68.89 75.56 79.81 84.07
Ionosphere 71.27 85.35 86.06 89.15 91.69
Sonar 70.71 76.43 83.10 85.48 85.48

OGAProx-A

Breast cancer 97.15 97.37 97.45 97.37 97.30
Heart disease 76.11 70.93 82.78 80.74 83.52
Ionosphere 70.85 85.21 85.92 89.86 93.38
Sonar 70.24 76.43 82.86 86.19 86.19

APD2

Breast cancer 97.23 97.37 97.45 94.53 97.52
Heart disease 76.11 71.67 80.00 79.26 83.52
Ionosphere 71.13 85.35 86.90 92.39 91.13
Sonar 70.24 75.00 82.62 84.52 86.43

OGAProx-C2

Breast cancer 97.15 97.45 97.59 97.15 96.57
Heart disease 74.07 78.52 76.11 82.22 83.70
Ionosphere 70.42 84.37 86.48 90.85 92.25
Sonar 69.05 74.29 85.24 85.71 86.19

Table 3: TSA of regularised 2-norm soft margin classifier (µ = 1, ν = 1
2 , C = 1) trained with OGAProx-

C1, OGAProx-A, OGAProx-C2, APD1 and APD2, averaged over 10 random partitions.

We see in Table 3 that for the regularised 2-norm soft margin classifier the situation is similar to the
version without additional regulariser. This time for the constant methods, OGAProx-C1 and APD1,
OGAProx is better than APD on three data sets while APD is better than OGAProx on only one. On
the contrary, for the adaptive methods, OGAProx-A and APD2, it is the other way round. APD performs
better than APD on three data sets while OGAProx is better than APD on only one. For the second
version of OGAProx with constant parameter choice exhibiting linear convergence in both iterates and
function values, there is no APD counterpart. When we compare the results for OGAProx-C2 to those of
OGAProx-C1, then we see that the TSA values become better in general with improvements on three out
of four data sets and one draw. On the Breast cancer data set OGAProx-C2 even delivers the maximum
TSA over all considered methods.

5.3 Classification incorporating minimax group fairness

We want to classify labelled data (aj , bj)
n
j=1 ⊆ Rd × {±1}, additionally taking into account so-called

minimax group fairness [17, 7]. The data is divided into m groups G1, ..., Gm, such that for i ∈ [m] :=
{1, ...,m} we have Gi = (aij , bij )

ni
j=1 ⊆ (aj , bj)

n
j=1 with ni := |Gi| and ij ∈ [n] for all i ∈ [m] and all

j ∈ [ni]. Fairness is measured by worst-case outcomes across the considered groups. Hence we consider
the following problem,

min
x∈Rd

max
i∈[m]

fi(x), (55)
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with

fi(x) =
1

ni

ni∑
j=1

L(hx(aij ), bij ),

where hx is a function parametrised by x, mapping features to predicted labels, and L is a loss function
measuring the error between the predicted and true labels.

It is easy to see that (55) is equivalent to

min
x∈Rd

max
y∈∆m

m∑
i=1

yifi(x),

where ∆m := {(v1, ..., vm) ∈ Rm | ∑m
i=1 vi = 1, vi ≥ 0 for i = 1, ...,m} denotes the probability simplex in

Rm. We will work with a linear (affine) predictor hx : Rd → R given by

hx(a) = aTx,

with x ∈ Rd and L : R× R→ R being the hinge loss, i.e.,

L(r, s) = max{0, 1− sr},
for r, s ∈ R.

Combining all of the above we get

min
x∈Rd

max
y∈Rm

Φ(x, y)− g(y), (56)

with Φ : Rd × Rm → R defined by

Φ(x, y) =
m∑
i=1

yi
1

ni

ni∑
j=1

max{0, 1− bijaTijx},

and g : Rm → R ∪ {+∞} given by
g(y) = δ∆m(y).

The function g is proper, lower semicontinuous and convex (with modulus ν = 0). Furthermore, we
observe that Φ(·, y) : Rd → R is proper, convex and lower semicontinuous for all y ∈ dom g = ∆m and
for all x ∈ PrRd(dom Φ) = Rd we have dom Φ(x, ·) = Rm and Φ(x, ·) : Rm → R is concave and Fréchet
differentiable. However, note that Φ is not differentiable in its first component.

Moreover the Lipschitz condition on the gradient is fulfilled as well. Indeed, for (x, y), (x′, y′) ∈ Rd×∆m

we have ∥∥∇yΦ(x, y)−∇yΦ(x′, y′)
∥∥ ≤ Lyx ∥∥x− x′∥∥+ Lyy

∥∥y − y′∥∥ ,
with

Lyx =

√√√√ m∑
i=1

1

ni

ni∑
j=1

∥∥aij∥∥2 and Lyy = 0.

Additionally, with τ > 0 and y ∈ dom g, we have for x ∈ Rd

proxτΦ(·,y) (x) = arg min
u∈Rd

τ
m∑
i=1

yi
1

ni

ni∑
j=1

max{0, 1− bijaTiju}+
1

2
‖u− x‖2

 .

By introducing slack variables for the pointwise maximum, we see that the above minimisation problem
is equivalent to the following quadratic program

min
u∈Rd,
rij∈R,

i∈[m], j∈[ni]

τ
m∑
i=1

ni∑
j=1

yi
1

ni
rij +

1

2
‖u− x‖2

 .

s.t. rij ≥ 0 ∀ i ∈ [m], ∀ j ∈ [ni]

rij + bija
T
iju ≥ 1 ∀ i ∈ [m], ∀ j ∈ [ni]
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Group S1 Group S2 Overall

with
fairness

without
fairness

with
fairness

without
fairness

with
fairness

without
fairnessk

100 95.78 95.78 80.68 80.84 85.56 85.56
500 95.78 95.78 81.15 80.28 85.93 85.19
1000 95.78 95.78 81.15 80.28 85.93 85.19

Table 4: TSA of the affine classifier after k iterations of OGAProx for the groups according to “sex”,
averaged over 5 random partitions.

Group A1 Group A2 Group A3 Overall

with
fairness

without
fairness

with
fairness

without
fairness

with
fairness

without
fairness

with
fairness

without
fairnessk

100 87.76 86.48 82.97 82.97 86.93 86.93 85.93 85.56
500 88.71 85.53 83.84 82.97 86.93 86.93 86.67 85.19
1000 88.71 85.53 83.84 82.97 86.93 86.93 86.67 85.19

Table 5: TSA of the affine classifier after k iterations of OGAProx for the groups according to “age”,
averaged over 5 random partitions.

For our practical applications we consider the Statlog heart disease data set (270 observations; 13
features) from the “UCI Machine Learning Repository” [8] and consider two different groupings; one
consisting of the sex of the patients, while the other one is regarding the patients’ age. For “sex” we
have two groups, that is female patients (Group S1) and male patients (Group S2), whereas for “age”
we consider three groups, that is patients that are younger than 50 years old (Group A1), patients that
are younger than 60 but at least 50 years old (Group A2), and patients that are 60 years of age or older
(Group A3). The data set is randomly partitioned into 80 % training data and 20 % test data. The results
in Table 4 and Table 5 are the values of the achieved test set accuracy (TSA) averaged over 5 random
partitions. For each considered group we state the intragroup TSA together with the overall TSA for the
entire test set.

Every time we report the results obtained by iterates of OGAProx governed by solving the minimax
problem (56) taking into account the considered groups (“with fairness”), as well as the results obtained by
not taking into account minimax group fairness (“without fairness”), i.e., solving the problem for a single
extensive group G1 = (aj , bj)

n
j=1 with n1 = n, yielding the minimisation of the average loss over the whole

population and leading to an “ordinary” minimisation problem.
We see in Table 4 and Table 5 that taking into account the groups regarding “sex” and “age”, respec-

tively, is beneficial for training the affine classifier. In both cases “with fairness” achieves the highest TSA
for each group and at the same time the highest overall TSA as well.
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