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Abstract
In the framework of a real Hilbert space, we address the problem of finding the zeros of the sum of

a maximally monotone operator A and a cocoercive operator B. We study the asymptotic behaviour of
the trajectories generated by a second order equation with vanishing damping, attached to this problem,
and governed by a time-dependent forward-backward-type operator. This is a splitting system, as it
only requires forward evaluations of B and backward evaluations of A. A proper tuning of the system
parameters ensures the weak convergence of the trajectories to the set of zeros of A + B, as well as
fast convergence of the velocities towards zero. A particular case of our system allows to derive fast
convergence rates for the problem of minimizing the sum of a proper, convex and lower semicontinuous
function and a smooth and convex function with Lipschitz continuous gradient. We illustrate the
theoretical outcomes by numerical experiments.
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1 Introduction

1.1 Problem formulation and a continuous time splitting scheme with vanishing
damping

Let H be a real Hilbert, A : H → 2H a maximally monotone operator and B : H → H a β-cocoercive
operator for some β > 0 such that zer(A+B) 6= ∅. Devising fast convergent continuous and discrete time
dynamics for solving monotone inclusions of the type

find x ∈ H such that 0 ∈ (A+B)(x) (1)

is of great importance in many fields, including, but not limited to, optimization, equilibrium theory,
economics and game theory, partial differential equations, and statistics. One of our main motivations
comes from the fact that solving the convex optimization problem

min
x∈H

f(x) + g(x),

where f : H → R ∪ {+∞} is proper, convex and lower semicontinuous and g : H → R is convex and
Fréchet differentiable with a Lipschitz continuous gradient, is equivalent to solving the monotone inclusion

0 ∈ (∂f +∇g)(x).
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We want to exploit the additive structure of (1) and approach A and B separately, in the spirit of the
splitting paradigm.

For t ≥ t0 > 0, α > 1, ξ ≥ 0, and functions λ, γ : [t0,+∞) → (0,+∞), we will study the asymptotic
behaviour of the trajectories of the second order differential equation

(Split-DIN-AVD) ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Tλ(t),γ(t)(x(t))

)
+ Tλ(t),γ(t)(x(t)) = 0, (2)

where, for λ, γ > 0, the operator Tλ,γ : H → H is given by

Tλ,γ = 1
λ

[
Id−JγA ◦ (Id−γB)

]
.

The sets of zeros of A+B and of Tλ,γ , for λ, γ > 0, coincide. The nomenclature (Split-DIN-AVD) comes
from the splitting feature of the continuous time scheme, as well as the link with the (DIN-AVD) system
developed by Attouch and László in [9] (Dynamic Inertial Newton - Asymptotic Vanishing Damping),
which we will emphasize later. We will discuss the existence and uniqueness of the trajectories generated
(Split-DIN-AVD), and also show their weak convergence to the set of zeros of A + B as well as the fast
convergence of the velocities to zero, and convergence rates for Tλ(t),γ(t)(x(t)) and d

dtTλ(t),γ(t)(x(t)) as
t→ +∞.

For the particular case B = 0, we are left with the monotone inclusion problem

find x ∈ H such that 0 ∈ A(x),

and the attached system

ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Aλ(t),γ(t)(x(t))

)
+Aλ(t),γ(t)(x(t)) = 0,

where, for λ, γ > 0, the operator Aλ,γ : H → H can be seen as a generalized Moreau envelope of the
operator A, i.e.,

Aλ,γ = 1
λ

[
Id−JγA

]
.

In particular, we will be able to set γ(t) = λ(t) for every t ≥ t0. Since for λ > 0, Aλ,λ = Aλ, this allows
us to recover the (DIN-AVD) system

(DIN-AVD) ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) = 0,

addressed by Attouch and László in [9].
If A = 0, and after properly redefining some parameters, we obtain the following system

ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt

1
η(t)Bx(t)

)
+ 1
η(t)Bx(t) = 0,

with η : [t0,+∞)→ (0,+∞), which addresses the monotone equation

find x ∈ H such that B(x) = 0.

This dynamical system approaches the cocoercive operator B directly through a forward evaluation, which
is more natural, instead of having to resort to its Moreau envelope, as in (DIN-AVD).

1.2 Notation and preliminaries

In this subsection, we will explain the notions which were mentioned in the previous subsection, and
we will introduce some definitions and preliminary results that will be required later. Throughout the
paper, we will be working in a real Hilbert space H with inner product 〈·, ·〉 and corresponding norm
‖ · ‖ =

√
〈·, ·〉.
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Let A : H → 2H be a set-valued operator, that is, Ax is a subset of H for every x ∈ H. The operator A
is totally characterized by its graph graA = {(x, u) ∈ H×H : u ∈ Ax}. The inverse of A is the operator
A−1 : H → 2H well-defined through the equivalence x ∈ A−1u if and only if u ∈ Ax. The set of zeros of
A is the set zerA = {x ∈ H : 0 ∈ Ax}. For a subset C ⊆ H, we say that A(C) = ∪x∈CAx. The range of
A is the set ranA = A(H).

A set-valued operator A is said to be monotone if 〈v − u, y − x〉 ≥ 0 whenever (x, u), (y, v) ∈ graA,
and maximally monotone if it is monotone and the following implication holds:

Ã is monotone, graA ⊆ gra Ã =⇒ A = Ã.

Let λ > 0. The resolvent of index λ of A is the operator JλA : H → 2H given by

JλA = (Id +λA)−1,

and theMoreau envelope (or Yosida approximation or Yosida regularization) of index λ of A is the operator
Aλ : H → 2H given by

Aλ = 1
λ

(Id−JλA),

where Id : H → H, defined by Id(x) = x for every x ∈ H, is the identity operator of H. For λ1, λ2 > 0, it
holds (Aλ1)λ2 = Aλ1+λ2 .

A single-valued operator B : H → H is said to be β-cocoercive for some β > 0 if for every x, y ∈ H we
have

β‖Bx−By‖2 ≤ 〈Bx−By, x− y〉.

In this case, B is 1
β -Lipschitz continuous, namely, for every x, y ∈ H we have

‖Bx−By‖ ≤ 1
β
‖x− y‖.

We say B is nonexpansive if it is 1-Lipschitz continuous, and firmly nonexpansive if it is 1-cocoercive. For
α ∈ (0, 1), we say B is α-averaged if there exists a nonexpansive operator R : H → H such that

B = (1− α) Id +αR.

Let λ > 0 and A : H → 2H. According to Minty’s Theorem, A is maximally monotone if and only
if ran(Id +λA) = H. In this case JλA is single-valued and firmly nonexpansive, Aλ is single-valued,
λ-cocoercive, and for every x ∈ H and every λ1, λ2 > 0 we have

‖Jλ1A(x)− Jλ2A(x)‖ ≤ |λ1 − λ2|‖Aλ1(x)‖.

Let B : H → H be a single-valued operator. If B is α-averaged for some α ∈ (0, 1), then Id−B is
1

2α -cocoercive. If B is monotone and continuous, then it is maximally monotone.
The following concepts and results show the strong interplay between the theory of monotone operators

and the convex analysis.
Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function. We denote the

infimum of f over H by minH f and the set of global minimizers of f by argminH f . The subdifferential
of f is the operator ∂f : H → 2H defined, for every x ∈ H, by

∂f(x) = {x∗ ∈ H : 〈x∗, y − x〉+ f(x) ≤ f(y) ∀y ∈ H}.

The subdifferential operator of f is maximally monotone and x ∈ zer ∂f ⇔ x is a global minimizer of f .
Let λ > 0. The proximal operator of f of index λ is the operator proxλf : H → H defined, for every

x ∈ H, by
proxλf (x) = Jλ∂f (x) = argminy∈H

[
f(y) + 1

2λ‖x− y‖
2
]
,

3



which also means that proxλf is firmly nonexpansive. The Moreau envelope of f of index λ is the function
fλ : H → R given, for every x ∈ H, by

fλ(x) = f
(
proxλf (x)

)
+ 1

2λ‖x− proxλf (x)‖2.

The function fλ is Fréchet differentiable and

∇fλ(x) = 1
λ

(
x− proxλf (x)

)
= (∂f)λ(x) ∀x ∈ H.

Finally, if f : H → R has full domain and is Fréchet differentiable with 1
β -Lipschitz continuous gradient,

for β > 0, then, according to Baillon-Haddad’s Theorem, ∇f is β-cocoercive.

1.3 A brief history of inertial systems attached to optimization problems and mono-
tone inclusions

In the last years there have been many advances in the study of continuous time inertial systems with
vanishing damping attached to monotone inclusion problems. We briefly visit them in the following
paragraphs.

1.3.1 The Heavy Ball Method with friction

Consider a convex and continuously differentiable function f : H → R with at least one minimizer. The
heavy ball with friction system

(HBF) ẍ(t) + µẋ(t) +∇f(x(t)) = 0 (3)

was introduced by Álvarez in [2] as a suitable continuous time scheme to approach the minimization of
the function f . This system can be seen as the equation of the horizontal position x(t) of an object
that moves, under the force of gravity, along the graph of the function f , subject to a kinetic friction
represented by the term µẋ(t) (a nice derivation can be seen in the work done by Attouch-Goudou-Redont
in [8]). It is known that, if x is a solution of (HBF), then x converges weakly to a minimizer of f and
f(x(t))−minH f = O

(
1
t

)
as t→ +∞.

In recent times, the question was raised whether the damping coefficient µ could be chosen to be
time-dependent. An important contribution was made by Su-Boyd-Candés (in [20]) who studied the case
of an Asymptotic Vanishing Damping coefficient µ(t) = α

t , namely,

(AVD) ẍ(t) + α

t
ẋ(t) +∇f(x(t)) = 0, (4)

and proved when α ≥ 3 the rate of convergence for the functional values f(x(t)) −minH f = O
(

1
t2

)
as

t → +∞. This second order system can be seen as a continuous counterpart to Nesterov’s accelerated
gradient method from [19]. Weak convergence of the trajectories generated by (AVD) when α > 3 has been
shown by Attouch-Chbani-Peypouquet-Redont [6] and May [18], with the improved rate of convergence
for the functional values f(x(t)) − minH f = o

(
1
t2

)
as t → +∞. For α = 3, the convergence of the

trajectories remains an open question, except for the one dimensional case (see [7]). In the subcritical
case α ≤ 3, it has been shown by Apidopoulos-Aujol-Dossal [5] and Attouch-Chbani-Riahi [7] that the
objective values converge at a rate O(t−

2α
3 ) as t→ +∞.

1.3.2 Heavy Ball dynamics and cocoercive operators

If f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function which is not necessarily
differentiable, then we cannot make direct use of (3). However, since for λ > 0 we have argmin f =
argmin fλ, we can replace f by its Moreau envelope fλ, and the system now becomes

ẍ(t) + µẋ(t) +∇fλ(x(t)) = 0.
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In line with this idea, and in analogy with (3), Álvarez and Attouch [3] and Attouch and Maingé [11]
studied the dynamics

ẍ(t) + µẋ(t) +B(x(t)) = 0, (5)

where B : H → H is a β-cocoercive operator. They were able to prove that the solutions of this system
weakly converge to elements of zerB provided that the cocoercitivity parameter β and the damping
coefficient µ satisfy βµ2 > 1. For a maximally monotone operator A : H → 2H, we know that its Moreau
envelope is λ-cocoercive and thus, under the condition λµ2 > 1, the trajectories of

ẍ(t) + µẋ(t) +Aλ(x(t)) = 0

converge weakly to elements of zerAλ = zerA.
Also related to (5), Boţ-Csetnek [16] considered the system

ẍ(t) + µ(t)ẋ(t) + ν(t)Bx(t) = 0, (6)

where B : H → H is again β-cocoercive. Under the assumption that µ and ν are locally absolutely
continuous, µ̇(t) ≤ 0 ≤ ν̇(t) for almost every t ∈ [0,+∞) and inft≥0

µ2(t)
ν(t) > 1

β , the authors were able to
prove that the solutions to this system converge weakly to zeros of B.

In [12], Attouch and Peypouquet addressed the system

ẍ(t) + α

t
ẋ(t) +Aλ(t)(x(t)) = 0, (7)

where α > 1 and the time-dependent regularizing parameter λ(t) satisfies λ(t)α2

t2 > 1 for every t ≥ t0 > 0.
As well as ensuring the weak convergence of the trajectories towards elements of zerA, choosing the
regularizing parameter in such a fashion allowed the authors to obtain fast convergence of the velocities
and accelerations towards zero.

1.3.3 Inertial dynamics with Hessian damping

Let us return briefly to the (AVD) system (4). In addition to the viscous vanishing damping term α
t ẋ(t),

the following system with Hessian-driven damping was considered by Attouch-Peypouquet-Redont in [13]

ẍ(t) + α

t
ẋ(t) + ξ∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

where ξ ≥ 0. While preserving the fast convergence properties of the Nesterov accelerated method, the
Hessian-driven damping term reduces the oscillatory aspect of the trajectories. In [9], Attouch and László
studied a version of (7) with an added Hessian-driven damping term:

ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) = 0.

While preserving the convergence results of (7), the main benefit of the introduction of this damping
term is the fast convergence rates that can be obtained for Aλ(t)(x(t)) and d

dtAλ(t)(x(t)) as t→ +∞. The
regularizing parameter λ(t) is again chosen to be time-dependent; in the general case, the authors take
λ(t) = λt2, and in [12] it is shown that taking λ(t) this way is critical. However, in the case where A = ∂f
for a proper, convex and lower semicontinuous function f , it is also allowed to take λ(t) = λtr with r ≥ 0.

1.4 Layout of the paper

In Section 2, we give the proof for the existence and uniqueness of strong global solutions to (Split-DIN-
AVD) by means of a Cauchy-Lipschitz-Picard argument. In Section 3 we state the main theorem of this
work, and we show the weak convergence of the solutions of (2) to elements of zer(A + B), as well as
the fast convergence of the velocities and accelerations to zero. We also provide convergence rates for
Tλ(t),γ(t)(x(t)) and d

dtTλ(t),γ(t)(x(t)) as t → +∞. We explore the particular cases A = 0 and B = 0, and

5



show improvements with respect to previous works. In Section 4, we address the convex minimization
case, namely, when A = ∂f and B = ∇g, where f : H → R ∪ {+∞} is a proper, convex and lower
semicontinuous function and g : H → R is a convex and Fréchet differentiable function with Lipschitz
continuous gradient, and derive, in addition, a fast convergence rate for the function values. In Section
5, we illustrate the theoretical results by numerical experiments. In Section 5, we provide an algorithm
that arises from a time discretization of (Split-DIN-AVD) and discuss its convergence properties.

2 Existence and uniqueness of trajectories
In this section, we show the existence and uniqueness of strong global solutions to (Split-DIN-AVD). For
the sake of clarity, first we state the definition of a strong global solution.

Definition 2.1. We say that x : [t0,+∞) → H is a strong global solution of (Split-DIN-AVD) with
Cauchy data (x0, u0) ∈ H ×H if

(i) x, ẋ : [t0,+∞)→ H are locally absolutely continuous;

(ii) ẍ(t) + α
t ẋ+ ξ

(
d
dtTλ(t),γ(t)(x(t))

)
+ Tλ(t),γ(t)(x(t)) = 0 for almost every t ∈ [t0,+∞);

(iii) x(t0) = x0, ẋ(t0) = u0.

A classic solution is just a strong global solution which is C2. Sometimes we will mention the terms strong
global solution or classic global solution without explicit mention of the Cauchy data.

The following lemma will be used to prove the existence of strong global solutions of our system, and
we will need it in the proof of the main theorem as well.

Lemma 2.2. Let A : H → 2H be a maximally monotone operator and B : H → H a β-cocoercive operator
for some β > 0. Then, the following statements hold:

(i) For λ > 0 and γ ∈ (0, 2β), Tλ,γ is a λ4β−γ
4β -cocoercive operator. In particular, this also implies that

Tλ,γ is λ
2 -cocoercive.

(ii) Choose λ1, λ2 > 0, γ1, γ2 ∈ (0, 2β) and x, y ∈ H. Then, for x ∈ zer(A+B) it holds

‖λ1Tλ1,γ1(x)− λ2Tλ2,γ2(y)‖ ≤ 4‖x− y‖+ 4β|γ1 − γ2|
γ1

‖B(x)‖+ 2|γ1 − γ2|
γ1

‖x− x‖,

‖Tλ1,γ1(x)− Tλ2,γ2(y)‖ ≤ 1
λ1

[
4‖x− y‖+ 4β |γ1 − γ2|

γ1
‖Bx‖+ 2 |γ1 − γ2|

γ1
‖x− x‖

]
+ 2 |λ2 − λ1|

λ1λ2
‖y − x‖.

(iii) If x is a classic global solution to (2) and x ∈ zer(A+B), then, for every t ≥ t0, we have∥∥∥∥ ddt
(
λ(t)Tλ(t),γ(t)(x(t))

)∥∥∥∥ ≤ 4‖ẋ(t)‖+ 4β |γ̇(t)|
γ(t) ‖B(x(t))‖+ 2 |γ̇(t)|

γ(t) ‖x(t)− x‖.

Proof. (i) From [14, Proposition 26.1(iv)(d)] we know that the operator JγA ◦ (Id−γB) is α = 2β
4β−γ -

averaged. From [14, Proposition 4.39], we obtain that Id−JγA ◦ (Id−γB) is 1
2α -cocoercive, namely, it is

4β−γ
4β -cocoercive. Since γ ∈ (0, 2β), we have 4β−γ

4β > 2β
4β = 1

2 , which implies that Id−JγA ◦ (Id−γB) is
1
2 -cocoercive and thus

Tλ,γ is λ
4β − γ

4β -cocoercive and Tλ,γ is λ

2 -cocoercive.
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(ii) We have

‖λ1Tλ1,γ1(x)− λ2Tλ2,γ2(y)‖ ≤ ‖x− y‖+ ‖Jγ1A(x− γ1B(x))− Jγ2A(y − γ2B(y))‖
≤ ‖x− y‖+ ‖Jγ1A(x− γ1B(x))− Jγ2A(x− γ1B(x))‖

+ ‖Jγ2A(x− γ1B(x))− Jγ2A(y − γ2B(y))‖
≤ 2‖x− y‖+ |γ1 − γ2|‖Aγ1(x− γ1B(x))‖+ ‖γ1B(x)− γ2B(y)‖
≤ 2‖x− y‖+ |γ1 − γ2|‖Aγ1(x− γ1B(x))‖

+ ‖γ1B(x)− γ2B(x)‖+ ‖γ2B(x)− γ2B(y)‖
= 2‖x− y‖+ |γ1 − γ2|‖Aγ1(x− γ1B(x))‖

+ |γ1 − γ2|‖B(x)‖+ γ2‖B(x)−B(y)‖.

Now, notice that

Aγ1(x− γ1B(x)) = 1
γ1

(Id−Jγ1A)(x− γ1B(x)) = −B(x) + 1
γ1

(x− Jγ1A(x− γ1B(x)))

= −B(x) + Tγ1,γ1(x),

so using (i) and the fact that Tγ1,γ2(x) = 0, we obtain

‖Aγ1(x− γ1B(x))‖ = ‖ −B(x) + Tγ1,γ2(x)‖ ≤ ‖B(x)‖+ ‖Tγ1,γ2(x)− Tγ1,γ2(x)‖

≤ ‖B(x)‖+ 2
γ1
‖x− x‖.

(8)

Altogether, plugging (8) into our initial inequality yields

‖λ1Tλ1,γ2(x)− λ2Tλ2,γ2(y)‖ ≤ 2‖x− y‖+ 2|γ1 − γ2|‖B(x)‖+ 2|γ1 − γ2|
γ1

‖x− x‖+ γ2‖B(x)−B(y)‖

≤ 2‖x− y‖+ 4β|γ1 − γ2|
γ1

‖B(x)‖+ 2|γ1 − γ2|
γ1

‖x− x‖+ 2β
( 1
β

)
‖x− y‖.

To show the second inequality, we use the previous one. We have

‖Tλ1,γ1(x)− Tλ2,γ2(y)‖ = 1
λ1
‖λ1Tλ1,γ1(x)− λ2Tλ2,γ2(y) + (λ2 − λ1)Tλ2,γ2(y)‖

≤ 1
λ1

[
4‖x− y‖+ 4β |γ1 − γ2|

γ1
‖Bx‖+ 2 |γ1 − γ2|

γ1
‖x− x‖

]
+ |λ2 − λ1|

λ1
‖Tλ2,γ2(y)‖

≤ 1
λ1

[
4‖x− y‖+ 4β |γ1 − γ2|

γ1
‖Bx‖+ 2 |γ1 − γ2|

γ1
‖x− x‖

]
+ 2 |λ2 − λ1|

λ1λ2
‖y − x‖ ,

where the last line is a consequence of Tλ2,γ2 being λ2
2 -cocoercive, and hence 2

λ2
-Lipschitz continuous (see

(i)).
(iii) For t, s ≥ t0 set

x = x(t), y = x(s), λ1 = λ(t), γ1 = γ(t), λ2 = λ(s), γ2 = γ(s)

and use (ii) to obtain, for every t ≥ t0,

‖λ(t)Tλ(t),γ(t)(x(t))− λ(s)Tλ(s),γ(s)(x(s))‖
|t− s|

≤ 4‖x(t)− x(s)‖
|t− s|

+ 4β
γ(t)
|γ(t)− γ(s)|
|t− s|

‖B(x(t))‖+ 2
γ(t)
|γ(t)− γ(s)|
|t− s|

‖x(t)− x‖.

Hence, by taking the limit as s→ t we get, for any t ≥ t0,∥∥∥∥ ddtλ(t)Tλ(t),γ(t)(x(t))
∥∥∥∥ ≤ 4‖ẋ(t)‖+ 4β |γ̇(t)|

γ(t) ‖B(x(t))‖+ 2 |γ̇(t)|
γ(t) ‖x(t)− x‖.
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The next theorem concerns the existence and uniqueness of strong global solutions to (Split-DIN-
AVD).

Theorem 2.3. Assume that λ, γ : [t0,+∞) → (0,+∞) are Lebesgue measurable functions and that
inft≥t0 λ(t) > 0. Then, for any (x0, u0) ∈ H×H there exists a unique strong global solution x : [t0,+∞)→
H of the system (2) that satisfies x(t0) = x0 and ẋ(t0) = u0.

Proof. We will rely on [17, Proposition 6.2.1] and distinguish between the cases ξ > 0 and ξ = 0. For
each chase, we will check that the conditions of the afforementioned proposition are fulfilled. We will be
working in the real Hilbert space H×H endowed with the norm ‖(x, y)‖ = ‖x‖+‖y‖. Let x ∈ zer(A+B)
be fixed.

The case ξ > 0. First, it can be easily checked (see also [4, 9, 13]) that for all t ≥ t0 the following
dynamical systems are equivalent

∗ ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Tλ(t),γ(t)(x(t))

)
+ Tλ(t),γ(t)(x(t)) = 0.

∗

ẋ(t) + ξTλ(t),γ(t)(x(t))−
(

1
ξ −

α
t

)
x(t) + 1

ξ y(t) = 0,
ẏ(t)−

(
1
ξ −

α
t + αξ

t2

)
x(t) + 1

ξ y(t) = 0.

In other words, (2) with Cauchy data (x0, u0) = (x(t0), ẋ(t0)) is equivalent to the first order system{
ż(t) = F (t, z(t)),
z(t0) = (x0, y0),

where z(t) = (x(t), y(t)), F is given, for every t ≥ t0, by

F (t, (x, y)) =
[
−ξTλ(t),γ(t)(x) +

(1
ξ
− α

t

)
x− 1

ξ
y,

(1
ξ
− α

t
+ αξ

t2

)
x− 1

ξ
y

]
and the Cauchy data is x0 = x(t0), y0 = −ξ

(
u0 + ξTλ(t0),γ(t0)(x0)−

(
1
ξ −

α
t0

)
x0
)
.

(i) Let t ∈ [t0,+∞) be fixed. We need to verify the Lipschitz continuity of F on the z variable. Set
z = (x, y), w = (u, v). We have

‖F (t, z)− F (t, w)‖ =
∥∥∥∥−ξ (Tλ(t),γ(t)(x)− Tλ(t),γ(t)(u) +

(1
ξ
− α

t

)
(x− u)− 1

ξ
(y − v)

)∥∥∥∥
+
∥∥∥∥(1
ξ
− α

t
+ αξ

t2

)
(x− u)− 1

ξ
(y − v)

∥∥∥∥ .
Set λ := inft≥t0 λ(t) > 0. According to Lemma 2.2(i), the term involving the operator Tλ(t),γ(t) satisfies∥∥∥Tλ(t),γ(t)(x)− Tλ(t),γ(t)(u)

∥∥∥ ≤ 2
λ(t)‖x− u‖ ≤

2
λ
‖x− u‖.

It follows that, if we take

K(t) := max
{2ξ
λ

+
∣∣∣∣1ξ − α

t

∣∣∣∣+ ∣∣∣∣1ξ − α

t
+ αξ

t2

∣∣∣∣ , 2
ξ

}
∀t ≥ t0,

then we have K ∈ L1
loc([t0,+∞),R) and

‖F (t, z)− F (t, w)‖ ≤ K(t)‖z − w‖ ∀t ≥ t0.

(ii) Now, we claim that F fulfills a boundedness condition. For t ∈ [t0,+∞) and z = (x, y) ∈ H ×H
we have

‖F (t, z)‖ =
∥∥∥∥−ξTλ(t),γ(t)(x) +

(1
ξ
− α

t

)
x− 1

ξ
y

∥∥∥∥+
∥∥∥∥(1
ξ
− α

t
+ αξ

t2

)
x− 1

ξ
y

∥∥∥∥ .
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By Lemma 2.2(i), we have, for every t ≥ t0,∥∥∥Tλ(t),γ(t)(x)
∥∥∥ =

∥∥∥Tλ(t),γ(t)(x)− Tλ(t),γ(t)(x)
∥∥∥ ≤ 2

λ(t)‖x− x‖.

Hence, if we take

P (t) = max
{ 2ξ
λ(t) +

∣∣∣∣1ξ − α

t

∣∣∣∣+ ∣∣∣∣1ξ − α

t
+ αξ

t2

∣∣∣∣ , 2ξ
λ(t) ,

2
ξ

}
∀t ≥ t0,

then we have P ∈ L1
loc([t0,+∞),R) and

‖F (t, z)‖ ≤ P (t)(1 + ‖z‖).

We have checked that the conditions of [17, Proposition 6.2.1] hold. Therefore, there exists a unique
locally absolutely continuous solution t 7→ x(t) of (2) that satisfies x(t0) = x0 and ẋ(t0) = u0.

The case ξ = 0. Now, (2) is easily seen to be equivalent to{
ż(t) = F (t, z(t)),
z(t0) = (x0, u0),

,

where z(t) = (x(t), y(t)) and F is given, for every t ≥ t0, by

F (t, (x, y)) =
[
y, −α

t
y − Tλ(t),γ(t)(x)

]
.

Showing that F fulfills the required properties is starightforward.

3 The convergence properties of the trajectories
In this section, we will study the asymptotic behaviour of the trajectories of the system

(Split-DIN-AVD) ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
Tλ(t),γ(t)(x(t))

)
+ Tλ(t),γ(t)(x(t)) = 0,

where
Tλ,γ(x) = 1

λ

[
Id−JγA ◦ (Id−γB)

]
.

We will show weak convergence of the trajectories generated by (2) to elements of zer(A+B), as well as
the fast convergence of the velocities and accelerations to zero. Additionally, we will provide convergence
rates for Tλ(t),γ(t)(x(t)) and d

dtTλ(t),γ(t)(x(t)) as t→ +∞. To avoid repetition of the statement “for almost
every t”, in the following theorem we will assume we are working with a classic global solution of our
system.

Theorem 3.1. Let A : H → 2H be a maximally monotone operator and B : H → H a β-cocoercive
operator for some β > 0 such that zer(A+B) 6= ∅. Assume that α > 1, ξ ≥ 0, λ(t) = λt2 for λ > 2

(α−1)2

and all t ≥ t0, and that γ : [t0,+∞) → (0, 2β) is a differentiable function that satisfies γ̇(t)
γ(t) = O

(
1
t

)
as

t→ +∞. Then, for a solution x : [t0,+∞)→ H to (Split-DIN-AVD), the following statements hold:

(i) x is bounded.

(ii) We have the estimates ∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,∫ +∞

t0

γ2(t)
t

∥∥∥Aγ(t)
[
x(t)− γ(t)Bx(t)

]
+Bx(t)

∥∥∥2
dt < +∞.
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(iii) We have the convergence rates

‖ẋ(t)‖ = o

(1
t

)
, ‖ẍ(t)‖ = O

( 1
t2

)
,∥∥∥Aγ(t)

[
x(t)− γ(t)Bx(t)

]
+Bx(t)

∥∥∥ = o

( 1
γ(t)

)
,

∥∥∥∥ ddt
(
Aγ(t)

[
x(t)− γ(t)Bx(t)

]
+Bx(t)

)∥∥∥∥ = O
( 1
tγ(t)

)
+ o

 t2
∣∣∣ ddt γ(t)

λ(t)

∣∣∣
γ2(t)


as t→ +∞.

(iv) If 0 < inft≥t0 γ(t) ≤ supt≥t0 γ(t) < 2β, then x(t) converges weakly to an element of zer(A + B) as
t→ +∞.

Proof. Integral estimates and rates. To develop the analysis, we will fix x ∈ zer(A+B) and make of
use of the Lyapunov function E : [t0,+∞)→ R ∪ {+∞} given by

E(t) := 1
2

∥∥∥∥α− 1
2 (x(t)− x) + t(ẋ(t) + ξ Tλ(t),γ(t)(x(t)))

∥∥∥∥2
+ (α− 1)2

8 ‖x(t)− x‖2. (9)

Differentiation of E with respect to time yields, for every t ≥ t0,

Ė(t) =
〈
α− 1

2 (x(t)− x) + t
(
ẋ(t) + ξ Tλ(t),λ(t)(x(t))

)
,

α+ 1
2 ẋ(t) + ξ Tλ(t),γ(t)(x(t)) + t

(
ẍ(t) + ξ

d

dt

(
Tλ(t),γ(t)(x(t))

))〉
+ (α− 1)2

4 〈x(t)− x, ẋ(t)〉.

After reduction and employing (2), we get, for every t ≥ t0,

Ė(t) = (α− 1)(ξ − t)
2

〈
x(t)− x, Tλ(t),γ(t)(x(t))

〉
+ (1− α)t

2 ‖ẋ(t)‖2

+
(
−t2 + ξ(3− α)t

2

)〈
Tλ(t),γ(t)(x(t)), ẋ(t)

〉
+ ξ(ξ − t)t

∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥2
.

Now, by Lemma 2.2(i), we know that Tλ(t),γ(t) is λ(t)
2 -cocoercive for every t ≥ t0. Using this on the first

summand of the right hand side of the previous inequality yields, for t ≥ t1 = max{ξ, t0},

Ė(t) ≤ (1− α)t
2 ‖ẋ(t)‖2 +

(
−t2 + ξ(3− α)t

2

)〈
Tλ(t),γ(t)(x(t)), ẋ(t)

〉
+
((α− 1)(ξ − t)λ(t)

4 + ξ(ξ − t)t
)∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥2
.

(10)

Now, since λ > 2
(α−1)2 , we can choose ε > 0 such that

0 < ε < α− 1−
√

2
λ
< α− 1. (11)

From (10) we get, for every t ≥ t1,

Ė(t) + ε

2 t‖ẋ(t)‖2 + ε

4 tλ(t)
∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥2

≤
(1− α

2 + ε

2

)
t‖ẋ(t)‖2 +

(
−t2 + ξ(3− α)t

2

)〈
Tλ(t),γ(t)(x(t)), ẋ(t)

〉
+
(((α− 1)(ξ − t)

2 + ε

2 t
)
λ(t)

2 + ξ(ξ − t)t
)∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥2
.

(12)
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By (11) and the definition of λ(t), we know that 1−α
2 + ε

2 < 0, and(((α− 1)(ξ − t)
2 + ε

2 t
)
λ(t)

2 + ξ(ξ − t)t
)

=
(1− α

2 + ε

2

)
︸ ︷︷ ︸

<0

λ

2 t
3 +O(t2),

so we can find t2 ≥ t1 such that for every t ≥ t2 the previous expression becomes nonpositive. According
to Lemma A.2, the right hand side of (12) is nonpositive whenever

R(t) :=
(
−t2 + ξ(3− α)t

2

)2
− 4

(1− α
2 + ε

2

)
t

(((α− 1)(ξ − t)
2 + ε

2 t
)
λ(t)

2 + ξ(ξ − t)t
)
≤ 0.

This quantity can be rewritten as

R(t) =
(

1 + 4
(1− α

2 + ε

2

)(
α− 1

2 − ε

2

)
λ

2

)
t4 +O(t3) as t→ +∞.

Since ε < α− 1−
√

2
λ , we have λ

2 >
1

(α−1−ε)2 . Hence,

1 + 4
(1− α

2 + ε

2

)(
α− 1

2 − ε

2

)
λ

2 = 1− (α− 1− ε)2λ

2 < 0.

This means we can find t3 ≥ t2 such that for every t ≥ t3 we have R(t) ≤ 0, that is, for every t ≥ t3 we
have

Ė(t) + ε

2 t‖ẋ(t)‖2 + ε

4 tλ(t)
∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥2
≤ 0. (13)

Now, integrating (13) from t3 to t we obtain

E(t) + ε

2

∫ t

t3
s‖ẋ(s)‖2ds+ ε

4λ
∫ t

t3
s3
∥∥∥Tλ(s),γ(s)(x(s))

∥∥∥2
ds ≤ E(t3). (14)

From (13) and the form of E we immediately obtain

t 7→ ‖x(t)− x‖ is bounded, (15)∫ +∞

t0
t‖ẋ(t)‖2dt < +∞, (16)∫ +∞

t0
t3
∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥2
dt < +∞, (17)

sup
t≥t0

∥∥∥∥(α− 1
2

)
(x(t)− x) + t

(
ẋ(t) + ξ Tλ(t),γ(t)(x(t))

)∥∥∥∥ < +∞. (18)

From Lemma 2.2(i), we know that for every t ≥ t0 the operator Tλ(t),γ(t) is 2
λ(t) -Lipschitz continuous,

which gives, for every t ≥ t0,∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ =

∥∥∥Tλ(t),γ(t)(x(t))− Tλ(t),γ(t)(x)
∥∥∥ ≤ 2

λ(t)‖x(t)− x‖.

Thus, from (15) and recalling that λ(t) = λt2 we arrive at∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ = O

( 1
t2

)
as t→ +∞. (19)

By combining (15), (18) and (19) we obtain supt≥t0 t‖ẋ(t)‖ < +∞ and therefore

‖ẋ(t)‖ = O
(1
t

)
as t→ +∞. (20)
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From Lemma 2.2, (15), (20) and the fact that B is 1
β -Lipschitz continuous we deduce that, as t→ +∞,∥∥∥∥ ddtλ(t)Tλ(t),γ(t)(x(t))

∥∥∥∥ ≤ 4‖ẋ(t)‖+ 4β |γ̇(t)|
γ(t) ‖B(x(t))‖+ 2 |γ̇(t)|

γ(t) ‖x(t)− x‖ = O
(1
t

)
. (21)

On the other hand, for every t ≥ t0 we have∥∥∥∥ ddtλ(t)Tλ(t),γ(t)(x(t))
∥∥∥∥ =

∥∥∥∥λ̇(t)Tλ(t),γ(t)(x(t)) + λ(t) d
dt
Tλ(t),γ(t)(x(t))

∥∥∥∥ , (22)

so by combining (19), (21), (22) and the fact that λ̇(t) = 2λt we arrive at∥∥∥∥λ(t) d
dt
Tλ(t),γ(t)(x(t))

∥∥∥∥ ≤ ∥∥∥∥ ddtλ(t)Tλ(t),γ(t)(x(t))
∥∥∥∥︸ ︷︷ ︸

O( 1
t )

+λ̇(t)
∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥︸ ︷︷ ︸
O
(

1
t2
) = O

(1
t

)
as t→ +∞,

which yields ∥∥∥∥ ddtTλ(t),γ(t)(x(t))
∥∥∥∥ = 1

λ(t)O
(1
t

)
= O

( 1
t3

)
as t→ +∞. (23)

Let us now improve (19) and show that∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ = o

( 1
t2

)
as t→ +∞. (24)

According to (19) and (21) there exists a constant K > 0 such that for every t ≥ t0 it holds∣∣∣∣ ddt
∥∥∥λ(t)Tλ(t),γ(t)(x(t))

∥∥∥4
∣∣∣∣ =

∣∣∣∣4 ∥∥∥λ(t)Tλ(t),γ(t)(x(t))
∥∥∥2
〈
λ(t)Tλ(t),γ(t)(x(t)), d

dt
λ(t)Tλ(t),γ(t)(x(t))

〉∣∣∣∣
≤ 4

∥∥∥λ(t)Tλ(t),γ(t)(x(t))
∥∥∥2 ∥∥∥λ(t)Tλ(t),γ(t)(x(t))

∥∥∥ ∥∥∥∥ ddtλ(t)Tλ(t),γ(t)(x(t))
∥∥∥∥

≤ 4K
t

∥∥∥λ(t)Tλ(t),γ(t)(x(t))
∥∥∥2
.

By (17), the right hand side belongs to L1([t0,+∞),R), so we get

d

dt

∥∥∥λ(t)Tλ(t),γ(t)(x(t))
∥∥∥4
∈ L1([t0,+∞),R),

hence the limit
lim

t→+∞

∥∥∥λ(t)Tλ(t),γ(t)(x(t))
∥∥∥4

exists. Obviously, this implies the existence of L := limt→+∞
∥∥∥λ(t)Tλ(t),γ(t))(x(t))

∥∥∥2
. By using (17) again

we come to ∫ +∞

t0

1
t

∥∥∥λ(t)Tλ(t),γ(t)(x(t))
∥∥∥2
dt = λ2

∫ +∞

t0
t3
∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥2
dt < +∞,

and so we must have L = 0, which gives∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ = o

( 1
t2

)
as t→ +∞. (25)

By combining (2), (19), (20) and (23) we obtain, as t→ +∞,

‖ẍ(t)‖ =
∥∥∥∥−αt ẋ(t)− ξ d

dt
Tλ(t),γ(t)(x(t))− Tλ(t),γ(t)(x(t))

∥∥∥∥
≤ α

t
‖ẋ(t)‖︸ ︷︷ ︸
O( 1

t )

+ξ
∥∥∥∥ ddtTλ(t),γ(t)(x(t))

∥∥∥∥︸ ︷︷ ︸
O
(

1
t3
) +

∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥︸ ︷︷ ︸

O
(

1
t2
) = O

( 1
t2

)
.
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Moreover, by using the well-known inequality ‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2 for every a, b, c ∈ H,
for every t ≥ t0 it holds

t3‖ẍ(t)‖2 ≤ t3
∥∥∥∥−αt ẋ(t)− ξ d

dt
Tλ(t),γ(t)(x(t))− Tλ(t),γ(t)(x(t))

∥∥∥∥2

≤ 3αt‖ẋ(t)‖2 + 3ξ2t3
∥∥∥∥ ddtTλ(t),γ(t)(x(t))

∥∥∥∥2
+ 3t3

∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥2
.

From (16), (23) and (17) it follows ∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞. (26)

To see that ‖ẋ(t)‖ = o
(

1
t

)
as t→ +∞, we write, for every t ≥ t0,

d

dt

(
t2‖ẋ(t)‖2

)
= 2t‖ẋ(t)‖2 + 2t2〈ẋ(t), ẍ(t)〉 ≤ 3t‖ẋ(t)‖2 + t3‖ẍ(t)‖2.

From (16) and (26) we deduce that the left hand side belongs to L1([t0,+∞),R), from which we infer
that the limit limt→+∞ t

2‖ẋ(t)‖2 exists. Using (16) again, we get∫ +∞

t0

1
t

(
t2‖ẋ(t)‖2

)
dt =

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

from which we finally deduce limt→+∞ t
2‖ẋ(t)‖2 = 0, therefore

‖ẋ(t)‖ = o

(1
t

)
as t→ +∞. (27)

Notice that we can write for every t ≥ t0

Tλ(t),γ(t) = 1
λ(t)

[
Id−Jγ(t)A(Id−γ(t)B)

]
= γ(t)
λ(t)

(
Aγ(t)

[
x(t)− γ(t)Bx(t)

]
+Bx(t)

)
.

Hence, multiplying both sides of (25) by λ(t)
γ(t) and remembering the definition of λ(t) we obtain

∥∥∥Aγ(t)
[
x(t)− γ(t)Bx(t)

]
+Bx(t)

∥∥∥ = o

( 1
γ(t)

)
as t→ +∞. (28)

For every t ≥ t0, we have

d

dt
Tλ(t),γ(t)(x(t)) = d

dt

(
γ(t)
λ(t)

)(
Aγ(t)

[
x(t)− γ(t)Bx(t)

]
+Bx(t)

)
+ γ(t)
λ(t)

d

dt

(
Aγ(t)

[
x(t)− γ(t)Bx(t)

]
+Bx(t)

)
.

Therefore, by using (23) and (28), and recalling that λ(t) = λt2, we obtain

∥∥∥∥ ddt
(
Aγ(t)

[
x(t)− γ(t)Bx(t)

]
+Bx(t)

)∥∥∥∥ = O
( 1
tγ(t)

)
+ o

 t2
∣∣∣ ddt γ(t)

λ(t)

∣∣∣
γ2(t)

 as t→ +∞.

The fact that ‖ẍ(t)‖ = O
(

1
t2

)
as t→ +∞ comes from (2), (27), (23) and (24).

Weak convergence of the trajectories. Let x ∈ zer(A+ B). We will work with the energy function
h : [t0,+∞)→ R given by

h(t) := 1
2‖x(t)− x‖2.
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For every t ≥ t0, we have

ḣ(t) = 〈x(t)− x, ẋ(t)〉, ḧ(t) = 〈x(t)− x, ẍ(t)〉+ ‖ẋ(t)‖2. (29)

Combining (2) and (29) gives us, for every t ≥ t0,

ḧ(t) + α

t
ḣ(t) +

〈
Tλ(t),γ(t)(x(t)), x(t)− x

〉
= ‖ẋ(t)‖2 +

〈
−ξ d

dt
Tλ(t),γ(t)(x(t)), x(t)− x

〉
.

By using the λ(t)
2 -cocoercitivity of Tλ(t),γ(t) on the left hand side, Cauchy-Schwarz on the right hand side

and multiplying both sides by t, the previous inequality entails, for every t ≥ t0,

tḧ(t) + αḣ(t) + t
λ(t)

2

∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ ≤ t‖ẋ(t)‖2 + ξt

∥∥∥∥ ddtTλ(t),γ(t)(x(t))
∥∥∥∥ ‖x(t)− x‖ ∀t ≥ t0.

Now, putting (15), (16) and (23) together results in

k(t) := t‖ẋ(t)‖2 + ξt

∥∥∥∥ ddtTλ(t),γ(t)(x(t))
∥∥∥∥ ‖x(t)− x‖ ∈ L1([t0,+∞),R).

Now apply Lemma A.1 with θ(t) := tλ(t)
2

∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ for every t ≥ t0 to deduce that the limit

lim
t→+∞

h(t)

exists, which fulfills the first condition of Opial’s Lemma A.3.
Let us now move on to the second condition. Suppose x̂ is a weak sequential cluster point of t 7→ x(t),

that is, there exists a sequence (tn)n∈N ⊆ [t0,+∞) such that tn → +∞ and xn := x(tn) converges weakly
to x̂ as n→ +∞. Define

Uγ := Id−JγA ◦ (Id−γB).
According to (25), we have Uγ(t)(x(t)) = λ(t)Tλ(t),γ(t)(x(t))→ 0 as t→ +∞. Now, since γ(t) ∈ [δ, 2β − δ]
for all t ≥ t0 for some δ > 0, we can extract a subsequence (γ(tnk))k∈N such that γ(tnk)→ γ ∈ (0, 2β) as
k → +∞. We may assume without loss of generality then that γn := γ(tn) → γ as n → +∞. We now
have for every n ∈ N

‖Uγn(xn)− Uγ(xn)‖ = ‖JγnA(xn − γnB(xn))− JγA(xn − γB(xn))‖
= ‖JγnA(xn − γnB(xn))− JγnA(xn − γB(xn))‖

+ ‖JγnA(xn − γB(xn))− JγA(xn − γB(xn))‖
≤ |γ − γn|‖B(xn)‖+ |γ − γn|‖Aγ(xn − γB(xn))‖.

Now, since every weakly convergent sequence is bounded and the operators B and Aγ are Lipschitz-
continuous we deduce that the right-hand side of the previous inequality approaches zero as n → +∞,
therefore getting

Uγ(xn) = Uγn(xn) +
(
Uγ(xn)− Uγn(xn)

)
→ 0

as n → +∞. Now, from the proof of part (i) of Lemma 2.2, we know that Uγ is 4β−γ
4β -cocoercive, thus

monotone and Lipschitz continuous and therefore maximally monotone. Summarizing, we have

1. Uγ is maximally monotone and thus its graph is closed in the weak×strong topology of H×H (see
[14, Proposition 20.38(ii)]),

2. xn converges weakly to x̂ and Uγ(xn)→ 0 as n→ +∞,

which allows us to conclude that Uγ(x̂) = 0, and gives finally x̂ ∈ zer(A+B). Now we just invoke Opial’s
Lemma to achieve that x(t) converges weakly to x as t→ +∞ for some x ∈ zer(A+B).

In the following subsections, we explore the particular cases B = 0 and A = 0, and we will show
improvements with respect to previous results from the literature addressing continuous time approaches
to monotone inclusions.
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3.1 The case B = 0
If we let B = 0 in the (Split-DIN-AVD) system (2), then, attached to the monotone inclusion problem

find x ∈ H such that 0 ∈ A(x),

we obtain the dynamics

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
Aλ(t),γ(t)(x(t)

)
+Aλ(t),γ(t)(x(t)) = 0, (30)

where
Aλ,γ(x) = 1

λ
(Id−JγA).

We can state the following theorem.

Theorem 3.2. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Assume that
α > 1, ξ ≥ 0, λ(t) = λt2 for λ > 1

(α−1)2 and all t ≥ t0, and that γ : [t0,+∞)→ (0,+∞) is a differentiable
function that satisfies |γ̇(t)|

γ(t) = O
(

1
t

)
as t → +∞. Then, for a solution x : [t0,+∞) → H to (30), the

following statements hold:

(i) x is bounded.

(ii) We have the estimates∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

γ2(t)
t

∥∥∥Aγ(t)(x(t))
∥∥∥2
dt < +∞.

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(1
t

)
, ‖ẍ(t)‖ = O

( 1
t2

)
,

∥∥∥Aγ(t)(x(t))
∥∥∥ = o

( 1
γ(t)

)
,

∥∥∥∥ ddtAγ(t)(x(t))
∥∥∥∥ = O

( 1
tγ(t)

)
+ o

 t2
∣∣∣ ddt γ(t)

λ(t)

∣∣∣
γ2(t)


as t→ +∞.

(iv) If 0 < inft≥t0 γ(t), then x(t) converges weakly to an element of zerA as t→ +∞.

Proof. The proof proceeds in the exact same way as the proof of Theorem 3.1. However, a few comments
are in order: first of all, now we have Tλ,γ = 1

λ(Id−JγA) = Aλ,γ . Since JλA is firmly nonexpansive, by
[14, Proposition 4.4] so is Id−JλA. In other words, Id−JγA is 1-cocoercive, therefore Aλ,γ = 1

λ(Id−JγA)
is λ-cocoercive, so now the condition on λ becomes λ > 1

(α−1)2 .
The proof also changes when we verify the second part of the Opial’s Lemma, to get weak convergence

of the trajectories t 7→ x(t). This is in order to allow for γ(t) not to be necessarily bounded. We do need,
however, the assumption 0 < inft≥t0 γ(t). Indeed, from ‖Aλ(t),γ(t)(x(t))‖ = o

(
1
t2

)
as t→ +∞, we obtain

y(t) := x(t)− Jγ(t)Ax(t) = λ(t)Aλ(t),γ(t)(x(t))→ 0

as t→ +∞. Using the definition of the resolvent, we come to

Jγ(t)Ax(t) = x(t)− y(t)⇔ y(t) ∈ γ(t)A(x(t)− y(t))⇔ 1
γ(t)y(t) ∈ A(x(t)− y(t)).

for all t ≥ t0. If (tn)n∈N ⊆ [t0,+∞) is such that tn → +∞ and x(tn) converges weakly to x̂ as n→ +∞,
then the previous inclusion, together with the assumption on γ gives

x(tn)− y(tn) converges weakly to x̂ and 1
γ(t)y(t)→ 0 as n→ +∞,

and by the closedness of the graph of A in the weak×strong topology of H × H, we deduce that x̂ ∈
zerA.
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Remark 3.3. The hypotheses required for γ are fulfilled at least by two families of functions. First, take
r ≥ 0 and set γ(t) = et

−r . Then, we have

γ̇(t)
γ(t) = −rt

−(r+1)et
−r

et−r
= − r

tr+1 = O
(1
t

)
as t→ +∞,

and
γ(t) = et

−r ≥ e0 = 1 ∀t ≥ 0.

If γ is a polynomial of degree n for some n ∈ N, the conditions are also fulfilled. Assume γ(t) =
ant

n + an−1t
n−1 + · · ·+ a0 for all t ≥ t0, for some ai ∈ R for i ∈ {0, . . . , n} and an > 0. Then, we have

t · γ̇(t)
γ(t) = t · nant

n−1 + (n− 1)an−1t
n−1 + · · ·+ a1

antn + an−1tn−1 + · · ·+ a0

→ nan
an

= n as t→ +∞,

so γ̇(t)
γ(t) = O

(
1
t

)
as t→ +∞. Since we also have γ(t)→ +∞ as t→ +∞, the condition inft≥t0 γ(t) > 0 is

fulfilled for large enough t0.
In particular, we can choose γ(t) = λ(t) = λt2, which fulfills γ(t) ≥ λt20 > 0 for any t ≥ t0 and any

t0. Since Aλ,λ = Aλ for λ > 0, this choice of γ allows us to recover the (DIN-AVD) system studied by
Attouch and László in [9]. Notice the way the convergence rates for Aγ(t)(x(t)) and d

dtAγ(t)(x(t)) exhibited
in part (iii) of Theorem 3.2 depend on γ(t). If we set γ(t) = tn for every t ≥ t0 for any natural number
n > 2, (Split-DIN-AVD) performs from this point of view better than (DIN-AVD) without increasing the
complexity of the governing operator.

3.2 The case A = 0
Let us return to (Split-DIN-AVD) dynamics (2). Set A = 0, and for every t ≥ t0 take γ(t) = γ ∈ (0, 2β)
and η(t) = ηt2 with η = λ/γ. Then, associated to the problem

find x ∈ H such that B(x) = 0,

we obtain the system
ẍ(t) + α

t
ẋ(t) + ξ

d

dt

( 1
η(t)Bx(t)

)
+ 1
η(t)Bx(t) = 0. (31)

The conditions λ > 2
(α−1)2 and γ ∈ (0, 2β) imply

η = λ

γ
>

2
γ(α− 1)2 >

2
2β(α− 1)2 = 1

β(α− 1)2 .

With the previous observation, we are able to state the following theorem.

Theorem 3.4. Let B : H → H be a β-cocoercive operator for some β > 0 such that zerB 6= ∅. Assume
that α > 1, ξ ≥ 0 and η(t) = ηt2 for η > 1

β(α−1)2 and all t ≥ t0. Take x : [t0,+∞) → H a solution to
(31). Then, the following hold:

(i) x is bounded, and x(t) converges weakly to an element of zerB as t→ +∞.

(ii) We have the estimates∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

1
t
‖Bx(t)‖2 dt <∞.
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(iii) We have the convergence rates

‖ẋ(t)‖ = o

(1
t

)
, ‖ẍ(t)‖ = O

( 1
t2

)
as well as the limit

‖Bx(t)‖ → 0

as t→ +∞.

Proof. Since η > 1
β(α−1)2 , we can find ε ∈ (0, β) such that η > 1

(β−ε)(α−1)2 , equivalently, 2(β−ε)η > 2
(α−1)2 .

Since (31) is equivalent to (Split-DIN-AVD) with A = 0 and parameters λ = 2(β − ε)η > 1
(α−1)2 and

γ(t) ≡ 2(β − ε) ∈ (0, 2β), the conclusion follows from Theorem 3.1.

Remark 3.5. (a) As we mentioned in the introduction, the dynamical system (31) provides a way of
finding the zeros of a cocoercive operator directly through forward evaluations, instead of having to resort
to its Moreau envelope when following the approach in [9].

(b) The dynamics (31) bear some resemblance to the system (6) (see also [16]) with µ(t) = α
t and ν(t) =

1
η(t) , with an additional Hessian-driven damping term. In our case, since η > 1

β(α−1)2 , the parameters
satisfy

µ̇(t) = −α
t2
≤ 0, µ2(t)

ν(t) = α2ηt2

t2
= α2η >

1
β
∀t ≥ t0.

However, we have
ν̇(t) = − 2

λt3
≤ 0 ∀t ≥ t0,

so one of the hypotheses which is needed in (6) is not fulfilled, which shows that one cannot address the
dynamical system (31) as a particular case of it; indeed, for (6) a vanishing damping is not allowed. With
our system, we obtain convergence rates for ẋ(t) and ẍ(t) as t→ +∞, which are not obtained in [16].

4 Structured convex minimization
We can specialize the previous results to the case of convex minimization, and show additionally the
convergence of functional values along the generated trajectories to the optimal objective value at a rate
that will depend on the choice of γ. Let f : H → R∪{+∞} be a proper, convex and lower semicontinuous
function, and let g : H → R be a convex and Fréchet differentiable function with L∇g-Lipschitz continuous
gradient. Assume that argminH(f + g) 6= ∅, and consider the minimization problem

min
x∈H

f(x) + g(x). (32)

Fermat’s rule tells us that x is a global minimum of f + g if and only if

0 ∈ ∂(f + g)(x) = ∂f(x) +∇g(x).

Therefore, solving (32) is equivalent solving the monotone inclusion 0 ∈ (A+B)(x) addressed in the first
section, with A = ∂f and B = ∇g. Moreover, recall that if ∇g is L∇g-Lipschitz then it is 1

L∇g
-cocoercive

(Baillon-Haddad’s Theorem, see [14, Corollary 18.17]). Therefore, associated to the problem (32) we have
the dynamics

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
γ(t)
λ(t)

(
∇fγ(t)(u(t)) +∇g(x(t))

))
+ γ(t)
λ(t)

(
∇fγ(t)(u(t)) +∇g(x(t))

)
= 0, (33)

where we have denoted u(t) = x(t)− γ(t)∇g(x(t)) for all t ≥ t0 for convenience.
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Theorem 4.1. Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function, and let
g : H → R be a convex and Fréchet differentiable function with a L∇g-Lipschitz continuous gradient such
that argminH(f + g) 6= ∅. Assume that α > 1, ξ ≥ 0, λ(t) = λt2 for λ > 2

(α−1)2 and all t ≥ t0, and that
γ : [t0,+∞)→

(
0, 2

L∇g

)
is a differentiable function that satisfies γ̇(t)

γ(t) = O(1/t) as t→ +∞. Then, for a
solution x : [t0,+∞)→ H to (33), the following statements hold:

(i) x is bounded.

(ii) We have the estimates ∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,∫ +∞

t0

γ2(t)
t

∥∥∥∇fγ(t)
[
x(t)− γ(t)∇g(x(t))

]
+∇g(x(t))

∥∥∥2
dt < +∞.

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(1
t

)
, ‖ẍ(t)‖ = O

( 1
t2

)
,∥∥∥∇fγ(t)

[
x(t)− γ(t)∇g(x(t))

]
+∇g(x(t))

∥∥∥ = o

( 1
γ(t)

)
,

∥∥∥∥ ddt
(
∇fγ(t)

[
x(t)− γ(t)∇g(x(t))

]
+∇g(x(t))

)∥∥∥∥ = O
( 1
tγ(t)

)
+ o

 t2
∣∣∣ ddt γ(t)

λ(t)

∣∣∣
γ2(t)


as t→ +∞.

(iv) If 0 < inft≥t0 γ(t) ≤ supt≥t0 γ(t) < 2
L∇g

, then x(t) converges converges to a minimizer of f + g as
t→ +∞.

(v) Additionally, if 0 < γ(t) ≤ 1
L∇g

for every t ≥ t0 and we set u(t) := x(t)− γ(t)∇g(x(t)), then

f
(
proxγ(t)f (u(t))

)
+ g

(
proxγ(t)f (u(t))

)
−minH(f + g) = o

( 1
γ(t)

)

as t→ +∞. Moreover,
∥∥∥proxγ(t)f (u(t))− x(t)

∥∥∥→ 0 as t→ +∞.

Proof. Parts (i)-(iv) are a direct consequence of Theorem 3.1. For checking (v), first notice that for all
t ≥ t0 we have

Tλ(t),γ(t)(x(t)) = 1
λ(t)

[
Id−Jγ(t)∂f ◦ (Id−γ(t)∇g)

]
(x(t)) = 1

λ(t)
[
x(t)− proxγ(t)f (u(t))

]
. (34)

Now, let x ∈ argminH(f + g). According to [15, Lemma 2.3], for every t ≥ t0, we have the inequality

f
(
proxγ(t)f (u(t))

)
+ g

(
proxγ(t)f (u(t))

)
−minH(f + g)

≤ f
(
proxγ(t)f (u(t))

)
+ g

(
proxγ(t)f (u(t))

)
− f(x)− g(x)

≤ − 1
2γ(t)

∥∥∥proxγ(t)f (u(t))− x(t)
∥∥∥2

+ 1
γ(t)

〈
x(t)− x∗, x(t)− proxγ(t)f (u(t))

〉
.
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After summing the norm squared term and using the Cauchy-Schwarz inequality, for every t ≥ t0 we
obtain

1
2γ(t)

∥∥∥proxγ(t)f (u(t))− x(t)
∥∥∥2

≤ f
(
proxγ(t)f (u(t))

)
+ g

(
proxγ(t)f (u(t))

)
+ 1

2γ(t)

∥∥∥proxγ(t)f (u(t))− x(t)
∥∥∥2
−minH(f + g)

≤
〈 1
γ(t)

(
x(t)− proxγ(t)f (u(t))

)
, x(t)− x

〉
≤
∥∥∥∥ 1
γ(t)

(
x(t)− proxγ(t)f (u(t))

)∥∥∥∥ ‖x(t)− x‖

= λ(t)
γ(t)

∥∥∥Tλ(t),γ(t)(x(t))
∥∥∥ ‖x(t)− x‖

= o

( 1
γ(t)

)
as t→ +∞,

which follows as a consequence of x being bounded and
∥∥∥Tλ(t),γ(t)(x(t))

∥∥∥ = o
(

1
t2

)
as t→ +∞.

Remark 4.2. It is also worth mentioning the system we obtain in the case where g ≡ 0, since we also get
some improved rates for the objective functional values when we compare (Split-DIN-AVD) to (DIN-AVD)
[9]. In this case, we have the system

ẍ(t) + α

t
+ ξ

d

dt

(
γ(t)
λ(t)∇fγ(t)(x(t))

)
+ γ(t)
λ(t)∇fγ(t)(x(t)) = 0 (35)

attached to the convex optimization problem

min
x∈H

f(x).

If we assume λ > 1
(α−1)2 , allow γ : [t0,+∞)→ (0,+∞) to be unbounded from above and otherwise keep

the hypotheses of Theorem 4.1, for a solution x : [t0,+∞)→ H to (35), the following statements hold:

(i) x is bounded,

(ii) We have the estimates∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

γ2(t)
t

∥∥∥∇fγ(t)(x(t))
∥∥∥2
dt < +∞,

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(1
t

)
, ‖ẍ(t)‖ = O

( 1
t2

)
,

∥∥∥∇fγ(t)(x(t))
∥∥∥ = o

( 1
γ(t)

)
,

∥∥∥∥ ddt∇fγ(t)(x(t))
∥∥∥∥ = O

( 1
tγ(t)

)
+ o

 t2
∣∣∣ ddt γ(t)

λ(t)

∣∣∣
γ2(t)


as t→ +∞.

(iv) If 0 < inft≥t0 γ(t), then x(t) converges weakly to a minimizer of f as t→ +∞.

(v) We also obtain the rate

fγ(t)(x(t))−minH f = o

( 1
γ(t)

)
as t→ +∞,

which entails

f
(
proxγ(t)f (x(t))

)
−minH f = o

( 1
γ(t)

)
and

∥∥∥proxγ(t)f (x(t))− x(t)
∥∥∥→ 0

as t→ +∞.
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Parts (i)-(iv) are a direct consequence of Theorem 3.2 for the case A = ∂f . For showing part (v), first
notice that for λ > 0 and u ∈ H we have, according to the definition of fλ and proxλf ,

fλ(u) = f
(
proxλf (u)

)
+ 1

2λ

∥∥∥proxλf (u)− u
∥∥∥2
≤ f(u).

Let x ∈ H be a minimizer of f . We apply the gradient inequality to fγ(t), from which we obtain, for every
t ≥ t0

fγ(t)(x(t))−minH f = fγ(t)(x(t))− f(x) ≤ fγ(t)(x(t))− fλ(t)(x)

≤
〈
∇fγ(t)(x(t)), x(t)− x

〉
≤
∥∥∥∇fγ(t)(x(t))

∥∥∥ ‖x(t)− x‖,

where the last inequality follows from the Cauchy-Schwarz inequality. Since
∥∥∥∇fγ(t)(x(t))

∥∥∥ = o
(

1
γ(t)

)
as

t→ +∞ and x is bounded, the previous inequality entails the first statement of (v). Again recalling the
definition of the Moreau envelope of f , this finally gives

f
(
proxγ(t)f (x(t))

)
+ 1

2γ(t)

∥∥∥proxγ(t)f (x(t))− x(t)
∥∥∥2
−minH f = fγ(t)(x(t))−minH f = o

( 1
γ(t)

)
as t→ +∞, which implies the last two statements and concludes the proof.

As pointed out in Remark 3.3, we can choose γ(t) = λt2 for every t ≥ t0 and recover the (DIN-AVD)
system for nonsmooth convex minimization problems studied in [9]. Moreover, we can also set γ(t) = tn

for a natural number n > 3 and all t ≥ t0. Now, not only are the convergence rates for ∇fγ(t)(x(t)) and
d
dt∇fγ(t)(x(t)) as t→ +∞ improved with respect to the system in [9], but (Split-DIN-AVD) also provides
a better rate for the convergence of fγ(t)(x(t)) to minH f as t→ +∞.

5 Numerical experiments
In the following paragraphs we describe some numerical experiments that portray some aspects of the
theory.

5.1 Minimizing a smooth and convex function

As an example of a continuous time scheme minimizing a convex and Fréchet differentiable function
g : H → R with L∇g-Lipschitz continuous gradient via (Split-DIN-AVD), we consider the system

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

( 1
η(t)∇g(x(t))

)
+ 1
η(t)∇g(x(t)) = 0, (36)

where for (x1, x2) ∈ R2 we set g(x1, x2) = 1
2(x2

1 + 100x2
2) and therefore ∇g(x1, x2) = (x1, 100x2). A

trajectory generated by (36) is a pair x(t) = (x1(t), x2(t)). Figure 1 plots both components of the
solution to (36) with initial Cauchy data x0 = (1, 1), u0 = (1, 1). Notice that the Lipschitz constant
of ∇g is L∇g = 100, which means that the cocoercitivity modulus of ∇g is β = 1

L∇g
= 1

100 . To fulfill
η > 1

β(α−1)2 = 100
(α−1)2 , we choose α = 20, η = 0.278. Figure 1a corresponds to the case with no Hessian

damping, that is, ξ = 0. Figure 1b corresponds to a Hessian damping parameter ξ = 0.2.
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Figure 1: Trajectories of (Split-DIN-AVD) for B = ∇g

Figure 2 depicts the fast convergence of the velocities to zero for the cases ξ = 0 (Figure 2a) and ξ = 0.2
(Figure 2b). In both figures, notice the effect of the damping parameter ξ > 0, which attenuates the
oscillations of the second component of the trajectories, as well as the oscillations present in the velocities.
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Figure 2: Fast convergence of the velocities

5.2 Minimizing a nonsmooth and convex function

As an example of a continuous time scheme minimizing a proper, convex and lower semicontinuous
function f : H → R ∪ {+∞} via (Split-DIN-AVD), we consider the system

ẍ(t) + α

t
+ ξ

d

dt

(
γ(t)
λ(t)∇fγ(t)(x(t))

)
+ γ(t)
λ(t)∇fγ(t)(x(t)) = 0. (37)

We will consider three options for f and plot for each of them the trajectories, the objective function
values and the gradients of the Moreau envelopes as follows:

• f(x) = 1
2x

2 (Figures 3a and 4a),

• f(x) = |x| (Figures 3b and 4b),

• f(x) = |x|+ 1
2x

2 (Figures 3c and 4c).
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In order to fulfill α > 1 and λ > 1
(α−1)2 , we choose the parameters α = 2, λ = 1.1, and we take ξ = 0 and

γ(t) = t8. We compare the results given by (DIN-AVD) (that is, when γ(t) = λt2) and the ones given by
our system (Split-DIN-AVD). The choice of ξ does not seem to change the plots in a significant way for
the examples we have chosen.
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Figure 3: Trajectories and objective function values in the case A = ∂f
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Figure 4: Gradients of the Moreau envelopes of f

Figure 3 depicts the trajectories x(t) of (37) and the function values f
(
proxγ(t)(x(t))

)
for our choices

of f as t→ +∞. Figure 4 portrays the fast convergence to zero of ‖∇fγ(t)(x(t))‖ as t→ +∞. Notice the
big improvement over (DIN-AVD) for nonsmooth convex minimization in [9] when choosing γ(t) = t8, a
result which we already knew theoretically. Polynomials of high degree seem to be the ones which give
the biggest improvements in terms of rates.

5.3 An example with operator splitting

Now we consider the monotone inclusion problem (1) for A(x1, x2) = (−x2, x1) and B(x1, x2) = (x1, x2)
for every (x1, x2) ∈ R2. For every (x1, x2) ∈ R2, an easy calculation gives

JγA

[
x1
x2

]
=
[ 1

1+γ2
γ

1+γ2
−γ

1+γ2
1

1+γ2

] [
x1
x2

]
,

and so

(Id−JγA(Id−γ Id))
[
x1
x2

]
=
[
x1
x2

]
− (1− γ)

[ 1
1+γ2

γ
1+γ2

−γ
1+γ2

1
1+γ2

] [
x1
x2

]
=

γ2+γ
1+γ2

γ−1
1+γ2

1−γ
1+γ2

γ2+γ
1+γ2

[x1
x2

]
,

and

Tλ,γ

[
x1
x2

]
=

 γ2+γ
λ(1+γ2)

γ−1
λ(1+γ2)

1−γ
λ(1+γ2)

γ2+γ
λ(1+γ2)

[x1
x2

]
.
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(Split-DIN-AVD) now reads[
ẍ1(t)
ẍ2(t)

]
+ α

t

[
ẋ1(t)
ẋ2(t)

]
+ ξ

d

dt

 γ2(t)+γ(t)
λ(t)(1+γ2(t))

γ(t)−1
λ(t)(1+γ2(t))

1−γ(t)
λ(t)(1+γ2(t))

γ2(t)+γ(t)
λ(t)(1+γ2(t))

[x1(t)
x2(t)

]
+

 γ2(t)+γ(t)
λ(t)(1+γ(t)2)

γ(t)−1
λ(t)(1+γ2(t))

1−γ(t)
λ(1+γ2(t))

γ2(t)+γ(t)
λ(t)(1+γ2(t))

[x1(t)
x2(t)

]
=
[
0
0

]
.

We choose the parameters α = 7, λ = 0.056, γ(t) ≡ 1.5, and the Cauchy data x0 = (1, 2) and u0 =
(−1,−1). Figure 5a corresponds to the case ξ = 0, and Figure 5b depicts the trajectory when the Hessian
damping parameter is ξ = 0.8. Again, notice how, not only for optimization problems, but also for
monotone inclusions which cannot be reduced to the former, the presence of ξ seems to attenuate the
oscillations present in the trajectories.
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Figure 5: Trajectories of (Split-DIN-AVD) for finding the zeros of A+B

6 A numerical algorithm
In the following we will derive via time discretization of (Split-DIN-AVD) a numerical algorithm for solving
the monotone inclusion problem (1). We perform a discretization of (Split-DIN-AVD) with stepsize 1 and
set, for an integer k ≥ 1, x(k) := xk, λ(k) := λk, γ(k) := γk. We make the approximations

ẍ(t) ≈ xk+1 − 2xk + xk−1,
α

t
ẋ(t) ≈ α

k
(xk − xk−1),

d

dt
Tλ(t),γ(t)(x(t)) ≈ Tλk,γk(xk)− Tλk−1,γk−1(xk−1), Tλ(t),γ(t)(x(t)) ≈ Tλk+1,γk+1(xk+1),

so we get, for every k ≥ 1,

xk+1 − 2xk − xk−1 + α

k
(xk − xk−1) + ξ

(
Tλk,γk(xk)− Tλk−1,γk−1(xk−1)

)
+ Tλk+1,γk+1(xk+1) = 0. (38)

After rearranging the terms of (38), for every k ≥ 1 we obtain

xk+1 + Tλk+1,γk+1(xk+1) = xk +
(

1− α

k

)
(xk − xk−1)− ξ

(
Tλk,γk(xk)− Tλk−1,γk−1(xk−1)

)
. (39)
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In other words, after setting αk = 1− α
k and denoting the right hand side of (39) by yk for every k ≥ 1,

we obtain the following iterative scheme

(∀k ≥ 1)


yk = xk + αk(xk − xk−1)− ξ

(
Tλk,γk(xk)− Tλk−1,γk−1(xk−1)

)
,

xk+1 =
(
Id +Tλk+1,γk+1

)−1
(yk).

(40)

Observe that the second step in (40) is always well-defined. Indeed, for λ, γ > 0, Tλ,γ is λ
2 -cocoercive,

hence monotone (see Lemma 2.2(i)). This also implies that Tλ,γ is 2
λ -Lipschitz continuous, and a monotone

and continuous operator is maximally monotone, according to [14, Corollary 20.28]. Hence, by Minty’s
Theorem (see [14, Theorem 21.1]), we know that Id +Tλ,γ : H → H is surjective.

We are in conditions of stating the main theorem concerning our previous algorithm.

Theorem 6.1. Let A : H → 2H be a maximally monotone operator and B : H → H a β-cocoercive
operator for some β ≥ 0 such that zer(A + B) 6= ∅. Choose x0, x1 ∈ H any initial points. Let α > 1,
ξ ≥ 0, and (λk)k≥0, (γk)k≥0 sequences of positive numbers that fulfill

λk = λk2 ∀k ≥ 1, with λ >
4ξ + 2

(α− 1)2 ,

0 < inf
k≥0

γk ≤ sup
k≥0

γk < 2β and γk − γk−1
γk

= O
(1
k

)
as k → +∞.

Now, consider the sequences (yk)k≥1 and (xk)k≥0 generated by algorithm (40). The following properties
are satisfied:

(i) We have the estimates

‖xk+1 − xk‖ = O
(1
k

)
and ‖Aγk(xk − γkBxk) +Bxk‖ = o

( 1
γk

)
as k → +∞.

(ii) The sequence (xk)k≥0 converges weakly to an element of zer(A+B).

(iii) The sequence (yk)k≥1 converges weakly to an element of zer(A+B). Precisely, we have ‖xk−yk‖ =
O
(

1
k

)
as k → +∞.

The proof can be done by transposing the techniques used in the continuous time case to the discrete
time case. Algorithm (40) can be seen as a splitting version of the (PRINAM) algorithm studied by
Attouch and László in [10].

Remark 6.2. The second step in (40) can be quite complicated to compute. However, if B = 0, we can
resort to the fact that (Aλ1)λ2 = Aλ1+λ2 for λ1, λ2 > 0. We now have, for λ, γ > 0,

Tλ,γ = 1
λ

[
Id−JγA

]
= γ

λ
Aγ ,

which gives
(Id +Tγ,λ)−1 = J γ

λ
Aγ = −γ

λ
(Aλ) γ

λ
+ Id = Id−γ

λ
Aλ+ γ

λ
.
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It is now possible to write (40) in terms of the resolvents of A. We have, for every k ≥ 1,

Tλk,γk(xk)− Tλk−1,γk−1(xk−1) = 1
λk

[
xk − JγkA(xk)

]
− 1
λk−1

[
xk−1 − Jγk−1A(xk−1)

]
=
( 1
λk
− 1
λk−1

)
xk + 1

λk−1
(xk − xk−1)

−
( 1
λk
JγkA(xk)−

1
λk−1

Jγk−1A(xk−1)
)
,

yk −
γk+1
λk+1

A
λk+1+

γk+1
λk+1

(yk) = yk −
γk+1
λk+1

1
λ2
k+1+γk+1
λk+1

yk − J(
λk+1+

γk+1
λk+1

)
A

(yk)


=

λ2
k+1

λ2
k+1 + γk+1

yk + γk
λ2
k+1 + γk+1

J(
λk+1+

γk+1
λk+1

)
A

(yk).

So now (40) becomes

(∀k ≥ 1)



yk =
(

1− ξ
( 1
λk
− 1
λk−1

))
xk +

(
αk −

ξ

λk−1

)
(xk − xk−1)

+ ξ

( 1
λk
JγkA(xk)−

1
λk−1

Jγk−1A(xk−1)
)
,

xk+1 =
λ2
k+1

λ2
k+1 + γk+1

yk + γk
λ2
k+1 + γk+1

J(
λk+1+

γk+1
λk+1

)
A

(yk).

(41)

Now, if we assume 0 < infk≥0 γk and λ > 2ξ+1
(α−1)2 and otherwise keep the hypotheses of Theorem 6.1, then

for the sequences (xk)k≥0 and (yk)k≥1 generated by (41), the following statements hold:

(i) We have the estimates

‖xk+1 − xk‖ = O
(1
k

)
and ‖Aγk(xk)‖ = o

( 1
γk

)
as k → +∞.

(ii) The sequence (xk)k≥0 converges weakly to an element of zerA.

(iii) The sequence (yk)k≥1 converges weakly to an element of zerA as well. Precisely, we have ‖xk−yk‖ =
O
(

1
k

)
as k → +∞.

Notice that the condition required for (γk)k≥0 is fulfilled in particular for γk = kn for every k ≥ 1 and
a natural number n ≥ 1. Thus, by choosing large n, we obtain a fast convergence rate for Aγk(xk) as
k → +∞.

A Appendix
The following are three auxiliary lemmas that are used in the proof of Theorem 3.1. The proof for Lemma
A.1 can be found in [12], while the proof of Lemma A.2 is straightforward. For the proof of Opial’s Lemma,
we refer the reader to [1, Lemma 1.10].

Lemma A.1. Let t0 > 0, and let u : [t0,+∞) → R be a continuously differentiable function which is
bounded from below. Given α > 1, a nonnegative function θ : [t0,+∞) → R and a nonnegative function
k ∈ L1([t0,+∞),R), let us assume that

tü(t) + αu̇(t) + θ(t) ≤ k(t)

for almost every t ≥ t0. Then, the positive part [u̇]+ of u̇ belongs to L1([t0,+∞),R) and limt→+∞ u(t)
exists. Moreover, we have

∫+∞
t0

θ(t)dt < +∞.
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Lemma A.2. Let A,B,C ∈ R and H a real Hilbert space. Then the inequality

A‖X‖2 + 2C〈X,Y 〉+B‖Y ‖2 ≤ 0

holds for every X,Y ∈ H if and only if A,B ≤ 0 and C2 −AB ≤ 0.

Lemma A.3 (Opial’s Lemma). Let S ⊆ H be a nonempty set and x : [t0,+∞)→ H a given map, where
t0 > 0. Assume that

(i) for every x∗ ∈ S, limt→+∞ ‖x(t)− x∗‖ exists;

(ii) every weak sequential cluster point of the map x belongs to S.

Then, there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.
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