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Abstract. In our pursuit of finding a zero for a monotone and Lipschitz con-

tinuous operator M : Rn → Rn amidst noisy evaluations, we explore an as-

sociated differential equation within a stochastic framework, incorporating a
correction term. We present a result establishing the existence and unique-

ness of solutions for the stochastic differential equations under examination.

Additionally, assuming that the diffusion term is square-integrable, we demon-
strate the almost sure convergence of the trajectory process X(t) to a zero of

M and of ∥M(X(t))∥ to 0 as t → +∞. Furthermore, we provide ergodic up-

per bounds and ergodic convergence rates in expectation for ∥M(X(t))∥2 and
⟨M(X(t), X(t)− x∗⟩, where x∗ is an arbitrary zero of the monotone operator.

Subsequently, we apply these findings to a minimax problem. Finally, we an-
alyze two temporal discretizations of the continuous-time models, resulting in

stochastic variants of the Optimistic Gradient Descent Ascent and Extragra-

dient methods, respectively, and assess their convergence properties.

1. Introduction. For a monotone and L-Lipschitz continuous operatorM : Rn →
Rn, we examine the equation

M(x) = 0. (1)

We assume that the set of solutions of (1), denoted by zerM := {x ∈ Rn :M(x) =
0}, is nonempty. The operator M : Rn → Rn is said to be monotone if ⟨M(x) −
M(y), x− y⟩ ≥ 0 for all x, y ∈ Rn.

For M := ∇f , where f : Rn → R is a convex and differentiable function with
a Lipschitz continuous gradient, solving equation (1) is equivalent to finding the
global solutions of the optimization problem

min
x∈Rn

f(x). (2)

On the other hand, if we define

M(x, y) := (∇xΦ(x, y),−∇yΦ(x, y)),
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where Φ : Rp×Rq → R is a convex-concave function with Lipschitz continuous gra-
dient, solving equation (1) is equivalent to finding the saddle points of the minimax
problem

min
x∈Rp

max
y∈Rq

Φ(x, y). (3)

Inspired by the Newton and the Levenberg-Marquardt methods, Attouch and
Svaiter introduced in [3] the following continuous time equation associated to (1)
in the setting of a real Hilbert space{

ẋ(t) + µ(t) d
dtM(x(t)) + µ(t)M(x(t)) = 0 ∀t > 0,

x(0) = x0,
(4)

where µ : [0,+∞) → (0,+∞) was assumed to be bounded, continuous and abso-
lutely continuous on bounded intervals. Besides proving the existence and unique-
ness of strong global solutions, they showed, under suitable assumptions on the pa-
rameter function, that x(t) converges weakly to a zero of M as well as M(x(t)) → 0
as t→ +∞.

In many instances, the evaluation of the operator is subject to noise, which
motivates us to transfer (4) to a stochastic setting. To achieve this, we consider the
formal expression of a continuous time system{

dX(t) + µ(t)dM(X(t)) = −γ(t)M(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(5)

which can consistently with Itô’s chain rule be understood as
d(X(t) + µ(t)M(X(t))) = −(γ(t)− µ̇(t))M(X(t))dt+ σ(t,X(t))dW (t)

∀t > 0,

X(0) = X0,

(SDE-M)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P) with the diffusion term
σ : R+ × Rn → Rn×m being matrix-valued and measurable, W a m-dimensional
Brownian motion, and X(·) as well asM(X(·)) are stochastic Itô processes with the
same m-dimensional Brownian motion W . The parameter functions µ : [0,+∞) →
(0,+∞) and γ : [0,+∞) → (0,+∞) are assumed to be continuous differentiable
and, respectively, integrable. For the diffusion term we assume{

∃cσ > 0 such that ∥σ(t, x′)− σ(t, x)∥F ≤ cσ∥x′ − x∥ ∀t > 0,

σ∞(t) := supx∈Rn ∥σ(t, x)∥F ≤ σ∗ ∀t > 0,
(6)

where ∥ · ∥F denotes the Frobenius norm on Rn×m.
Then, (SDE-M) can be rewritten as the system

dM(X(t)) = Y (t)dt+ σM (t)dW (t),

dX(t) = (−µ(t)Y (t)− γ(t)M(X(t)))dt+ σX(t)dW (t) ∀t > 0,

X(0) = X0,

where

σ(t,X(t)) = σX(t) + µ(t)σM (t) ∀t ≥ 0

and σX , σM : R+ → Rn×m are measurable.
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Our goal is to explore the existence and uniqueness of trajectory solutions for
(SDE-M), along with their long-term behavior in terms of both almost sure conver-
gence and convergence rates. Furthermore, we demonstrate how these properties
transfer to convergence rates for stochastic numerical methods obtained through
temporal discretizations of the stochastic differential equation.

1.1. Related works. The simplest continuous time approach associated to the
optimization problem (2), for a convex and differentiable function f : Rn → R with
L∇f -Lipschitz continuous gradient, is the gradient flow{

ẋ(t) = −∇f(x(t)) ∀t > 0,

x(0) = x0.

Its trajectory solution x(t) converges to a global minimizer of f , while f(x(t))
converges to the minimal function value min f of f with a convergence rate of o( 1t )
as t→ +∞.

Its discrete time counterpart, the gradient method,

xk+1 = xk − γ∇f(xk) ∀k ≥ 0,

where x0 ∈ Rn and γ ∈
(
0, 1

L∇f

]
, shares the same convergence properties. Specifi-

cally, the sequence (xk)k≥0 converges to a minimizer of f , and f(xk)−min f = o( 1k )
as k → +∞.

In [24], to accommodate instances where the gradient input is subject to noise,
Maulen-Soto, Fadili and Attouch proposed the following stochastic differential equa-
tion {

dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(7)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P) with σ : R+ × Rn →
Rn×m being a matrix-valued measurable diffusion term fulfilling (6), and W a

m-dimensional Brownian motion. They derived for f
(∫ t

0
X(s)ds

)
− min f and

1
t

∫ t

0
f(X(s))ds − min f upper bounds in expectation of O( 1t ) + O(σ2

∗). Addition-
ally, assuming that σ∞ is square-integrable, they demonstrated the almost sure
convergence of the trajectory process to a minimizer of f and of f(X(t)) to min f
as t → +∞, and that the two above quantities exhibit convergence rates of O( 1t )
as t→ +∞.

There is a strong link between this stochastic differential equation and the sto-
chastic gradient descent algorithm with constant stepsize [9, 18,21,22,28,31]

xk+1 := xk − γ∇f(xk, ξk) ∀k ≥ 0,

where (Fk)k≥0 is an increasing family of σ-fields, x0 ∈ Rn is F0-measurable, (ξk)k≥0

is such that ∇f(x, ξk) corresponds to a noisy observation of ∇f(x), with the
properties that E(∇f(x, ξk+1)|Fk) = ∇f(x) for all x ∈ Rn and all k ≥ 0, and
E(∥∇f(x∗, ξk+1)∥2|Fk) ≤ σ2

∗∗ for a global minimizer x∗ of f and all k ≥ 0. Then

(see, for instance, [4]) the upper bound in expectation of f
(

1
k

∑k−1
i=0 x

i
)
−min f is

of O( 1k ) +O(σ2
∗∗).

Recently, in [25], (7) has been enhanced with a Tikhonov regularization term,
resulting in a stochastic differential equation which, under the same upper bounds
and convergence rates in expectation, in the case when σ∞ is square-integrable,



466 RADU IOAN BOT, AND CHIARA SCHINDLER

exhibits strong convergence of the trajectory process to the global minimizer of f
of minimum norm.

Furthermore, in [26], the properties of first order stochastic differential equations
have been transferred to second order ones using the time scaling and averaging
methodology developed in [2]. The latter generalize the second order Langevin
process, and and demonstrate rapid convergence in expectation of the function
values along the trajectory process to the minimal function value.

As for the monotone equation (1), one could replicate the gradient flow approach
and associate with it the following continuous dynamics{

ẋ(t) = −M(x(t)) ∀t > 0,

x(0) = x0.
(8)

However, only the ergodic trajectory 1
t

∫ t

0
x(s)ds converges to a zero of M as t →

+∞ [5], while the trajectory x(t) does not converge in general, as can be easily seen
for the case of the counterclockwise rotation operator by π

2 radians in R2 [11].
If the operator M is ρ-cocoercive with constant ρ > 0, meaning that

⟨M(x)−M(y), x− y⟩ ≥ ρ∥M(x)−M(y)∥2 ∀x, y ∈ Rn,

which obviously implies that M is monotone and 1
ρ -Lipschitz continuous, then the

asymptotic behaviour of the trajectory of (8) improves substantially, even in the
presence of small perturbations. Precisely, according to [2, Theorem 11], in this
case, the trajectory solution of{

ẋ(t) = −M(x(t)) + g(t) ∀t > 0,

x(0) = x0,
(9)

where g : [0,+∞) → Rn is such that∫ +∞

t0

∥g(t)∥dt < +∞ and

∫ +∞

t0

t∥g(t)∥2dt < +∞, (10)

converges to a zero of M , and it holds ∥M(x(t))∥ = o( 1√
t
) as t→ +∞.

In the case when M is a ρ-cocoercive operator with constant ρ > 0, the following
stochastic counterpart to (8) has been proposed in [24]{

dX(t) = −M(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(11)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P), where σ : R+ × Rn →
Rn×m fulfills (6), andW am-dimensional Brownian motion. Alongside the existence
and uniqueness of the trajectory process for (11), upper bounds in expectation of

O( 1t ) + O(σ2
∗) for ∥ 1

t

∫ t

0
M(X(s))ds∥2 and 1

t

∫ t

0
∥X(s)∥2ds have been derived. In

caseM is κ-strongly monotone with constant κ > 0, upper bounds in expectation of
O(e−2κt)+O(σ2

∗) for ∥X(t)−x∗∥2, where x∗ is the unique zero ofM , have been also
provided. Additionally, assuming that σ∞ is square-integrable, it has been proved
that there is almost sure convergence of X(t) towards a zero ofM and of ∥M(X(t))∥
towards 0 as t → +∞. Moreover, ∥ 1

t

∫ t

0
M(X(s))ds∥2 and 1

t

∫ t

0
∥X(s)∥2ds exhibit

convergence rates of O( 1t ) as t→ +∞.
If M is only monotone and Lipschitz continuous, [3] suggests that incorporating

a correction term into the formulation of the differential equation, such as the time
derivative of t 7→ M(x(t)) in (4), is crucial to improve the convergence properties
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of the dynamical system associated with (1). We have extended this idea to the
stochastic domain, resulting in the formulation of (SDE-M), and assuming that
M(X(·)) is an stochastic Itô process.

The significance of the correction term in solving equations governed by monotone
and L-Lipschitz continuous operators is well-reflected in the realm of numerical
algorithms. On one hand, the forward method,

xk+1 := xk − γM(xk) ∀k ≥ 0,

does not generally converge, as observed, for instance, with the counterclockwise
rotation operator by π

2 radians in R2.
On the other hand, for the Optimistic Gradient Descent Ascent method [6, 30]

xk+1 := xk − 2γM(xk) + γM(xk−1)

= xk − γM(xk)− γ(M(xk)−M(xk−1)) ∀k ≥ 1,

which can be regarded as a natural discretization of (4), if 0 < γ < 1
2L , then the

generated sequence of iterates converges to a zero of M . Additionally, if 0 < γ <
1

16L , then the method exhibits a best-iterate convergence rate for the norm of the

operator evaluated along the iterates of O
(

1√
k

)
as k → +∞ [10, 14,15].

Furthermore, for the Extragradient method [1, 20]{
yk := xk − γM(xk)

xk+1 := xk − γM(yk)
∀k ≥ 0,

which also involves a correction term, if 0 < γ < 1
L , then the generated sequence of

iterates converges to a zero of M and ∥M(xk)∥ converges to 0 with a convergence

rate of O
(

1√
k

)
as k → +∞ [17].

For completeness, we would like to mention that recently, in [7], a second-order
dynamical system with momentum term and correction term associated with a
monotone equation has been introduced. Alongside the convergence of the generated
trajectory to a zero of the operator, the system exhibits convergence rates of o

(
1
t

)
for the norm of the operator and the gap function along the trajectory as t→ +∞.
Furthermore, an explicit numerical algorithm replicating the convergence properties
of the continuous time dynamics has been obtained. These are the best-known
convergence rate results for continuous time and explicit discrete time approaches
for monotone equations.

1.2. Our contributions. In Section 2, we discuss the existence and uniqueness of
a trajectory solution for the continuous time system (SDE-M). The presence of the
corrector term requires quite involved analysis. Under the assumption that σ∞ is
square-integrable, we also prove the almost sure convergence of X(t) to a zero of
M and of ∥M(X(t))∥ to 0 as t→ +∞.

In Section 3, in the framework of assumption (6) for the diffusion term, we

establish upper bounds in expectation for 1
t

∫ t

0
∥M(X(s))∥2ds and 1

t

∫ t

0
⟨X(s) −

x∗,M(X(s))⟩ds, where x∗ is a zero of M . These bounds are of the form O( 1
tµ(t) ) +

O(σ2
∗) and O( 1t ) + O(σ2

∗), respectively. Additionally, assuming that σ∞ is square-

integrable, we show that the squared norm of the operator ∥M(X(t))∥2 and the gap
function ⟨X(t) − x∗,M(X(t))⟩ exhibit ergodic convergence rates in expectation of
O( 1

tµ(t) ) and O( 1t ), respectively, as t→ +∞. In caseM is κ-strongly monotone with
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constant κ > 0, we also derive upper bounds in expectation of O(e−2κt) + O(σ2
∗)

for ∥X(t)− x∗∥2, where x∗ is the unique zero of M .
In Section 4, we demonstrate how these results transfer from continuous time

to discrete time settings within the context of the stochastic Optimistic Gradient
Descent Ascent (OGDA) method and of the stochastic Extragradient (EG) method,
designed to solve (1), in the circumstances that the evaluation of M is subject to
noise.

2. Continuous time system: Existence, uniqueness and almost sure con-
vergence. This section is dedicated to the study of (SDE-M) in the setting{
d(X(t) + µ(t)M(X(t))) = −(γ(t)− µ̇(t))M(X(t))dt+ σ(t,X(t))dW (t) ∀t ≥ 0,

X(0) = X0.

Throughout this section, we will assume that the parameter functions satisfy the
following conditions:

0 < µlow ≤ µ(t) ≤ µup := µ(0) and 0 < γlow ≤ γ(t) ≤ γup ∀t ≥ 0,

and µ is nonincreasing on [0,+∞).
(12)

Throughout the paper, (Ω,F , {Ft}t≥0,P) is a filtered probability space. The
expectation of a random variable ξ : Ω → Rn is denoted by E(ξ) :=

∫
Ω
ξ(ω)dP(ω).

An event E ∈ F happens almost surely (a.s.) if P(E) = 1.
An Rn-valued stochastic process is a function X : Ω×R+ → Rn. It is said to be

continuous if X(ω, ·) is continuous on R+ for almost all ω ∈ Ω. For simplicity, we
will denote X(t) := X(·, t). Two stochastic processes X,Y : [0, T ] → Rn, for T > 0,
are said to be equivalent if X(t) = Y (t) almost surely for all t ∈ [0, T ]. This allows
the definition of the equivalence relation R which associates equivalent stochastic
processes to the same class.

Next, we will introduce some notions that will characterize the space where the
trajectory solution of (SDE-M) lies.

Definition 2.1. (i) A stochastic process X : Ω× R+ → Rn is called progressively
measurable if for every t ≥ 0, the mapping

Ω× [0, t] → Rn, (ω, s) 7→ X(ω, s)

is Ft ⊗ B([0, t])-measurable, where ⊗ denotes the product σ-algebra and B is the
Borel σ-algebra. Further, X is called Ft-adapted if X(·, t) is Ft-measurable for
every t ≥ 0.
For T > 0, we define the quotient space as

S0
n[0, T ] :=

{
X : Ω× [0, T ] → Rn : X is a progressively measurable

continuous stochastic process

}/
R,

and set S0
n :=

⋂
T≥0 S

0
n[0, T ].

(ii) For ν > 0 and T > 0, we define Sν
n[0, T ] as the following subset of stochastic

processes in S0
n[0, T ]

Sν
n[0, T ] :=

{
X ∈ S0

n[0, T ] : E

(
sup

t∈[0,T ]

∥X(t)∥ν
)
< +∞

}
.

Finally, we set Sν
n :=

⋂
T≥0 S

ν
n[0, T ].

The following result establishes the existence and uniqueness of a solution
of (SDE-M).
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Theorem 2.2. Let the diffusion term σ : R+×Rn → Rn×m satisfy assumption (6).
Then (SDE-M) has a unique solution X ∈ Sν

n, where ν ≥ 2.

Proof. Let ν ≥ 2. First, we establish the result on [0, T ], for T > 0 fixed. We
rewrite the stochastic differential equations as

X(t) = (Id+µ(t)M)−1(X(t) + µ(t)M(X(t))︸ ︷︷ ︸
=:Z(t)

) =: Jµ(t)M (Z(t)) ∀t ∈ [0, T ],

where Jµ(t)M := (Id+µ(t)M)−1 : Rn → Rn denotes the resolvent of M with pa-
rameter µ(t) and Id denotes the identity operator on Rn. Denoting the Yosida
approximation of M with parameter µ(t) by

Mµ(t) :=
1

µ(t)
(Id−Jµ(t)M ),

a simple calculation yields that M(X(t)) =Mµ(t)(Z(t)) for all t ∈ [0, T ]. Hence,

dZ(t) = d(X(t) + µ(t)M(X(t)))

= (−γ(t) + µ̇(t))Mµ(t)(Z(t))dt+ σ(t, Jµ(t)M (Z(t)))dW (t) ∀t ∈ [0, T ].
(13)

Now setting

F (t, z) := (µ̇(t)− γ(t))Mµ(t)(z), G(t, z) := σ(t, Jµ(t)M (z)) ∀z ∈ Rn ∀t ∈ [0, T ],

yields for all x, y ∈ Rn and all t ∈ [0, T ]

|F (t, x)− F (t, y)∥+ ∥G(t, x)−G(t, y)∥F
= |γ(t)− µ̇(t)|∥Mµ(t)(x)−Mµ(t)(y)∥+ ∥σ(t, Jµ(t)M (x))− σ(t, Jµ(t)M (y))∥F

≤ (γup − µ̇low,T )
1

µ(t)
∥x− y∥+ cσ∥Jµ(t)M (x)− Jµ(t)M (y)∥

≤
(
(γup − µ̇low,T )

1

µlow
+ cσ

)
∥x− y∥,

where µ̇low,T := inf{µ̇(t) : t ∈ [0, T ]} ∈ R, since the continuous mapping µ̇ is
bounded on the compact interval [0, T ].

This allows us to use Theorem 5.1 to obtain the existence of a unique sto-
chastic process ZT ∈ Sµ

n [0, T ] solving (13). Therefore, a reasonable candidate to
solve (SDE-M), given by

XT (t) := Jµ(t)M (ZT (t)) ∀t ∈ [0, T ],

is uniquely defined. It remains to show that it does indeed solve (SDE-M) and lies
in Sν

n[0, T ].
We define

ZT (t) := XT (t) + µ(t)M(XT (t)) ∀t ∈ [0, T ].

Since now M(XT (t)) =Mµ(t)(ZT (t)) and ZT is a solution of (13), it follows

d(XT (t) + µ(t)M(XT (t))) =(−γ(t) + µ̇(t))Mµ(t)(ZT (t))dt

+ σ(t, Jµ(t)M (ZT (t)))dW (t)

=(−γ(t) + µ̇(t))M(XT (t))dt

+ σ(t,XT (t))dW (t) ∀t ∈ [0, T ],

and thus, XT is indeed a solution of (SDE-M) on [0, T ].
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Now, recall that Jµ(t)M is 1-Lipschitz continuous and observe that for all x ∈ Rn

and all µ, λ > 0 it holds

∥JλM (x)− JµM (x)∥ =
∥∥∥JµM (µ

λ
x+

(
1− µ

λ

)
JλM (x)

)
− JµM (x)

∥∥∥
≤
∥∥∥(1− µ

λ

)
(x− JλM (x))

∥∥∥
≤ |λ− µ|∥Mλx∥.

This will allow us to establish the continuity of XT . Indeed, for all t, s ∈ [0, T ] it
holds

∥XT (t)−XT (s)∥ ≤ ∥Jµ(t)M (ZT (t))− Jµ(s)M (ZT (t))∥
+ ∥Jµ(s)M (ZT (t))− Jµ(s)M (ZT (s))∥

≤ |µ(t)− µ(s)|∥Mµ(t)(ZT (t))∥+ ∥ZT (t)− ZT (s)∥,

and, since ZT is continuous by Theorem 5.1 and µ is continuous by assumption, the
continuity of XT follows.

Next, consider

E

(
sup

t∈[0,T ]

∥XT (t)∥ν
)

= E

(
sup

t∈[0,T ]

∥Jµ(t)M (ZT (t))− 0∥ν
)

= E

(
sup

t∈[0,T ]

∥Jµ(t)M (ZT (t))− Jµ(t)M (µ(t)M(0))∥ν
)

≤ E

(
sup

t∈[0,T ]

∥ZT (t)− µ(t)M(0)∥ν
)

≤ E

(
2ν sup

t∈[0,T ]

(
1

2
∥ZT (t)∥+

µup

2
∥M(0)∥

)ν
)

≤ 2ν−1

(
E

(
sup

t∈[0,T ]

∥ZT (t)∥ν
)

+ µν
up∥M(0)∥ν

)
< +∞.

Finally, in order to prove the progressive measurability of X, we first notice that
the mapping

Ω× [0, T ] → [0, T ]× Rn, (ω, s) 7→ (s, ZT (ω, s)), (14)

is measurable. Indeed, the preimage of an element of the generating set I × O,
where I ⊆ [0, T ] is an interval and O ⊆ Rn an element of the generator of the
Borel-σ-algebra on Rn, is given by

Z−1
T (O) ∩ (Ω× I),

which is measurable, due to the measurability of ZT and the fact that a finite
intersection of measurable sets is again measurable. On the other hand, from the
above estimate for the resolvent operator and its Lipschitz continuity, we see that
the mapping

[0, T ]× Rn → Rn, (s, z) 7→ Jµ(s)M (z),
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is continuous and therefore measurable. This means that its composition with the
mapping in (14) is also measurable. However, this composition is given by

Ω× [0, T ] → Rn, (ω, s) 7→ Jµ(s)M (ZT (ω, s)) = XT (ω, s),

which proves that XT is measurable, as claimed.
Since XT is uniquely defined on any [0, T ], where T > 0, for 0 < T1 < T2, we have

XT2
|[0,T1] = XT1

. Thus, there exists a unique solution X ∈ Sν
n of (SDE-M).

The following result establishes the almost sure convergence of X(t) to a zerM -
valued random variable as t → +∞. The notion of a martingale will play an
important role in its proof.

Definition 2.3. Let X be a real-valued stochastic process such that E(|X(t)|) <
+∞ for all t ≥ 0.

(i) The σ-algebra generated by the random variables X(s) for 0 ≤ s ≤ t,

σ(t) := σ(X(s)|0 ≤ s ≤ t),

is called the history of the stochastic process X until (and including) time t.
(ii) If

X(s) = E(X(t)|σ(s)) a.s. ∀t ≥ s ≥ 0,

then X is called a martingale.

Theorem 2.4. Let zerM ̸= ∅, the diffusion term σ : R+ × Rn → Rn×m satisfy
assumption (6), and X be the unique trajectory process of (SDE-M). If, in addition

to (12),
∫ +∞
0

σ∞(s)2ds < +∞, then the following statements are true:

(i) supt≥0 E(∥X(t)∥2) < +∞;
(ii) it holds supt≥0 ∥X(t)∥ < +∞ a.s.

If, in addition, −∞ < µ̇up ≤ µ̇(t) for all t ≥ 0 and µup <
1
L , then:

(iii) almost surely limt→+∞ ∥M(X(t))∥ = 0 and limt→+∞ ∥X(t) − x∗∥ exists and
is finite for all x∗ ∈ zerM ;

(iv) there exists a zerM -valued random variable x∗ such that limt→+∞X(t) = x∗

a.s.

Proof. In order to perform the proof, we rewrite (SDE-M) as
dM(X(t)) = Y (t)dt+ σM (t)dW (t),

dX(t) = (−µ(t)Y (t)− γ(t)M(X(t)))dt+ σX(t)dW (t) ∀t > 0,

X(0) = X0,

where σ(t,X(t)) = σX(t) + µ(t)σM (t) for all t ≥ 0 and Y (t) is a stochastic process
whose existence is guaranteed by M(X(t)) being an Itô process. This alternative
form will be essential in the upcoming arguments, since we will be using Itô’s
chain rule on an anchor function which takes an additional argument to be filled
by M(X(t)). Here, Itô’s formula requires the process Y (t) as an analogue to the
derivative of M(X(t)) in the deterministic setting. Let x∗ ∈ zerM , and define the
anchor function ϕ : R+ × Rn × Rn → R,

ϕ(t, x, z) := µ(t)⟨z, x− x∗⟩+ 1

2
∥x− x∗∥2 + µ(t)2

2
∥z∥2 =

1

2
∥x+ µ(t)z − x∗∥2.
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The proposed anchor function takes an additional argument – this will be taken
equal to M(X(t)) over the course of the proof. For all (t, x, z) ∈ R+ × Rn × Rn it
holds

d

dt
ϕ(t, x, z) = µ̇(t)⟨z, x− x∗⟩+ µ(t)µ̇(t)∥z∥2

∇xϕ(t, x, z) = µ(t)z + x− x∗

∇zϕ(t, x, z) = µ(t)(x− x∗) + µ(t)2z

∇2
xϕ(t, x, z) = I

∇x∇zϕ(t, x, z) = ∇z∇xϕ(t, x, z) = µ(t)I

∇2
zϕ(t, x, z) = µ(t)2I.

Observe that the remaining second partial derivatives of ϕ are identically 0. Hence,
the Itô formula yields for all t ≥ 0

ϕ(t,X(t),M(X(t)))

= ϕ(0, X(0),M(X(0)))

+

∫ t

0

(
µ̇(s)⟨M(X(s)), X(s)− x∗⟩+ µ(s)µ̇(s)∥M(X(s))∥2

)
ds

+

∫ t

0

〈
(µ(s)M(X(s)) +X(s)− x∗), (−µ(s)Y (s)− γ(s)M(X(s)))

〉
ds

+

∫ t

0

〈
σ⊤
X(s)(µ(s)M(X(s)) +X(s)− x∗), dW (s)

〉
+

∫ t

0

〈
(µ(s)(X(s)− x∗) + µ(s)2M(X(s))), Y (s)

〉
ds

+

∫ t

0

〈
σ⊤
M (s)(µ(s)(X(s)− x∗) + µ(s)2M(X(s))), dW (s)

〉
+

1

2

∫ t

0

tr(σ⊤
X(s)σX(s)) + 2µ(s)tr(σ⊤

M (s)σX(s)) + µ(s)2tr(σ⊤
M (s)σM (s))ds.

We observe for all s ≥ 0

σ⊤
X(s)σX(s) + 2µ(s)σ⊤

M (s)σX(s) + µ(s)2(σ⊤
M (s)σM (s)) = σ⊤(s,X(s))σ(s,X(s)),

and denote this term by Σ(s,X(s)) for improved readability. Further, it holds for
all s ≥ 0

⟨σ⊤
X(s)(µ(s)M(X(s))X(s)− x∗)

+ σ⊤
M (s)(µ(s)2M(X(s)) + µ(s)(X(s)− x∗)), dW (s)⟩

= ⟨(σX(s) + µ(s)σM (s))⊤(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩

= ⟨σ⊤(s,X(s))(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩.

Then, performing some elementary computations, we get for all t ≥ 0

ϕ(t,X(t),M(X(t)))

= µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2︸ ︷︷ ︸

=:ξ
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−
∫ t

0

(γ(s)− µ̇(s))
(
⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2

)
ds︸ ︷︷ ︸

=:U(t)

+

∫ t

0

⟨σ⊤(s,X(s))(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩︸ ︷︷ ︸
=:N(t)

+
1

2

∫ t

0

tr(Σ(s,X(s)))ds︸ ︷︷ ︸
=:A(t)

, (15)

in other words

ϕ(t,X(t),M(X(t))) = ξ − U(t) +N(t) +A(t) ∀t ≥ 0.

(i) As X ∈ S2
n, it holds for all T > 0 that

E

(∫ T

0

∥σ⊤(s,X(s))(X(s)− x∗ + µ(s)M(X(s)))∥2ds

)

≤ E

(∫ T

0

2(∥σ⊤(s,X(s))(X(s)− x∗)∥2

+ µ2
up∥σ⊤(s,X(s))(M(X(s))−M(x∗))∥2)ds

)

≤ E

(
2 sup
t∈[0,T ]

∥X(t)− x∗∥2
∫ T

0

σ2
∞(s)ds

+ µ2
up sup

t∈[0,T ]

∥M(X(t))−M(x∗)∥2
∫ T

0

σ2
∞(s)ds

)

≤ 2(1 + µ2
upL

2)E

(
sup

t∈[0,T ]

∥X(t)− x∗∥2
)∫ T

0

σ2
∞(s)ds

< +∞.

By Proposition 5.2, this means that N is a square-integrable continuous martingale,
and E(N(t)) = 0 for all t ≥ 0. Taking the expectation of (15) and using that

0 ≤ tr(Σ(s,X(s)) ≤ σ2
∞(s), ⟨M(X(s)), X(s)− x∗⟩ ≥ 0,

and ∥M(X(s))∥2 ≥ 0 ∀s ≥ 0,

yields for all t ≥ 0

E
(
1

2
∥X(t)− x∗∥2

)
≤ E(ϕ(t,X(t)))

=
1

2
∥X0 − x∗∥2 + µup⟨M(X0), X0 − x∗⟩+

µ2
up

2
∥M(X0)∥2

− E(U(t))︸ ︷︷ ︸
≥0

+E(N(t))︸ ︷︷ ︸
=0

+E(A(t))
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≤ 1

2
∥X0 − x∗∥2 + µ(0)⟨M(X0), X0 − x∗⟩+ µ(0)2

2
∥M(X0)∥2

+
1

2

∫ t

0

σ2
∞(s)ds

< +∞.

Finally, by taking the supremum over t ≥ 0, we establish the validity of the first
claim.

(ii) A and U are continuous adapted increasing processes with A(0) = U(0) =
0 a.s., while limt→+∞A(t) < +∞ holds due to the integrability condition for
the diffusion term. Thus, we can use Theorem 5.3 to obtain almost surely that
limt→+∞ ϕ(t,X(t),M(X(t))) exists and is finite, and∫ +∞

0

(γ(s)− µ̇(s))
(
⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2

)
ds < +∞. (16)

In other words, for all x∗ ∈ zerM there exists Ωx∗ ∈ F such that P(Ωx∗) = 1 and
for all ω ∈ Ωx∗ it holds that

lim
t→+∞

µ(t)⟨M(X(ω, t)), X(ω, t)− x∗⟩+ 1

2
∥X(ω, t)− x∗∥2 + µ(t)2

2
∥M(X(ω, t))∥2

exists and is finite.

(17)

This implies that for all x∗ ∈ zerM there exists Ωx∗ ∈ F such that P(Ωx∗) = 1 and
∥X(ω, ·)− x∗∥ remains bounded for all ω ∈ Ωx∗ . This proves that supt≥0 ∥X(t)∥ <
+∞ a.s.

(iii) Using the monotonicity ofM and the fact that µ and γ are bounded from be-

low by a positive constant, by (16), it follows
∫ +∞
0

∥M(X(ω, s))∥2ds < +∞ a.s. We

denote by ΩI the set of probability one for which it holds
∫ +∞
0

∥M(X(ω, s))∥2ds <
+∞ for all ω ∈ ΩI .

Let R(t) =
∫ t

0
σ(s,X(s))dW (s). This is a continuous martingale with respect to

Ft, which, according to the Itô isometry property, satisfies

E(∥R(t)∥2) = E
(∫ t

0

∥σ(s,X(s))∥2F ds
)

≤ E
(∫ ∞

0

σ2
∞(s)ds

)
< +∞ ∀t ≥ 0.

By Theorem 5.5, there exists a Rn-valued random variable R∞ with respect to F∞,
the σ-algebra generated by ∪t≥0Ft, which satisfies E(∥R∞∥2) < +∞, and

lim
t→+∞

R(ω, t) = R∞(ω) for every ω ∈ ΩR,

where ΩR ∈ F is such that P(ΩR) = 1.
Then P(ΩI ∩ ΩR) = 1 and, as we will see below, limt→+∞ ∥M(X(ω, t))∥ = 0

for all ω ∈ ΩI ∩ ΩR. Indeed, for all ω ∈ ΩI ∩ ΩR, since
∫ +∞
0

∥M(X(ω, s))∥2ds <
+∞, it holds lim inft→+∞ ∥M(X(ω, t))∥ = 0. In addition, for all ω ∈ ΩI ∩ ΩR,
lim supt→+∞ ∥M(X(ω, t))∥ = 0.

Suppose that there exists ω0 ∈ ΩI ∩ΩR such that lim supt→+∞ ∥M(X(ω0, t))∥ >
0. Then, by Lemma 5.4, there exist δ > 0 satisfying

0 = lim inf
t→+∞

∥M(X(ω0, t))∥ < δ < lim sup
t→+∞

∥M(X(ω0, t))∥,

and a sequence (tk)k≥0 ⊆ R+ such that

lim
k→∞

tk = +∞, ∥M(X(ω, tk))∥ > δ, and tk+1 − tk > 1 ∀k ≥ 0.
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Let α > 0 such that 1− (1 + α)L2µ2
up > 0 and ε > 0 such that

ε

2(|µ̇low|2 + γ2up)
< 1 and

(
3 +

3

α

)
εL2

1− (1 + α)L2µ2
up

<
δ2

2
.

Then
[
tk, tk + ε

2(|µ̇low|2+γ2
up)

]
are disjoint intervals for any two distinct k ≥ 0.

Also, by the convergence property of R(ω0, ·) and
∫ +∞
0

∥M(X(ω0, s))∥ds < +∞,
there exists k0 ≥ 0 such that for every k ≥ k0,

sup
t≥tk

∥R(ω0, t)−R(ω0, tk)∥2 <
ε

2
and

∫ +∞

tk

∥M(X(ω0, s))∥2ds < 1.

For all k ≥ k0 and all t ∈
[
tk, tk + ε

2(µ̇low|2+γ2
up)

]
, it holds

∥X(ω0, t)−X(ω0, tk)∥2

= ∥X(ω0, t) + µ(t)M(X(ω0, t))−X(tk)− µ(tk)M(X(ω0, tk))

+ µ(tk)M(X(ω0, tk))− µ(t)M(X(ω0, t))∥2

≤ (1 + α)∥µ(tk)(M(X(ω0, tk))−M(X(ω0, t)))∥2

+

(
1 +

1

α

)∥∥∥∥∫ t

tk

(µ̇(s)− γ(s))M(X(ω0, s))ds

+

∫ t

tk

σ(s,X(ω0, s))dW (s) + (µ(tk)− µ(t))M(X(ω0, t))

∥∥∥∥2
≤ (1 + α)µ2

up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(∥∥∥∥∫ t

tk

(µ̇(s)− γ(s))M(X(ω0, s))ds

∥∥∥∥2

+

∥∥∥∥∫ t

tk

σ(s,X(ω0, s))dW (s)

∥∥∥∥2 + |µ(tk)− µ(t)|2∥M(X(ω0, t))∥2
)

≤ (1 + α)µ2
up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(
2(|µ̇low|2 + |γup|2)(t− tk)

∫ t

tk

∥M(X(ω0, s))∥2ds

+ ∥R(ω0, t)−R(ω0, tk)∥2 + 4µ2
up∥M(X(ω0, t))∥2

)
≤ (1 + α)µ2

up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(
2(t− tk)(|µ̇low|2 + γ2up) +

ε

2
+ 4µ2

up∥M(X(ω0, t))∥2
)

≤ (1 + α)µ2
up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(
ε+ 4µ2

up∥M(X(ω0, t))∥2
)
,

where the first inequality is the one between the geometric and the arithmetic
mean, the second inequality follows from the Cauchy-Schwarz inequality and the
third inequality follows from the Hölder inequality for integrals.

By making use of the Lipschitz continuity of M , it yields

∥M(X(ω0, tk))−M(X(ω0, t))∥2
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≤ (1 + α)L2µ2
up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)
L2
(
ε+ 4µ2

up∥M(X(ω0, t))∥2
)
,

consequently,

∥M(X(ω0, tk))−M(X(ω0, t))∥2

≤
(
3 +

3

α

)
L2

1− (1 + α)L2µ2
up

(
ε+ 4µ2

up∥M(X(ω0, t))∥2
)
.

Therefore, for all k ≥ k0 and all t ∈
[
tk, tk + ε

2(|µ̇low|2+γ2
up)

]
, from

∥M(X(ω0, t))∥2 ≥ 1

2
∥M(X(ω0, tk))∥2 − ∥M(X(ω0, t)−M(X(ω0, tk))∥2,

we get (
1 +

(
3 +

3

α

)
4µ2

upL
2

1− (1 + α)L2µ2
up

)
∥M(X(ω0, t))∥2

≥ δ2

2
−
(
3 +

3

α

)
εL2

1− (1 + α)L2µ2
up

.

Finally, (
1 +

(
3 +

3

α

)
4µ2

upL
2

1− (1 + α)L2µ2
up

)∫ +∞

0

∥M(X(ω0, s))∥2ds

≥
∑
k≥k0

∫ tk+
ε

2(|µ̇low|2+γ2
up)

tk

∥M(X(ω0, s))∥2ds

≥
∑
k≥k0

ε

2(|µ̇low|2 + γ2up)

(
δ2

2
−
(
3 +

3

α

)
εL2

1− (1 + α)L2µ2
up

)
= +∞,

which contradicts
∫ +∞
0

∥M(X(ω0, s))∥2ds < +∞. This means that for all ω ∈
ΩI ∩ ΩR

0 = lim inf
t→+∞

∥M(X(ω, t))∥ = lim sup
t→+∞

∥M(X(ω, t))∥ = lim
t→+∞

∥M(X(ω, t))∥ = 0.

Then, for all x∗ ∈ zerM and all ω ∈ Ωx∗ ∩ΩI ∩ΩR, the Cauchy-Schwarz inequality
gives

0 ≤ lim
t→+∞

⟨M(X(ω, t)), X(ω, t)− x∗⟩ ≤ lim
t→+∞

∥M(X(ω, t))∥︸ ︷︷ ︸
→0

∥X(ω, t)− x∗∥︸ ︷︷ ︸
is bounded

= 0.

Using (17) and that µ(t) ≥ µlow > 0 for all t ≥ 0, it follows that limt→+∞ ∥X(ω, t)−
x∗∥ exists and is finite.

Next, we will employ an argument from [24] to demonstrate the existence of a sub-
set of Ω of probability one, which is independent of a previously chosen x∗ ∈ zerM ,
such that for all ω in this subset and all x∗ ∈ zerM the limit limt→+∞ ∥X(ω, t)−x∗∥
exists and is finite.
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Taking into account that zerM is closed, by the separability of Rn there exists a
countable set S ⊆ Rn which is dense in zerM . Because S is countable,

P

(⋂
s∈S

Ωs

)
= 1− P

(⋃
s∈S

Ωc
s

)
≥ 1−

∑
s∈S

P(Ωc
s) = 1.

Then P
(⋂

s∈S Ωs ∩ ΩI ∩ ΩR

)
= 1. Let ω ∈

⋂
s∈S Ωs ∩ΩI ∩ΩR be fixed and choose

x∗ ∈ zerM . Then there exists a sequence (sk)k≥0 ⊆ S such that sk → x∗ as
k → +∞. For every k ≥ 0, since ω ∈ Ωsk ,

lim
t→+∞

∥X(ω, t)− sk∥ exists and is finite.

Applying the triangle inequality, it follows

|∥X(ω, t)− sk∥ − ∥X(ω, t)− x∗∥| ≤ ∥sk − x∗∥ ∀k ≥ 0 ∀t ≥ 0.

This gives for all k ≥ 0

−∥sk − x∗∥+ lim
t→+∞

∥X(ω, t)− sk∥ ≤ lim inf
t→+∞

∥X(ω, t)− x∗∥

≤ lim sup
t→+∞

∥X(ω, t)− x∗∥

≤ lim
t→+∞

∥X(ω, t)− sk∥+ ∥sk − x∗∥.

Letting k → +∞, we get

lim
t→+∞

∥X(ω, t)− x∗∥ = lim
k→+∞

lim
t→+∞

∥X(ω, t)− sk∥ ∈ R.

Finally, we recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, ·)
is continuous for every ω ∈ Ωcont. Let ω ∈ Ωconverge :=

⋂
s∈S Ωs ∩ ΩI ∩ ΩR ∩ Ωcont.

It holds P(Ωconverge) = 1. For x∗ ∈ zerM , there exists C(ω) ∈ R and T (ω) ≤ 0 such
that ∥X(ω, t)−x∗∥ ≤ C(ω) for all t ≥ T (ω). Because X(ω, ·) is continuous, it holds

sup
t∈[0,T (ω)]

∥X(ω, t)∥ < +∞.

Thus,

sup
t≥0

∥X(ω, t)∥ ≤ max

(
sup

t∈[0,T (ω)]

∥X(ω, t)∥, C(ω) + ∥x∗∥

)
< +∞.

(iv) We will use Opial’s Lemma to prove the convergence of the trajectory process.
We fix ω ∈ Ωconverge and recall that above we proved that for every x∗ ∈ zerM the
limit limt→+∞ ∥X(ω, t)− x∗∥ exists. In addition, X(ω, ·) is bounded, therefore, its
set of limit points is not empty. Let x(ω) be such a limit point, which means that
there exists a sequence (tk)k≥0 ⊆ R+ such that

lim
k→∞

X(ω, tk) = x(ω).

From limt→+∞ ∥M(X(ω, t))∥ = 0 and the continuity of M , we see that x(ω) ∈
zerM . Since both conditions in Opial’s Lemma are satisfied, there exists x∗(ω) ∈
zerM such that limt→+∞X(ω, t) = x∗(ω).

Since ω ∈ Ωconverge was arbitrarily chosen, there exists a zerM -valued random
variable x∗ such that limt→+∞X(t) = x∗ almost surely.
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3. Continuous time system: Convergence rates in expectation. In this
section we will provide upper bounds and convergence rates in expectation for the
ergodic squared norm of the operator and the ergodic gap function. In addition,
in case M is κ-strongly monotone with constant κ > 0, we derive upper bounds in
expectation for the squared distance of the trajectory process to the unique zero of
M .

We recall that M : Rn → Rn is called κ-strongly monotone with constant κ > 0
if ⟨Mx−My, x− y⟩ ≥ κ∥x− y∥2 for all x, y ∈ Rn.

Regarding the parameter functions, throughout this section, we will assume that:

0 < µ(t) ≤ µup := µ(0) ∀t ≥ 0 and µ is nonincreasing on [0,+∞). (18)

Theorem 3.1. Let X be a trajectory process of (SDE-M) and x∗ ∈ zerM . Then
the following statements are true:

(i) Assume that γ is nonincreasing on [0,+∞). For all t > 0 it holds

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

≤ 1

γ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γ(t)µ(t)

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

γ(t)µ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γ(t)µ(t)
.

If, in addition,
∫ +∞
0

σ2
∞(s)ds < +∞, then

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

= O
(

1

γ(t)t

)
as t→ +∞.

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

= O
(

1

γ(t)µ(t)t

)
as t→ +∞

(ii) Assume that 0 < γlow ≤ γ(t) for all t ≥ 0. For all t > 0 it holds

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

≤ 1

γlowt

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γlowµ(t)

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

γlowµ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γlowµ(t)
.
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If, in addition,
∫ +∞
0

σ2
∞(s)ds < +∞, then

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

= O
(
1

t

)
as t→ +∞.

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

= O
(

1

µ(t)t

)
as t→ +∞

(iii) Assume that 0 < γlow ≤ γ(t) for all t ≥ 0. If M is κ-strongly monotone with
constant κ ≥ 1

2µup
and X0 ̸= x∗, then for all t ≥ 0 it holds

E
(
1

2
∥X(t)− x∗∥2

)
≤

(
1

2
∥X0 − x∗∥2 + µup⟨M(X0), X0 − x∗⟩+

µ2
up

2
∥M(X0)∥2

)
e
− γlow

2µup
t
+
σ2
∗µup

γlow
.

If, in addition, σ∞ is decreasing and vanishes at +∞, then for all λ ∈ (0, 1)
and all t > 0 it holds

E
(
1

2
∥X(t)− x∗∥2

)
≤

(
1

2
∥X0 − x∗∥2 + µup⟨M(X0), X0 − x∗⟩+

µ2
up

2
∥M(X0)∥2

)
e
− γlow

2µup
t

+
σ2
∗µup

γlow
e
− γlow

2µup
(1−λ)t

+
µup

γlow
σ2
∞(λt).

Proof. (i) For all t ≥ 0 we set (see (15))

ϕ(t,X(t),M(X(t)))

= µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2

−
∫ t

0

(−µ̇(s) + γ(s))(⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2)ds

+

∫ t

0

⟨σ⊤(s,X(s))(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩

+
1

2

∫ t

0

tr(Σ(s,X(s)))ds

and G(t) := E(ϕ(t,X(t),M(X(t)))). Then, using that the expectation of the sto-
chastic integral is equal to zero and that µ̇(t) ≤ 0, for all t ≥ 0 it yields

G(t)−G(0)

= −E
(∫ t

0

(−µ̇(s) + γ(s))(⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2)ds
)

+
1

2
E
(∫ t

0

tr(Σ(s,X(s)))ds

)
≤ −γ(t)E

(∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
− γ(t)µ(t)E

(∫ t

0

∥M(X(s))∥2ds
)

+
σ2
∗t

2

(19)
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Rearranging and using that G(t) ≥ 0, we obtain for all t > 0

γ(t)E
(
1

t

∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
+ γ(t)µ(t)E

(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

t

(
µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2

)
+
σ2
∗
2

≤ 1

t

(
µ(0)L+

1

2
+
µ(0)2L2

2

)
∥X0 − x∗∥2 + σ2

∗
2
.

Taking the infimum over all x∗ ∈ zerM yields the result.

If
∫ +∞
0

σ2
∞(s)ds < +∞, then we have for all t > 0

G(t)−G(0)

≤ −γ(t)E
(∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)

− γ(t)µ(t)E
(∫ t

0

∥M(X(s))∥2ds
)
+

1

2
E
(∫ +∞

0

σ2
∞(s)ds

)
,

which, after rearrangement, gives

γ(t)E
(
1

t

∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
+ γ(t)µ(t)E

(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

t

(
µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2

)
+

1

2t
E
(∫ +∞

0

σ2
∞(s)ds

)
,

thus proving

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

= O
(

1

γ(t)t

)
as t→ +∞

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

= O
(

1

γ(t)µ(t)t

)
as t→ +∞.

(ii) The proof follows in the same lines as that of statement (i).
(iii) By using the strong monotonicity of the operator, for all t2 > t1 ≥ 0 it holds

E
(∫ t2

t1

(µ̇(s)− γ(s))(⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2)ds
)

≤ E
(∫ t2

t1

(
−µ(s)γ(s)∥M(X(s))∥2 − γ(s)⟨X(s)− x∗,M(X(s))⟩

)
ds

)
≤ γlowE

(∫ t

0

(
−µ(s)∥M(X(s))∥2 − ⟨X(s)− x∗,M(X(s))⟩

)
ds

)
≤ γlow

2µup
E
(∫ t2

t1

(
−2µ(s)µup∥M(X(s))∥2 − 2µup⟨X(s)− x∗,M(X(s))⟩

)
ds

)
≤ γlow

2µup
E
(∫ t2

t1

(
− 2µ(s)2∥M(X(s))∥2

− µ(s)⟨X(s)− x∗,M(X(s))⟩ − µupκ∥X(s)− x∗∥2
)
ds

)
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≤ γlow
2µup

E
(∫ t2

t1

(
− µ(s)2

2
∥M(X(s))∥2

− µ(s)⟨X(s)− x∗,M(X(s))⟩ − 1

2
∥X(s)− x∗∥2

)
ds

)
= − γlow

2µup

∫ t2

t1

G(s)ds.

Hence, according to (15), for all t2 > t1 ≥ 0 it holds

G(t2) ≤ G(t1)−
γlow
2µup

∫ t2

t1

G(s)ds+
1

2

∫ t2

t1

σ2
∞(s)ds

≤ G(t1)−
γlow
2µup

∫ t2

t1

G(s)ds+
1

2

∫ t2

t1

σ2
∗ds.

The solution of the ordinary differential equation{
φ′(t) = − γlow

2µup
φ(t) +

σ2
∗
2 ∀t > 0

φ(0) = G(0)

is

φ(t) = G(0)e
− γlow

2µup
t
+
σ2
∗µup

γlow
(1− e

− γlow
2µup

t
) ∀t ≥ 0,

hence, invoking Lemma 5.6, it holds

E
(
1

2
∥X(t)− x∗∥2

)
≤ G(t) ≤ G(0)e

− γlow
2µup

t
+
σ2
∗µup

γlow
∀t ≥ 0,

and the claim follows.
For σ∞ decreasing and vanishing at +∞, we consider the ordinary differential

equations {
φ′(t) = − γlow

2µup
φ(t) +

σ2
∞(t)
2 ∀t > 0

φ(0) = G(0).

Employing a technique used in [24], we choose λ ∈ (0, 1) and derive for its solution
the following estimates, that hold for all t ≥ 0

φ(t) = G(0)e
− γlow

2µup
t
+ e

− γlow
2µup

t
∫ t

0

σ2
∞(s)

2
e

γlow
2µup

s
ds

≤ G(0)e
− γlow

2µup
t
+ e

− γlow
2µup

t

(∫ λt

0

σ2
∞(s)

2
e

γlow
2µup

s
ds+

∫ t

λt

σ2
∞(s)

2
e

γlow
2µup

s
ds

)

≤ G(0)e
− γlow

2µupt + e
− γlow

2µup
t

(
σ2
∗
2

∫ λt

0

e
γlow
2µup

s
ds+

σ2
∞(λt)

2

∫ t

λt

e
γlow
2µup

s
ds

)

≤ G(0)e
− γlow

2µup
t
+ e

− γlow
2µup

t
(
σ2
∗µup

γlow
e

γlow
2µup

λt
+

2µup

γlow

σ2
∞(λt)

2
e

γlow
2µup

t
)
.

Hence, invoking again Lemma 5.6, it holds

G(t) ≤ G(0)e
− γlow

2µup
t
+
σ2
∗µup

γlow
e
− γlow

2µup
(1−λ)t

+
µup

γlow
σ2
∞(λt) ∀t ≥ 0,

proving the desired result.
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Remark 3.2. While the boundedness of γ from above is essential in the proof of
Theorem 2.4, the convergence rates in Theorem 3.1 hold also for γ not bounded
from above.

Remark 3.3. Finding the saddle points of the minimax problem (3)

min
x∈Rp

max
y∈Rq

Φ(x, y),

where Φ : Rp × Rq → R is a convex-concave function with L-Lipschitz continuous
gradient, is equivalent to solving equation (1) for

M : Rp × Rq → R, M(x, y) := (∇xΦ(x, y),−∇yΦ(x, y)).

The corresponding stochastic differential equation (SDE-M) reads

d(X(t) + µ(t)∇xΦ(X(·), Y (·)))
= −(γ(t)− µ̇(t))∇xΦ(X(·), Y (·))dt+ σ1(t,X(t), Y (t))dW (t),

d(Y (t)− µ(t)∇yΦ(X(·), Y (·)))
= (γ(t)− µ̇(t))∇yΦ(X(·), Y (·))dt+ σ2(t,X(t), Y (t))dW (t) ∀t > 0,

X(0) = X0, Y (0) = Y0,

(SDE-minimax)

and is defined over a filtered probability space (Ω,F , {Ft}t≥0,P) with σ1 : R+ ×

Rp × Rq → Rp×m and σ2 : R+ × Rp × Rq → Rq×m measurable such that

(
σ1
σ2

)
:

R+×Rp×Rq → R(p+q)×m satisfies (6),W a m-dimensional Brownian motion, X(·),
Y (·), ∇xΦ(X(·), Y (·)), and ∇yΦ(X(·), Y (·)) are stochastic Itô processes with the
same m-dimensional Brownian motion W , and parameter functions µ : [0,+∞) →
(0,+∞) and γ : [0,+∞) → (0,+∞) assumed to be continuous differentiable and,
respectively, integrable and to fulfill (12).

The system (SDE-minimax) has a unique trajectory solution (X,Y ) ∈ Sν
p+q, for

all ν ≥ 2. The trajectory (X,Y ) satisfies all the statements of Theorem 2.4 under
the corresponding hypotheses. Furthermore, for the gap function it holds almost
surely limt→+∞ Φ(X(t), y∗)− Φ(x∗, Y (t)) = 0 for any saddle point (x∗, y∗) of (3).
This is a straightforward consequence of the fact that for all t ≥ 0

∥(∇xΦ(X(t), Y (t)),−∇yΦ(X(t), Y (t)))∥∥(X(t), Y (t))− (x∗, y∗)∥
≥ ⟨(∇xΦ(X(t), Y (t)),−∇yΦ(X(t), Y (t))), (X(t), Y (t))− (x∗, y∗)⟩
= ⟨∇xΦ(X(t), Y (t)), X(t)− x∗⟩+ ⟨−∇yΦ(X(t), Y (t)), Y (t)− y∗⟩
≥ Φ(X(t), Y (t))− Φ(x∗, Y (t))− Φ(X(t), Y (t)) + Φ(X(t), y∗)

= Φ(X(t), y∗)− Φ(x∗, Y (t))

≥ 0.

(20)

The trajectory (X,Y ) satisfies also all the statements of Theorem 3.1 under the
corresponding hypotheses. Furthermore, for any saddle point (x∗, y∗) of (3) it holds

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
≤ 1

γ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist((X0, Y0), zerM)2 +

σ2
∗

2γ(t)µ(t)
∀t > 0,
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if γ is nonincreasing on [0,+∞), and

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
≤ 1

γlowt

(
µ2
upL

2

2
+ µupL+

1

2

)
dist((X0, Y0), zerM)2 +

σ2
∗

2γlowµ(t)
∀t > 0,

if 0 < γlow ≤ γ(t) for all t ≥ 0. If, in addition,
∫ +∞
0

σ2
∞(s)ds < +∞, then

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
= O

(
1

γ(t)t

)
as t→ +∞

and

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
= O

(
1

γ(t)t

)
as t→ +∞,

respectively.
Indeed, invoking Jensen’s inequality and (20), we have for all t > 0

0 ≤ E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
≤ E

(
1

t

∫ t

0

(Φ(X(s), y∗)− Φ(x∗, Y (s)))ds

)
≤ E

(
1

t

∫ t

0

⟨(∇xΦ(X(s), Y (s)),−∇yΦ(X(s), Y (s))), (X(s), Y (s))− (x∗, y∗)⟩ ds
)
.

4. Discrete time considerations. The aim of this section is to show how the
ergodic upper bound results in expectation for the squared norm of the operator and
for the gap function transfer to the stochastic variants of the Optimistic Gradient
Descent Ascent (OGDA) method and the Extragradient (EG) method with constant
step sizes, which can be interpreted as temporal discretizations of (SDE-M).

We will consider only equations governed by operators which are monotone,
but not necessarily strongly monotone. For a stochastic variant of the Optimistic
Gradient Descent Ascent (OGDA) method designed to solve variational inequalities,
ergodic upper bound results for the gap function in expectation have also been
derived in [6]. For the stochastic Extragradient (EG) method, ergodic upper bound
results in expectation for the squared norm of the operator have also been derived
in [16] (see also [8, 19]), and for the gap function [6]. As seen in Remark 3.3, the
upper bound results for the gap function can be straightforwardly transferred via
Jensen’s inequality and the gradient inequality for convex functions to the ergodic
primal-dual gap when solving convex-concave minimax problems.

Throughout this section, we will assume that only a stochastic estimator M(·, ξ)
is accessible instead ofM itself. The stochastic estimator is assumed to be unbiased,
meaning that Eξ(M(x, ξ)) = M(x) for all x ∈ Rn. Further, it is required to have
bounded variance, i.e., Eξ(∥M(x, ξ)−M(x)∥2) < σ2

∗ for all x ∈ Rn.

4.1. Stochastic Optimistic Gradient Descent Ascent (OGDA) method.
Recalling the stochastic differential equation (SDE-M)

d(X(t) + µ(t)M(X(t))) = −(γ(t)− µ̇(t))M(X(t))dt+ σ(t,X(t))dW (t),
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and fixing the parameter functions µ(t) = γ(t) := γ > 0 to be constant for all t ≥ 0,
we consider the temporal discretization

xk+1 − xk + γM(xk, ξk)− γM(xk−1, ξk−1) = −γM(xk, ξk) ∀k ≥ 1.

Equivalently,

xk+1 := xk − 2γM(xk, ξk) + γM(xk−1, ξk−1) ∀k ≥ 1, (Stochastic OGDA)

where x0, x1 ∈ Rn are given vectors and ξk encodes the stochasticity appearing at
iteration k.

We consider the approximation errors

Wk :=M(xk, ξk)−M(xk) ∀k ≥ 0,

and the sub-sigma algebras

Fk := σ(x0, x1, ξ0, ξ1, ..., ξk−1) ∀k ≥ 2.

Lemma 4.1. Let x∗ ∈ zerM and γ < 1
2L . For all k ≥ 2 it holds

∥xk+1 + γM(xk, ξk)− x∗∥

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2

− 2γ⟨M(xk, ξk), x
k − x∗⟩+ γ2(16γ2L2 − 1)

2(1− 4γ2L2)
∥M(xk−1)∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
+ 3γ2∥Wk∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2.

Proof. Let k ≥ 2 be fixed. We observe that

∥xk+1 + γM(xk, ξk)− x∗∥2

= ∥xk − γM(xk, ξk) + γM(xk−1, ξk−1)− x∗∥2

= ∥xk − γM(xk, ξk) + 2γM(xk−1, ξk−1)− x∗∥2 − γ2∥M(xk−1, ξk−1)∥2

− 2γ⟨xk − γM(xk, ξk) + γM(xk−1, ξk−1)− x∗,M(xk−1, ξk−1)⟩

= ∥xk + γM(xk−1, ξk−1)− x∗∥2 + ∥γM(xk−1, ξk−1)− γM(xk, ξk)∥2

− γ2∥M(xk−1, ξk−1)∥2

+ 2γ⟨xk + γM(xk−1, ξk−1)− x∗,M(xk−1, ξk−1)−M(xk, ξk)⟩

− 2γ⟨xk − γM(xk, ξk) + γM(xk−1, ξk−1)− x∗,M(xk−1, ξk−1)⟩

= ∥xk + γM(xk−1, ξk−1)− x∗∥2

+ γ2(∥M(xk−1, ξk−1)−M(xk, ξk)∥2 − ∥M(xk−1, ξk−1)∥2)

− 2⟨γM(xk, ξk), x
k − x∗⟩

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x
k − x∗⟩

− γ2∥M(xk−1, ξk−1)∥2

+ γ2
(
∥Wk−1 +M(xk−1 −M(xk)) +Wk∥2

)
≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩

− γ2∥M(xk−1, ξk−1)∥2
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+ 3γ2(∥Wk−1∥2 + ∥M(xk−1)−M(xk)∥2 + ∥Wk∥2).

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x
k − x∗⟩

− γ2∥M(xk−1, ξk−1)∥2

+ 3γ2(∥Wk−1∥2 + L2∥xk−1 − xk∥2 + ∥Wk∥2). (21)

On the other hand,

∥xk − xk−1∥2

= γ2∥ − 2M(xk−1, ξk−1) +M(xk−2, ξk−2)∥2

= γ2∥ −M(xk−1, ξk−1) +Wk−1 +M(xk−2)−M(xk−1) +Wk−2∥2

≤ 4γ2(∥M(xk−1, ξk−1)∥2 + ∥Wk−1∥2 + L2∥xk−1 − xk−2∥2 + ∥Wk−2∥2),

therefore,

(1− 4γ2L2)∥xk − xk−1∥2 ≤ 4γ2(∥M(xk−1, ξk−1)∥2 + ∥Wk−1∥2 + ∥Wk−2∥2)

+ 4γ2L2
(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
. (22)

Plugging (22) into (21), we obtain

∥xk+1 + γM(xk, ξk)− x∗∥2

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x
k − x∗⟩ − γ2∥M(xk−1, ξk−1)∥2

+
12γ4L2

1− 4γ2L2
∥M(xk−1, ξk−1)∥2 + 3γ2∥Wk∥2

+

(
3γ2 +

12γ4L2

1− 4γ2L2

)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
= ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩

+
16γ4L2 − γ2

1− 4γ2L2
∥M(xk−1, ξk−1)∥2 + 3γ2∥Wk∥2

+

(
3γ2 +

12γ4L2

1− 4γ2L2

)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩

+
γ2(16γ2L2 − 1)

2(1− 4γ2L2)
∥M(xk−1)∥2

+ 3γ2∥Wk∥2 +
γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
,

as claimed.

The following theorem provides ergodic upper bounds in expectation for the
squared norm of the operator and the gap function for (Stochastic OGDA).
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Theorem 4.2. Let x∗ ∈ zerM and γ < 1
4L . For all K ≥ 0 it holds

min
k=1,...,K+1

E
(
∥M(xk)∥2

)
≤ E

(
1

K + 1

K+1∑
k=1

∥M(xk)∥2
)

≤ 1

K + 1

2(1− 4γ2L2)

γ2(1− 16γ2L2)

(
4∥x1 − x∗∥2 + 4γ2L2(1− γ2L2)

1− 4γ2L2
∥x1 − x0∥2 + 8γ2σ2

∗

)
+

16γ2L2 + 11

1− 16γ2L2
σ2
∗

and

E

(
1

K + 1

K+2∑
k=2

⟨M(xk), xk − x∗⟩

)

≤ 1

K + 1

(
2∥x1 − x∗∥2

γ
+

2γL2(1− γ2L2)

1− 4γ2L2
∥x1 − x0∥2 + 4γσ2

∗

)
+
γ(16γ2L2 + 11)

4(1− 4γ2L2)
σ2
∗.

Proof. Let K ≥ 0. According to Lemma 4.1, we have for all k ≥ 2

γ2(1− 16γ2L2)

2(1− 4γ2L2)
∥M(xk−1)∥2 + 2γ⟨M(xk, ξk), x

k − x∗⟩

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − ∥xk+1 + γM(xk, ξk)− x∗∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
+

12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2.

Summing the above inequality for k from 2 to K+2 and multiplying by 1
K+1 yields

γ2(1− 16γ2L2)

2(1− 4γ2L2)

1

K + 1

K+1∑
k=1

∥M(xk)∥2 + 2γ

K + 1

K+2∑
k=2

⟨M(xk, ξk), x
k − x∗⟩

≤ 1

K + 1

(
∥x2 + γM(x1, ξ1)− x∗∥2 − ∥xK+3 + γM(xK+2, ξK+2)− x∗∥2

)
+

1

K + 1

12γ4L4

1− 4γ2L2

(
∥x1 − x0∥2 − ∥xK+2 − xK+1∥2

)
+

1

K + 1

K+2∑
k=2

(
12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2

)
≤ 1

K + 1

(
∥x2 + γM(x1, ξ1)− x∗∥2 + 12γ4L4

1− 4γ2L2
∥x1 − x0∥2

)
+

1

K + 1

K+2∑
k=2

(
12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2

)
.

For all k = 2, ...,K + 2 we have that

E(⟨M(xk, ξk), x
k − x∗⟩) = E(E(⟨M(xk, ξk), x

k − x∗⟩|Fk))
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= E(⟨E(M(xk, ξk)|Fk), x
k − x∗⟩)

= ⟨M(xk), xk − x∗⟩

and

E(∥Wk∥2) = E(E(∥Wk∥2|Fk)) ≤ σ2
∗.

This yields

γ2(1− 16γ2L2)

2(1− 4γ2L2)
E

(
1

K + 1

K+1∑
k=1

∥M(xk)∥2
)

+ 2γE

(
1

K + 1

K+2∑
k=2

⟨M(xk), xk − x∗⟩

)

≤ 1

K + 1

(
E(∥x2 + γM(x1, ξ1)− x∗∥2) + 12γ4L4

1− 4γ2L2
∥x1 − x0∥2

)
+

1

K + 1

K+2∑
k=2

E
(

12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2

)
≤ 1

K + 1

(
4∥x1 − x∗∥2 + 4γ2L2∥x1 − x0∥2 + 8γ2σ2

∗ +
12γ4L4

1− 4γ2L2
∥x1 − x0∥2

)
+
γ2(16γ2L2 + 11)

2(1− 4γ2L2)
σ2
∗

=
1

K + 1

(
4∥x1 − x∗∥2 + 4γ2L2(1− γ2L2)

1− 4γ2L2
∥x1 − x0∥2 + 8γ2σ2

∗

)
+
γ2(16γ2L2 + 11)

2(1− 4γ2L2)
σ2
∗,

and concludes the proof.

4.2. Stochastic Extragradient (EG) method. The stochastic Extragradient
method (EG) reads{

yk := xk − γM(xk, ξk)

xk+1 := xk − γM(yk, ηk)
∀k ≥ 0, (Stochastic EG)

where x0 ∈ Rn is a given vector and ξk and ηk encode the stochasticity appearing
at iteration k when evaluating M at xk and yk, respectively.

We consider the approximation errors

Wk :=M(xk, ξk)−M(xk) and Zk :=M(yk, ηk)−M(yk) ∀k ≥ 0,

and the sub-sigma algebras

F0 := σ(x0) and Fk := σ(x0, ξ0, ξ1, ..., ξk−1, η0, ..., ηk−1) ∀k ≥ 1

and

F̂0 := σ(x0, ξ0) and F̂k := σ(x0, ξ0, ξ1, ..., ξk−1, ξk, η0, ..., ηk−1) ∀k ≥ 1.

First, we establish an inequality that will be essential to the proof of the conver-
gence rate.
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Lemma 4.3. Let x∗ ∈ zerM . For all k ≥ 0 it holds

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γ⟨M(yk, ηk), y
k − x∗⟩+ 2(3L2γ2 − 1)∥M(xk)∥2

+ γ2(3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2).

Proof. Let k ≥ 0. We have

∥xk+1 − x∗∥2

= ∥xk − γM(yk, ηk)− x∗∥2

= ∥xk − x∗∥2 − 2γ⟨xk − x∗,M(yk, ηk)−M(x∗)⟩+ γ2∥M(yk, ηk)−M(x∗)∥2

= ∥xk − x∗∥2 − 2γ⟨yk + γM(xk, ξk)− γM(x∗)− x∗,M(yk, ηk)−M(x∗)⟩

+ γ2∥M(yk, ηk)−M(x∗)∥2

= ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩

− γ2(2⟨M(xk, ξk)−M(x∗),M(yk, ηk)−M(x∗)⟩

− ∥M(yk, ηk)−M(x∗)∥2)

= ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩ − γ2∥M(xk, ξk)∥2

+ γ2(∥M(yk, ηk)−M(xk, ξk)∥2)

≤ ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩ − γ2∥M(xk, ξk)∥2

+ γ2(3∥M(yk, ηk)−M(yk)∥2 + 3∥M(yk)−M(xk)∥2

+ 3∥M(xk)−M(xk, ξk)∥2)

≤ ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩+ γ2(3L2 − 1)∥M(xk, ξk)∥2

+ γ2(3∥Zk∥2 + 3∥Wk∥2)

≤ ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩+ 2(3L2γ2 − 1)∥M(xk)∥2

+ γ2(3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2),
as claimed.

The following theorem provides ergodic upper bounds in expectation for the
squared norm of the operator in terms of the sequence (xk)k≥0 and the gap function
in terms of the sequence (yk)k≥0.

Theorem 4.4. Let x∗ ∈ zerM and γ < 1√
3L

. For all K ≥ 0 it holds

min
k=0,...,K

E
(
∥M(xk)∥2

)
≤ E

(
1

K + 1

K∑
k=0

∥M(xk)∥2
)

≤ 1

K + 1

1

2(1− 3L2γ2)
∥x0 − x∗∥2 + γ2(2 + 3L2γ2)

1− 3L2γ2
σ2
∗

and

E

(
1

K + 1

K∑
k=0

⟨M(yk), yk − x∗⟩

)
≤ 1

K + 1

1

2γ
∥x0 − x∗∥2 + γ(2 + 3L2γ2)σ2

∗.

Proof. Let K ≥ 0. According to Lemma 4.3, we have for all k ≥ 0

2(1− 3L2γ2)∥M(xk)∥2 + 2γ⟨M(yk, ηk), y
k − x∗⟩

≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + γ2(3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2).
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Summing the above inequality for k from 0 to K and multiplying by 1
K+1 it yields

2(1− 3L2γ2)

K + 1

K∑
k=0

∥M(xk)∥2 + 2γ

K + 1

K∑
k=0

⟨M(yk, ηk), y
k − x∗⟩

≤ 1

K + 1
(∥x0 − x∗∥2 − ∥xK+1 − x∗∥2)

+
γ2

K + 1

(
K∑

k=0

3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2
)

≤ 1

K + 1
∥x0 − x∗∥2 + γ2

K + 1

(
K∑

k=0

3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2
)
.

For all k = 0, ...,K we have that

E(⟨M(yk, ηk), y
k − x∗⟩) = E(E(⟨M(yk, ηk), y

k − x∗⟩|F̂k))

= E(⟨E(M(yk, ηk)|F̂k), y
k − x∗⟩)

= ⟨M(yk), yk − x∗⟩
and

E(∥Wk∥2) = E(E(∥Wk∥2|Fk)) ≤ σ2
∗ and E(∥Zk∥2) = E(E(∥Zk∥2|F̂k)) ≤ σ2

∗.

This yields

2(1− 3L2γ2)E

(
1

K + 1

K∑
k=0

∥M(xk)∥2
)

+ 2γE

(
1

K + 1

K∑
k=0

⟨M(yk), yk − x∗⟩

)

≤ 1

K + 1
∥x0 − x∗∥2 + 2γ2(2 + 3L2γ2)σ2

∗.

and concludes the proof.

4.3. Numerical experiments. In order to illustrate the convergence behaviour
of the two stochastic algorithms, we consider the monotone equation associated to
the following minimax problem (see also [7, 29])

min
x∈Rn

max
y∈Rn

Φ(x, y),

where

Φ(x, y) :=
1

2
⟨x,Hx⟩ − ⟨x, h⟩ − ⟨y,Ax− b⟩,

with

A :=
1

4


−1 1

...
...

−1 1
−1 1
1

 ∈ Rn×n, H := 2A⊤A,

b :=
1

4


1
1
...
1
1

 ∈ Rn and h :=
1

4


0
0
...
0
1

 ∈ Rn.
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For n = 10, we performed the stochastic OGDA and EG methods with 50000
iterations for a total of 100 times. In Figure (1) we plot the averaged squared norm
of the operator

M(x, y) = (∇xΦ(x, y),−∇yΦ(x, y))

for the stochastic OGDA and EG methods in loglog scale. The shaded areas repre-
sent the range between the best and worst-case instances, while the strongly colored
lines depict the average over all 100 runs of the algorithms. The error term in the
k-th iteration was chosen as a

k
√
n
(1, ..., 1)T , where a is normally distributed with

mean 0 and standard deviation 10. While there does not seem to be much differ-
ence in performance between the stochastic OGDA and EG methods, at least in the
example considered for the numerical experiments, the latter supports the O

(
1
k

)
convergence rates as being the fastest one can expect from these methods.

Figure 1. The convergence behaviour of the averaged squared
norm of the operator for the stochastic OGDA and EG methods

5. Appendix. In the appendix, we present several auxiliary results utilized in the
analysis conducted in this paper. The following theorem will play a crucial role in
establishing the existence and uniqueness of a solution to (SDE-M).

Theorem 5.1. ( [24, Theorem A.7], [27, Theorem 5.2.1]) Let F : R+ × Rn → Rn

and G : R+ × Rn → Rn×m be measurable functions satisfying, for every T > 0

∥F (t, x)− F (t, y)∥+ ∥G(t, x)−G(t, y)∥F ≤ C1∥x− y∥, ∀x, y ∈ Rn ∀t ∈ [0, T ],

for some constant C1 ≥ 0. Then the stochastic differential equation{
dX(t) = F (t,X(t))dt+G(t,X(t))dW (t) ∀t ∈ [0, T ],

X(0) = X0,
(SDE-gen)

where W is an Ft-adapted m-dimensional Brownian motion, has a unique solution
X ∈ Sν

n[0, T ], for every ν ≥ 2.
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Next, we introduce Itô’s formula (see [13]).

Proposition 5.2. Let X ∈ Sν
n be the solution of (SDE-gen){

dX(t) = F (t,X(t))dt+G(t,X(t))dW (t) ∀t ≥ 0,

X(0) = X0,

where W is an Ft-adapted m-dimensional Brownian motion, and, for all T > 0,
F = (F1, ..., Fn) : R+ × Rn → Rn satisfies

E

(∫ T

0

|Fi(t,X(t))|dt

)
< +∞,

and G = (Gij)i={1,...,n},j={1,...,n} : R+ × Rn → Rn×m satisfies

E

(∫ T

0

|Gij(t,X(t))|2dt

)
< +∞.

Further, let ϕ : R+ × Rn → R be such that ϕ(·, x) ∈ C1(R+) for all x ∈ Rn and
ϕ(t, ·) ∈ C2(Rn) for all t ≥ 0. Then the process

X̃(t) = ϕ(t,X(t))

is an Itô process such that

dX̃(t) =
d

dt
ϕ(t,X(t))dt+

n∑
i=1

d

dxi
ϕ(t,X(t))dXi(t)

+
1

2

n∑
i,j=1

d2

dxidxj
ϕ(t,X(t))

m∑
ℓ=1

Giℓ(t,X(t))Gjℓ(t,X(t))dt ∀t ≥ 0.

Further, if, for all T > 0,

E

(∫ T

0

∥σ⊤(s, (X(s), Y (s)))∇xϕ(s,X(s))∥2ds

)
< +∞,

then
∫ t

0

〈
σ⊤(s, (X(s), Y (s)))∇xϕ(s, (X(s), Y (s))), dW (s)

〉
is for all t ≥ 0 a square-

integrable continuous martingale with expected value 0.

The proof of the convergence results in Theorem 2.4 relies on the following result.

Theorem 5.3. ( [23, Theorem 3.9], Theorem 3.9) Let {A(t)}t≥0 and {U(t)}t≥0

be two continuous adapted increasing processes with A(0) = U(0) = 0 a.s. Let
{N(t)}t≥0 be a real-valued continuous local martingale with N(0) = 0 a.s. Let ξ be
a nonnegative F0-measurable random variable. Define

X(t) := ξ +A(t)− U(t) +N(t) for ∀t ≥ 0.

If X(t) is nonnegative and limt→+∞A(t) < +∞ a.s., then a.s. limt→+∞X(t) exists
and is finite, as well as limt→+∞ U(t) < +∞.

In order to show that limt→+∞ ∥M(X(t))∥ = 0 a.s., we make use of the following
lemma as well as of Doob’s martingale convergence theorem presented below.

Lemma 5.4. ( [24, Lemma A.4]) Let f : R+ → R be such that lim inft→+∞ f(t) ̸=
lim supt→+∞ f(t). Then, there exists a constant α such that lim inft→+∞ f(t) <



492 RADU IOAN BOT, AND CHIARA SCHINDLER

α < lim supt→+∞ f(t), and for every β > 0 we can define a sequence (tk)k∈N ⊆ R
with the properties that

f(tk) > α and tk+1 > tk + β, ∀k ∈ N.

Theorem 5.5. [12] Let {M(t)}t≥0 : Ω → R be a continuous martingale such that
supt≥0 E(|M(t)|p) < +∞ for some p > 1. Then there exists a random variable M∞
such that E(|M∞|p) < +∞ and limt→+∞M(t) =M∞ a.s.

The derivation of convergence rate in the strongly monotone case necessitates
the following lemma.

Lemma 5.6. ( [24, Lemma A.2]) Let t0 ≥ 0 and T > t0. Assume that h :
[t0,+∞) → R+ is measurable with h ∈ L1([t0, T )), that ψ : R+ → R+ is continuous
and nondecreasing, and the Cauchy problem{

φ′(t) = −ψ(φ(t)) + h(t) for almost all t ∈ [t0, T ]

φ(t0) = φ0 > 0

has an absolutely continuous solution φ : [t0, T ] → R+. If a bounded lower semi-
continuous function ω : [t0, T ] → R+ satisfies ω(t0) = φ0 and

ω(t2) ≤ ω(t1)−
∫ t2

t1

ψ(ω(s))ds+

∫ t2

t1

h(s)ds ∀t0 ≤ t1 < t2 ≤ T,

then

ω(t) ≤ φ(t) ∀t ∈ [t0, T ].
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