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1. Introduction

We consider the following multiobjective optimization problem with convex objective func-

tions and linear inequality constraints

(P) ggrﬁin F(z),

Az{xé]R":x}% 0,Az+b = 0}

0 K
Ky € R" and K; C R’ are assumed to be convex closed cones defining partial orderings

according to = xo if and only if z; — 25 € K (analogously for K7 instead of Kj).
0

The functions f;(z), mapping i = 1,...,m, from R" into R = RU{+oc0, —co} are convex.
N domfz) # (0 and fi(z) > —coVz € R", i =1,...,m,
1

i=

where domf; = {x € R" : f;(z) < oo}.

Moreover, let be the interior int <

By A is denoted any real [ x n matrix and b € R', b # (0,...,0)7.
An element = € A is called admissible for the problem (P) and the set A is the admissible

domain.

The notation v — min” refers to a vector minimum problem is investigated. This is a
symbolic denotation requires to explain the considered notion of solutions. In this paper
minimal and proper minimal solutions of the problem (P) are studied. We introduce the

well-known solution concept of so-called efficient or Pareto-optimal solutions.

Definition 1



An element T € A is said to be efficient (or minimal or Pareto-minimal) if from

F(x) ]ém F(z) for ze€ A follows F(z)= F(z).
+

Here R = {z = (z1,...,2,)T € R™ : 15 Z0,i=1,.. .,m} denotes the ordering cone of
the non-negative elements in R™.

For (P) we are concerned with a sharpened notation, the so-called proper efficiency.

Definition 2
An element T € A is said to be properly efficient or properly minimal if there exist positive

numbers \;, i = 1,...,m, such that S \;fi(Z) = Y \ifs(x) Vo € A
i=1 i=1

Of course, a properly efficient element also turns out to be an efficient one (even if the

functions f are not convex).

By this definition a properly efficient element z € A is a solution of the scalarized problem

(Pr) to (P)

inf Aifi() .
(B re A z; ’

2. The dual of the scalarized problem
Our aim is to construct a multiobjective dual problem to (P). To do so we want to use a
dual problem of the scalarized problem (P,).

But the usual Lagrangian dual problem

(Pf,,) sup  inf  L(z,p)

with the Lagrangian
m
L(z,p) =Y _Aifi(z) + p" (Az +b)
i=1
is not a suitable dual problem for our purpose to construct a multiobjective dual problem

to (P).

To overcome this situation we will derive another dual problem by means of the Fenchel-

Rockafellar approach of establishing a dual problem using a perturbation of the primal



problem (P,). This approach permits to form different dual problems to an original primal

problem depending on the kind of perturbation.

We introduce the following perturbation function ®(x, @1, ..., om, )

@(mu(plu"wgoﬂh’)/) = i=1 KO [?1 (1)

0, otherwise ,

with the perturbation variables

pieR" i=1,....,m,andy € R".
So we have the perturbed optimization problem to (Py) (¢ = (¢1, ..., ¢m))

(P)\HPKY) inf q)(x7¢17'-'7()0m77)'
reR"

For ¢; = (0,...,0)T,v = (0,...,0)" (we agree to write ¢ = 0, 7 = 0) we get (Pyr.o0) = (P)).
Then (cf. Ekeland, Temam Buch) a perturbed dual problem (P5) to (P,) may be defined
by

P;...) sup —®* (2", 05, .o Y
(A,)(ﬁew’ {=®"(z", ¢ )}
1=1,...,m,
,y* c ]RZ
using the conjugate function ®* to ®
m
(2, @}, 7)) = sup e e+ oo+ vy — @z, 01, om) ¢ - (2)
ZT,p; € an =1
1=1,...,m,
v e R’
There is z*, ¢ €e R", 1 =1,....m,v* € R’ and z* represents the perturbation variable of

the dual problem. For z* = (0,...,0)T (we write as usual z* = 0) the dual problem (P5) to
(P)\) is

(PY) sup  {=®(0, 7, 95,7}
p; € RY,
1=1 ,m,

R
To deduce (P5) we replace @ in (2) by means of (1)



q)*(.’L'*,QOI,,QO;;,’Y*) = Sup {

m m
eTe 4+ oMo+ Ty =) Nifi(z + %)} :

T, ¢; € R", i—1 i—1
1=1,...,m,
Ar+b = v,z 2 0

K Ko

To calculate this expression we introduce new variables ¥; instead of ¢; and z instead of ~
by

yi=x+yg;,i=1,....m, z=v—Ax —0».

This implies

D (2", 07, o5 Y)

sup {m*Tx+Z<PfT(yz‘ — ) + 97 (2 + Az + ) _Z)‘ifi(yi)}
Yi € an =1 =
= m

Ix_'o K1
e 1 * = * * *
=1 y; € R" ! x 2 0 =Ly «T
Kt sup Y 2+ b.
z 20
K

We compute the different suprema and get

1 * * 1 *
sup {)\ﬁ@iTyi - fz(yz)} = f; <)\.()0i> )
ye R LA z

0,if =Y @f +a*+ ATy* = 0,
= i=1

sup {(_ Z ¢; 2"+ AT’Y*)TJC}
i=1

%
K;
>
Ko o0, otherwise |,
ek <
- 0,if v* = 0,
YA *
sup 7Y Kj
z 20
K1

oo, otherwise ,
using the dual cones Kj and K7 to Ky and K, respectively.

The dual cone K* C R* to the cone K C RF is defined by K* = {a* € R* : 2*Tx 2 0 for
all z € K}.



Substituting p; = {-¢; the perturbed dual problem (P,,.) is

(Prar) sup {— Z Aifi (i) — ’V*Tb} .
i—1

7 =0,
m Ky
- LA+ ATy
.:1 x*

2 0

Setting z* = 0 the dual problem (P5) to (Py) is

(Py) sup {_Z/\lfz*(p;k) _’Y*Tb} 5

(p;"'ap:m’y*) EB}\ i=1

where the set of constraints is given by

By= S (0h- P i7" = 0, =) hpf + ATy 20
K7 i=1 K}
Indeed, this is a dual problem that allows to have an idea how the multiobjective dual

problem to (P) could look like.

Before intoducing the vector dual problem some properties of the above scalar dual problems

(P,) and (P5) are mentioned.

First we point out that there is weak duality between (P,) and (Py) by construction (cf.
Ekeland, Temam), i. e. sup(P;) = inf(P).

But, we are interested in the existence of strong duality sup(Py) = inf(P)) or even max(Fy)
= min(P)) meaning the existence of solutions to the problems. One classical assumption as-
suring the strong duality is that a constraint qualification (Slater condition) is fulfilled. This
means that there exists an admissible element 2’ € A such that f;(2'), i =1,...,m, is con-

tinuous (i.e. ' € int (rﬁl dom f;)) fulfilling the inequality Az’ +b < 0 (i.e. Az'+b€ —K))
i= Kl

in the strict sense Az’ +b € — int Ky, also described by Ax' + b [<{ 0. Obviously, this
1

implies that int K7 #(. This condition is sufficient for strong duality (cf. Ekeland/Temam)
but, as well-known, not necessary. Thus, other types of constraint qualifications still exist.
Moreover, according to the general duality theory the dual problem (Py) has a solution.

Thus we can formulate the following strong duality theorem.



Theorem 1

Ko
qualification Az’ +b € — int K;. Then the dual problem (P5) has a solution and strong

duality inf(P)) = max(P5) holds.

Let there exists an element 2’ € int (Trrﬁll dom f;) fulfilling ' > 0 and the constraint
1=

Remark:
If we set m = 1,f; = f, \y = 1 (the case of singleobjective optimization) and K, =
R", K; = R’ (meaning A = R") we obtain as primal problem

x len%{” /(@)

and the dual problem takes the form
sup _f*(p*) - V*Tb}7
" 7") € li’
where

B ={(p7):y" = 0, —p"+ ATy = 0}
K; K
(p*.7*) 17" =0, —p"+ ATy* =0}

(0,0)}

Il
S %

{

{

because Kj = {0}, K; = {0}, i.e.  sup é—f*(p*) — v Tp} = —£*(0).
(p*,7") €

This is the well-known trivial relation

—f*(0) = inf f(z) coming from f*(0) = sup {07z — f(z)} = —inf f(2).
z € R" r € R" r € R"

For investigating later the multiobjective duality to (P) we need optimality conditions re-
garding to the scalar problem (P,) and its dual (Py). These are formulated in the following

theorem.

Theorem 2

(a) Under the assumptions of Theorem 1 let & be a solution to (Py)

reA i=1



(b)

Then a tupel (pj,...,p5,7"), pf € R", i =1,...,m, " € R’ exists fulfilling the
inequalities
m
720, =) Ap+ATF 20
K} i=1 K;

such that the following optimality conditions are satisfied

@) e+ i@ =pTz,i=1,...,m,
m T

(44) <—§jAm$+Aﬁﬁ> z=0,
=1

(ii1) T (Az +b) = 0.

Let Z be admissible to (Py) and (p5,...,7;,,7") be admissible to (Py) satisfying
(2), (i), (iid).

Then 7z and (pj, ..., ., 7") turn out to be solutions to (Py) and (Py), respectively.

Remark:

(a)

(b)

As well-known in convex optimization the optimality conditions are necessary and

sufficient. But for the sufficiency the constraint qualification is not necessary.

The conditions (i7) and (7i7) have the well-known structure of so-called complementary

slackness conditions.

The tupel (p3,...,p%,,7") in (a) (of Theorem 2) even represents a solution of the dual

problem (P5) (cf. the proof).

The condition (i) shows that the so-called Young inequality f;(z) + fi(p}) > pitx
is fulfilled as equality. This means that p; belongs to the subdifferential of f; at
Z, i.e.p; € 0f;(Z) and vice versa, whence T € Of(p;).
Therefore condition (ii) in case of Ky = R’} and € int R} may be written — Y A\;pf+
i-1
AT5* = 0 and hence AT¥* € >~ N\;0f;(%). Anyway, if a solution (P}, ..., Pk, ¥*) to (P})
i=1

is known then the condition (i), (74) and (i7i) permit to identify a solution to (Py).

Proof:

(a)

Let Z be a solution to (Py). Then because of theorem 1 (strong duality) a solution

(DY, .- P, 7) to (Py) exists and the objective function values are equal.

7



This means
Z)\z’fz'(i') = _Z)‘z’fi(p;) —77h. (3)
i=1 i=1

Adding Y- \piTz — S ApiTa + (AT4*)Tz — (AT5*)Tz = 0 to (3) yields after some
i=1 i=1

transformations
0= Y N[+ fi(@] +3Tb = S ATz + Y \piTz + (ATy) Tz — (ATy*)Tz
=1 =1 =1
m m T
—— S - 07 - @) + (— S+ AT7*> (ca) 47y T(Az + D). (4)

Because of the definition of the conjugate function

f@) = sup  ApTe — fi(x)} =T — fi(z)  follows
reR"”

;) = (07— fi(x) = 0.

Further, because of T 20 and — Y \pr +ATy = 0 itis
Ko =1 K;
m T
(— >+ ATW*) (—z) =0 andsince 5" = Oand Az +b < 0
i=1 K7 K

follows 7T (AZ +b) = 0.
Now (4) implies that all those expressions must be equal to zero. This gives the

optimality conditions (i), (i) and (i4i).

(b) All calculations and transformations done within part (a) may be carried out in the
inverse direction starting from the conditions (i), (#4) and (7). Thus the quation

(3) results which is strong duality and shows Z solves (Py) and (p},...,p,,7") solves
(PY) - =

3. The multiobjective dual problem

Now, with the above preparation we are able to formulate a multiobjective dual problem to
(P).



First of all we introduce an usual definition of weak and strong duality in vector optimization.

Let be given two multiobjective optimization problems, a minimum problem

v — min F(x) (5)
re A
and a maximum one
v — max G() (6)
y€eB

where F(z),G(y) € R™.

Definition 3
Between (5) and (6) there is weak duality if there is no z € A and no y € B fulfilling

Gly) = F(x) and Gly) # F(o).
R

Remark:

(a) Here the partial ordering in R™ given by R'!" is considered. But of course it is possible
to underlay another partial ordering in R™ (or in another objective space Z). Then
the definition of efficient solutions has to be changed by substituting the corresponding

partial ordering (ordering cone, respectively).

(b) Obviously, this definition represents a natural generalization of the so-called weak

duality within the scalar mathematical programming theory as verified above for (P))

and (Py).

If under the supposition of weak duality there are elements z and gy, such that F(xy) =
G(yo), thus, as in scalar optimization, we call this strong duality. The elements zo and

are then efficient to (5) and (6), respectively, as can be proved easily (cf. G”opfert/Nebse).

But this strong duality is connected with the point (F(z)(= G(yo)) and thus with =, and
Yo. S0 this strong duality is a local property. It may happen that for another efficient

solution z; € A there is no y; € B realizing F(z1) = G(y1).

Therefore, one normally is interested in such a global form of strong duality where to each
properly efficient point = € A of (5) there is a point y € B (which then necessarily is efficient
to (6)) with F(z) = G(y) or vice versa.



We will later create this global form of strong duality for our original multiobjective problem

(P).

Now a dual multiobjective optimization problem (P*) to (P) is introduced by

(P*) v—max  G(p*,d")

(p*,0%) € B
with
g1(p*, 0%) —fi(p) — 017b
G(p*,0") = : = :
G (p*, 6*) fa k) — 0xTh

and with the dual variables

p'= (pro....p5), pr €RY, 6" =(61,...,0%), 6 eRi=1,...,m,
and with the set of constraints

B= {(p*0*):3\>0,1=1,...,m, such that

A0 =00, 3 Ai(—p; + ATop) = 0} (7)
=1 Kf i=1 K

O x

With the symbolic notation ”v-max” we mean again (in an analogous manner to ”v-min” for
(P)) efficient solutions, but now in the sense of a maximum, therefore also called maximal

(or Pareto-maximal) elements.

Definition 4 An element (p*,0*) € B is said to be efficient or maximal (or Pareto-

maximal) for (P*) if from

G(p*,0") G(p*,6*) for (p*,6*) € B

e
m
]R-l-

follows G (p*,d*) = G(p*, 6*).
First, we will show that we are entitled to call (P*) a dual problem to (P) because the weak

duality property according to Definition 3 may be pointed out. Afterwards, strong duality

will be established. This follows within the next section.

10



4. Weak and strong duality

The following theorem states the weak duality assertion (cf. Definition 3).

Theorem 3

There is no z € A and no (p*,0*) € B fulfilling G(p*, 6*)

1Y

F(z) and G(p*,d*) # F(x).

=

m
+
For the proof we refer to [...].

The following theorem expresses the strong duality in the global sense observed in section 3.

Theorem 4

Assume the existence of an element 2’ € int (rnﬁl dom f;) fulfilling ' =0 and Az’ +b €
i=1 0

—intK;. Assume b # (0,...,0)T. Let z be a properly efficient element to (P). Then an
efficient solution (p*,6*) € B to the dual problem (P*) exists and the strong duality is true
F(z) = G(p*, 6").

Proof:
Assume Z to be properly efficient to (P). From Definition 2 follows the existence of a cor-
responding scalarizing vector A = (A1,..., Ay,)T € int R such that Z solves (P,). Theorem
1 assures the existence of an element (p*,7*) to the dual problem (P5) and Theorem 2 and

the attached remarks say that the optimality condition (i), (ii) and (iii) of Theorem 2 are

satisfied.
Let us define the elements 07,7 = 1,...,m, by means of Z and (p*,7*).
PiTT _y o T
_ _,—Y*Tb’y 1f7 b#07
0; = (8)
Ly = (piTr)y with e Ry h=1if3"Tb=0.

Of course such a 7* exists, e.g. 7* = W may be chosen with ||b|| the Euclidean norm of
b € R’ No it is verified that (p*,0*), 6* = (0%,...,6%), is admissible to (P*) and satisfies

F(z) = G(p*,0*), which claims the strong duality and the efficiency of (p*,6*) to (P*)

according to the remark attached to Definition 3.

Therefore (p*,6*) € B will be proved. First let be *7b # 0. Then (9), (ii) and (iii) from

11



Theorem 2 imply

=g (=D 1)Y
i=1 i=1 7
1 - T !
— 7Th <_Z )‘zﬁ: > i"y*
i=1
T
= 75 (ATY) 2y

E )\15: = Z )\Z ml)\l ’7* + Z )‘z (—p*T$)’y*
i=1 i=1 =1
m T ~
= ¥+ |- /\iﬁz> "
i=1

|
2l
*
+
— —
2l
*.
~
>
SN—"
2
*
I
2l
*

0 as well as > A\ (—pf +

JFrom (p*,7*) € B, follows 7* =
K* =1
1

0 and therefore > \;0}
=1

)

A
*

ATSH) =30 N (—=pf) + AT4* = 0. This means (p*,6*) € B, i.e. it is admissible to (P*).
=1 K*
1
Next, we demonstrate the equality of the values of the objective functions F(Z) and G (p*, §*).
Let us start again with the case ¥*Tb # 0. With (8) and (i) from Theorem 2 holds for
1=1,...,m
g9i(B*,6%) = —fi(p") — o;"b
= —f1(0}) + = (07 2) (7 TD)
= fl@) = piTz +pie = fil2).

In case of ¥*Tb = 0 may be calculated

gi(p*.6%) = —fr(p) —6;Tb
= —fi ) = 7T+ 0T ) (77T)
= filz) - piTe+piTz = fi(T).

Alltogether, (p*,6*) must be efficient to (P*) and the proof is complete. a
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