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Abstract. Using the Fenchel-Rockafellar approach for the convex mathematical
programming problem with inequality constraints different dual optimization prob-
lems by means of distinct perturbations of the primal problem are derived and
studied. The classical Lagrange dual problem is one of those dual problems ob-
tained by the perturbation of the right hand side of the inequality constraints.
For the various dual problems equality/inequality relations between the optimum
values are verified under appropriate assumptions. Moreover, the duality relations
to the primal problem are considered, in particular strong duality. Using the dual
problems some optimality conditions are established.

The results are illustrated by some examples.

The application and usefulness for the construction of general multiobjective dual

problems to the general multiobjective convex optimization problem is mentioned.

1 The constrained optimization problem and its

conjugate duals

Consider the mathematical programming problem (called primal problem)

(P)  inf f(z), G={zeX:g(x)=0},

with X CR", G #0, f: R* - R=RU {£o0}, domf = X (after redefining
of an original f : R* = R), g = (g1,...,9%x)7 : R* — R* where g(z) <0
means ¢;(z) <0,i=1,... k.

Applying the well-known so-called Fenchel-Rockafellar approach of defin-

ing a dual programming problem to a given primal problem we consider
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different perturbations of the primal problem (P) by introducing respective
perturbation functions &; :

fla)  ifz e X, g(z) S q.

400 , otherwise,

flz+p) . ifzeX, g(x) 20,

400 , otherwise,

fle+p) ifzeX, gx)=q,

+00 , otherwise,

(1)  Pi(z,q) = {
(i1)  Dy(x,p) = {

(iii) P3(x,p,q) = {

p € R", g € R* are the respective perturbation variables.

For (i), (i1) and (iii) we consider the corresponding perturbed problems to
P) inf & inf @ inf @ .

( ) xlenR" 1(x7q)a mlenR" 2(xap) and mlenR" 3(377]), Q)

Setting the perturbation variables p and ¢ equal to the zero vector in
all three cases one gets (P). Now, dual problems may be defined by the
conjugates @7 of the perturbation functions ®; as follows

(Pl*) sup {—@I(O,q*)L
q*eRk

(P5) sup {-25(0,p")},
p*E€Rn

(P7) sup {-=®3(0,p",q")}
preER™
q* eRk
(recall the definition of the conjugate function f* : R* — R to a function
fiR* = Rby f*(z*) = sup {z*7z — f(2)}).
zER™
Calculating the respective conjugate function @} we obtain the following
three dual problems (P}), i =1,2,3, to (P):

(Py) qs*uzpo inf {f(@) +aTg(2)},

(P5) sup {—f*(p*) + inf p*Tx} ,
p*ER™ zeG

(P3) sup {—f*(p*) + inf [p*Ta + q*Ty(x)]} :
p*ER™ zeX
a*20
We observe that (P;) indeed is the well-known and classical Lagrange dual
problem with the Lagrangian L(z, ¢*) = f(z)+¢*T g(z),q* = 0. By construc-

tion (cf.[1]) there is sup(P;*) < inf(P) (weak duality).
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2 The relations between the optimum values of the

duals

Proposition 1 It holds
(1) sup(Py) > sup(Fy),

(i) sup(P3) > sup(Fy).

Proof: (i) Let ¢* 2 0 and p* € R” be fixed. By the definition of the conjugate
function we have for each z € X f(x) 2 p*Tz — f*(p*) (Young inequality).
Adding to both sides ¢*7g(z) we obtain for each z € X f(x) + ¢*Tg(z) =
—f*(p*) + p*Tx + ¢*Tg(z). This means that for each ¢* > 0 and p* € R?
holds

wf[f@) + T g@)] 2 -0 + inf e+ Tg@] (1)

We now may calculate the supremum over all p* € R* and ¢* = 0 which
implies the assertion.
(ii) Let p* € R™ be fixed.

For each ¢* 2 0 the following inequalities are true
'f*T *T S.f*T *T S-f*T.
f[p™ e +¢g(@)] S fp™ 2+ ¢ g(2)] S inf pTa
This implies for each p* € R”

sup Inf [P + ¢ g(@)] £ inf pe (1)
Adding —f*(p*) and computing the supremum over p* € R” yields the
wanted result. |
The following examples show that the inequalities in Proposition 1 may
be fulfilled strictly.
Example 1: Let be X =[0,+oc], f: R = R, f(z) = { —o* e € X,
400 , otherwise,
g:R—=TR g(z) = 2% — 1 and consider (P) for those dates.
A straightforward calculation shows that the supremum of the Lagrange dual
is sup(P;) = —1. On the other hand for the dual (P;) we have sup(P§) =

—0OoQ.
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Example 2: Let now (P) be defined by X = [0,4+cc), f : R — R,
ifz € X,
g:R—=R g(x)=1-22 f(z) = TN Then follows sup(P5) =
400 , otherwise.

1> sup(Py) =0.

But, under additional assumptions, e.g. convexity and regularity condi-
tions, one can show that the inequalities in Proposition 1 are fulfilled as
equalities.

Theorem 1 Assume that X # () is a convex set and f and g;, i =1,... .k,
are convex functions. Then it holds sup(P}*) = sup(Py).

Theorem 1 results immediately from the following strong duality asser-
tion.

Proposition 2 Under the assumptions of Theorem 1 there is for all
20

@) + 0T = s {0+ Tk T |
If xlg([f(x) +q*T g()] is finite then the supremum problem on the right hand
side has a solution pg such that “sup” may be substituted by "max”.
Proof: Let ¢* € R¥, ¢* > 0, be fixed and define a := xlgg([f(x) +q*Tg(x)].
Because of X # ) follows a € [—o0,+00). (1) implies after calculation of

the supremum over p* € R”

az sup {—f*<p*> T inf [p" 7o+ q*Tg<x>]} . 2)
p*ER™ ze€X
For o = —o0 the statement is trivial.

For a > —o0 we consider the sets
Ci=epif={(z,n):v€ X, p€R f(z) < p} CR™,

D= {(r) 0 € Xon€ R it oole) S ) C RO

Obviously, C, D # (, are convex sets and (rint C) N D = @ (rint C' denotes
the relative interior of C) ((rint C) N D # § causes a contradiction to the
definition of «).

Therefore also (rint C)N(rint D) = () meaning C and D are properly separable
(cf. [3]), i.e. there exist (p*,u*) € R* x R, (p*, p*) # (0,0), and o* € R such
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that for the separating hyperplane H = {(z, ) : p*T@ + p*p = o } holds

(@) inf{pTe+p*p: (v,p0) € D} 2 a*
(3)

> sup{p*Tx + p*p : (x,p) € CY,

(b) sup{p*Tz + p*p: (z,u) € D} W
> inf{p*Tz + p*u: (z,p) € C}.

Assuming p* = 0 allows to conclude a contradiction to (4) because one can
see easily that in this case p*Ta = o* for all 2 € X.
Also p* > 0 is not possible since then follows from (3) with letting converge
i — +oo that the supremum on the right hand side of (3) is +o00, therefore
a* = 400, contradicting a* € R (finite). Therefore must be p* < 0.
We may divide (3) by (—u*) having

inf{p[‘;Tx—,u sz, p) € D} 2 ag 2 sup {pSTx—,u sz, p) € 0}7

where af = a*/(—p*) and p§ = p*/(—p*). Hence,

Py e —p < ag Ve, p) €C, (5)
ag" <pyTe — pV(e,p) € D. (6)

(5) yields
py e —f(z) SagVre X (7)

as a consequence of (z, f(z)) € C. Calculating the supremum over z € X of

the left hand side of (7) generates the conjugate f*(p§), i.e.

(o) = ag. (8)

Furthermore, there is (z,a —¢*Tg(z)) € D Vo € X (cf. definition of D). Then
by (6) a5 = pTw—(a—qTg(2)) Vo € X, ie a5 +a < inf [pjTz+¢"Tg(2)),
which gives with (8)

a S —fH(pg) + Iig([péva +q*Tg(2)].
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Together with (2) it results

o= sup {=507)+ il + 0 oo}

p*ER™
Finally, by the definition of a this means 1n§{[f(x) + ¢ Tg@)] = —f*(p)
zTE
s f *T *T — Y LN : f *T *T . .
# i [T+ o gto)] = max {=7°07) + it e+ 0 TG0 )

In order to have sup(Py) = sup(P5) we need a regularity condition (con-
straint qualification (CQ)). Therefore consider for g(z) = (g1 (), ..., gx(x))T
the sets L = {i € {1,...,k} : g; is an affine function},

N ={ie{l,...,k}: g; is not an affine function}.

CQ: There exists an element &' € rint X such that g;(a’) < 0 for i € N
and g;(2') £ 0 fori € L.

Theorem 2 Assume that X is a convex set, g;, i = 1,...,k, are convex
functions such that G = {x € X : g(x) £ 0} # 0 and (CQ) is fulfilled. Then
it holds

sup(P}) = sup(P;).

Proof: For p* € R" fixed we first show that

inf *«T *T — inf *T )
qS*uzpo Inf [p™ 2 +¢"g(0)] = inf pTa 9)
Let be § := ing p*Tx. Because G # () follows 3 € [—o0, o0).
fAS]

If 8 = —oo then by (1) follows

S inf *T + *T — _ — inf *T )

4313130 Inf [p™ 2 +¢"g(2)] = —oo = inf pTa
Let now be f € (—o0, +00).
If g1 and gn denote the vector functions with the affine components and
the non-affine components of g, respectively, then the system of inequalities
pTe — B <0, gy(x) £0, gr(x) £ 0 has no solution in X. Using Theorem
2. 104 in [2] (characterizing the solvability of inequality systems of the above
type with (CQ) fulfilled) we observe the existence of u* > 0, ¢* = (v*,w*) €
]R'j_ such that for each x € X

w e = B) + a7 g(2) = w (" e — B) + v gn () +w T gr(z) 2 0.
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Dividing that inequality by u* we obtain with ¢} = ¢* /u*
pTr—p+qglx)20vVeeX

and, equivalently,
inf *T *T > 3.
inf [ e+ag(@)] 28

This last inequality and (1) imply (9). By adding —f*(p*) to (9) and calcu-
lating the supremum subject to p* € R™ one has sup(Py) = sup(P5). [ ]

3 The strong duality and optimality conditions

Using Theorem 1 and Theorem 2 and verifying that inf(P) = sup(P;*), which
can be done applying the solvability condition of Theorem 2. 104 in [2] to the
system f(z) —inf(P) < 0, g(z) £ 0 in analogous manner as within the proof
of Theorem 2, the following strong duality assertion may be derived.

Theorem 3 Under the assumptions of both Theorem 1, 2 and if inf(P)
is finite strong duality holds and (P}),i = 1,2,3, have solutions

inf(P) = max(P;") = max(Py) = max(FPy).

By means of that strong duality one can use each of the different three
duals to conclude optimality conditions. We want to restrict ourselves to
present the optimality conditions arising from the strong duality between
(P) and (FP5).

Theorem 4 (a) Let the assumptions of Theorem 3 be fulfilled and let o
be a solution of (P). Then there exists a tupel (p§,q;) € R* x RF ¢3 >0,

such that the following optimality conditions are satisfied

(i) f(@o) + f* (%) = p§" 2o,
(i1) 3T g(x0) =0,
(ii)  p5"(x —x0) > g5 (g(x) — g(w0)) Va € X.

(b) Let xo € G and (piy,q3) € R* xRE, ¢& > 0, satisfying (i), (i) and ().
Then x¢ and (p§,qs) turn out to be solutions of (P) and (P§), respectively,
and strong duality holds.
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Proof: (a) Let z9 be a solution of (P). By Theorem 3 there exists a
solution to (P§) (pg,q;) € R x RE, ¢ > 0, such that

f(xo) = —f*(pg) + mf [po T+ qp 9( )]-
By adding the term piTzo + 3T g(z0) we obtain

f(xo) + f*(p5) — panﬂo + pSTfﬂo + QST!J(IO)

(10)
— nf [p" +¢5"g(2)] — 45" 9(wo) = 0.

On the other hand the following inequalities hold f(zo) + f ) —
sl 2o 2 0 (Young inequality), p3T xo + i g(z0) — 1nf pfr+qTg(z)] 20,
—q3Tg(wo) = 0. By (10) all these inequalities have to be equations which
means that (i), (ii) and (iii) are fulfilled.

(b) All calculations done within part (a) of the proof may be carried out
in the inverse direction starting from (i), (ii) and (iii). Then zq solves (P)

and (p§, ¢5) solves (Py) and strong duality holds. [ |

Finally, we would like to remark that, in particular, the strong duality
between (P) and (P§) may be applied for the construction of a dual problem

in multiobjective convex optimization (cf. [4]).
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