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Abstract. We present a text classification method based upon maximum entropy opti-
mization. Having a set of documents which must be classified into some given classes,
a maximum entropy optimization problem is considered. In order to solve this problem,
we consider its Lagrange dual and we derive, by means of strong duality, the optimality
conditions.

After solving the dual problem, we obtain, as solution of the primal problem, a dis-
tribution of probabilities representing the chances of the documents to belong to each
class.
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1 Introduction

This paper is meant to present a rigorous way of applying the maximum entropy
optimization to text classification problems, correcting the errors encountered in
some other papers regarding the subject, whose authors make some compromises
in order to obtain some ”good-looking” results (see [3], [11]). We have a set of
documents which must be classified into some given classes. A small amount of
them have been a priori labelled by an expert and we have also some real-valued
functions linking all the documents and the classes, called feature functions. Our
goal is to obtain a distribution of probabilities of each document among the given
classes.

Therefore, we impose the condition that the expected value of each feature
function over the whole set of documents shall be equal with its expected value
over the training sample. Using this information as constraints, we formulate the
so-called maximum entropy optimization problem. Its solutions are consistent with
all the constraints, but otherwise are as uniform as possible (cf. [7], [8] and [10]).

The maximum entropy optimization problem has a concave objective function
and affine constraints. To solve it, we rely on the very strong results of the theory
of duality. This gives us the possibility to formulate for an optimization problem its
dual. Moreover, by means of strong duality the optimality conditions can be derived
(cf. [12]).

For our maximum entropy optimization problem we develop, here, the Lagrange
dual. As a consequence of the optimality conditions, we write the solutions of the
primal problem as functions of solutions of the dual problem. The last ones are
determined using the so-called iterative scaling algorithm developed from the one
introduced by Darroch and Ratcliff (cf. [4], [11]).

Finally, by the use of the solutions of the dual, we find the desired distribution
of probabilities.
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2 The formulation of the problem

Let us consider a set of documents D and the set of classes C where they must
be classified into. There is also a given subset of D, denoted D′, whose elements
have been labelled by an expert as to belong to a certain class from C. To have
information about all the classes, we need to consider that each class contains at
least an element from D′. One may notice that between the sets C and D′, it must
hold |C| ≤ |D′|, where |C| is the cardinal of the set C and |D′| is the cardinal of the
set D′. The set of pairs (d′, c(d′)), d′ ∈ D′, obtained above, is called the training
data and c(d′) ∈ C denotes the class which is assigned to d′ by the expert.

The labelled training data set is used to derive a set of constraints for the model
that characterize the class-specific expectations for the distribution. Constraints
are represented as expected values of so-called features functions, which may be
any positive real-valued functions defined over D×C. Let us denote by fi, i ∈ I, the
feature functions for the problem of text classification, which we treat here.

As an example, we will present the set of feature functions considered in [11] for
the same problem of text classification. Denoting by W the set of the words which
appear in the whole family of documents D, the set I is defined by

I = W × C.

For each word-class combination (w, c′) ∈ W × C, one can consider the feature
function fw,c′ : W × C → R,

fw,c′(d, c) =

{

0, c 6= c′,
N(d,w)
N(d) , otherwise,

where N(d,w) is the number of times word w occurs in document d, N(d) is the
number of words in d, and c, c′ are classes in C.

Other ways to consider feature functions can be found in [1] and [9].
Using the information given by this training data and the feature functions, we

want to obtain the distribution of probabilities of each document d ∈ D among
the given classes. The way we are to use for this is quite heuristical (cf. [1], [9]),
consisting in generalizing some facts that hold for the training sample to the whole
set of documents. The expected value of each feature function over all documents
and classes will be forced to equal its expected value over the training sample

Ẽ(fi) = E(fi),∀i ∈ I. (1)

The expected value of each feature function fi, i ∈ I, regarding the training
sample comes from the following formula

Ẽ(fi) =
∑

d′∈D′

∑

c∈C

p(d′, c)fi(d
′, c), i ∈ I, (2)

where p(d′, c) denotes the joint probability of c and d′. But this joint probability
can be decomposed as

p(d′, c) = p(d′)p(c|d′),

with p(d′) being the probability of the document d′ to be chosen from the train-
ing data and p(c|d′) the conditional probability of the class c with respect to the
document d′.

The probability of the document d′ to be chosen from the training data is

p(d′) =
1

|D′|
, for d′ ∈ D′.
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On the other hand, as we know that each document from the training data has
been a priori labelled, it is clear that

p(c|d′) =

{

1, if c = c(d′),
0, if c 6= c(d′),

for every c ∈ C and d′ ∈ D′.
By (2), we have then

Ẽ(fi) =
1

|D′|

∑

d′∈D′

fi(d
′, c(d′)), i ∈ I. (3)

The expected value of fi regarding the whole set D × C is

E(fi) =
∑

d∈D

∑

c∈C

p(d, c)fi(d, c), i ∈ I.

As for the training set, we have

p(d, c) = p(d)p(c|d),

with p(d) = 1
|D| being the probability to choose the document d from D and p(c|d)

the conditional probability of the class c with respect to the document d. It follows

E(fi) =
1

|D|

∑

d∈D

∑

c∈C

p(c|d)fi(d, c), i ∈ I. (4)

For each feature fi, i ∈ I, we will constrain now the model to have the same
expected value for it over the whole set of documents as the one obtained from the
training set. From (1), (3) and (4), we obtain

1

|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

1

|D|

∑

d∈D

∑

c∈C

p(c|d)fi(d, c), i ∈ I. (5)

Moreover, from the basic properties of the probability distributions, it holds

p(c|d) ≥ 0,∀c ∈ C,∀d ∈ D, (6)

and
∑

c∈C

p(c|d) = 1,∀d ∈ D. (7)

The problem that we have to solve now is to find a probability distribution
which fulfills the constraints (5), (6) and (7). Therefore, we will use a technique
which bases on theory of maximum entropy (cf. [7], [8] and [10]). The over-riding
principle in maximum entropy is that when nothing is known, the distribution of
probabilities should be as uniform as possible.

But, that is exactly what results by solving the following so-called maximum
entropy optimization problem

(P ) sup {H(p)} ,

subject to
|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p(c|d)fi(d, c),∀i ∈ I,

∑

c∈C

p(c|d) = 1,∀d ∈ D,
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and
p(c|d) ≥ 0,∀c ∈ C,∀d ∈ D.

Here, H : R
|C|·|D| → R is the so-called entropy function and it is defined, for

p = (p(c|d))c∈C,d∈D, by

H(p) =

{

−
∑

d∈D

∑

c∈C

p(c|d) ln p(c|d), if p(c|d) ≥ 0,∀c ∈ C,∀d ∈ D,

−∞, otherwise.

It is obvious that H is a concave function.

3 Duality for the maximum entropy optimization problem

The goal of this chapter is to formulate a dual problem to the maximum entropy
optimization problem

(P ) sup

{

−
∑

d∈D

∑

c∈C

p(c|d) ln p(c|d)

}

,

subject to
|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p(c|d)fi(d, c),∀i ∈ I,

∑

c∈C

p(c|d) = 1,∀d ∈ D,

p(c|d) ≥ 0,∀c ∈ C,∀d ∈ D,

and to derive, by means of strong duality, the optimality conditions for (P ) and its
dual.

Therefore, we will consider the following general primal optimization problem

(Pg) inf
g(x)=0,

x∈X

f(x),

where X ⊆ R
n is a non-empty convex set, f : R

n → R is a convex function and
g : R

n → R
m, g(x) = (g1(x), ..., gm(x))T , such that gi : R

n → R, i = 1, ...,m, are
affine functions.

The Lagrange dual problem to (Pg) is given by

(Dg) sup
λ∈Rm

inf
x∈X

{

f(x) + λT g(x)
}

.

It is trivial to show that the weak duality between (Pg) and (Dg) always holds,
i.e. inf(Pg) ≥ sup(Dg). For the strong duality, inf(Pg) = sup(Dg), we need to
consider the fulfillment of a constraint qualification. The functions gi, i = 1, ...,m,
being affine, we can consider in this case the following Slater constraint qualification
(cf. [6])

(SCQg) : there exists x′ ∈ rintX, such that g(x′) = 0,

where rintX is the relative interior of the set X.
Let us present now the strong duality theorem and formulate the optimality

conditions for (Pg) and (Dg) (cf. [6], [12]).

Theorem 1. Let us assume that inf(Pg) > −∞ and that the constraint qualification

(SCQg) is fulfilled. Then the dual problem has a solution and between (Pg) and (Dg)
strong duality holds,

inf(Pg) = max(Dg).
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Theorem 2. Let the constraint qualification (SCQg) be fulfilled. Then x̄ is a solu-

tion to (Pg) if and only if x̄ is feasible to (Pg) and there exists λ̄ ∈ R
m, such that

the following conditions are satisfied

(i) inf
x∈X

[

f(x) +
m
∑

i=1

λ̄igi(x)

]

= f(x̄),

(ii)
m
∑

i=1

λ̄igi(x̄) = 0.

In order to study the duality for the initial problem (P ), we need to consider
another optimization problem

(P ′) inf

{

∑

d∈D

∑

c∈C

p(c|d) ln p(c|d)

}

,

subject to
|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p(c|d)fi(d, c),∀i ∈ I,

∑

c∈C

p(c|d) = 1,∀d ∈ D,

p ∈ X,

with X = {p = (p(c|d))c∈C,d∈D : p(c|d) ≥ 0,∀c ∈ C,∀d ∈ D}. The problem (P ′) fits
in the scheme already presented and has the same solutions as (P ), so that it holds

sup(P ) = − inf(P ′).

According to the general case, its dual problem is

(D′) sup
λi∈R,i∈I,
λd∈R,d∈D

inf
p(c|d)≥0,

(d,c)∈D×C

[

∑

d∈D

∑

c∈C

p(c|d) ln p(c|d) +
∑

d∈D

λd

(

∑

c∈C

p(c|d) − 1

)

+
∑

i∈I

λi

(

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)fi(d, c)

)]

.

Like above, we can find another problem, (D′′), which has the same solutions as
(D′) so that sup(D′) = − inf(D′′),

(D′′) inf
λi∈R,i∈I,
λd∈R,d∈D

sup
p(c|d)≥0,

(d,c)∈D×C

[

−
∑

d∈D

∑

c∈C

p(c|d) ln p(c|d) −
∑

d∈D

λd

(

∑

c∈C

p(c|d) − 1

)

−
∑

i∈I

λi

(

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)fi(d, c)

)]

.

The problem (D′′) can be rewritten as

(D′′) inf
λi∈R,i∈I,
λd∈R,d∈D

{

∑

d∈D

λd − |D|
|D′|

∑

i∈I

λi

∑

d′∈D′

fi(d
′, c(d′))+

∑

d∈D

∑

c∈C

sup
p(c|d)≥0

[

−p(c|d) ln p(c|d) − λdp(c|d) +
∑

i∈I

λip(c|d)fi(d, c)

]

}

.

To calculate the suprema which appear in the above formula, we shall consider
the function

u : R+ → R, u(x) = −x ln x − λdx + x
∑

i∈I

λifi(d, c), x ∈ R+,
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for some fixed (d, c) ∈ D × C.

Its derivative is

u′(x) = − ln x − 1 − λd +
∑

i∈I

λifi(d, c),

and it holds

u′(x) = 0 ⇔ ln x = −λd − 1 +
∑

i∈I

λifi(d, c) ⇔ x = e
−λd−1+

∑

i∈I

λifi(d,c)

> 0.

The function u being concave, it follows that at x = e
−λd−1+

∑

i∈I

λifi(d,c)

it attains
its maximal value. So

max
x≥0

u(x) = u

(

e
−λd−1+

∑

i∈I

λifi(d,c)
)

= −e
−λd−1+

∑

i∈I

λifi(d,c)
(

ln e
−λd−1+

∑

i∈I

λifi(d,c)

+ λd −
∑

i∈I

λifi(d, c)

)

= −e
−λd−1+

∑

i∈I

λifi(d,c)
(

−λd − 1 +
∑

i∈I

λifi(d, c) + λd −
∑

i∈I

λifi(d, c)

)

= e
−λd−1+

∑

i∈I

λifi(d,c)

.

Our dual problem becomes then

(D′′) inf
λi∈R,i∈I,
λd∈R,d∈D

{

∑

d∈D

λd − |D|
|D′|

∑

i∈I

λi

∑

d′∈D′

fi(d
′, c(d′))

+
∑

d∈D

∑

c∈C

e

∑

i∈I

λifi(d,c)−λd−1
}

.

In the next part of the section we will make some assertions concerning the
duality between (P ) and (D′′). For this, we will apply the results formulated in the
general case for the problems (Pg) and (Dg). Let us write, first, the Slater constraint
qualification for the problems (P ) and, respectively, (P ′)

(SCQ): there exists p′ = (p′(c|d))c∈C,d∈D, such that















p′(c|d) > 0,∀c ∈ C,∀d ∈ D,
|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

d∈D

∑

c∈C

p′(c|d)fi(d, c),∀i ∈ I,
∑

c∈C

p′(c|d) = 1,∀d ∈ D.

By this, we can state now the desired strong duality theorem and the optimality
conditions for (P ), by applying Theorem 1 and Theorem 2, respectively.

Theorem 3. Consider the problem (P ′) introduced above and let (SCQ) be fulfilled.

Its dual problem has then a solution and between (P ′) and (D′) strong duality holds,

sup(P ) = − inf(P ′) = −max(D′) = min(D′′).

Theorem 4. Let us assume that the constraint qualification (SCQ) is fulfilled.

Then p̄ = ((p̄(c|d))c∈C,d∈D is a solution to (P ) if and only if p̄ is feasible to (P ) and

there exist λ̄i ∈ R, i ∈ I, and λ̄d ∈ R, d ∈ D, such that the following conditions are
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satisfied

(i) inf
p(c|d)≥0,
d∈D,c∈C

[

∑

d∈D

∑

c∈C

p(c|d) ln p(c|d) +
∑

d∈D

λ̄d

(

∑

c∈C

p(c|d) − 1

)

+
∑

i∈I

λ̄i

(

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)fi(d, c)

)]

=
∑

d∈D

∑

c∈C

p̄(c|d) ln p̄(c|d)

(ii) 0 =
∑

i∈I

λ̄i

(

|D|
|D′|

∑

d′∈D′

fi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p̄(c|d)fi(d, c)

)

+
∑

d∈D

λ̄d

(

∑

c∈C

p̄(c|d) − 1

)

.

Remark 1. Let us point out that all the functions involved in the formulation of the
primal problem are differentiable. This implies that the equality (i) in Theorem 4
can be, equivalently, written as

ln p(c|d) + 1 + λ̄d −
∑

i∈I

λ̄ifi(d, c) = 0,∀d ∈ D,∀c ∈ C,

or

p(c|d) =
e

∑

i∈I

λ̄ifi(d,c)

eλ̄d+1
,∀d ∈ D,∀c ∈ C. (8)

Getting now back to the problem (D′′), one may observe that it can be decom-
posed into

(D′′) inf
λi∈R,
i∈I

{

∑

d∈D

inf
λd∈R

[

∑

c∈C

e

∑

i∈I

λifi(d,c)−λd−1

+ λd

]

− |D|
|D′|

∑

i∈I

λi

∑

d′∈D′

fi(d
′, c(d′))

}

.

We can calculate the infima inside the parentheses, using another auxiliary func-
tion

v : R → R, v(x) = e−x−1a + x, x ∈ R, a > 0.

It is convex and derivable, its derivative

v′(x) = 1 − ae−x−1

fulfilling

v′(x) = 0 ⇔ e−x−1 =
1

a
⇔ x = ln a − 1.

So, v’s minimum is attained at ln a − 1, being

v(ln a − 1) = ln a.

Taking a =
∑

c∈C

e

∑

i∈I

λifi(d,c)

> 0, the dual problem turns into

(D) inf
λi∈R,
i∈I

[

∑

d∈D

ln
∑

c∈C

e

∑

i∈I

λifi(d,c)

−
|D|

|D′|

∑

i∈I

λi

∑

d′∈D′

fi(d
′, c(d′))

]
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and, obviously, we have

inf(D′′) = inf(D).

In fact, we have proved the following assertion concerning the solutions of the
problems (D) and (D′′).

Theorem 5. The following equivalence holds

((λ̄d)d∈D, (λ̄i)i∈I) is a solution to (D′′) ⇔















((λ̄i)i∈I) is a solution to (D) and

λ̄d = ln
∑

c∈C

e

∑

i∈I

λ̄ifi(d,c)

− 1,∀d ∈ D.

Remark 2. By Remark 1 and Theorem 5 it follows that, in order to find a solution
of the problem (P ), it is enough to solve the dual problem (D). Getting (λ̄i)i∈I ,
solution to (D), we obtain, for each d ∈ D,

λ̄d = ln
∑

c∈C

e

∑

i∈I

λ̄ifi(d,c)

− 1

and, by (8),

p(c|d) =
e

∑

i∈I

λ̄ifi(d,c)

eλ̄d+1
=

e

∑

i∈I

λ̄ifi(d,c)

∑

c∈C

e

∑

i∈I

λ̄ifi(d,c)
,∀(d, c) ∈ D × C. (9)

4 Solving the dual problem

In this section, we will outline the derivation of an algorithm for finding a solution of
the dual problem (D). The algorithm is called improved iterative scaling and other
variants of it have been described by different authors in connection with maximum
entropy optimization problems (cf. [3] and [11]).

First, let us introduce the function l : R
|I| → R, defined by

l(λ) =
∑

i∈I

λi

(

|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′))

)

−
∑

d∈D

ln
∑

c∈C

e

∑

i∈I

λifi(d,c)

,

for λ = (λi)i∈I .

Considering the optimization problem

(Pl) max
λ∈R|I|

l(λ),

it is obvious that

min(D) = −max(Pl),

and that the sets of the solutions of the two problems coincide. So, in order to obtain
the desired results, it is enough to solve (Pl).
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Let us calculate now, for λ = (λi)i∈I , δ = (δi)i∈I ∈ R
|I|, the expression ∆l :=

l(λ + δ) − l(λ). It holds

∆l =
|D|

|D′|

∑

i∈I

∑

d′∈D′

(λi + δi)fi(d
′, c(d′)) −

∑

d∈D

ln
∑

c∈C

e

∑

i∈I

(λi+δi)fi(d,c)

−
|D|

|D′|

∑

i∈I

∑

d′∈D′

λifi(d
′, c(d′)) +

∑

d∈D

ln
∑

c∈C

e

∑

i∈I

λifi(d,c)

=
|D|

|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) −

∑

d∈D

ln

∑

c∈C

e

∑

i∈I

(λi+δi)fi(d,c)

∑

c∈C

e

∑

i∈I

λifi(d,c)
.

As it is known that
− ln (x) ≥ 1 − x,∀x ∈ R+,

we have

∆l ≥
|D|

|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) +

∑

d∈D









1 −

∑

c∈C

e

∑

i∈I

(λi+δi)fi(d,c)

∑

c∈C

e

∑

i∈I

λifi(d,c)









=
|D|

|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) +

∑

d∈D

(

1 −
∑

c∈C

p(c|d)e

∑

i∈I

δifi(d,c)
)

.

Denoting

f#(d, c) =
∑

i∈I

fi(d, c),

we get

∆l ≥
|D|

|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) +

∑

d∈D

(

1 −
∑

c∈C

p(c|d)e
f#(d,c)

∑

i∈I

δi
fi(d,c)

f#(d,c)

)

.

As the exponential function is convex, applying Jensen’s inequality

e
f#(d,c)

∑

i∈I

δi
fi(d,c)

f#(d,c)
≤
∑

i∈I

fi(d, c)

f#(d, c)
ef#(d,c)δi ,

there follows

∆l ≥
|D|

|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)
∑

i∈I

fi(d, c)

f#(d, c)
ef#(d,c)δi + |D|.

Let be now B : R
|I| → R, the following function

B(δ) =
|D|

|D′|

∑

i∈I

∑

d′∈D′

δifi(d
′, c(d′)) −

∑

d∈D

∑

c∈C

p(c|d)
∑

i∈I

fi(d, c)

f#(d, c)
ef#(d,c)δi + |D|,

for δ = (δi)i∈I .
We can guarantee an increase of the value of the function l if we can find a δ such

that B(δ) is positive. B is a concave function since its first term is a linear function,
the second contains a sum of concave functions and the third is a constant. Moreover,
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B is a differentiable function. So, to find the best δ, we need to differentiate B(δ)
with respect to the change in each parameter δi, i ∈ I, and to set

∂B

∂δi

= 0,∀i ∈ I.

We get

|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

c∈C

∑

d∈D

p(c|d)fi(d, c)ef#(d,c)δi ,∀i ∈ I.

Solving these equations we obtain the values of δi, i ∈ I. In the next section we
shall present the complete algorithm to determine the maximum of the function l.

Remark 3. We have to mention here that in [3] and [11] the function l has been
identified with the so-called maximum likelihood, whose formula is considered

L(λ) = ln
∏

d′∈D′

p(c(d′)|d′).

This is possible only if one considers the sets D and D′ identical. In this case,
we have

l(λ) =
∑

i∈I

λi

(

|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′))

)

−
∑

d∈D

ln
∑

c∈C

e

∑

i∈I

λifi(d,c)

=
∑

d′∈D′

[

∑

i∈I

λifi(d
′, c(d′)) − ln

∑

c∈C

e

∑

i∈I

λifi(d
′,c(d′))

]

=
∑

d′∈D′

[

ln e

∑

i∈I

λifi(d
′,c(d′))

− ln
∑

c∈C

e

∑

i∈I

λifi(d
′,c(d′))

]

=
∑

d′∈D′









ln
e

∑

i∈I

λifi(d
′,c(d′))

∑

c∈C

e

∑

i∈I

λifi(d′,c(d′))









Finally, using the relations given in (9), the function l turns out to be in this
case identical to the maximum likelihood function

l(λ) =
∑

d′∈D′









ln
e

∑

i∈I

λifi(d
′,c(d′))

∑

c∈C

e

∑

i∈I

λifi(d′,c(d′))









=
∑

d′∈D′

ln p(c(d′)|d′) = ln
∏

d′∈D′

p(c(d′)|d′).

We can conclude that the results obtained in [3] and [11] do not refer to the
unclassified documents using the information given by that expert regarding the
training sample, being just distributions of the same a priori labelled documents
among all the classes. We consider that this compromise is not useful in our problem,
as we have proved before that the algorithm works also without it.

5 An algorithm for solving the maximum entropy

optimization problem

In this section we will present, by the use of the results obtained in the previous
sections, an algorithm for solving the dual of the maximum entropy optimization



Maximum entropy optimization 11

problem. Assuming that the Slater constraint qualification (SCQ) is fulfilled the
solutions of the primal problem arise by calling (9). This is a generalization of the
algorithm introduced by Darroch and Ratcliff in [4].

Inputs: A collection D of documents, a subset of it D′ of labelled documents,
a set of classes C and a set of feature functions fi, i ∈ I, connecting the documents
and the classes. Let ε > 0 be the admitted error of the iterative process.

Step 1: Set the constraints. For every feature fi, i ∈ I, estimate its expected
value over the set of the documents and the set of classes.

Step 2: Set the initial values λi = 0, i ∈ I.
Step 3:

• Using the equalities in (9), calculate with the current parameters (λi)i∈I the
values for p(c|d), (d, c) ∈ D × C.

• for each i ∈ I:

· find δi, a solution of the equation

|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′)) =

∑

c∈C

∑

d∈D

p(c|d)fi(d, c)ef#(d,c)δi .

· set λi = λi + δi.

Step 4: If there exists an i ∈ I, such that |δi| > ε, then go to Step 3.

Remark 4. (a) By setting λi = 0,∀i ∈ I, the initial values for the probability dis-
tributions are

p(c|d) =
1

|C|
, c ∈ C, d ∈ D.

(b) In the original algorithm Darroch and Ratcliff assumed in [4] that f#(d, c) is
constant. Denoting its value by M , one gets then

δi =
1

M
ln





|D|

|D′|

∑

d′∈D′

fi(d
′, c(d′))

∑

c∈C

∑

d∈D

p(c|d)fi(d, c)



 , i ∈ I.

(c) A more detailed discussion regarding the iterative scaling algorithm, including
a proof of its convergence, can be found in [2], [4], [5] and [11].

Having obtained λi, i ∈ I, returned by the algorithm, we can determine by
(9) the solutions of the primal problem, i.e. the probability distributions of each
document among the given classes.

To assign each document with a certain class, one can consider more criteria,
such as to choose the class whose probability is the highest, or to establish a mini-
mal value of probability and to label the documents as belonging to all the classes
that fit, and if neither does, to create a supplementer class for this document. But
these criteria debates surpass the purpose of the present paper.

Acknowledgements. The authors would like to thank anonymous referee for his
valuable and helpful suggestions.
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