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Abstract. In this paper we consider, in a general normed space, the optimization problem
with the objective function being a composite of a convex and componentwise increasing
function with a vector convex function. Perturbing the primal problem, we obtain, by
means of the Fenchel-Rockafellar approach, a dual problem for it. The existence of strong
duality is proved and the optimality conditions are derived.

Using this general result, we introduce the dual problem and the optimality conditions
for the single facility location problem in a general normed space in which the existing
facilities are represented by sets of points.

The classical Weber problem and minmax problem with demand sets are studied as
particular cases of this problem.
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1 Introduction

This article is motivated by the work of Nickel, Puerto and Rodriguez-Chia ([9]).
In [9] they introduced a single facility problem in a general normed space in which
the existing facilities are represented by sets of points. For this problem the authors
obtained a geometrical characterization of the set of optimal solutions.

The aim of our paper is to construct a dual problem for the optimization problem
treated in [9] and for its particular instances, the Weber problem and the minmax
problem with demand sets. On the other hand, we show how it is possible to derive
the optimality conditions for these optimization problems, via strong duality.

In order to do this, we consider a more general optimization problem and, then,
we particularize the results for the location problems in [9]. The optimization prob-
lem, from which we start, has as objective function a composite of a convex and
componentwise increasing function with a vector convex function. Applying the
Fenchel-Rockafellar duality approach and using some appropriate perturbations we
construct a dual problem for it. The dual problem is formulated in terms of conju-
gate functions, and the existence of strong duality is proved. Afterwards, by means
of strong duality, we derive the optimality conditions for the primal optimization
problem.

In the past, optimization problems with the objective function being a composed
convex function have been considered by different authors. We remind here the
works [5] and [6], where form of the subdifferential of a composed convex function
has been described, and, also, [3], [7] and [8], where some results with regard to
duality has been given.

Recently, optimization problems of this type have found applications in goal
programming problems [2] and average distance problems [10]. Concerning duality,
Volle studied in [12] the same problem as a particular case of a D.C. programming
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problem. But, as well the dual problem introduced in [12] as the dual problems
presented in [3], [7] and [8] are different from the dual proposed by us. A deeper
investigation of the relations between these duals will be presented in a forthcoming
paper.

2 The optimization problem with a composed convex

function as objective function

Let (X, ‖ · ‖) be a normed space, gi : X → R, i = 1, . . . ,m, convex and continuous
functions and f : R

m → R a convex and componentwise increasing function, i.e. for
y = (y1, . . . , ym)T , z = (z1, . . . , zm)T ∈ R

m,

yi ≥ zi, i = 1, . . . ,m ⇒ f(y) ≥ f(z).

The optimization problem which we consider here is the following one

(P ) inf
x∈X

f(g(x)),

where g : X → R
m, g(x) = (g1(x), . . . , gm(x))T .

In this first chapter we find out a dual problem to (P ) and prove the existence
of weak and strong duality. Moreover, by means of strong duality we derive the
optimality conditions for (P ).

The approach, we use to find a dual problem to (P ), is the so-called Fenchel-
Rockafellar approach and it was very well described in [4]. It offers the possibility to
construct different dual problems to a primal optimization problem, by perturbing
it in different ways (cf. [13], [14] and [15]).

In order to find a dual problem to (P ), we consider the following perturbation
function Ψ : X × . . . × X

︸ ︷︷ ︸

m+1

×R
m → R,

Ψ(x, q, d) = f((g1(x + q1), . . . , gm(x + qm))T + d),

where q = (q1, . . . , qm) ∈ X × . . . × X and d ∈ R
m are the so-called perturbation

variables.
Then the dual problem to (P ), obtained by using the perturbation function Ψ ,

will be
(D) sup

pi∈X∗,i=1,...,m,
λ∈R

m

{−Ψ∗(0, p, λ)},

where Ψ∗ : X∗ × . . . × X∗

︸ ︷︷ ︸

m+1

×R
m → R ∪ {+∞} is the conjugate function of Ψ . Here,

pi, i = 1, ...,m, and λ ∈ R
m are the dual variables.

We recall that for a function h : Y → R, Y being a Hausdorff locally convex
vector space, its conjugate function h∗ : Y ∗ → R ∪ {+∞} has the form h∗(y∗) =
sup
y∈Y

{〈y∗, y〉 − h(y)}. Y ∗ is the topological dual to Y .

The conjugate function of Ψ can be calculated by the following formula

Ψ∗(x∗, p, λ) = sup
qi∈X,i=1,...,m,

x∈X,d∈R
m

{

〈x∗, x〉 +
m∑

i=1

〈pi, qi〉 + 〈λ, d〉

−f((g1(x + q1), . . . , gm(x + qm))T + d)
}

.

To find these expression, we introduce, at first, the new variable t instead of d
and, then, the new variables ri instead of qi, by

t = d + (g1(x + q1), . . . , gm(x + qm))T ∈ R
m
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and
ri = x + qi ∈ X, i = 1, ...,m.

This implies

Ψ∗(x∗, p, λ) = sup
qi∈X,i=1,...,m,

x∈X,t∈R
m

{

〈x∗, x〉 +

m∑

i=1

〈pi, qi〉

+
〈
λ, t − (g1(x + q1), . . . , gm(x + qm))T

〉
− f(t)

}

= sup
ri∈X,i=1,...,m,

x∈X

{

〈x∗, x〉 +
m∑

i=1

〈pi, ri − x〉

−
〈
λ, (g1(r1), . . . , gm(rm))T

〉 }

+ sup
t∈Rm

{〈λ, t〉 − f(t)}

=
m∑

i=1

sup
ri∈X

{〈pi, ri〉 − λigi(ri)} + sup
x∈X

〈

x∗ −
m∑

i=1

pi, x

〉

+f∗(λ)

= f∗(λ) +
m∑

i=1

(λigi)
∗(pi) + sup

x∈X

〈

x∗ −
m∑

i=1

pi, x

〉

.

We have now to consider x∗ = 0 and, so, the dual problem of (P ) has the
following form

(D) sup
λ∈R

m,pi∈X∗,
i=1,...,m

{

−f∗(λ) −
m∑

i=1

(λigi)
∗(pi) + inf

x∈X

〈
m∑

i=1

pi, x

〉}

.

In the objective function of (D), if
m∑

i=1

pi 6= 0X∗ , there exists x0 ∈ X,x0 6= 0X ,

such that

〈
m∑

i=1

pi, x0

〉

< 0. But, for all α > 0, we have

inf
x∈X

〈
m∑

i=1

pi, x

〉

< α ·

〈
m∑

i=1

pi, x0

〉

,

and this means that, in this case, inf
x∈X

〈
m∑

i=1

pi, x

〉

= −∞.

In conclusion, in order to have supremum in (D), we must consider
m∑

i=1

pi = 0.

By this, the dual problem of (P ) will be

(D) sup
λ∈R

m,pi∈X∗,

i=1,...,m,
m∑

i=1

pi=0

{

−f∗(λ) −
m∑

i=1

(λigi)
∗(pi)

}

. (1)

Let us point out that, by the Fenchel-Rockafellar approach, between (P ) and
(D) weak duality, i.e. inf(P ) ≥ sup(D), always holds (cf. [4]).

But, we are interested in the existence of strong duality inf(P ) = sup(D). This
can be shown, by proving that the problem (P ) is stable (cf. [4]). Therefore, we
show that the stability criterion described in Proposition III.2.3 in [4] is fulfilled.
For the beginning, we need the following proposition.
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Proposition 1. The function Ψ : X × . . . × X
︸ ︷︷ ︸

m+1

×R
m → R,

Ψ(x, q, d) = f((g1(x + q1), . . . , gm(x + qm))T + d)

is convex.

The convexity of Ψ follows from the convexity of the functions f and g and the
fact that f is a componentwise increasing function.

Theorem 1 (strong duality for (P )). If inf(P ) > −∞, then the dual problem
has a solution and strong duality holds, i.e.

inf(P ) = max(D).

Proof. By Proposition 1, we have that the perturbation function Ψ is convex. More-
over, inf(P ) is a finite number and the function

(q1, . . . , qm, d) −→ Ψ(0, q1, . . . , qm, d)

is finite and continuous in (0, ..., 0
︸ ︷︷ ︸

m

, 0Rm) ∈ X × . . . × X
︸ ︷︷ ︸

m

×R
m. This means that the

stability criterion in Proposition III.2.3 in [4] is fulfilled, which implies that the
problem (P ) is stable. Finally, the Propositions IV.2.1 and IV.2.2 in [4] conduce us
to the desired conclusions. �

The structure of the problem (P ) looks like a scalarization of a vector optimiza-
tion problem by means of the monotonic function f . The results concerning duality
for the problem (P ) could be used to derive duality statements in the multiobjective
optimization. But, this is the subject of some of our present research.

The last part of this section is devoted to the presentation of the optimality
conditions for the primal problem (P ). They are derived, by the use of the equality
between the optimal values of the primal and dual problem.

Theorem 2 (optimality conditions for (P )).

(1) Let x̄ ∈ X be a solution to (P ). Then there exist p̄i ∈ X∗, i = 1, ...,m, and λ̄ ∈
R

m, such that (λ̄, p̄1, . . . , p̄m) is a solution to (D) and the following optimality
conditions are satisfied

(i) f(g(x̄)) + f∗(λ̄) =
m∑

i=1

λ̄igi(x̄),

(ii) λ̄igi(x̄) + (λ̄igi)
∗(p̄i) = 〈p̄i, x̄〉 , i = 1, . . . ,m,

(iii)
m∑

i=1

p̄i = 0.

(2) If x̄ ∈ X, (λ̄, p̄1, . . . , p̄m) is feasible to (D) and (i)-(iii) are fulfilled, then x̄ is a
solution to (P ), (λ̄, p̄1, . . . , p̄m) is a solution to (D) and strong duality holds

f(g(x̄)) = −f∗(λ̄) −
m∑

i=1

(λ̄igi)
∗(p̄i).
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Proof. (1) By Theorem 1, it follows that there exist p̄i ∈ X∗, i = 1, ...,m, and
λ̄ ∈ R

m, such that (λ̄, p̄1, . . . , p̄m) is a solution to (D) and inf(P ) = max(D).

This means that
m∑

i=1

p̄i = 0 and

f(g(x̄)) = −f∗(λ̄) −
m∑

i=1

(λ̄igi)
∗(p̄i). (2)

The last equality is equivalent to

0 = f(g(x̄)) + f∗(λ̄) −
m∑

i=1

λ̄igi(x̄) +

m∑

i=1

[λ̄igi(x̄) + (λ̄igi)
∗(p̄i) − 〈p̄i, x̄〉]. (3)

From the definition of the conjugate functions we have that the following so-
called Young-inequalities

f(g(x̄)) + f∗(λ̄) ≥
〈
λ̄, g(x̄)

〉
=

m∑

i=1

λ̄igi(x̄) (4)

and

λ̄igi(x̄) + (λ̄igi)
∗(p̄i) ≥ 〈p̄i, x̄〉 , i = 1, . . . ,m, (5)

are true. By (4) and (5), it follows that all the terms of the sum in (3) must be
equal to zero. In conclusion, the equalities in (i) and (ii) must hold.

(2) All the calculations and transformations done within part (1) may be carried
out in the inverse direction starting from the conditions (i), (ii) and (iii). Thus
the equality (2) results, which is the strong duality, and shows that x̄ solves (P )
and (λ̄, p̄1, . . . , p̄m) solves (D). �

3 The case of monotonic norms

In this section we particularize the problem presented in the previous section. There-
fore, let be Φ : R

m → R a monotonic norm on R
m. Recall that a norm Φ is said to

be monotonic (cf. [1]), if

∀ u, v ∈ R
m, |ui| ≤ |vi|, i = 1, . . . ,m ⇒ Φ(u) ≤ Φ(v).

Let us introduce now the following primal problem

(PΦ) inf
x∈X

Φ+(g(x)),

where Φ+ : R
m → R, Φ+(t) := Φ(t+), with t+ = (t+1 , . . . , t+m)T and t+i = max{0, ti},

i = 1, . . . ,m.

Proposition 2. The function Φ+ : R
m → R is convex and componentwise increas-

ing.

Proof. First, let us point out that the function (·)+ : R
m → R

m
+ , defined by (t)+ =

(t+1 , ..., t+m)T , for t ∈ R
m, is a convex functions. This means that, for u, v ∈ R

m and
α ∈ [0, 1], it holds

(αu + (1 − α)v)+ 5 αu+ + (1 − α)v+.

Here, ”5” is the ordering induced on R
m by the cone of non-negative elements

R
m
+ .
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By the convexity and monotonicity of the norm Φ, we have then, for u, v ∈ R
m

and α ∈ [0, 1],

Φ+(αu + (1 − α)v) = Φ((αu + (1 − α)v)+) ≤ Φ(αu+ + (1 − α)v+)

≤ αΦ(u+) + (1 − α)Φ(v+) = αΦ+(u) + (1 − α)Φ+(v).

This means that the function Φ+ is convex.
In order to prove that Φ+ is componentwise increasing, let be u, v ∈ R

m, such
that ui ≤ vi, i = 1, ...,m. We have then, u+

i ≤ v+
i , which implies that |u+

i | ≤
|v+

i |, i = 1, . . . ,m. Φ being a monotonic norm, we have Φ(u+) ≤ Φ(v+), where
u+ = (u+

1 , ..., u+
m)T , v+ = (v+

1 , ..., v+
m)T or, equivalently, Φ+(u) ≤ Φ+(v).

In conclusion, the function Φ+ is componentwise increasing. �

By the approach described in section 2, a dual problem to (PΦ) is

(DΦ) sup
λ∈R

m,pi∈X∗,

i=1,...,m,
m∑

i=1

pi=0

{

−(Φ+)∗(λ) −
m∑

i=1

(λigi)
∗(pi)

}

.

Proposition 3. The conjugate function (Φ+)∗ : R
m → R ∪ {+∞} of Φ+ verifies

(Φ+)∗(λ) =

{
0, if λ = 0 and Φ0(λ) ≤ 1,

+∞, otherwise,

where Φ0 is the dual norm of Φ in R
m.

Proof. Let be λ ∈ R
m. For t ∈ R

m, we have |ti| ≥ |t+i |, i = 1, . . . ,m, which implies
that Φ(t) ≥ Φ(t+) and

Φ∗(λ) = sup
t∈Rm

{〈λ, t〉 − Φ(t)} ≤ sup
t∈Rm

{〈λ, t〉 − Φ+(t)} = (Φ+)∗(λ). (6)

On the other hand, for the conjugate of the norm Φ we have the following formula
(cf. [11])

Φ∗(λ) = sup
t∈Rm

{〈λ, t〉 − Φ(t)} =

{
0, if Φ0(λ) ≤ 1,

+∞, otherwise.
(7)

If Φ0(λ) > 1, by (6) and (7), we have +∞ = Φ∗(λ) ≤ (Φ+)∗(λ). From here,
(Φ+)∗(λ) = +∞.

Let be now Φ0(λ) ≤ 1. If there exists an i0 ∈ {1, . . . ,m}, such that λi0 < 0, we
have

(Φ+)∗(λ) = sup
t∈Rm

{〈λ, t〉 − Φ+(t)} = sup
t∈Rm

{〈λ, t〉 − Φ(t+)}

≥ sup
ti0

<0
{
〈
λ, (0, . . . , ti0 , . . . , 0)

T
〉
− Φ((0, . . . , ti0 , . . . , 0)

+)}

= sup
ti0

<0
λi0ti0 = +∞.

Like in the previous case, (Φ+)∗(λ) = +∞.
Finally, let be Φ0(λ) ≤ 1 and λ = 0. For every t ∈ R

m, it holds then 〈λ, t〉 ≤
〈λ, t+〉 and 〈λ, t+〉 ≤ Φ(t+). By using this two inequalities, we obtain for the conju-
gate function of Φ+

(Φ+)∗(λ) = sup
t∈Rm

{〈λ, t〉 − Φ(t+)} ≤ sup
t∈Rm

{
〈
λ, t+

〉
− Φ(t+)} ≤ 0.

But, by (6) and (7), it holds (Φ+)∗(λ) ≥ Φ∗(λ) = 0. So, we must have (Φ+)∗(λ) =
0, and the proposition is proved. �
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By Proposition 3, the dual of (PΦ) will have the following formulation

(DΦ) sup
λ∈R

m

+ ,pi∈X∗,i=1,...,m,
m∑

i=1

pi=0,Φ0(λ)≤1

{

−
m∑

i=1

(λigi)
∗(pi)

}

.

In the objective function of the dual let us separate the terms for which λi > 0
from the terms for which λi = 0. The dual can be then written as

(DΦ) sup

pi∈X∗,i=1,...,m,
m∑

i=1

pi=0,

Φ0(λ)≤1,I⊆{1,...,m},

λi>0(i∈I),λi=0(i/∈I)

{

−
∑

i∈I

(λigi)
∗(pi) −

∑

i/∈I

(0)∗(pi)

}

. (8)

For i /∈ I, it holds

0∗(pi) = sup
x∈X

{〈pi, x〉 − 0} = sup
x∈X

〈pi, x〉 =

{
0, if pi = 0,

+∞, otherwise,

and this means that, in order to have supremum in (DΦ), we must take pi = 0, ∀i /∈
I. The dual problem will be then

(DΦ) sup
Φ0(λ)≤1,I⊆{1,...,m},

λi>0(i∈I),λi=0(i/∈I),

pi∈X∗,i∈I,
∑

i∈I

pi=0

{

−
∑

i∈I

(λigi)
∗(pi)

}

.

For λi > 0, i ∈ I, let us apply the following property of the conjugate functions

(λigi)
∗ = λig

∗
i

(
1
λi

pi

)

, ∀i ∈ I (cf. [4]). Denoting pi := 1
λi

pi, we obtain, finally,

(DΦ) sup
(I,λ,p)∈YΦ

{

−
∑

i∈I

λig
∗
i (pi)

}

,

with

YΦ =
{

(I, λ, p) : I ⊆ {1, . . . ,m}, λ = (λ1, . . . , λm)T , p = (p1, . . . , pm),

Φ0(λ) ≤ 1, λi > 0(i ∈ I), λi = 0(i /∈ I),
∑

i∈I

λipi = 0
}

.

In Proposition 2 we have shown that Φ+ is a convex and componentwise increas-
ing function. Moreover, one can observe that inf(PΦ) is finite, being greater or equal
than zero. This last observation, together with Theorem 1, permits us to formulate
the following strong duality theorem for the problems (PΦ) and (DΦ).

Theorem 3 (strong duality for (PΦ)). The dual problem (DΦ) has a solution
and strong duality holds, i.e.

inf(PΦ) = max(DΦ).

As for the general problem (P ), we can derive now the optimality conditions for
(PΦ).
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Theorem 4 (optimality conditions for (PΦ)).

(1) Let x̄ ∈ X be a solution to (PΦ). There exists then (Ī , λ̄, p̄) ∈ YΦ, solution to
(DΦ), such that the following optimality conditions are satisfied

(i) Ī ⊆ {1, . . . ,m}, λ̄i > 0(i ∈ Ī), λ̄i = 0(i /∈ Ī),

(ii) Φ0(λ̄) ≤ 1,
∑

i∈Ī

λ̄ip̄i = 0,

(iii) Φ+(g(x̄)) =
∑

i∈Ī

λ̄igi(x̄),

(iv) gi(x̄) + g∗i (p̄i) = 〈p̄i, x̄〉 , i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ YΦ and (i)-(iv) are fulfilled, then x̄ is a solution to (PΦ),
(Ī , λ̄, p̄) ∈ YΦ is a solution to (DΦ) and strong duality holds

Φ+(g(x̄)) = −
∑

i∈Ī

λ̄ig
∗
i (p̄i).

Proof. (1) By Theorem 3, it follows that there exists (Ī , λ̄, p̄) ∈ YΦ, solution to
(DΦ), such that (i)-(ii) are fulfilled and

Φ+(g(x̄)) = −
∑

i∈Ī

λ̄ig
∗
i (p̄i).

The last equality is equivalent to

0 = Φ+(g(x̄)) + (Φ+)∗(λ̄) −
∑

i∈Ī

λ̄igi(x̄) +
∑

i∈Ī

λ̄i[gi(x̄) + g∗i (p̄i) − 〈p̄i, x̄〉].

Using again the Young-inequalities

Φ+(g(x̄)) + (Φ+)∗(λ̄) ≥
〈
λ̄, g(x̄)

〉
=

∑

i∈Ī

λ̄igi(x̄) (9)

and
gi(x̄) + g∗i (p̄i) ≥ 〈p̄i, x̄〉 , i ∈ Ī , (10)

it follows that (9) and (10) turn over in equalities. This means that

Φ+(g(x̄)) + (Φ+)∗(λ̄) =
∑

i∈Ī

λ̄igi(x̄) (11)

and
gi(x̄) + g∗i (p̄i) = 〈p̄i, x̄〉 , i ∈ Ī . (12)

On the other hand, by Proposition 3, we have that (Φ+)∗(λ̄) = 0, and, so, (11)
conduces us to Φ+(g(x̄)) =

∑

i∈Ī

λ̄igi(x̄). In conclusion, the relations (iii) and (iv)

must also hold.
(2) All the calculations and transformations done within part (1) may be carried

out in the inverse direction. �

Remark 1. In Theorem 4 we do not exclude the possibility that the set Ī should be
empty. This would mean that, in the optimality conditions, λ̄ = 0 and, from (iii),
Φ+(g(x̄)) = 0. But, this can be the case just if the following equivalent relations are
true

Φ(g(x̄)+) = 0 ⇔ g+(x̄) = 0 ⇔ g+
i (x̄) = 0, i = 1, . . . ,m ⇔ gi(x̄) ≤ 0, i = 1, . . . ,m.
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4 The location model involving sets as existing facilities

After we have studied in the sections 2 and 3 the duality for two quite general
optimization problems, we consider now the problem treated by Nickel, Puerto and
Rodriguez-Chia in [9]. This problem is a single facility location problem in a general
normed space in which the existing facilities are represented by sets.

Let be A = {A1, . . . , Am} a family of convex sets in X, such that
m⋂

i=1

Ai = ∅.

For i = 1, ...,m, we consider gi : X → R, gi(x) = di(x,Ai), where

di(x,Ai) = inf{γi(x − ai) : ai ∈ Ai}.

Here, γi is a continuous norm on X, for i = 1, . . . ,m. This means that the
functions gi, i = 1, ...,m, are convex and continuous on X.

Let be d : X → R
m the vector function defined by

d(x) := (d1(x,A1), . . . , dm(x,Am))T .

The location problem with sets as existing facilities studied in [9] is

(PΦ(A)) inf
x∈X

Φ(d(x)).

But, because of

Φ+(d(x)) = Φ(d+(x)) = Φ(d(x)), ∀x ∈ X,

we can write (PΦ(A)) in the equivalent form

(PΦ(A)) inf
x∈X

Φ+(d(x)).

This problem is a particular case of the problem studied in section 3. Therefore,
the dual problem of (PΦ(A)) is

(DΦ(A)) sup
(I,λ,p)∈YΦ(A)

{

−
∑

i∈I

λid
∗
i (pi)

}

,

with

YΦ(A) =
{

(I, λ, p) : I ⊆ {1, . . . ,m}, λ = (λ1, . . . , λm)T , p = (p1, . . . , pm),

Φ0(λ) ≤ 1, λi > 0(i ∈ I), λi = 0(i /∈ I),
∑

i∈I

λipi = 0
}

.

By the use of the Theorems 3 and 4 we can present for (PΦ(A)) and (DΦ(A))
the strong duality theorem and the optimality conditions.

Theorem 5 (strong duality for (PΦ(A))). The dual problem (DΦ(A)) has a
solution and strong duality holds, i.e.

inf(PΦ(A)) = max(DΦ(A)).

Theorem 6 (optimality conditions for (PΦ(A))).

(1) Let x̄ ∈ X be a solution to (PΦ(A)). There exists then (Ī , λ̄, p̄) ∈ YΦ(A), solution
to (DΦ(A)), such that the following optimality conditions are satisfied

(i) Ī ⊆ {1, . . . ,m}, Ī 6= ∅, λ̄i > 0(i ∈ Ī), λ̄i = 0(i /∈ Ī),

(ii) Φ0(λ̄) = 1,
∑

i∈Ī

λ̄ip̄i = 0,

(iii) Φ(d(x̄)) =
∑

i∈Ī

λ̄idi(x̄, Ai),

(iv) x̄ ∈ ∂d∗
i (p̄i), i ∈ Ī .
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(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ YΦ(A) and (i) - (iv) are fulfilled, then x̄ is a solution to
(PΦ(A)), (Ī , λ̄, p̄) ∈ YΦ(A) is a solution to (DΦ(A)) and strong duality holds

Φ(d(x̄)) =
∑

i∈Ī

λ̄idi(x̄, Ai) = −
∑

i∈Ī

λ̄id
∗
i (p̄i).

Proof. (1) By Theorem 5, it follows that there exists (Ī , λ̄, p̄) ∈ YΦ(A), solution to
(DΦ(A)), such that

(i′) Ī ⊆ {1, . . . ,m}, λ̄i > 0(i ∈ Ī), λ̄i = 0(i /∈ Ī),

(ii′) Φ0(λ̄) ≤ 1,
∑

i∈Ī

λ̄ip̄i = 0,

(iii′) Φ+(d(x̄)) =
∑

i∈Ī

λ̄idi(x̄, Ai),

(iv′) di(x̄, Ai) + d∗
i (p̄i) = 〈p̄i, x̄〉 , i ∈ Ī .

We prove now that (Ī , λ̄, p̄) verifies the relations (i)-(iv). If Ī were empty, then
by Remark 1, it would follow that

gi(x̄) = di(x̄, Ai) = 0, i = 1, . . . ,m.

But, this would imply that x̄ ∈
m⋂

i=1

Ai, which would contradict the hypothesis

that
m⋂

i=1

Ai = ∅. By this, the relation (i) is proved.

From (iii′), we have that

Φ+(d(x̄)) = Φ(d(x̄)) =
∑

i∈Ī

λ̄idi(x̄, Ai), (13)

and, so, (iii) is also proved.
From (iv′), we have that p̄i ∈ ∂di(x̄, Ai), for i ∈ Ī (cf. [4]). On the other hand,
the distance function di, being convex and continuous, verifies (cf. [4] and [16])

p̄i ∈ ∂di(x̄, Ai) ⇔ x̄ ∈ ∂d∗
i (p̄i), ∀i ∈ Ī ,

which proves (iv).
In order to finish the proof, it remains us to show that Φ0(λ̄) = 1. By the
definition of the dual norm, we have

Φ0(λ̄) = sup
Φ(v)≤1,
v∈R

m

|
〈
λ̄, v

〉
|.

Because of
m⋂

i=1

Ai = ∅, it holds Φ(d(x̄)) > 0. Let be v̄ = 1
Φ(d(x̄))d(x̄) ∈ R

m. Then

we have Φ(v̄) = 1 and, by (iii) and (13),

Φ0(λ̄) ≥
〈
λ̄, v̄

〉
=

∑

i∈Ī

λ̄idi(x̄, Ai)

Φ(d(x̄))
= 1.

This last inequality, together with (ii′), gives us Φ0(λ̄) = 1.
(2) All the calculations and transformations done within part (1) may be carried

out in the inverse direction. �
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Remark 2. (a) Lemma 3.3 in [9], which characterizes the solutions of (PΦ(A)), can
be automatically obtained by means of the optimality conditions given in The-
orem 6.

(b) In [9], the authors made the assumption, that the sets Ai, i = 1, ...,m, have to
be compact. As one can see, in order to formulate the strong duality theorem
and the optimality conditions for (PΦ(A)), the compactness of the sets Ai, i =
1, ...,m, is not necessary.

In the last two sections of this paper we consider the Weber problem with infi-
mal distances and the minmax problem with infimal distances with sets as existing
facilities. One may notice that these problems may be related to the linear and
Tchebycheff scalarization, respectively, of a multiobjective location problems. For
the mentioned problems we formulate their duals and present the optimality con-
ditions. Therefore, we write both problems, equivalently, as particular cases of the
problem (PΦ(A)).

5 The Weber problem with infimal distances

The Weber problem with infimal distances for the data A is

(PW (A)) inf
x∈X

m∑

i=1

widi(x,Ai),

where di(x,Ai) = inf
ai∈Ai

γi(x − ai), i = 1, ...,m, and wi > 0, i = 1, ...,m, are positive

weights.
We introduce now, for i = 1, ...,m, the continuous norms γ ′

i : X → R, γ′
i = wiγi

and the corresponding distance functions d′
i(·, Ai) : X → R, d′

i(x,Ai) = inf
ai∈Ai

γ′
i(x−

ai). This means that

d′i(x,Ai) = inf
ai∈Ai

γ′
i(x − ai) = widi(x,Ai), i = 1, . . . ,m. (14)

By (14), the primal problem (PW (A)) becomes

(PW (A)) inf
x∈X

m∑

i=1

d′i(x,Ai) = inf
x∈X

l1(d
′(x)),

where d′ : X → R
m, d′(x) = (d′

1(x,A1), . . . , d
′
m(x,Am))T and l1 : R

m → R, l1(λ) =
m∑

i=1

|λi|. One may easy observe that the l1-norm is a monotonic norm.

The dual problem of (PW (A)) will be then

(DW (A)) sup
(I,λ,p)∈YW (A)

{

−
∑

i∈I

λi(d
′
i)

∗(pi)

}

,

with

YW (A) =
{

(I, λ, p) : I ⊆ {1, . . . ,m}, λ = (λ1, . . . , λm)T , p = (p1, . . . , pm),

l01(λ) ≤ 1, λi > 0(i ∈ I), λi = 0(i /∈ I),
∑

i∈I

λipi = 0
}

.

For i = 1, . . . ,m, we have that (cf. [4]) (d′
i)

∗(pi) = (widi)
∗(pi) = wid

∗
i

(
1

wi

pi

)

.

Moreover, the dual norm of the l1- norm is l01(λ) = max
i=1,...,m

|λi|. Denoting pi :=
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1
wi

pi, i = 1, . . . ,m, we obtain the following formulation for the dual problem

(DW (A)) sup
(I,λ,p)∈YW (A)

{

−
∑

i∈I

λiwid
∗
i (pi)

}

,

with

YW (A) =
{

(I, λ, p) : I ⊆ {1, . . . ,m}, λ = (λ1, . . . , λm)T , p = (p1, . . . , pm),

max
i∈I

λi ≤ 1, λi > 0(i ∈ I), λi = 0(i /∈ I),
∑

i∈I

λiwipi = 0
}

.

Let us give now the strong duality theorem and the optimality conditions for
(PW (A)) and its dual (DW (A)).

Theorem 7 (strong duality for (PW (A))). The dual problem (DW (A)) has a
solution and strong duality holds, i.e.

inf(PW (A)) = max(DW (A)).

Theorem 8 (optimality conditions for (PW (A))).

(1) Let x̄ ∈ X be a solution to (PW (A)). There exists then (Ī , λ̄, p̄) ∈ YW (A),
solution to (DW (A)), such that the following optimality conditions are satisfied

(i) Ī ⊆ {1, . . . ,m}, Ī 6= ∅, λ̄i = 1(i ∈ Ī), λ̄i = 0(i /∈ Ī),

(ii)
∑

i∈Ī

wip̄i = 0,

(iii)
m∑

i=1

widi(x̄, Ai) =
∑

i∈Ī

widi(x̄, Ai),

(iv) x̄ ∈ ∂d∗
i (p̄i), i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ YW (A) and (i)-(iv) are fulfilled, then x̄ is a solution to
(PW (A)), (Ī , λ̄, p̄) ∈ YW (A) is a solution to (DW (A)) and strong duality holds

m∑

i=1

widi(x̄, Ai) =
∑

i∈Ī

widi(x̄, Ai) = −
∑

i∈Ī

λ̄iwid
∗
i (p̄i).

Proof. (1) By Theorem 7, it follows that there exists a triplet (Ī ′, λ̄′, p̄′), such that

(i′) Ī ′ ⊆ {1, . . . ,m}, Ī ′ 6= ∅, λ̄′
i > 0(i ∈ Ī ′), λ̄′

i = 0(i /∈ Ī ′),

(ii′) l01(λ̄
′) = 1,

∑

i∈Ī′

λ̄′
ip̄

′
i = 0,

(iii′) l1(d
′(x̄)) =

∑

i∈Ī′

λ̄′
id

′
i(x̄, Ai),

(iv′) x̄ ∈ ∂(d′
i)

∗(p̄′i), i ∈ Ī ′.

By (ii′), we have that l01(λ̄) = max
i∈Ī′

λ̄′
i = 1. From (iii′), it follows

l1(d
′(x̄)) =

m∑

i=1

d′i(x̄, Ai) =
∑

i∈Ī′

λ̄′
id

′
i(x̄, Ai) ≤

∑

i∈Ī′

d′i(x̄, Ai) ≤
m∑

i=1

d′i(x̄, Ai).
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We must then have, for i ∈ Ī ′, λ̄′
i = 1. Substituting in (ii′), it follows

∑

i∈Ī′

p̄′i = 0.

Considering Ī = Ī ′, λ̄ = λ̄′ and p̄i = 1
wi

p̄′i, for i = 1, . . . ,m, the triplet (Ī , λ̄, p̄)
is feasible for (DW (A)). Moreover, it is obvious that (i) − (iii) are verified.
On the other hand, from (iv′), we have ∀i ∈ Ī (cf. [11]),

x̄ ∈ ∂(d′
i)

∗(p̄′i) ⇔ p̄′i ∈ ∂d′
i(x̄, Ai) ⇔ p̄′i ∈ ∂(widi)(x̄, Ai) = wi∂di(x̄, Ai),

which implies that p̄i = 1
wi

p′i ∈ ∂di(x̄, Ai), or, equivalently, x̄ ∈ ∂d∗
i (p̄i).

(2) All the calculations and transformations done within part (1) may be carried
out in the inverse direction. �

6 The minmax problem with infimal distances

The last optimization problem which we consider in this paper is the minmax prob-
lem with infimal distances for the data A

(PH(A)) inf
x∈X

max
i=1,...,m

widi(x,Ai),

where di(x,Ai) = inf
ai∈Ai

γi(x − ai), i = 1, ...,m, and wi > 0, i = 1, ...,m, are positive

weights.
Like for the Weber problem studied above, let be, for i = 1, ...,m, the continuous

norms γ′
i : X → R, γ′

i = wiγi and the corresponding distance functions d′
i(·, Ai) :

X → R, d′
i(x,Ai) = inf

ai∈Ai

γ′
i(x − ai).

This means that the equality in (14) is true and the primal problem (PH(A))
becomes

(PH(A)) inf
x∈X

max
i=1,...,m

d′i(x,Ai) = inf
x∈X

l∞(d′(x)),

where d′ : X → R
m, d′(x) = (d′

1(x,A1), . . . , d
′
m(x,Am))T and l∞ : R

m → R, l∞(λ)
= max

i=1,...,m
|λi|. The l∞-norm is also a monotonic norm.

The dual problem of (PH(A)) will be then

(DH(A)) sup
(I,λ,p)∈YH(A)

{

−
∑

i∈I

λi(d
′
i)

∗(pi)

}

,

with

YH(A) =
{

(I, λ, p) : I ⊆ {1, . . . ,m}, λ = (λ1, . . . , λm)T , p = (p1, . . . , pm),

l0∞(λ) ≤ 1, λi > 0(i ∈ I), λi = 0(i /∈ I),
∑

i∈I

λipi = 0
}

.

For i = 1, . . . ,m, we have again (cf. [4]) (d′
i)

∗(pi) = (widi)
∗(pi) = wid

∗
i

(
1

wi

pi

)

.

The dual norm of the l∞-norm is l0∞(λ) =
m∑

i=1

|λi|. Denoting pi := 1
wi

pi, for i =

1, . . . ,m, we obtain

(DH(A)) sup
(I,λ,p)∈YH(A)

{

−
∑

i∈I

λiwid
∗
i (pi)

}

,

with

YH(A) =
{

(I, λ, p) : I ⊆ {1, . . . ,m}, λ = (λ1, . . . , λm)T , p = (p1, . . . , pm),

∑

i∈I

λi ≤ 1, λi > 0(i ∈ I), λi = 0(i /∈ I),
∑

i∈I

λiwipi = 0
}

.
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Like in the previous section, we state the strong duality theorem and formulate
the optimality conditions.

Theorem 9 (strong duality for (PH(A))). The dual problem (DH(A)) has a
solution and strong duality holds, i.e.

inf(PH(A)) = max(DH(A)).

Theorem 10 (optimality conditions for (PH(A))).

(1) Let x̄ ∈ X be a solution to (PH(A)). There exists then (Ī , λ̄, p̄) ∈ YH(A),
solution to (DH(A)), such that the following optimality conditions are satisfied

(i) Ī ⊆ {1, . . . ,m}, Ī 6= ∅, λ̄i > 0(i ∈ Ī), λ̄i = 0(i /∈ Ī),

(ii)
∑

i∈Ī

λ̄i = 1,
∑

i∈Ī

wiλ̄ip̄i = 0,

(iii) max
i=1,...,m

widi(x̄, Ai) = widi(x̄, Ai), ∀i ∈ Ī ,

(iv) x̄ ∈ ∂d∗
i (p̄i), i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ YH(A) and (i)-(iv) are fulfilled, then x̄ is a solution to
(PH(A)), (Ī , λ̄, p̄) ∈ YH(A) is a solution to (DH(A)) and strong duality holds

max
i=1,...,m

widi(x̄, Ai) =
∑

i∈Ī

λ̄iwidi(x̄, Ai) = −
∑

i∈Ī

λ̄iwid
∗
i (p̄i).

Proof. (1) By Theorem 9, it follows that there exists a triplet (Ī ′, λ̄′, p̄′), such that

(i′) Ī ′ ⊆ {1, . . . ,m}, Ī ′ 6= ∅, λ̄′
i > 0(i ∈ Ī ′), λ̄′

i = 0(i /∈ Ī ′),

(ii′) l0∞(λ̄′) = 1,
∑

i∈Ī

λ̄′
ip̄

′
i = 0,

(iii′) l∞(d′(x̄)) =
∑

i∈Ī′

λ̄′
id

′
i(x̄, Ai),

(iv′) x̄ ∈ ∂(d′
i)

∗(p̄′i), i ∈ Ī ′.

By (ii′), we have that l0∞(λ̄′) =
∑

i∈Ī′

λ̄′
i = 1. On the other hand, from (iii′), it

follows

l∞(d′(x)) = max
i=1,...,m

d′i(x,Ai) =
∑

i∈Ī′

λ̄′
id

′
i(x̄, Ai) ≤ max

i=1,...,m
d′i(x̄, Ai).

For i ∈ Ī ′, we must then have max
i=1,...,m

d′i(x̄, Ai) = d′
i(x̄, Ai). From here, by (14),

we have max
i=1,...,m

widi(x̄, Ai) = widi(x̄, Ai), ∀i ∈ Ī ′.

Considering Ī = Ī ′, λ̄ = λ̄′ and p̄i = 1
wi

p′i, i = 1, . . . ,m, the triplet (Ī , λ̄, p̄) is
feasible for (DH(A)). So, it is obvious that (i)− (iii) are verified. Relation (iv)
can be obtained in the same way like in the proof of Theorem 8.

(2) All the calculations and transformations done within part (1) may be carried
out in the inverse direction. �
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5. Hiriart-Urruty, J. B., Lemaréchal, C. (1993) Convex Analysis and Minimization Algo-
rithms. Springer, Berlin Heidelberg New York

6. Ioffe, A.D., Levin, V.L. (1972) Subdifferentials of convex functions. Trans. Moscow
Math. Soc. 26, 1–72

7. Lemaire, B. (1984) Subdifferential of a Convex Composite Functional: Application to
Optimal Control in Variational Inequalities. Nondifferentiable Optimization, Sopron,
Hungary
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