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Abstract

In this paper we consider the optimization problem with a multiobjective com-

posed convex function as objective function, namely, being a composite of a

convex and componentwise increasing vector function with a convex vector

function. By the conjugacy approach, we obtain a dual problem for it. The

existence of weak and strong duality is proved.

Using this general result, we introduce the dual problem for the multiobjective

location problem in a general normed space, in which the existing facilities are

represented by sets of points.

The biobjective Weber-minimax problem, the multiobjective Weber problem

and the multiobjective minimax problem with demand sets are studied as par-

ticular cases of this problem.

Keywords: multiobjective duality, location problems, optimality conditions,

Weber problem, minimax problem

The goal of this paper is to construct, in a general normed space, a dual for a
primal multiobjective problem, each component of the multiobjective function being
a composite of a convex and componentwise increasing function with a convex vector
function. In the past, optimization problems with the objective function being a
composed convex function have been considered by different authors. We remind the

1



works [9] and [10] where some results with regard to duality have been given. Recently,
optimization problems of this type have found applications in goal programming
problems [4] and average distance problems [14].

This article is based on the work of Boţ and Wanka [2], where the authors have ex-
amined the case of a single objective function, for which a geometrical characterization
of the set of optimal solutions was treated in [13] by Nickel, Puerto and Rodriguez-
Chia. Here we study the duality for a multiobjective problem (P ). For our original
multiobjective problem Pareto-efficient and properly efficient solutions are consid-
ered. In order to do this, we consider first the linearly scalarized problem (Pλ) and
use a dual problem (Dλ) to derive strong duality and optimality conditions, which
later are used to obtain duality assertions for the original and dual multiobjective
problem. This dual problem (Dλ) results from a special perturbation of the primal
problem, by applying the Fenchel-Rockafellar duality concept based on conjugacy and
perturbation (cf. [5]). Therefore, we have the possibility to construct different dual
problems to a primal optimization problem, by perturbing it in different ways (see,
for instance [22] and [23]).

Among the large number of papers and books dealing with different approaches to
multiobjective duality we mention as a representative selection the books [6], [8], [16]
and the papers [3], [11], [12], [17], [20], [22], [24] and [25]. Beside presentations in the
sense of approaches for general formulated problems there are a lot of contributions
devoted to the duality for multiobjective programming problems of special type, as for
example linear problems [7], location and approximation problems [18], [20], portfolio
optimization problems [19], [21], etc. In this paper, applying the conjugacy approach
and using an appropiate perturbation as the authors in [2], we construct a dual for
(Pλ) and we prove the existence of strong duality between them. The dual problem is
given in terms of conjugate functions and has the advantage that its structure gives
an idea how to formulate the multiobjective dual problem to the original problem. By
means of strong duality for (Pλ) and its dual, we derive some optimality conditions for
the primal optimization problem and construct a dual for the multiobjective primal
problem (P ).

Using the general result, we introduce the dual problem and study the weak and
strong duality for the multiobjective location problem in a general normed space in
which the existing facilities are represented by sets. Afterwards, as particular cases of
this problem, the multiobjective Weber and minimax location problems are studied.

1 The optimization problem with a multiobjective

composed convex function as objective function

Let (X, ‖ · ‖) be a normed space, gj : X → R, j = 1, ...,m, convex and continuous
functions and f = (f1, . . . , fl)

T , fi : R
m → R, i = 1, . . . , l, convex and componentwise

increasing functions, i.e. for y = (y1, . . . , ym), z = (z1, . . . , zm) ∈ R
m, such that yj ≥
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zj, j = 1, ...,m, holds fi(y) ≥ fi(z) for i = 1, . . . , l.
We consider the following multiobjective optimization problem

(P ) v-min
x∈X

f(g(x))

with g(x) = (g1(x), . . . , gm(x)).
The problem (P ) is a multiobjective optimization problem in the form of a vector

minimum problem and for such kind of problems different notions of solutions are
known. We will use in our paper the so-called efficient and properly efficient solu-
tions. Let us recall the two solution concepts.

Definition 1. An element x̄ ∈ X is said to be efficient (or Pareto - efficient)
with respect to (P ) if from

f(g(x)) 5
R

l
+

f(g(x̄)) for x ∈ X, follows f(g(x)) = f(g(x̄)).

Remark 1. Here we consider the partial ordering in R
l given by the cone

R
l
+ = {y = (y1, . . . , yl)

T ∈ R
l : yi ≥ 0, i = 1, . . . , l} by y1 5

R
l
+

y2 iff y2 − y1 ∈ R
l
+.

Definition 2. An element x̄ ∈ X is said to be properly efficient with respect to
(P ) if there exists λ = (λ1, . . . , λl)

T ∈ intRl
+ (i.e. λi > 0, i = 1, . . . , l), such that

l∑

i=1

λifi(g(x̄)) ≤
l∑

i=1

λifi(g(x)),∀x ∈ X.

2 Duality for the scalarized problem

In order to study the duality for the multiobjective problem (P ), first we will study
the duality for the scalarized problem (cf. Definition 2).

(Pλ) inf
x∈X

l∑

i=1

λifi(g(x)),

where λ = (λ1, . . . , λl)
T ∈ intRl

+ is a fixed vector. For (Pλ) we will derive a dual
(Dλ) by means of the conjugacy approach, which permits us to construct different
dual problems to an original primal problem depending on the kind of perturbation.

We introduce the following perturbation function Ψ:X×. . .×X
︸ ︷︷ ︸

m+1

×R
m→R,

Ψ(x, q, d) =
l∑

i=1

λifi((g1(x + q1), . . . , gm(x + qm)) + d),
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with the perturbation variables q = (q1, . . . , qm) ∈ X× . . .×X and d = (d1, . . . , dm) ∈
R

m. A dual problem to (Pλ), obtained by using the perturbation function Ψ, is then

(Dλ) sup
q∗ = (q∗1, . . . , q∗m),

q∗j ∈X∗, j = 1, ...,m,
d∗ ∈ R

m

{−Ψ∗(0, q∗, d∗)},

where Ψ∗ :X∗ × . . . × X∗

︸ ︷︷ ︸

m+1

×R
m→R ∪ {+∞} is the conjugate function of Ψ, q∗j ∈ X∗,

j = 1, ...,m, and d∗ = (d∗
1, . . . , d

∗
m)T ∈ R

m are the dual variables. X∗ denotes the
topological dual space to X. The conjugate function of Ψ is by definition

Ψ∗(x∗, q∗, d∗) = sup
x∈X, d∈Rm, q=(q1,...,qm),

qj∈X, j=1,...,m

{

〈x∗, x〉+
m∑

j=1

〈q∗j , qj〉+〈d∗, d〉−Ψ(x, q, d)

}

= sup
x∈X, d∈Rm, q=(q1,...,qm),

qj∈X, j=1,...,m

{

〈x∗, x〉+
m∑

j=1

〈q∗j , qj〉+〈d∗, d〉

−
l∑

i=1

λifi((g1(x+q1), . . . , gm(x+qm))+d)

}

,

where 〈·, ·〉 denotes the bilinear pairing between X∗ and X (for 〈x∗, x〉 and 〈q∗j , qj〉,
j = 1, ...,m) and, respectively, the scalar product in R

m (for 〈d∗, d〉). To calculate
this expression we introduce first the new variables rj instead of qj and then t instead
of d by

rj = x + qj ∈ X, j = 1, ...,m,

and

t = (g1(x + q1), . . . , gm(x + qm)) + d ∈ R
m.
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This implies

Ψ∗(x∗, q∗, d∗) = sup
x∈X, t∈Rm,

rj∈X, j=1,...,m

{

〈x∗, x〉 +
m∑

j=1

〈q∗j , rj−x〉 + 〈d∗, t〉 − 〈d∗, (g1(r1), . . . , gm(rm))〉

−
l∑

i=1

λifi(t)

}

= sup
x∈X, t∈Rm,

rj∈X, j=1,...,m

{

〈x∗, x〉 +
m∑

j=1

〈q∗j , rj〉 −
m∑

j=1

〈q∗j , x〉 + 〈d∗, t〉

− 〈d∗, ( g1(r1), . . . , gm(rm))〉−
l∑

i=1

λi fi(t)

}

= sup
t∈Rm

{

〈d∗, t〉−
l∑

i=1

λifi(t)

}

+ sup
rj∈X,

j=1,...,m

{
m∑

j=1

〈q∗j, rj〉 − 〈d∗, (g1(r1), . . . , gm(rm))〉

}

+sup
x∈X

〈

x∗−
m∑

j=1

q∗j , x

〉

=

(
l∑

i=1

λifi

)∗

(d∗) +
m∑

j=1

sup
rj∈X

(〈q∗j , rj〉 −d∗
jgj(rj)) + sup

x∈X

〈

x∗−
m∑

j=1

q∗j , x

〉

=

(
l∑

i=1

λifi

)∗

(d∗) +
m∑

j=1

(d∗
jgj)

∗(q∗j ) + sup
x∈X

〈

x∗−
m∑

j=1

q∗j , x

〉

.

Setting x∗ = 0, the dual problem of (Pλ) takes the form

(Dλ) sup
q∗
j
∈X∗, j=1,...,m,

d∗∈Rm

{

−

(
l∑

i=1

λifi

)∗

(d∗) −
m∑

j=1

(d∗
jgj)

∗(q∗j ) + inf
x∈X

〈
m∑

j=1

q∗j , x

〉}

.

In the objective function of (Dλ), if
m∑

j=1

q∗j 6= 0, then it holds inf
x∈X

〈
m∑

j=1

q∗j , x

〉

=

−∞. Thus, for the calculation of (Dλ) only
m∑

j=1

q∗j = 0 is relevant. On the other hand

(cf. [15]),

(
l∑

i=1

λifi)
∗ (d∗) = inf

{
l∑

i=1

(λifi)
∗(di∗) :

l∑

i=1

di∗ = d∗

}

.

Further, because λi > 0, we get (λifi)
∗(di∗) = λif

∗
i (di∗

λi
), for each i = 1, ..., l. We

can make the substitutions ai = (ai
1, ..., a

i
m) := 1

λi
di∗, i = 1, . . . , l, and then the dual

(Dλ) becomes

(Dλ) sup

ai∈Rm,
l

P

i=1
λiai=d∗, d∗∈Rm,

q∗j ∈X∗,
m
P

j=1
q∗j =0

{

−
l∑

i=1

λif
∗
i (ai) −

m∑

j=1

(d∗
jgj)

∗(q∗j )

}

.

Let us point out that, by construction, between (Pλ) and (Dλ) weak duality holds
(cf. [5]), i.e. inf(Pλ) ≥ sup(Dλ). But, we are interested in the existence of strong
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duality, i.e. inf(Pλ)= sup(Dλ), or even inf(Pλ)=max(Dλ), meaning the existence of
the solution of the dual problem. This can be shown by proving that the problem
(Pλ) is stable (cf. [5]).

Proposition 1. The function Ψ : X × . . . × X
︸ ︷︷ ︸

m+1

×R
m → R,

Ψ(x, q, d) =
l∑

i=1

λifi((g1(x + q1), . . . , gm(x + qm)) + d)

is convex.

The convexity of Ψ follows from the convexity of the functions fi, i = 1, . . . , l,
and gj, j = 1, ...m, and the fact that fi, i = 1, . . . , l, are componentwise increasing
functions.

Proposition 2. If inf(Pλ) > −∞, then the dual problem has a solution and
strong duality holds, i.e.

inf(Pλ) = max(Dλ).

Proof. See Theorem 1 in [2]. �

To investigate later the multiobjective duality for (P ) we need the optimality con-
ditions regarding to the scalar problem (Pλ) and its dual (Dλ). These are formulated
in the following theorem.

Theorem 1.

(1) Let x̄ ∈ X be a solution to (Pλ). Then there exists a tupel (ā, q̄∗, d̄∗ ), such that
the following optimality conditions are satisfied

(i) fi(g(x̄)) + f ∗
i (āi) − 〈āi, g(x̄)〉 = 0, i = 1, . . . , l,

(ii) (d̄∗
jgj)

∗(q̄∗j ) + d̄∗
jgj(x̄) − 〈q̄∗j , x̄〉 = 0, j = 1, . . . ,m,

(iii)
m∑

j=1

q̄∗j = 0,

(iv)
l∑

i=1

λiā
i = d̄∗.

(2) If x̄ ∈X and (ā, q̄∗, d̄∗) satisfy (i)-(iv), then x̄ is a solution to (Pλ), (ā, q̄∗, d̄∗) is
a solution to (Dλ) and strong duality holds, i.e.

l∑

i=1

λifi(g(x̄)) = −
l∑

i=1

λif
∗
i (āi) −

m∑

j=1

(d̄∗
jgj)

∗(q̄∗j ). (1)
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Remark 2. Obviously, the tupel (ā, q̄∗, d̄∗ ) in the part (1) of Theorem 1 is a solu-
tion of (Dλ) (cf. the proof).

Proof.

(1) By Proposition 2, it follows that there exist ā = (ā1, ..., āl), āi ∈ R
m, i = 1, ..., l,

q̄∗ = (q̄∗1, ..., q̄
∗
m), q̄∗j ∈ X∗, j = 1, ...,m, and d̄∗ ∈ R

m, such that (ā, q̄∗, d̄∗) is a

solution to (Dλ) and inf(Pλ) = max(Dλ). This means that
m∑

j=1

q̄∗j = 0,
l∑

i=1

λiā
i =

d̄∗, i.e. (iii) and (iv) are true, and

l∑

i=1

λifi(g(x̄)) = −
l∑

i=1

λif
∗
i (āi) −

m∑

j=1

(d̄∗
jgj)

∗(q̄∗j ).

This equality is equivalent to

l∑

i=1

λifi(g(x̄)) +
l∑

i=1

λif
∗
i (āi) −

l∑

i=1

λi〈ā
i, g(x̄)〉+

m∑

j=1

(d̄∗
jgj)

∗(q̄∗j )

+
m∑

j=1

d̄∗
jgj(x̄) −

m∑

j=1

〈q̄∗j , x̄〉+
l∑

i=1

λi〈ā
i, g(x̄)〉 −

m∑

j=1

d̄∗
jgj(x̄) = 0.

From here follows
l∑

i=1

λi{f
∗
i (āi) + fi(g(x̄)) − 〈āi, g(x̄)〉} +

m∑

j=1

{(d̄∗
jgj)

∗(q̄∗j ) + d̄∗
jgj(x̄) − 〈q̄∗j , x̄〉}

+
l∑

i=1

λi〈ā
i, g(x̄)〉 −

m∑

j=1

d̄∗
jgj(x̄) = 0.

But 〈
m∑

i=1

λiā
i, g(x̄)〉 − 〈d̄∗, g(x̄)〉 = 0, which implies that

l∑

i=1

λi{f
∗
i (āi)+ fi(g(x̄))−〈āi, g(x̄)〉}+

m∑

j=1

{(d̄∗
jgj)

∗(q̄∗j )+ d̄∗
jgj(x̄)−〈q̄∗j , x̄〉} = 0.

(2)
Because of the Young-Fenchel inequality which is expressing that for a function
f and its conjugate f ∗, f(x) + f ∗(x∗) = 〈x∗, x〉 is fulfilled, obviously all terms
of the sum in (2) are non-negative and therefore they must be even equal to
zero. This gives the optimality conditions (i) and (ii).

(2) All the calculations and transformations done within part (1) may be carried
out in the reverse direction starting from the conditions (i), (ii), (iii) and (iv).
Thus the equality (1) results, which is the strong duality, and shows that x̄
solves (Pλ) and (ā, q̄∗, d̄∗) solves (Dλ). �
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3 The multiobjective dual problem

A dual multiobjective optimization problem (D) to (P ) is introduced by

(D) v-max
(a,q,d,λ,t)∈Y

h(a, q, d, λ, t),

with

h(a, q, d, λ, t) =








h1(a, q, d, λ, t)
h2(a, q, d, λ, t)

...
hl(a, q, d, λ, t)








,

and

hi(a, q, d, λ, t) = −f ∗
i (ai) −

1

lλi

m∑

j=1

(djgj)
∗(qj) + ti, i = 1, . . . , l.

The dual variables are

a = (a1, . . . , al), ai ∈ R
m, i = 1, . . . , l, q = (q1, . . . , qm), qj ∈ X∗, j = 1, . . . ,m,

d = (d1, . . . , dm)T ∈ R
m, λ = (λ1, . . . , λl)

T ∈ R
l, t = (t1, . . . , tl)

T ∈ R
l,

and the set of constraints is

Y =

{

(a, q, d, λ, t) : λ ∈ intRl
+,

l∑

i=1

λia
i = d,

m∑

j=1

qj = 0,
l∑

i=1

λiti = 0

}

.

Remark 3. For the sake of simplicity of the denotation of the dual variables we
write here and in the following qj and q instead of q∗j and q∗ and d instead of d∗.

Definition 3. An element (ā, q̄, d̄, λ̄, t̄) ∈ Y is said to be efficient (or Pareto−
efficient) to (D) if from h(a, q, d, λ, t) =

R
l
+

h(ā, q̄, d̄, λ̄, t̄) for (a, q, d, λ, t) ∈ Y follows

h(a, q, d, λ, t) = h(ā, q̄, d̄, λ̄, t̄).

The following theorem states the weak duality assertion.

Theorem 2. There is no x ∈ X and no (a, q, d, λ, t) ∈ Y fulfilling
h(a, q, d, λ, t) =

R
l
+

f(g(x)) and h(a, q, d, λ, t) 6= f(g(x)).

Proof. Let us assume that there exist x ∈X and (a, q, d, λ, t) ∈ Y, such that
h(a, q, d, λ, t) =

R
l
+

f(g(x)) and h(a, q, d, λ, t) 6= f(g(x)), i.e. hi(a, q, d, λ, t) ≥ fi(g(x)),
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∀ i = 1, . . . , l, and hk(a, q, d, λ, t) > fk(g(x)) for at least one k ∈ {1, . . . , l}. This
means that

l∑

i=1

λihi(a, q, d, λ, t) >

l∑

i=1

λifi(g(x)). (3)

On the other hand, we have

l∑

i=1

λihi(a, q, d, λ, t) =−
l∑

i=1

λif
∗
i (ai) −

l∑

i=1

λi
1

lλi

m∑

j=1

(djgj)
∗(qj) +

l∑

i=1

λiti

=−
l∑

i=1

λif
∗
i (ai) −

m∑

j=1

(djgj)
∗(qj).

By the Young-Fenchel inequality

−f ∗
i (ai) ≤ fi(g(x)) − 〈ai, g(x)〉, i = 1, . . . , l

and

−(djgj)
∗(qj) ≤ djgj(x) − 〈qj, x〉, j = 1, ...,m,

we obtain

l∑

i=1

λihi(a, q, d, λ, t) ≤
l∑

i=1

λifi(g(x)) −
l∑

i=1

λi〈a
i, g(x)〉 +

m∑

j=1

djgj(x) −
m∑

j=1

〈qj, x〉

=
l∑

i=1

λifi(g(x)) +

〈

d −
l∑

i=1

λia
i, g(x)

〉

−

〈
m∑

j=1

qj, x

〉

=
l∑

i=1

λifi(g(x)),

and, therefore,
l∑

i=1

λihi(a, q, d, λ, t) ≤
l∑

i=1

λifi(g(x)).

But this inequality contradicts relation (3). �

The following theorem expresses the so-called strong duality between the two mul-
tiobjective problems (P ) and (D).

Theorem 3. Let x̄ be a properly efficient element to (P ). Then an efficient solu-
tion (ā, q̄, d̄, λ̄, t̄) ∈ Y to (D) exists and strong duality f(g(x̄))=h(ā, q̄, d̄, λ̄, t̄) holds.
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Proof. Assume x̄ to be properly efficient to (P ). From Definition 2 the existence
of a corresponding vector λ̃ = (λ̃1, . . . , λ̃l)

T ∈ intRl
+ follows such that x̄ solves the

scalar problem

(Pλ̃) inf
x∈X

l∑

i=1

λ̃ifi(g(x)).

Because of inf(Pλ̃) > −∞, Proposition 2 ensures the existence of a solution (ã, q̃, d̃)
of the dual (Dλ̃) of (Pλ̃). The optimality conditions (i) − (iv) are satisfied because
of Theorem 1. Now we construct by means of x̄ and (ã, q̃, d̃) the efficient solution
(ā, q̄, d̄, λ̄, t̄) of (D). We consider λ̄ := λ̃, ā := ã, q̄ := q̃, d̄ := d̃. It remains to
introduce t̄ = (t̄1, . . . , t̄l)

T . Let for i = 1, . . . , l,

t̄i :=
1

lλ̄i

m∑

j=1

(d̄jgj)
∗(q̄j) + 〈āi, g(x̄)〉 ∈ R.

By the optimality conditions (i) − (iv), for this tupel (ā, q̄, d̄, λ̄, t̄) it holds

λ̄ ∈ intRl
+,

l∑

i=1

λ̄iā
i = d̄,

m∑

j=1

q̄j = 0

and
l∑

i=1

λ̄it̄i =
l∑

i=1

λ̄i
1

lλ̄i

m∑

j=1

(d̄jgj)
∗(q̄j) +

l∑

i=1

λ̄i〈ā
i, g(x̄)〉

=
m∑

j=1

(d̄jgj)
∗(q̄j) +

〈
l∑

i=1

λ̄iā
i, g(x̄)

〉

=
m∑

j=1

(d̄jgj)
∗(q̄j) +

m∑

j=1

d̄jgj(x̄)

=

〈
m∑

j=1

q̄j, x̄

〉

= 0.

This means that the element (ā, q̄, d̄, λ̄, t̄) is feasible to (D). It remains to show
that the values of the objective functions are equal, i.e. f(g(x̄)) = h(ā, q̄, d̄, λ̄, t̄).
Therefore we will prove that fi(g(x̄)) = hi(ā, q̄, d̄, λ̄, t̄) for each i = 1, . . . , l. For this
we use the relation (i) from Theorem 1 and obtain the following equalities

hi(ā, q̄, d̄, λ̄, t̄) = −f ∗
i (āi)− 1

lλ̄i

m∑

j=1

(d̄jgj)
∗(q̄j)+ t̄i

= −f ∗
i (āi)− 1

lλ̄i

m∑

j=1

(d̄jgj)
∗(q̄j)+

1
lλ̄i

m∑

j=1

(d̄jgj)
∗(q̄j)+〈āi, g(x̄)〉

= −f ∗
i (āi)+〈āi, g(x̄)〉

= fi(g(x̄)), i = 1, . . . , l.

In conclusion,
f(g(x̄)) = h(ā, q̄, d̄, λ̄, t̄).

�
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4 The case of monotonic norms

In this section we particularize the multiobjective problem presented in the previous
section. Therefore, let be Φi : R

m → R, i = 1, . . . , l, monotonic norms on R
m, i.e.

(cf. [1])

∀ u, v ∈ R
m, |uj| ≤ |vj|, j = 1, ...,m, it holds Φi(u) ≤ Φi(v).

Let us introduce now the following multiobjective problem

(PΦ) v-min
x∈X






Φ+
1 (g(x))

...
Φ+

l (g(x))




 ,

where Φ+
i (t) := Φi(t

+), i = 1, ..., l, with t+ = (t+1 , . . . , t+m) and t+j = max{0, tj},
j = 1, ...,m.

Proposition 3. The functions Φ+
i : R

m → R, i = 1, . . . , l, are convex and com-
ponentwise increasing.

Proof. See Proposition 2 in [2]. �

In order to study the duality for the problem (PΦ) we will study, like in section 2,
the duality for the scalarized problem

(PΦλ) inf
x∈X

l∑

i=1

λiΦ
+
i (g(x)),

where λ = (λ1, . . . , λl)
T ∈ intRl

+ is a fixed vector. By the approach described in
section 2, a dual problem to (PΦλ) is

(DΦλ) sup

ai∈Rm,
l

P

i=1
λiai=d∗, d∗∈Rm,

q∗j ∈X∗,
m
P

j=1
q∗j =0

{

−
l∑

i=1

λi(Φ
+
i )∗(ai) −

m∑

j=1

(d∗
jgj)

∗(q∗j )

}

.

Proposition 4. The conjugate functions (Φ+
i )∗ : R

m → R∪{+∞}, i = 1, . . . , l,
of Φ+

i are

(Φ+
i )∗(ai) =

{
0, if ai =

R
m
+

0 and Φ0
i (a

i) ≤ 1,

+∞, otherwise,

where Φ0
i is the dual norm of Φi in R

m.
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Proof. See Proposition 3 in [2]. �

By Proposition 4, the dual of (PΦλ) has the following form

(DΦλ) sup
ai∈R

m
+ , Φ0

i
(ai)≤1, i=1,...,l,

l
P

i=1
λiai=d∗, d∗∈R

m
+ , q∗j ∈X∗,

m
P

j=1
q∗j =0

{

−
m∑

j=1

(d∗
jgj)

∗(q∗j )

}

.

Let us consider now the set-valued variable I ⊆ {1, . . . ,m}. In the objective
function of (DΦλ) let us separate the terms for which d∗

j > 0 (i.e. j ∈ I) from the
terms for which d∗

j = 0 (i.e. j /∈ I). Then it follows

(DΦλ) sup
ai∈R

m
+ , Φ0

i (ai)≤1, i=1,...,l,
l

P

i=1
λia

i=d∗, I⊆{1,...,m}, d∗
j >0, (j∈I),

d∗j =0, (j /∈I), q∗j ∈X∗,
m
P

j=1
q∗j =0






−
∑

j∈I

(d∗
jgj)

∗(q∗j ) −
∑

j /∈I

(d∗
jgj)

∗(q∗j )






.

Let us notice that, in the case d∗
j > 0 (j ∈ I) there must exist at least one

i ∈ {1, . . . , l}, such that ai
j > 0.

Because of 0∗(q∗j ) = sup
x∈X

{〈q∗j , x〉−0} = sup
x∈X

〈q∗j , x〉 =

{
0, if q∗j = 0,

+∞, otherwise
, in order

to have supremum in (DΦλ), we must take q∗j = 0 for all j /∈ I.
The problem (DΦλ) can then be written as

(DΦλ) sup
ai∈R

m
+ , Φ0

i (ai)≤1, i=1,...,l,
l

P

i=1
λia

i=d∗, I⊆{1,...,m}, d∗
j >0, (j∈I),

d∗j =0, (j /∈I), q∗j ∈X∗, j∈J,
P

j∈I

q∗j =0

{

−
∑

j∈I

(d∗
jgj)

∗(q∗j )

}

.

For d∗
j > 0, i.e. j ∈ I, we apply again the formula (d∗

jgj)
∗(q∗j ) = d∗

jg
∗
j (

1
d∗j

q∗j ) (cf.

[5]). Denoting q∗j :=
q∗j
d∗j

for j ∈ I we get

(DΦλ) sup
(I, a, d∗, q∗)∈YΦλ

{

−
∑

j∈I

d∗
jg

∗
j (q

∗
j )

}

,

with

YΦλ =
{

(I, a, d∗, q∗) : I⊆{1, . . . ,m}, a=(a1, . . . , al), ai∈R
m
+ , Φ0

i (a
i) ≤ 1, i = 1, . . . , l,

d∗=(d∗
1, . . . , d

∗
m)∈ R

m, q∗=(q∗1, . . . , q
∗
m), q∗j ∈ X∗, j = 1, . . . ,m,

l∑

i=1

λia
i = d∗, d∗

j > 0, j ∈ I, d∗
j = 0, j /∈ I,

∑

j∈I

d∗
jq

∗
j = 0

}

.
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Now we can eliminate the variable d∗, observing that
l∑

i=1

λia
i
j = d∗

j , for j = 1, ...,m.

Then the dual becomes (setting q := q∗)

(DΦλ) sup
(I, a, q)∈YΦλ

{

−
∑

j∈I

(
l∑

i=1

λia
i
j

)

g∗
j (qj)

}

with

YΦλ =
{

(I, a, q) : I ⊆ {1, . . . ,m}, a = (a1, . . . , al), ai ∈ R
m
+ , Φ0

i (a
i) ≤ 1,

q = (q1, . . . , qm), qj ∈ X∗, j = 1, . . . ,m,
∑

j∈I

(
l∑

i=1

λia
i
j

)

qj = 0,

l∑

i=1

λia
i
j > 0, j ∈ I, ai

j = 0, j /∈ I, i = 1, . . . , l
}

.

Because of the functions Φ+
i , i = 1, ..., l, are convex and componentwise increasing,

it follows that
l∑

i=1

λiΦ
+
i is also convex and componentwise increasing. One can notice

that inf(PΦλ) is finite, being greater than or equal to zero. This observation, together
with Proposition 2, permits us to formulate the following strong duality theorem for
the problems (PΦλ) and (DΦλ).

Theorem 4. The dual problem (DΦλ) has a solution and strong duality holds, i.e.

inf(PΦλ) = max(DΦλ).

Analogously to problem (Pλ) we can derive now the optimality conditions for
(PΦλ).

Theorem 5.

(1) Let x̄ ∈ X be a solution to (PΦλ). Then there exists (Ī , ā, q̄) ∈YΦλ, solution to
(DΦλ), such that the following optimality conditions are satisfied

(i) Ī⊆{1, . . . ,m}, āi ∈ R
m
+ ,

l∑

i=1

λiā
i
j > 0, j ∈ Ī , āi

j = 0, j /∈ Ī , i = 1, . . . , l,

(ii) Φ0
i (ā

i) ≤ 1, i = 1, . . . , l,
∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

q̄j = 0,

(iii) Φ+
i (g(x̄)) = 〈āi, g(x̄)〉, i = 1, . . . , l,

(iv) gj(x̄) + g∗
j (q̄j) = 〈q̄j, x̄〉, j ∈ Ī.
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(2) If x̄∈X, (Ī , ā, q̄) is feasible to (DΦλ) and (i)-(iv) are fulfilled, then x̄ is a solution
to (PΦλ), (Ī , ā, q̄) is a solution to (DΦλ) and strong duality holds, i.e.

l∑

i=1

λiΦ
+
i (g(x̄)) = −

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

g∗
j (q̄j).

Proof.

(1) By Theorem 4, it follows that there exists (Ī , ā, q̄) ∈ YΦλ, a solution to (DΦλ),
such that (i) − (ii) are fulfilled and

l∑

i=1

λiΦ
+
i (g(x̄)) = −

∑

j∈Ī

( l∑

i=1

λiā
i
j

)

g∗
j (q̄j).

This is equivalent to

l∑

i=1

λiΦ
+
i (g(x̄))+

l∑

i=1

λi(Φ
+
i )∗(āi)−

l∑

i=1

λi〈ā
i, g(x̄)〉+

l∑

i=1

λi〈ā
i, g(x̄)〉+

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

g∗
j (q̄j)=0.

Hence,
l∑

i=1

λi[Φ
+
i (g(x̄)) + (Φ+

i )∗(āi) − 〈āi, g(x̄)〉]+

l∑

i=1

λi〈ā
i, g(x̄)〉 +

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

g∗
j (q̄j) = 0.

Because of (i) and (ii), it holds

l∑

i=1

λi〈ā
i, g(x̄)〉 +

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

g∗
j (q̄j) =

l∑

i=1

λi〈ā
i, g(x̄)〉

+
∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

g∗
j (q̄j) −

〈
∑

j∈Ī

(
l∑

i=1

λiā
i
j

)
q̄j, x̄

〉

=
l∑

i=1

λi




∑

j∈Ī

āi
jgj(x̄)





+
∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

(
g∗

j (q̄j) − 〈q̄j, x̄〉
)
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=
∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

(
gj(x̄) + g∗

j (q̄j) − 〈q̄j, x̄〉
)
,

implying
l∑

i=1

λi

[
Φ+

i (g(x̄))+(Φ+
i )∗(āi)−〈āi, g(x̄)〉

]
+

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

(
gj(x̄)+g∗

j (q̄j)−〈q̄j, x̄〉
)

= 0.

In conclusion, using again the Young-Fenchel inequality, we obtain

Φ+
i (g(x̄)) + (Φ+

i )∗(āi) − 〈āi, g(x̄)〉 = 0, i = 1, . . . , l,

and
gj(x̄) + g∗

j (q̄j) − 〈q̄j, x̄〉 = 0, j ∈ Ī ,

and, so, the equalities in (iii) and (iv) must hold. �

Further, like in the general case, we can construct a multiobjective dual problem
to the primal problem (PΦ)

(DΦ) v-max
(I, a, q, λ, t)∈YΦ






h1(I, a, q, λ, t)
...

hl(I, a, q, λ, t)




 ,

with

hk(I, a, q, λ, t) = −
1

lλk

∑

j∈I

(
l∑

i=1

λia
i
j

)

g∗
j (qj) + tk, k = 1, . . . , l,

the dual variables

a = (a1, . . . , al), ai ∈ R
m, i = 1, . . . , l, q = (q1, . . . , qm), qj ∈ X∗, j = 1, . . . ,m,

λ = (λ1, . . . , λl)
T ∈ R

l, t = (t1, . . . , tl)
T ∈ R

l,

and the set of constraints

YΦ =

{

(I, a, q, λ, t) : I ⊆{1, ...,m}, ai∈ R
m
+ , Φ0

i (a
i) ≤ 1,

∑

j∈I

(
l∑

i=1

λia
i
j

)

qj = 0,

(
l∑

i=1

λia
i
j

)

> 0, j ∈ I, ai
j = 0, j /∈ I, i = 1, . . . , l, λ ∈ intRl

+,
l∑

k=1

λktk = 0

}

.

Let us present now the weak and strong duality theorems for these problems.
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Theorem 6. There is no x ∈ X and no (I, a, q, λ, t) ∈ YΦ, such that
Φ+

i (g(x)) ≤ hi(I, a, q, λ, t), i = 1, . . . , l, and Φ+
k (g(x)) < hk(I, a, q, λ, t) for at least

one k ∈ {1, . . . , l}.

Theorem 7. Let x̄ be a properly efficient element to (PΦ)). Then an efficient
solution (Ī , ā, q̄, λ̄, t̄) ∈ YΦ to (DΦ) exists and strong duality holds, i.e.

Φ+
k (g(x̄)) = −

1

lλ̄k

∑

j∈Ī

(
l∑

i=1

λ̄iā
i
j

)

g∗
j (q̄j) + t̄k, k = 1, . . . , l.

5 The multiobjective location model involving sets

as existing facilities

Let A = {A1, . . . , Am} be a family of convex sets in X such that
m⋂

j=1

Āj = ∅. We

consider the same vector function d : X → R
m as in [2], i.e.

d(x) := (d1(x,A1), . . . , dm(x,Am)),

where
dj(x,Aj) = inf{γj(x − yj) : yj ∈ Aj}, j = 1, ...,m,

and γj, j = 1, ...,m, are continuous norms on X. For j = 1, ...,m, we consider the
functions gj : X → R, gj(x) = dj(x,Aj). This means that the functions gj, j =
1, . . . ,m, are convex and continuous on X. The multiobjective location problem with
sets as existing facilities is

(PΦ(A)) v-min
x∈X






Φ1(d(x))
...

Φl(d(x))




 ,

with Φi : R
m → R, i = 1, ..., l, monotonic norms on R

m.
Because of

Φ+
i (d(x)) = Φi((d(x))+) = Φi(d(x)), ∀x ∈ X, i = 1, ..., l,

where (d(x))+ = ((d1(x))+, . . . , (dm(x))+) with (di(x))+ = max{0, di(x)}, for i =
1 . . . ,m, we can write (PΦ(A)) in the equivalent form

(PΦ(A)) v-min
x∈X






Φ+
1 (d(x))

...
Φ+

l (d(x))




 .
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This problem is a particular case of the problem studied in section 4. In order to
study the duality for this problem, we will study again, at first, the duality for the
scalarized problem

(PΦλ(A)) inf
x∈X

l∑

i=1

λiΦ
+
i (d(x)),

with λ = (λ1, . . . , λl)
T ∈ intRl

+ fixed.

Then the dual of (PΦλ(A)) is

(DΦλ(A)) sup
(I, a, q)∈YΦλ(A)

{

−
∑

j∈I

(
l∑

i=1

λia
i
j

)

d∗
j(qj)

}

,

where d∗
j(qj) is the conjugate function to dj(x,Aj), j = 1, ...,m, and

YΦλ(A) =
{

(I, a, q) : I⊆{1, . . . ,m}, a=(a1, . . . , al), ai∈R
m
+ , Φ0

i (a
i)≤1,

q=(q1, . . . , qm), qj ∈ X∗,

(
l∑

i=1

λia
i
j

)

> 0, j ∈ I,

ai
j = 0, j /∈ I, i = 1, ..., l,

∑

j∈I

(
l∑

i=1

λia
i
j

)

qj = 0
}

.

Using the Theorems 4 and 5, we can present for (PΦλ(A)) and (DΦλ(A)) the strong
duality theorem and the optimality conditions.

Theorem 8. The dual problem (DΦλ(A)) has a solution and strong duality holds,
i.e.

inf(PΦλ(A)) = max(DΦλ(A)).

Theorem 9.

(1) Let x̄ ∈ X be a solution to (PΦλ(A)). Then there exists (Ī , ā, q̄) ∈ YΦλ(A),
solution to (DΦλ(A)), such that the following optimality conditions are satisfied

(i) Ī ⊆ {1, . . . ,m}, Ī 6= ∅,

(
l∑

i=1

λiā
i
j

)

> 0, j ∈ Ī , āi
j = 0, j /∈ Ī , i = 1, . . . , l,

(ii) āi ∈ R
m
+ , Φ0

i (ā
i) = 1, i = 1, . . . , l,

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

q̄j = 0,

(iii) Φi(d(x̄)) = 〈āi, d(x̄)〉, i = 1, . . . , l,

(iv) x̄ ∈ ∂d∗
j(q̄j), j ∈ Ī .
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(2) If x̄ ∈ X, (Ī , ā, q̄) is feasible to (DΦλ(A)) and (i)-(iv) are fulfilled, then x̄ is
a solution to (PΦλ(A)), (Ī , ā, q̄) is a solution to (DΦλ(A)) and strong duality
holds, i.e.

l∑

i=1

λiΦ
+
i (d(x̄)) = −

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

d∗
j(q̄j).

Proof.

(1) By Theorem 5 follows that there exists (Ī , ā, q̄) ∈ YΦλ(A), solution to (DΦλ(A)),
such that

(i′) Ī ⊆ {1, . . . ,m}, Ī 6= ∅,

(
l∑

i=1

λiā
i
j

)

> 0, j ∈ Ī , āi
j = 0, j /∈ Ī , i = 1, . . . , l,

(ii′) āi ∈ R
m
+ , Φ0

i (ā
i) ≤ 1, i = 1, . . . , l,

∑

j∈Ī

(
l∑

i=1

λiā
i
j

)

q̄j = 0,

(iii′) Φ+
i (d(x̄)) = 〈āi, d(x̄)〉, i = 1, . . . , l,

(iv′) dj(x̄, Aj) + d∗
j(q̄j) = 〈q̄j, x̄〉, j ∈ Ī .

We will prove that (Ī , ā, q̄) verifies the relations (i)− (iv). If Ī would be empty,
then it would follow by (i′) that āi

j = 0, j = 1, . . . ,m, i = 1, . . . , l. From
(iii′) it holds then Φi((d(x̄))+) = Φ+

i (d(x̄)) = 0 which actually means that
d(x̄) = (d(x̄))+ = 0, i.e.

gj(x̄) = dj(x̄, Aj) = 0, j = 1, ...,m.

But, this would imply that x̄ ∈
m⋂

j=1

Āj. This is a contradiction to the hypothesis

m⋂

j=1

Āj = ∅. By this, the relation (i) is proved.

From (iii′), we have that

Φ+
i (d(x̄)) = Φi(d(x̄)) = 〈āi, d(x̄)〉, i = 1, . . . , l,

and, so, (iii) is also proved. From (iv′), we have that q̄j ∈ ∂dj(x̄, Aj) for j ∈ Ī
(cf. [5]). On the other hand, dj being a convex and continuous function, verifies
(cf. [5])

q̄j ∈ ∂dj(x̄, Aj) ⇔ x̄ ∈ ∂d∗
j(q̄j), j ∈ Ī ,

which proves (iv).
Now, it remains us to show that Φ0

i (ā
i) = 1, i = 1, ..., l. By the definition of

the dual norm, we have

Φ0
i (ā

i) = sup
Φi(v)≤1

v∈Rm

{|〈āi, v〉|}, i = 1, ..., l.
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Because of
m⋂

j=1

Āj = ∅, it holds Φi(d(x̄)) > 0, for i = 1, ..., l. Let be v̄i =

1
Φi(d(x̄))

d(x̄) ∈ R
m. We have Φi(v̄i) = 1, i = 1, ..., l, and then, by (iii),

Φ0
i (ā

i) = Φi(v̄i)Φ
0
i (ā

i) ≥ 〈āi, v̄i〉 =

m∑

k=1

āi
kdk(x̄, Ak)

Φi(d(x̄))
=

〈āi, d(x̄)〉

Φi(d(x̄))
= 1.

In conclusion, by (ii′), Φ0
i (ā

i) = 1, i = 1, . . . , l. �

As a multiobjective dual problem of the primal problem (PΦ(A)) we can introduce

(DΦ(A)) v-max
(I, a, q, λ, t)∈YΦ(A)






hd
1(I, a, q, λ, t)

...
hd

l (I, a, q, λ, t)




 ,

with

hd
k(I, a, q, λ, t) = −

1

lλk

∑

j∈I

(
l∑

i=1

λia
i
j

)

d∗
j(qj) + tk, k = 1, . . . , l,

the dual variables

I ⊆ {1, . . . ,m}, a = (a1, . . . , al), ai ∈ R
m, q = (q1, . . . , qm), qj ∈ X∗,

λ = (λ1, . . . , λl)
T ∈ R

l, t = (t1, . . . , tl)
T ∈ R

l,

and the set of constraints

YΦ(A) =
{

(I, a, q, λ, t) : I⊆{1, ...,m}, ai∈R
m
+ , Φ0

i (a
i) ≤ 1, i = 1, . . . , l,

qj ∈X∗, j = 1, . . . ,m,

(
l∑

i=1

λia
i
j

)

> 0, j∈I, ai
j = 0, j /∈I,

i = 1, . . . , l,
∑

j∈I

(
l∑

i=1

λia
i
j

)

qj = 0, λ ∈ intRl
+,

l∑

k=1

λktk = 0
}

.

The following theorems state the weak and strong duality assertions applying The-
orem 6 and Theorem 7.

Theorem 10. There is no x ∈ X and no (I, a, q, λ, t) ∈ YΦ(A), such that
Φi(d(x)) ≤ hd

i (I, a, q, λ, t), i = 1, . . . , l, and Φk(d(x)) < hd
k(I, a, q, λ, t) for at least

one k ∈ {1, . . . , l}.

Theorem 11. Let x̄ be a properly efficient element to (PΦ(A)). Then there exists
an efficient solution (Ī , ā, q̄, λ̄, t̄) ∈ YΦ(A) to (DΦ(A)) and strong duality

Φk(d(x̄)) = −
1

lλ̄k

∑

j∈Ī

(
l∑

i=1

λ̄iā
i
j

)

d∗
j(q̄j) + t̄k, k = 1, ..., l,

holds.
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6 The biobjective Weber-minimax problem with

infimal distances

In this section, for the same data set A = {A1, . . . , Am} as in the previous one,
we consider a multiobjective minimization problem with a two-dimensional objective
function, its first component being given by the Weber location problem and the
second one by the minimax location problem with infimal distances. Thus, the primal
problem is

(PWM(A)) v-min
x∈X






m∑

j=1

wjdj(x,Aj)

max
j=1,...,m

wjdj(x,Aj)




 ,

where dj(x,Aj) = inf
yj∈Aj

γj(x−yj), j = 1, ...,m, and wj > 0, j = 1, . . . ,m, are positive

weights. Let be, for j = 1, . . . ,m, the continuous norms γ ′
j : X → R, γ ′

j = wjγj and
the corresponding distance functions d′

j(·, Aj) : X → R, d′
j(x,Aj) = inf

yj∈Aj

γ′
j(x−yj) =

wjdj(x,Aj). This means that the primal problem (PWM(A)), as a special case of
(PΦ(A)) in section 5 with Φ1 = l1 and Φ2 = l2, becomes

(PWM(A)) v-min
x∈X

(
l1(d

′(x))
l∞(d′(x))

)

,

with d′(x) = (d′
1(x,A1), ..., d

′
m(x,Am)) and the norms l1, l∞ : R

m → R, l1(z) =
m∑

j=1

|zj|, l∞(z) = max
j=1,...,m

|zj|, for z ∈ R
m. We remark that l01(z) = l∞(z) and l0∞(z) =

l1(z). Obviously, l1 and l∞ are monotonic norms.
Taking into consideration the form of DΦ(A) in section 5, observing d′∗

j (qj) =
(wjdj)

∗(qj) = wjd
∗
j(

1
wj

qj), and, denoting by qj := 1
wj

qj, we construct the multiobjec-

tive dual to the primal problem (PWM(A)). This becomes

(DWM(A)) v-max
(I, a, q, λ, t)∈YWM (A)

(
h1(I, a, q, λ, t)
h2(I, a, q, λ, t)

)

,

with

h1(I, a, q, λ, t) = − 1
2λ1

∑

j∈I

(
2∑

i=1

λia
i
j

)

wjd
∗
j(qj) + t1,

h2(I, a, q, λ, t) = − 1
2λ2

∑

j∈I

(
2∑

i=1

λia
i
j

)

wjd
∗
j(qj) + t2,

the dual variables

I ⊆ {1, . . . ,m}, a = (a1, a2), a1, a2 ∈ R
m, q = (q1, . . . , qm), qj ∈ X∗,

λ = (λ1, λ2)
T ∈ R

2, t = (t1, t2)
T ∈ R

2,
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and the set of constraints

YWM(A)=
{

(I, a, q, λ, t) : I⊆{1, ...,m}, a1, a2∈R
m
+ , qj ∈X∗, j = 1, . . . ,m,

max
j=1,...,m

|a1
j |≤1,

m∑

i=1

|a2
j |≤1,

(
2∑

i=1

λia
i
j

)

>0, j∈I, ai
j =0, j /∈I, i=1, 2,

∑

j∈I

(
2∑

i=1

λia
i
j

)

wjqj =0, λ ∈ intR2
+,

2∑

k=1

λktk =0
}

,

Let us give also for this problem the weak and strong duality theorems.

Theorem 12. There is no x ∈ X and no (I, a, q, λ, t) ∈ YWM(A) such that

m∑

j=1

wjdj(x,Aj) ≤ h1(I, a, q, λ, t), max
j=1,...,m

wjdj(x,Aj) ≤ h2(I, a, q, λ, t)

and

m∑

j=1

wjdj(x,Aj) < h1(I, a, q, λ, t) or max
j=1,...,m

wjdj(x,Aj)<h2(I, a, q, λ, t).

Theorem 13. Let x̄ be a properly efficient element to (PWM(A)). Then there exists
an efficient solution (Ī , ā, q̄, λ̄, t̄) ∈ YWM(A) to (DWM(A)) and the strong duality
holds, i.e.

m∑

j=1

wjdj(x̄, Aj) = −
1

2λ̄1

∑

j∈Ī

(
2∑

i=1

λ̄iā
i
j

)

wjd
∗
j(q̄j) + t̄1

and

max
j=1,...,m

wjdj(x̄, Aj) = −
1

2λ̄2

∑

j∈Ī

(
2∑

i=1

λ̄iā
i
j

)

wjd
∗
j(q̄j) + t̄2.

7 The multiobjective Weber problem with infimal

distances

We consider, as another application of the multiobjective duality results in section 5,
the multiobjective Weber problem with infimal distances for the data A

(PW (A)) v-min
x∈X










m∑

j=1

w1
jdj(x,Aj)

...
m∑

j=1

wl
jdj(x,Aj)










,
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where dj(x,Aj) = inf
yj∈Aj

γj(x − yj), j = 1, ...,m, and wi
j, j = 1, . . . ,m, i = 1, ..., l, are

positive weights. Again, the norms γj, j = 1, . . . ,m, are assumed to be continuous.
Considering the norms ΦW

i : R
m → R, i = 1, ..., l, defined by

ΦW
i (x) :=

m∑

j=1

wi
j|xj|,

we have

ΦW
i (d(x)) =

m∑

j=1

wi
jdj(x,Aj).

We notice that ΦW
i , i = 1, ..., l, are monotonic norms, with the dual norm

(ΦW
i )0(x) = max

j=1,...,m

|xj |

wi
j

.

So, the primal problem (PW (A)) becomes

(PW (A)) v-min
x∈X






ΦW
1 (d(x))

...
ΦW

l (d(x))




 .

Due to section 5, a multiobjective dual problem to (PW (A)) is

(DPW (A)) v-max
(I, a, q, λ, t)∈YW (A)






hW
1 (I, a, q, λ, t)

...
hW

l (I, a, q, λ, t)




 ,

with

hW
k (I, a, q, λ, t) = −

1

lλk

∑

j∈I

(
l∑

i=1

λia
i
j

)

d∗
j(qj) + tk, k = 1, ..., l,

the dual variables

I ⊆ {1, . . . ,m}, a = (a1, ..., al), ai ∈ R
m, q = (q1, ..., qm), qj ∈ X∗,

λ = (λ1, ..., λl)
T ∈ R

l, t = (t1, ..., tl)
T ∈ R

l,

and the set of constraints

YW (A)=
{

(I, a, q, λ, t) : I ⊆ {1, ...,m}, ai ∈ R
m
+ , qj ∈ X∗, , j = 1, . . . ,m,

λ ∈ intRl
+, max

j=1,...,m

ai
j

wi
j

≤ 1,

(
l∑

i=1

λia
i
j

)

>0, j∈I, ai
j =0, j /∈I, i=1, . . . , l,

∑

j∈I

(
l∑

i=1

λia
i
j

)

qj =0,
l∑

k=1

λktk =0
}

,
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which can be written equivalently as (setting ai
j :=

ai
j

wi
j

)

(DPW (A)) v-max
(I, a, q, λ, t)∈YW (A)






hW
1 (I, a, q, λ, t)

...
hW

l (I, a, q, λ, t)




 ,

with

hW
k (I, a, q, λ, t) = −

1

lλk

∑

j∈I

(
l∑

i=1

λiw
i
ja

i
j

)

d∗
j(qj) + tk, k = 1, ..., l,

the dual variables

I ⊆ {1, . . . ,m}, a = (a1, ..., al), ai ∈ R
m, q = (q1, ..., qm), qj ∈ X∗,

λ = (λ1, ..., λl)
T ∈ R

l, t = (t1, ..., tl)
T ∈ R

l,

and the set of constraints

YW (A)=
{

(I, a, q, λ, t) : I⊆{1, ...,m}, ai∈R
m
+ , qj ∈X∗, j = 1, . . . ,m,

λ ∈ intRl
+, max

j=1,...,m
ai

j ≤ 1,

(
l∑

i=1

λiw
i
ja

i
j

)

>0, j∈I, ai
j =0, j /∈I, i=1, . . . , l,

∑

j∈I

(
l∑

i=1

λiw
i
ja

i
j

)

qj =0,
l∑

k=1

λktk =0
}

.

Using the Theorems 10 and 11 we can formulate the following duality results.

Theorem 14. There is no x ∈ X and no (I, a, q, λ, t) in YW (A) such that
m∑

j=1

wi
jdj(x,Aj) ≤ hW

i (I, a, q, λ, t), i = 1, ..., l, and
m∑

j=1

wk
j dj(x,Aj) < hW

k (I, a, q, λ, t)

for at least one k ∈ {1, ..., l}.

Theorem 15. Let x̄ be a properly efficient element to (PW (A)). Then there exists
an efficient solution (Ī , ā, q̄, λ̄, t̄) ∈ YW (A) to (DPW (A)) and strong duality, i.e.

m∑

j=1

wk
j dj(x̄, Aj) = −

1

lλ̄k

∑

j∈Ī

(
l∑

i=1

λ̄iw
i
j ā

i
j

)

d∗
j(q̄j) + t̄k, k = 1, ..., l,

holds.
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8 The multiobjective minimax location problem

with infimal distances

The last optimization problem we are going to consider in this paper is the multiob-
jective minimax location problem with infimal distances for the data A

(PM(A)) v-min
x∈X







max
j=1,...,m

w1
jdj(x,Aj)

...
max

j=1,...,m
wl

jdj(x,Aj)







,

where dj(x,Aj) = inf
yj∈Aj

γj(x − yj), j = 1, ...,m, and wi
j, j = 1, . . . ,m, i = 1, ..., l, are

positive weights. Considering the norms ΦM
i : R

m → R, i = 1, ..., l, defined by

ΦM
i (x) = max

j=1,...,m
wi

j|xj|,

we have that
ΦM

i (d(x)) = max
j=1,...,m

wi
jdj(x,Aj).

We notice that ΦM
i , i = 1, ..., l, are monotonic norms, with the dual norm

(ΦM
i )0(x) =

m∑

j=1

|xj |

wi
j

.

Thus, the primal problem (PM(A)) becomes

(PM(A)) v-min
x∈X






ΦM
1 (d(x))

...
ΦM

l (d(x))




 .

Its multiobjective dual problem is (cf. section 5)

(DPM(A)) v-max
(I, a, q, λ, t)∈YM (A)






hM
1 (I, a, q, λ, t)

...
hM

l (I, a, q, λ, t)




 ,

with

hM
k (I, a, q, λ, t) = −

1

lλk

∑

j∈I

(
l∑

i=1

λia
i
j

)

d∗
j(qj) + tk, k = 1, ..., l,

the dual variables

I ⊆ {1, . . . ,m}, a = (a1, ..., al), ai ∈ R
m, q = (q1, ..., qm), qj ∈ X∗,

λ = (λ1, ..., λl)
T ∈ R

l, t = (t1, ..., tl)
T ∈ R

l,
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and the set of constraints

YM(A) =
{

(I, a, q, λ, t) : I⊆{1, ...,m}, ai∈R
m
+ , qj ∈X∗, j = 1, . . . ,m,

m∑

j=1

ai
j

wi
j

≤ 1,

(
l∑

i=1

λia
i
j

)

>0, j∈I, ai
j = 0, j /∈ I, i = 1, . . . , l,

∑

j∈I

(
l∑

i=1

λia
i
j)qj = 0, λ ∈ intRl

+,
l∑

k=1

λktk = 0
}

,

which can be written equivalently as (setting ai
j :=

ai
j

wi
j

)

(DPM(A)) v-max
(I, a, q, λ, t)∈YM (A)






hM
1 (I, a, q, λ, t)

...
hM

l (I, a, q, λ, t)




 ,

with

hM
k (I, a, q, λ, t) = −

1

lλk

∑

j∈I

(
l∑

i=1

λiw
i
ja

i
j

)

d∗
j(qj) + tk, k = 1, ..., l,

the dual variables

I ⊆ {1, . . . ,m}, a = (a1, ..., al), ai ∈ R
m, q = (q1, ..., qm), qj ∈ X∗,

λ = (λ1, ..., λl)
T ,∈ R

l, t = (t1, ..., tl)
T ∈ R

l,

and the set of constraints

YM(A)=
{

(I, a, q, λ, t) :I⊆{1, ...,m}, ai∈R
m
+ , qj ∈X∗, j = 1, . . . ,m,

m∑

j=1

ai
j ≤ 1,

(
l∑

i=1

λiw
i
ja

i
j

)

>0, j∈I, ai
j = 0, j /∈ I, i = 1, . . . , l,

∑

j∈I

(
l∑

i=1

λiw
i
ja

i
j

)

qj = 0, λ ∈ intRl
+,

l∑

k=1

λktk = 0
}

.

Remark 4. We emphazise the interesting observation that both dual problems

(DPW (A)) and (DPM(A)) differ only in the constraints max
i=1,...,m

ai
j ≤ 1 and

m∑

i=1

ai
j ≤ 1,

respectively.

The corresponding duality results for (DPM(A)) are the following.

Theorem 16. There is no x ∈ X and no (I, a, q, λ, t) ∈ YM(A) such that
max

j=1,...,m
wi

jdj(x,Aj)≤hM
i (I, a, q, λ, t), i = 1, ..., l, and max

j=1,...,m
wk

j dj(x,Aj)<hM
k (I, a, q, λ, t)

for at least one k ∈ {1, ..., l}.
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Theorem 17. Let x̄ be a properly efficient element to (PM(A)). Then there
exists an efficient solution (Ī , ā, q̄, λ̄, t̄) ∈ YM(A) to (DPM(A)) and strong duality,
i.e.

max
j=1,...,m

wk
j dj(x̄, Aj) = −

1

lλ̄k

∑

j∈Ī

(
l∑

i=1

λ̄iw
i
j ā

i
j

)

d∗
j(q̄j) + t̄k, k = 1, ..., l,

holds.
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