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Abstract. It is not hard to prove that many convex optimization problems which
are already studied in the literature can be rewritten as a particular instance of the
following problem: minimize the sum of a convex function and the composition of a
convex and K-increasing function with a K-convex one when the variable varies on
a given set. Using a conjugate duality approach we construct the Fenchel-Lagrange
dual of this general problem. Moreover, using the connections between the optimal
objective values of the primal and the dual problem, a Farkas-type result is proved.
It is also shown that some recently obtained Farkas-type results are rediscovered as
special cases of our statement.

1 Introduction

Since during the last decades the problems generated by the practical needs
turned out to be more and more complex, one of the main problems in opti-
mization is to find some methods and conditions which assure the existence
of optimal solution for more and more general problems which encompass as
special cases the already studied ones.

The problem treated within this paper consists in minimizing the sum of
a convex function and the composition of a convex and K-increasing function
with a K-convex one when the variable varies on a given set (K is a closed
convex cone). Many optimization problems already treated can be derived as
special cases of this general optimization problem; among these special cases
we would like to mention only the usual problem of minimizing a convex
function regarding geometrical and convex inequality constraints. Because of
its generality, the problem had recently drawn the attention of many math-
ematicians and some new results are to be found in the literature ([1], [8],
[10]).
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In order to provide duality assertions for the problem we treat, we use
the same approach as in [2] and [3]. Thus, using an auxiliary variable, to the
primal problem we associate an equivalent one, but whose dual can be easier
established. In order to determine its dual, to the new optimization problem
the classical Lagrange dual problem is attached. Moreover, as the inner in-
fimum of the Lagrange problem can be considered itself as an optimization
problem, its Fenchel dual problem is also determined. The construction of
the dual, which is actually what we call the Fenchel-Lagrange dual problem,
is in detail described and a constraint qualification which ensures strong du-
ality between the primal problem and its dual is also given. Regarding the
Fenchel-Lagrange dual problem, let us mention that more about this type of
dual problem can be found in [4], [5], [6], [7], [13].

In [6] and [7] Boţ and Wanka have presented some Farkas-type results for
inequality systems involving finitely many convex functions using an approach
based on the theory of conjugate duality for convex optimization problems.
Within the present paper, using weak and strong duality assertions developed
for the problem we treat, these results are extended to a more general one.
Moreover, it is shown that some results in the literature arise as special cases
of the problem we treat.

The paper is organized as follows. Within the second section some defi-
nitions and results needed later are presented. A dual for the optimization
problem with composed convex functions and the weak and strong duality
assertions are established in the third section. Section 4 contains the main
result of the paper. The duality acquired in Section 3 allows us to give a
Farkas-type theorem. The last section contains Farkas-type results for some
particular instances of the initial one and some recent results are rediscovered
as special cases.

2 Notations and preliminaries

For the sake of the completeness some well-known definitions and results are
presented in the following. As usual, by R

k is denoted the k-dimensional real
space for any nonnegative integer k. All vectors are considered as column
vectors. Any column vector can be transposed to a row vector by an upper
index T . By xT y =

∑k

i=1 xiyi is denoted the usual inner product of two
vectors x = (x1, ..., xk)T and y = (y1, ..., yk)T in R

k. Considering an arbitrary
non-empty closed convex cone K ⊆ R

k, the partial ordering induced by the
cone is defined by

x 5K y ⇔ y − x ∈ K, ∀x, y ∈ R
k.

Let R
k to be extended by an element ∞ such that for all x ∈ R

k it holds
x 5K ∞. Regarding the partial ordering induced by the cone K over the set



R
k, it is not hard to see that it can be naturally extended to the set R

k∪{∞}
by taking

x ≤K ∞, ∀x ∈ R
k ∪ {∞}.

Moreover, the addition and the multiplication with a scalar are also natural
extended setting

∞ + x = x + ∞ = ∞ and t∞ = ∞,

for any x ∈ R
k ∪ {∞} and t ≥ 0.

To the cone K we can associate its dual cone defined by

K∗ =
{

β ∈ R
k : βT x ≥ 0,∀x ∈ K

}

.

As any β ∈ K∗ is actually a real-valued linear functional β : R
k → R, we

consider its natural extension

β : R
k ∪ {∞} → R = R ∪ {±∞}, β(x) =

{

βT x, x ∈ R
k,

+∞, x = ∞.

Let us consider an arbitrary set X ⊆ R
n. By ri(X), co(X) and cl(X) are

denoted the relative interior, the convex hull and the closure of the set X,
respectively. Furthermore, the cone and the convex cone generated by the
set X are denoted by cone(X) =

⋃

λ≥0 λX and, respectively, coneco(X) =
⋃

λ≥0 λ co(X). By v(P ) we denote the optimal objective value of an optimiza-
tion problem (P ).

If X ⊆ R
n is given, we consider the following two functions, the indicator

function

δX : R
n → R, δX(x) =

{

0, x ∈ X,
+∞, otherwise,

and the support function

σX : R
n → R, σX(u) = sup

x∈X

uT x,

respectively.
For a given function f : R

n → R, we denote by dom(f) =
{

x ∈ R
n :

f(x) < +∞
}

its effective domain, by epi(f) =
{

(x, r) : x ∈ R
n, r ∈ R, f(x) ≤

r
}

its epigraph, respectively. The function f is called proper if its effective
domain is a nonempty set and f(x) > −∞ for all x ∈ R

n.
We consider also the linear operator

T : R
n × R → R × R

n, T
(

x, r
)

= (r, x).

When X is a nonempty subset of R
n we define for the function f the

conjugate relative to the set X by

f∗
X : R

n → R, f∗
X(p) = sup

x∈X

{

pT x − f(x)
}

.



It is easy to observe that for X = R
n the conjugate relative to the set

X is actually the (Fenchel-Moreau) conjugate function of f denoted by f ∗.
Even more, it is trivial to prove that

f∗
X = (f + δX)∗ and δ∗X = σX .

Definition 2.1 The function g : R
k → R is called K-increasing if for all

x and y in R
k such that x 5K y it holds g(x) ≤ g(y).

Definition 2.2 Let the function h : R
n → R

k ∪ {∞} be given. The
function is called K-convex if for all x, y ∈ R

n and for all t ∈ [0, 1] one has

h
(

tx + (1 − t)y
)

5K th(x) + (1 − t)h(y).

Definition 2.3 Given the functions f1, ..., fm : R
n → R, we call their

infimal convolution the function

f1�...�fm : R
n → R, (f1�...�fm)(x) = inf

{ m
∑

i=1

fi(xi) : x =
m

∑

i=1

xi

}

.

The following statements close this preliminary section.

Theorem 2.1 (cf. [12]) Let f1, ..., fm : R
n → R be proper convex func-

tions. If the set
⋂m

i=1 ri(dom(fi)) is nonempty, then

( m
∑

i=1

fi

)∗

(p) = (f∗
1 �...�f∗

m)(p) = inf

{ m
∑

i=1

f∗
i (pi) : p =

m
∑

i=1

pi

}

,

and for each p ∈ R
n the infimum is attained.

Corollary 2.2 (cf. [3]) Let f1, ..., fm : R
n → R be proper convex func-

tions. If the set
⋂m

i=1 ri(dom(fi)) is nonempty, then

epi

(( m
∑

i=1

fi

)∗)

=

m
∑

i=1

epi(f∗
i ).

Proposition 2.3 (cf. [3]) Let f : R
k → R be a proper function and α > 0

a real number. One has

epi
(

(αf)∗
)

= α epi
(

f∗
)

.

3 Duality for the general problem

Let X ⊆ R
n be a nonempty convex set and K ⊆ R

k a nonempty closed convex
cone. Consider the functions f : R

n → R, g : R
k → R and h : R

n → R
k∪{∞},



h =
(

h1, ..., hk

)T
, such that f is proper and convex, g is proper, convex and

K-increasing and h is K-convex. The function g is extended to the space
R

k ∪ {∞} by defining g(∞) = +∞. Moreover, throughout this section two
conditions are imposed. First of all, we assume that

X ∩ dom(f) ∩ h−1
(

dom(g)
)

6= ∅, (1)

where h−1
(

dom(g)
)

= {x ∈ R
n : h(x) ∈ dom(g)}. The second condition we

consider is
ri

(

X ∩ h−1(Rk)
)

∩ ri
(

dom(f)
)

6= ∅. (2)

As a remark, let us mention that these conditions are independent, al-
though at a first look we are tempted to believe that, if the second relation
is fulfilled, then the first relation is fulfilled, too.

The problem we work with is

(P ) inf
x∈X

(

f(x) + (g ◦ h)(x)
)

.

Regarding this problem, since the relation (1) is fulfilled, it is trivial to see
that that the optimal objective value of the problem (P ) fulfills v(P ) < +∞.
Even more, as the function g ◦ h is convex, the problem we treat is actually
a convex optimization problem with geometric constraints. In order to give a
dual problem for (P ) we consider the following convex optimization problem

(P ′) inf
x∈X,y∈dom(g),

h(x)−y5K0

(

f(x) + g(y)
)

.

The connection between (P ) and (P ′) is made by the following result.

Theorem 3.1 For the optimal objective values of (P ) and (P ′) we have
v(P ) = v(P ′).

Proof. Consider an arbitrary x ∈ X.
If x /∈ dom(f) ∩ h−1

(

dom(g)
)

, either f(x) = +∞ or (g ◦ h)(x) = +∞ or
both, so that f(x) + (g ◦ h)(x) = +∞ ≥ v(P ′).

If x ∈ dom(f)∩ h−1
(

dom(g)
)

, take y = h(x) ∈ dom(g). Then y − h(x) =
0 ∈ K and the pair (x, y) is obviously feasible to (P ′). Even more, as f(x)+(g◦
h)(x) = f(x)+g(y), this equality is enough to secure f(x)+(g◦h)(x) ≥ v(P ′).

Taking into consideration the inequalities obtained in the two cases con-
sidered above, the inequality

v(P ) ≥ v(P ′)

arises as a simple consequence.



In order to prove the reverse inequality, let us consider an arbitrary pair
(x, y) feasible to (P ′).

Let us assume first that h(x) = ∞. This would mean that y must be
also equal to ∞ and thus g(y) = +∞. But this contradicts the assumption
y ∈ dom(g) and therefore h(x) ∈ R

k.

As h(x) 5K y we have that g(h(x)) ≤ g(y), so the inequality f(x) +
g(h(x)) ≤ f(x) + g(y) is also fulfilled. Even more, we get v(P ) ≤ f(x) + g(y)
and, since this inequality is true for an arbitrary pair (x, y) feasible to (P ′),
the inequality

v(P ) ≤ v(P ′)

follows at hand. This completes the proof. �

This result allows us to affirm that any dual problem of (P ′) is automat-
ically a dual problem of (P ).

To (P ′) we associate its Lagrange dual problem with β ∈ K∗ as dual
variable

(D) sup
β∈K∗

inf
x∈X,

y∈dom(g)

{

f(x) + g(y) + βT
(

h(x) − y
)

}

.

Using the definition of the conjugate relative to a set, the inner infimum
becomes

inf
x∈X,

y∈dom(g)

{

f(x) + g(y) + βT
(

h(x) − y
)}

= inf
x∈X

{

f(x) + βT h(x)
}

+ inf
y∈dom(g)

{

g(y) − βT y
}

= − sup
x∈X

{

− f(x) − βT h(x)
}

− sup
y∈dom(g)

{

βT y − g(y)
}

= −
(

f + βT h
)∗

X
(0) − g∗(β)

= −g∗(β) − inf
p∈Rn

{

f∗(p) +
(

βT h
)∗

X
(−p)

}

,

and, as relation (2) is accomplished, Theorem 2.1 yields that the last infimum
is attained.

Remark. Since β(∞) = +∞ for all β ∈ K∗, whenever h(x) = ∞ we
get (βT h)(x) = ∞, for all β ∈ K∗, and it is not hard to see that with this
condition satisfied we get

dom
(

βT h + δX

)

= X ∩ h−1(Rk), ∀β ∈ K∗.



Thus we obtain the following formula for the dual problem to (P ′) and
also (P )

(D) sup
p∈R

n,
β∈K∗

{

− g∗(β) − f∗(p) −
(

βT h
)∗

X
(−p)

}

.

As a direct consequence of our construction of (D) we get the following
weak duality result.

Theorem 3.2 Between the primal problem (P ) and the dual (D) weak
duality is always satisfied, i.e. v(P ) ≥ v(D).

The existent literature contains some examples which prove that strong
duality is not always fulfilled (see, for example, [13]). Nevertheless, such a
situation can be avoided if we consider the following constraint qualification

(CQ) ∃x′ ∈ ri
(

X ∩ h−1(Rk)
)

∩ ri
(

dom(f)
)

: h(x′) ∈ ri
(

dom(g)
)

− ri(K).

Theorem 3.3 Assume that v(P ) is finite. If (CQ) is fulfilled, then be-
tween (P ) and (D) strong duality holds, i.e. v(P ) = v(D) and the dual
problem has an optimal solution.

Proof. We actually prove that strong duality holds between the problems
(P ′) and (D). Using Theorem 3.1 the desired result arises as a direct conse-
quence.

To the problem (P ′) we associate its Lagrange dual

(D) sup
β∈K∗

inf
x∈X,

y∈dom(g)

{

f(x) + g(y) + βT
(

h(x) − y
)

}

.

As the condition (CQ) is fulfilled and all the involved functions are convex,
is is well-known from the existing literature ([1], [12]) that between (P ′) and
(D′) strong duality holds, i.e. v(P ′) = v(D′) and there exists a β ∈ K∗ such
that

v(P ′) = inf
x∈X,

y∈dom(g)

{

f(x) + g(y) + β
T (

h(x) − y
)

}

.

As (CQ) is fulfilled we get using the above calculation

inf
x∈X,

y∈dom(g)

{

f(x)+g(y)+β
T (

h(x)−y
)

}

= −g∗(β)− inf
p∈Rn

{

f∗(p)+
(

β
T
h
)∗

X
(−p)

}

and the infimum in the right-hand side is attained. Therefore there exist
p ∈ R

n and β ∈ K∗ such that

v(P ′) = −g∗(β) − f∗(p) −
(

β
T
h
)∗

X
(−p).



Using Theorem 3.1 we obtain v(P ) = v(D) and (p, β) is an optimal solution
for (D). �

4 Farkas-type results via weak and strong duality

Using the results presented within the previous section, the following Farkas-
type result can be easily proved.

Theorem 4.1 Suppose that (CQ) holds. Then the following assertions
are equivalent:

(i) x ∈ X ⇒ f(x) + (g ◦ h)(x) ≥ 0;
(ii) there exist p ∈ R

n and β ∈ K∗ such that

g∗(β) + f∗(p) +
(

βT h
)∗

X
(−p) ≤ 0. (3)

Proof. ”(i) ⇒ (ii)” The statement (i) implies v(P ) ≥ 0 and, since the
assumptions of Theorem 3.3 are fulfilled, strong duality holds, i.e. v(D) =
v(P ) ≥ 0 and the dual (D) has an optimal solution. Thus there exist p ∈ R

n

and β ∈ K∗ fulfilling (3).

”(ii) ⇒ (i)” As we can find some p ∈ R
n and β ∈ K∗ fulfilling (3), it

follows right away that

v(D) ≥ −g∗(β) − f∗(p) −
(

βT h
)∗

X
(−p) ≥ 0.

Weak duality between (P ) and (D) always holds and thus we obtain
v(P ) ≥ 0, i.e. (i) is true. �

The previous statement can be reformulated as a theorem of the alterna-
tive.

Corollary 4.2 Assume that the hypothesis of Theorem 4.1 is fulfilled.
Then either the inequality system

(I) x ∈ X, f(x) + (g ◦ h)(x) < 0

has a solution or the system

(II) g∗(β) + f∗(p) +
(

βT h
)∗

X
(−p) ≤ 0,

p ∈ R
n, β ∈ K∗

has a solution, but never both.



Theorem 4.3 The statement (ii) in Theorem 4.1 is equivalent to

(0, 0, 0) ∈ {0}×T
(

epi(g∗)
)

+ epi(f∗) × {0} +
⋃

β∈K∗

(

epi
(

(βT h)∗X
)

× {−β}

)

.

Proof. ”⇒” Since the statement (ii) holds, there exist p ∈ R
n and β ∈ K∗

such that
g∗(β) + f∗(p) +

(

βT h
)∗

X
(−p) ≤ 0.

As g∗(β) and (βT h)∗X(−p) have both finite real values, by definition follows

(

β, g∗(β)
)

∈ epi(g∗)

and
(

− p, (βT h)∗X(−p)
)

∈ epi
(

(βT h)∗X
)

.

Thus
(

− p, (βT h)∗X(−p),−β
)

∈ epi
(

(βT h)∗X
)

× {−β}

and it follows

(

− p,
(

βT h
)∗

(−p),−β
)

∈
⋃

β∈K∗

(

epi
(

(βT h)∗X
)

× {−β}

)

. (4)

Taking into consideration the definition of the operator T introduced in
the first section of the paper, the relation

(

0, g∗(β), β
)

∈ {0} × T (epi(g∗)) (5)

follows at once.

On the other hand the inequality

f∗(p) ≤ −g∗(β) −
(

βT h
)∗

(−p)

is also fulfilled, and, as the value in the right-hand side is finite, it holds

(

p,−g∗(β) −
(

βT h
)∗

X
(−p)

)

∈ epi
(

f∗
)

.

This implies

(

p,−g∗(β) −
(

βT h
)∗

X
(−p), 0

)

∈ epi
(

f∗
)

× {0}. (6)

Combining relations (4), (5) and (6) we get

(0,0,0) =
(

0,g∗(β),β
)

+
(

p,−g∗(β)−
(

βT h
)∗

X
(−p),0

)

+
(

− p,
(

βT h
)∗

X
(−p),−β

)

∈ {0} × T
(

epi(g∗)
)

+ epi(f∗) × {0} +
⋃

β∈K∗

(

epi
(

(βT h)∗X
)

× {−β}

)

.



”⇐” Since

(0, 0, 0) ∈ {0}×T
(

epi(g∗)
)

+ epi(f∗) × {0} +
⋃

β∈K∗

(

epi
(

(βT h)∗X
)

× {−β}

)

,

we can find some p ∈ R
n and r ∈ R such that

(p, r, 0) ∈ epi(f∗) × {0} (7)

and

(−p,−r, 0) ∈ {0} × T (epi(g∗)) +
⋃

β∈K∗

epi
(

(βT h)∗X
)

× {−β}. (8)

Using the definition of the epigraph of a function, from relation (7) we
acquire directly

f∗(p) ≤ r. (9)

By relation (8), there exists a β ∈ K∗ such that

(−p,−r, 0) ∈ {0} × T (epi(g∗)) + epi
(

(βT h)∗X
)

× {−β}.

The definition of the operator T and the previous relation imply that there
exist two real numbers r1 and r2 such that −r = r1 + r2, while the pairs
(β, r1) and (−p, r2) are in epi(g∗) and epi

(

(βT h)∗X
)

, respectively. Thus

g∗(β) + (βT h)∗X(−p) ≤ r1 + r2 = −r. (10)

Combining relations (9) and (10), the desired result is straightforward. �

5 The ordinary problem as a particular case

Let X ⊆ R
n be a nonempty convex set and K ⊆ R

k a nonempty closed
convex cone. Consider the functions f : R

n → R and h : R
n → R

k ∪ {∞},

h =
(

h1, ..., hk

)T
, such that f is proper and convex and h is K-convex.

Take the problem
(P1) inf

x∈X,
h(x)≤K0

f(x)

and assume that
X ∩ dom(f) ∩ h−1(−K) 6= ∅.

It is not hard to remark that for all x ∈ R
n we have

h(x) ≤K 0 ⇔ δ−K

(

h(x)
)

= 0 ⇔ (δ−K ◦ h)(x) = 0.



Thus we get
v(P1) = inf

x∈X

(

f(x) + (δ−K ◦ h)(x)
)

and, so, (P1) can be further written as

(P1) inf
x∈X

(

f(x) + (δ−K ◦ h)(x)
)

.

Taking into consideration the results obtained in the previous section (to
prove that the function δ−K is K-increasing is trivial), to the problem (P1)
we can associate the following dual problem

(D1) sup
p∈R

n,
β∈K∗

{

− (δ−K)∗(β) − f∗(p) −
(

βT h
)∗

X
(−p)

}

.

Even more, it is easy to prove that

(δ−K)∗(β) =

{

0, β ∈ K∗,
+∞, otherwise,

so that the dual (D1) becomes

(D1) sup
p∈R

n,
β∈K∗

{

− f∗(p) −
(

βT h
)∗

X
(−p)

}

.

In order to get strong duality between the problems (P1) and (D1), the
fulfilling of the following constraint qualification is required

(CQ1) ∃x′ ∈ ri
(

X∩h−1(Rk)
)

∩ri
(

dom(f)
)

: h(x′) ∈ ri
(

dom(δ−K)
)

−ri(K).

But

ri
(

dom(δ−K)
)

− ri(K) = ri(−K) − ri(K) = − ri(K) − ri(K) = − ri(K),

therefore we acquire

(CQ1) ∃x′ ∈ ri
(

X ∩ h−1(Rk)
)

∩ ri
(

dom(f)
)

: h(x′) ∈ − ri(K).

The following outcomes are easy consequences of the results proved within
the previous section.

Theorem 5.1 Suppose that (CQ1) holds. Then the following assertions
are equivalent:

(i) x ∈ X, h(x) ≤K 0 ⇒ f(x) ≥ 0;
(ii) there exist p ∈ R

n and β ∈ K∗ such that

f∗(p) +
(

βT h
)∗

X
(−p) ≤ 0.



Corollary 5.2 Assume that the hypothesis of Theorem 5.1 is fulfilled.
Then either the inequality system

(I) x ∈ X,h(x) ≤K 0, f(x) < 0

has a solution or the system

(II) f∗(p) +
(

βT h
)∗

X
(−p) ≤ 0,

p ∈ R
n, β ∈ K∗

has a solution, but never both.

Theorem 5.3 The statement (ii) in Theorem 5.1 is equivalent to

(0, 0) ∈ epi(f∗) +
⋃

β∈K∗

epi
(

(βT h)∗X
)

. (11)

Proof. By Theorem 4.3 we know that the statement (ii) in Theorem 5.1
is equivalent to

(0,0,0)∈{0}×T
(

epi((δ−K)∗)
)

+epi(f∗)×{0}+
⋃

β∈K∗

(

epi
(

(βT h)∗X
)

×{−β}

)

.

Since
epi

(

(δ−K)∗
)

= K∗ × [0,+∞),

it is easy to see that the last relation can be equivalently written as

(0, 0, 0) ∈
⋃

β∈K∗

(

{0}×[0,+∞)×K∗+epi(f∗)×{0}+epi
(

(βT h)∗X
)

×{−β}

)

.

This means that there exists β ∈ K∗ such that

(0, 0) ∈ {0} × [0,+∞) + epi(f∗) + epi
(

(βT h)∗X
)

. (12)

Using only the definition of the epigraph of a function it is easy to prove that

{0} × [0,+∞) + epi(f∗) = epi(f∗).

Therefore, by (12),

(0, 0) ∈ epi(f∗) +
⋃

β∈K∗

epi
(

(βT h)∗X
)

,

and the proof is complete. �

Let us consider now h : R
n → R

k and K = R
k
+. The constraint qualifica-

tion (CQ1) becomes in this case

(CQ′
1) ∃x′ ∈ ri(X) ∩ ri

(

dom(f)
)

: h(x′) ∈ − ri
(

R
k
+

)

,



which is actually the Slater constraint qualification

(CQ′
1) ∃x′ ∈ ri(X) ∩ ri

(

dom(f)
)

: h(x′) < 0.

As ri(X) 6= ∅, the following equalities can be easily proved (cf. [3], [6])

⋃

β∈K∗

epi
(

(βT h)∗X
)

=
⋃

β=0

epi
(

(βT h)∗X
)

= coneco

( k
⋃

i=1

epi(h∗
i )

)

+ epi(σX).

Then the following results are easy consequences of Theorem 5.1 and The-
orem 5.3.

Theorem 5.4 Suppose that (CQ′
1) holds. Then the following assertions

are equivalent:

(i) x ∈ X, h(x) 5 0 ⇒ f(x) ≥ 0;
(ii) there exist p ∈ R

n and β = 0 such that

f∗(p) +
(

βT h
)∗

X
(−p) ≤ 0.

Theorem 5.5 The statement (ii) in Theorem 5.4 is equivalent with

(0, 0) ∈ epi(f∗) + coneco

( k
⋃

i=1

epi(h∗
i )

)

+ epi(σX).

As a last remark, let us mention that the last two theorems were obtained
by Boţ and Wanka in [6], as a generalization of some results due to Jeyakumar
([9]).

6 Conclusions

Within the current paper we deal with conjugate duality and Farkas-type
results in composed convex programming. The approach we use is based on
conjugate duality for an optimization problem consisting in minimizing the
sum between a convex function and the precomposition of an K-increasing
and convex function with a K-convex vector function, where K is a closed
convex cone. The result we present generalizes some Farkas-type results pre-
sented by Boţ and Wanka in [6] and by Jeyakumar in [9]. Moreover, the
existing connections between the Farkas-type results and the theorems of the
alternative and, respectively, the theory of duality are emphasized once more.
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Universitäts-Verlag, Wiesbaden, pp. 1–18.
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