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Abstract. In this survey we present some of our recent results concerning
regularity conditions for subdifferential calculus and Fenchel duality in infinite
dimensional spaces. As an application we deliver the maximal monotonicity of
the operator A∗ ◦ T ◦A, where A is a linear continuous mapping between two re-
flexive Banach spaces and T is a maximal monotone operator, under the weakest
constraint qualification known so far in this framework. As a special case follows
the weakest condition that guarantees the maximal monotonicity of the sum of
two maximal monotone operators on a reflexive Banach space.

Keywords. Conjugate functions, Fenchel duality, subdifferentials, regularity
conditions, maximal monotone operators

1 Introduction

One of the most fruitful challenges in convex analysis and optimization is to
provide weaker hypotheses that yield certain important results than the already
existing ones. In a given framework the differences are usually made by the
so-called regularity conditions which ensure the fulfillment of some statements,
without being implied by them, though.

In this survey paper we focus on some of our recent results regarding regularity
conditions for subdifferential calculus and Fenchel duality in infinite dimensional
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spaces. The literature on these topics is very rich and there are many sufficient
conditions considered for such problems, let us mention here just [9, 15, 17, 22].
We also refer to [4] and the references therein for more on this subject.

The regularity conditions we give belong to the class of closedness conditions
and they are weaker than all the so-called generalized interior-point regularity
conditions known in the literature. Working in locally convex vector spaces, we
give such weak regularity conditions that guarantee the so-called subdifferential
sum formula and Fenchel duality, providing moreover examples which prove that
they are indeed weaker than the other mentioned conditions.

Especially in the recent years, strong connections between convex analysis and
monotone operators were discovered and studied. The cornerstone of the recent
advances in connecting these fields is the rediscovery in [6,12,13] of the function
introduced by Fitzpatrick (cf. [7]), which received his name. This function allows
the characterization of maximal monotone operators by using the tools of convex
analysis. We refer to [14,18] for more on monotone operators.

Finding a weaker sufficient condition under which the sum of two maximal
monotone operators on a reflexive Banach space is maximal monotone has been
an older challenge for many mathematicians, the problem having more than four
decades. Since its rediscovery, the Fitzpatrick function played an important role
in dealing with this problem, let us mention here just the works [1, 2, 19,22], the
regularity conditions obtained in this way being weaker than the older ones. A
problem closely related to this concerns the maximal monotonicity of A∗ ◦ T ◦A,
where T is a maximal monotone operator and A is a linear continuous mapping.
We give the weakest regularity conditions known so far for both these problems
by using the results presented earlier in the paper.

Some words about the organization of the paper follow. The next section
presents some preliminary notions and results in convex analysis, then the main
part where the new regularity conditions are introduced in order to ensure the
subdifferential sum formula and, respectively, Fenchel duality follows. In the
fourth part we apply these results in maximal monotonicity, providing weaker
constraint qualifications for the maximal monotonicity of A∗ ◦ T ◦ A, introduced
before, respectively of the sum of two maximal monotone operators. A short
conclusive section follows.

2 Preliminary notions and results

2.1 Some elements of convex analysis

We consider two nontrivial locally convex vector spaces X and Y together with
their continuous dual spaces X∗ and, respectively, Y ∗, endowed with the weak∗

topologies w(X∗, X) and, respectively, w(Y ∗, Y ). By 〈x∗, x〉 we denote the value
of the linear continuous functional x∗ ∈ X∗ at x ∈ X.
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When C is a subset of X, its indicator function δC : X → R = R ∪ {±∞} is
defined as δC(x) = 0, if x ∈ C and δC(x) = +∞, otherwise, and we denote by
int(C), cl(C) and cone(C) its interior, its closure in the corresponding topology,
respectively its conical hull. The core of C is defined by core(C) = {c ∈ C : ∀x ∈
X ∃ε > 0 : c + λx ∈ C ∀λ ∈ [−ε, ε]}. We call intrinsic core of C its core relative
to its affine hull aff(C) and we write it icr(C). For a convex subset C ⊆ X we
denote by icC, the intrinsic relative algebraic interior of C. One has x ∈ icC
if and only if ∪λ>0 λ(C − x) is a closed linear subspace of X. Let us remind
moreover that a set C ⊆ X is said to be closed regarding the subspace Z ⊆ X if
C ∩ Z = cl(C) ∩ Z (cf. [2]).

The identity function on X is idX : X → X, idX(x) = x ∀x ∈ X, while the
first projection is pr1 : X × Y → X, pr1(x, y) = x ∀(x, y) ∈ X × Y . Denote also
∆X = {(x, x) : x ∈ X}.

Given a funcion f : X → R we consider the following notions

· domain: dom(f) = {x ∈ X : f(x) < +∞};

· f is proper: f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅;

· epigraph: epi(f) = {(x, r) ∈ X × R : f(x) ≤ r};

· lower semicontinuous envelope of f : the function cl(f) : X → R defined by
epi(cl(f)) = cl(epi(f));

· conjugate function: f ∗ : X∗ → R, f ∗(x∗) = sup
{
〈x∗, x〉 − f(x) : x ∈ X

}
;

· subdifferential of f at x (when f(x) ∈ R):

∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}.

We have also the so-called Fenchel-Young inequality

f ∗(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ X x∗ ∈ X∗.

When f : X → R and g : Y → R, we define f × g : X × Y → R × R through
f × g(x, y) = (f(x), g(y)), (x, y) ∈ X × Y .

When fi : X → R, i = 1, ...,m, are proper functions, we have their infimal
convolution defined by f1� · · ·�fm : X → R, f1� · · ·�fm(x) = inf {

∑m

i=1 fi(xi) :∑m

i=1 xi = x}. We say that f1� · · ·�fm is exact at x ∈ X if there exist some
xi ∈ X, i = 1, ...,m, such that f1� · · ·�fm(x) = f1(x1) + ... + fm(xm). We call
f1� · · ·�fm exact if it is exact at every x ∈ X.

Given a linear continuous mapping A : X → Y one has its range Im(A) =
{Ax : x ∈ X} and its adjoint A∗ : Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for
any (x, y∗) ∈ X × Y ∗. If f : X → R is a proper function, the infimal function
of f through A is Af : Y → R, Af(y) = inf

{
f(x) : x ∈ X,Ax = y

}
, y ∈ Y . If

U ⊆ Y , denote also A−1(U) = {x ∈ X : Ax ∈ U}.
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2.2 Fenchel-Moreau-type statements

After introducing the most important notions needed in this paper, we present
now some known results on which the ones in the following sections are based.

Theorem 1. (see [4, 20]) Let f, g : X → R be proper, convex and lower
semicontinuous functions such that dom(f) ∩ dom(g) 6= ∅. Then the following
relation holds

epi((f + g)∗) = cl(epi(f ∗
�g∗)) = cl(epi(f ∗) + epi(g∗)). (1)

Remark 1. One may notice that the second equality in (1) remains true even
considering the closure in the product topology of (X∗, τ) × R, where τ is an
arbitrary compatible topology on X∗.

Proposition 1. (cf. [4]) Let f, g : X → R be proper functions such that
dom(f) ∩ dom(g) 6= ∅. Then the following statements are equivalent

(i) epi((f + g)∗) = epi(f ∗) + epi(g∗),

(ii) (f + g)∗ = f ∗
�g∗ and f ∗

�g∗ is exact.

Theorem 2. (cf. [8]) Let a linear continuous mapping A : X → Y and a
proper, convex and lower semicontinuous function g : Y → R be such that g ◦ A
is proper on X. Then

epi((g ◦ A)∗) = cl(epi(A∗g∗)), (2)

where the closure is taken in the product topology of (X∗, τ)×R, for every locally
convex topology τ on X∗ giving X as dual.

Remark 2. Significant choices for τ are the weak* topology w(X∗, X) on X∗

or the norm topology of X∗ in case X is a reflexive Banach space.

Theorem 3. (cf. [4]) Let τ a compatible topology on X∗, A : X → Y a linear
continuous mapping and g : Y → R a proper function. Then

cl(epi(A∗g∗)) = cl(A∗ × idR(epi(g∗))), (3)

where the closure is taken in the product topology of (X∗, τ) × R.

As noticed in [4], taking in (2) and (3) the closure in the product topology of
(X∗, w(X∗, X)) × R we obtain the following equality

epi((g ◦ A)∗) = cl(epi(A∗g∗)) = cl(A∗ × idR(epi(g∗))). (4)
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Considering f : X → R and g : Y → R proper, convex and lower semicontin-
uous functions such that A(dom(f)) ∩ dom(g) 6= ∅, we have, by Theorems 1 and
3,

epi((f +g ◦A)∗) = cl(epi(f ∗)+epi((g ◦A)∗)) = cl(epi(f ∗)+cl(A∗× idR(epi(g∗)))),

which is nothing else than

epi((f + g ◦ A)∗) = cl(epi(f ∗) + A∗ × idR(epi(g∗))).

Inspired by the last relation we introduce the following regularity condition
(cf. [4])

(RCA) epi(f ∗) + A∗ × idR(epi(g∗)) is closed in the product topology of (X∗,
w(X∗, X)) × R.

Remark 3. One can note that the regularity condition (RCA) is equivalent to

epi((f + g ◦ A)∗) = epi(f ∗) + A∗ × idR(epi(g∗)).

3 New regularity conditions for conjugate dual-

ity

3.1 The subdifferential sum formula

We are ready to state now one of the main results in this paper, namely that
the subdifferential sum formula holds under the regularity condition introduced
above. Its proof can be found in [4].

Theorem 4. Let A : X → Y be a linear continuous mapping, f : X → R

and g : Y → R proper, convex and lower semicontinuous functions such that
A(dom(f)) ∩ dom(g) 6= ∅. Then

(i) (RCA) is fulfilled if and only if ∀x∗ ∈ X∗,

(f + g ◦ A)∗(x∗) = inf{f ∗(x∗ − A∗y∗) + g∗(y∗) : y∗ ∈ Y ∗}

and the infimum is attained.

(ii) If (RCA) is fulfilled, then ∀x ∈ dom(f) ∩ A−1(dom(g)),

∂(f + g ◦ A)(x) = ∂f(x) + A∗∂g(Ax).
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In case X = Y and A = idX , A∗ × idR becomes the identity mapping on
X∗×R and the regularity condition (RCA) can be rewritten in the following way

(RC) epi(f ∗)+ epi(g∗) is closed in the product topology of (X∗, w(X∗, X))×R.

Theorem 5. (see [4]) Let the proper convex lower semicontinuous functions
f, g : X → R fulfilling dom(f) ∩ dom(g) 6= ∅. Then

(i) (RC) is fulfilled if and only if ∀x∗ ∈ X∗,

(f + g)∗(x∗) = inf{f ∗(x∗ − y∗) + g∗(y∗) : y∗ ∈ Y ∗} (5)

and the infimum is attained.

(ii) If (RC) is fulfilled, then ∀x ∈ dom(f) ∩ dom(g),

∂(f + g)(x) = ∂f(x) + ∂g(x). (6)

Remark 4. The statement “(5) ⇒ (6)” has been given for the first time in [10],
while the implication “(RC) ⇒ (6)” has been obtained first in [5].

Consider now the following generalized interior-point regularity conditions:

(i) ∃x′ ∈ dom(f) such that Ax′ ∈ int(dom(g)),

(ii) 0 ∈ core(dom(g) − A(dom(f))) (cf. [15]),

(iii) 0 ∈ ic(dom(g) − A(dom(f))) (cf. [17]),

(iv) 0 ∈ icr(dom(g) − A(dom(f))) and aff(dom(g) − A(dom(f))) is a closed
subspace (cf. [9]).

Remark 5. The following relation holds between these regularity conditions

(i) ⇒ (ii) ⇒ (iii) ⇔ (iv) ⇒ (RCA).

The implications between the four above introduced constraint qualifications were
investigated in [9]. According to [17], (iii), which is actually the well-known
Attouch-Brézis regularity condition, yields

(f + g ◦ A)∗(x∗) = inf{f ∗(x∗ − A∗y∗) + g∗(y∗) : y∗ ∈ Y ∗} ∀x∗ ∈ X∗,

with the infimum attained.
By Theorem 4(i) this is equivalent to (RCA), therefore (iii) implies (RCA).

Next we give an example to show that (RCA) is indeed weaker than the men-
tioned interior-point regularity conditions.
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Example 1. Let X = Y = R, A = idR, f(x) = 1
2
x2, if x ≥ 0, and f(x) = +∞,

otherwise, and g = δ(−∞,0]. As R+[dom(g) − A(dom(f))] = R+, (iii) is not ful-
filled, so neither are (i), (ii) and (iv). On the other hand, epi(f ∗) + epi(g∗) =
R × R+, which is closed, so (RCA) is fulfilled.

Taking in Theorem 4 f ≡ 0, one gets the following result.

Theorem 6. Assume that g ◦ A is proper. Then

(a) A∗ × idR(epi(g∗)) is closed in the product topology of (X∗, w(X∗, X))×R if
and only if ∀x∗ ∈ X∗,

(g ◦ A)∗(x∗) = inf{g∗(y∗) : A∗y∗ = x∗}

and the infimum is attained.

(b) If A∗× idR(epi(g∗)) is closed in the product topology of (X∗, w(X∗, X))×R,
then ∀x ∈ A−1(dom(g)),

∂(g ◦ A)(x) = A∗∂g(Ax).

We conclude the subsection by stating another result which generalizes The-
orem 6 and will be needed later. Its proof is available in [2].

Proposition 2. Let X, Y and U be non-trivial locally convex spaces, A :
X → Y a linear continuous mapping and f : Y → R a proper, convex and lower
semicontinuous function such that f ◦ A is proper on X. Consider moreover the
linear mapping M : U → X∗. Let τ be any locally convex topology on X∗ giving
X as dual. The following statements are equivalent

(a) A∗× idR(epi(f ∗)) is closed regarding the subspace Im(M)×R in the product
topology of (X∗, τ) × R,

(b) (f ◦A)∗(Mu) = inf
{
f ∗(y∗) : A∗y∗ = Mu

}
and the infimum is attained, for

all u ∈ U .

3.2 A regularity condition for Fenchel duality

Given f : X → R and g : Y → R proper, convex and lower semicontinuous
functions such that A(dom(f)) ∩ dom(g) 6= ∅, we consider the following convex
optimization problem

(PA) inf
x∈X

{f(x) + g(Ax)}.
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The Fenchel dual problem to (PA) is

(DA) sup
y∗∈Y ∗

{−f ∗(−A∗y∗) − g∗(y∗)}.

Assuming that (RCA) is fulfilled, Theorem 4(i) (taking x∗ = 0) guarantees
strong duality between (PA) and (DA), i.e. the situation when their optimal
objective values, denoted by v(PA) and, respectively, v(DA), coincide and the
dual has an optimal solution.

Actually this condition is too strong, as it is equivalent to the so-called stable
strong duality between (PA) and (DA) (see [3]). That is why we consider another
regularity condition, namely (cf. [4])

(FRCA) f ∗
�A∗g∗ is a lower semicontinuous function and epi(f ∗

�A∗g∗)∩
({0} × R) = (epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R).

Using Proposition 1 and (4) one can prove that (RCA) implies (FRCA). The
opposite implication does not hold in general, a counter-example will be given
later. The Fenchel duality statement follows, its proof being given in [4].

Theorem 7. If (FRCA) is fulfilled, then v(PA) = v(DA) and (DA) has an
optimal solution.

Remark 6. Assume that (RCA) is fulfilled, i.e.

epi((f + g ◦ A)∗) = epi(f ∗) + A∗ × idR(epi(g∗)).

Thus epi(f ∗
�A∗g∗) is closed and (see [4])

epi(f ∗
�A∗g∗) = epi(f ∗) + A∗ × idR(epi(g∗))).

This means that (FRCA) is also fulfilled.

In case X = Y and A = idX , the identity mapping of X, the problems (PA)
and (DA) turn into

(P ) inf
x∈X

{f(x) + g(x)},

and, respectively,

(D) sup
y∗∈X∗

{−f ∗(−y∗) − g∗(y∗)}.

In this situation, the regularity condition (FRCA) becomes

(FRC) f ∗
�g∗ is a lower semicontinuous function and epi(f ∗

�g∗) ∩ ({0}
×R) = (epi(f ∗) + epi(g∗)) ∩ ({0} × R),
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equivalently written as

(FRC) f ∗
�g∗ is a lower semicontinuous function and is exact at 0.

Theorem 8. (see [4]) If (FRC) is fulfilled, then v(P ) = v(D) and (D) has
an optimal solution.

The following situation shows that (FRC) is indeed weaker than (RC), thus
(FRCA) is weaker than (RCA), too.

Example 2. Let X = R
2, C =

{
(x1, x2)

T ∈ R
2 : x1 ≥ 0

}
, D =

{
(x1, x2)

T ∈
R

2 : 2x1 + x2
2 ≤ 0

}
, f = δC and g = δD.

For every (x∗
1, x

∗
2)

T ∈ R
2, (f + g)∗(x∗

1, x
∗
2) = 0 and

f ∗
�g∗(x∗

1, x
∗
2) = inf

v∗
1
≥x∗

1

v∗
2
=x∗

2

{
(v∗

2
)2

v∗
1

, if v∗
1 > 0,

0, if v∗
1 = v∗

2 = 0,
= 0.

As f ∗
�g∗ is lower semicontinuous on R

2 and exact at (0, 0)T , (FRC) is ful-
filled. On the other hand, f ∗

�g∗ is not exact at every point of R
2 and, so, the

sets epi(f ∗) + epi(g∗) and epi((f + g)∗) are not equal. Thus epi(f ∗) + epi(g∗)
cannot be closed and (RC) fails.

4 Applications for maximal monotone operators

4.1 Preliminary notions on monotone operators and Fitz-

patrick functions

Consider further X a Banach space equipped with the norm ‖ · ‖, while the norm
on X∗ is ‖ · ‖∗.

Definition 1. A mapping (generally multivalued) T : X → 2X∗

is called
monotone operator provided that for any x, y ∈ X one has 〈y∗ − x∗, y − x〉 ≥ 0
whenever x∗ ∈ T (x) and y∗ ∈ T (y).

Definition 2. For any monotone operator T : X → 2X∗

we have

· its effective domain D(T ) = {x ∈ X : T (x) 6= ∅},

· its range R(T ) = ∪{T (x) : x ∈ X},

· its graph G(T ) = {(x, x∗) : x ∈ X, x∗ ∈ T (x)}.
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Definition 3. A monotone operator T : X → 2X∗

is called maximal when
its graph is not properly included in the graph of any other monotone operator
T ′ : X → 2X∗

.

The most prominent example of a maximal monotone operator is (cf. [16])
the subdifferential of a proper convex lower semicontinuous function on X.

The duality map J : X → 2X∗

is defined as follows

J(x) =
1

2
∂‖x‖2 =

{
x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x∗, x〉

}
∀x ∈ X.

Proposition 3. (cf. [1, 18]) A monotone operator T on a reflexive Banach
space X is maximal if and only if the mapping T (x + ·) + J(·) is surjective for
all x ∈ X.

To a monotone operator T : X → 2X∗

one can attach the following so-called
Fitzpatrick function (cf. [7]) defined as follows

ϕT : X × X∗ → R, ϕT (x, x∗) = sup
{
〈y∗, x〉 + 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ T (y)

}
.

For any monotone operator T the Fitzpatrick function ϕT is convex and lower
semicontinuous as it is the supremum of a family of continuous affine functions.

Proposition 4. (cf. [19]) Let T be a maximal monotone operator on a reflex-
ive Banach space X. Then for any pair (x, x∗) ∈ X × X∗ we have

ϕ∗
T (x∗, x) ≥ ϕT (x, x∗) ≥ 〈x∗, x〉.

Moreover, ϕ∗
T (x∗, x) = ϕT (x, x∗) = 〈x∗, x〉 if and only if (x, x∗) ∈ G(T ).

4.2 Maximal monotonicity for TA

Further we take X and Y reflexive Banach spaces. Given the maximal mono-
tone operator T on Y and the linear continuous mapping A : X → Y , such
that A

(
pr1(dom(ϕT ))

)
6= ∅, consider the operator TA : X → 2X∗

defined by
TA(x) = A∗ ◦ T ◦ A(x), x ∈ X. It is known that TA is monotone, but not always
maximal monotone. That is why we consider the following constraint qualifica-
tion (cf. [2]) inspired from Proposition 2

(CQ) A∗× idY × idR(epi(ϕ∗
T )) is closed regarding the subspace X∗× Im(A)×R.

Theorem 9. If (CQ) is fulfilled, then TA is a maximal monotone operator.

Proof. Let z ∈ X and z∗ ∈ X∗ and consider f , g : X × X∗ → R, defined by

f(x, x∗) = inf{ϕT (A(x + z), y∗) − 〈y∗, Az〉 : A∗y∗ = x∗ + z∗}
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and g(x, x∗) = 1
2
‖x‖2 + 1

2
‖x∗‖2

∗ − 〈z∗, x〉, (x, x∗) ∈ X × X∗.
As f and g are convex and the latter is continuous, Fenchel’s duality theorem
(cf. [22]) yields the existence of a pair (x̄∗, x̄) ∈ X∗ × X such that

inf
(x,x∗)∈X×X∗

{f(x, x∗) + g(x, x∗)} = max
(x∗,x)∈X∗×X

{−f ∗(x∗, x) − g∗(−x∗,−x)}

= −f ∗(x̄∗, x̄) − g∗(−x̄∗,−x̄). (7)

To calculate the conjugate of f we consider the linear continuous operator B =
A × idY ∗ . For any (w∗, w) ∈ X∗ × X we have

f ∗(w∗, w) = sup
x∈X,

x∗∈X∗

{〈w∗, x〉+〈x∗, w〉 − inf
A∗y∗=x∗+z∗

{ϕT (A(x + z), y∗)−〈y∗, Az〉}}

= sup
u∈X,

y∗∈Y ∗

{〈w∗, u〉 + 〈y∗, A(w + z)〉 − (ϕT ◦ B)(u, y∗)} − 〈w∗, z〉

− 〈z∗, w〉 = (ϕT ◦ B)∗(w∗, A(w + z)) − 〈w∗, z〉 − 〈z∗, w〉.

The conjugate of g is g∗(w∗, w) = 1
2
‖w∗ + z∗‖2

∗ + 1
2
‖w‖2 ∀(w∗, w) ∈ X∗ × X.

By Proposition 2, (CQ) is equivalent to the fact that ∀(w∗, w) ∈ X∗ × X

(ϕT ◦ B)∗(w∗, Aw) = min
(y∗,y)∈Y ∗×Y

{ϕ∗
T (y∗, y) : B∗(y∗, y) = (w∗, Aw)}.

Proposition 4 yields for all (x, x∗) ∈ X×X∗ and y∗ ∈ Y ∗ such that A∗y∗ = x∗+z∗

ϕT (A(x+z), y∗)−〈y∗, Az〉 ≥ 〈y∗, Ax+Az〉−〈y∗, Az〉 = 〈A∗y∗, x〉 = 〈x∗, x〉+〈z∗, x〉

and so f(x, x∗) ≥ 〈x∗, x〉 + 〈z∗, x〉. Since g(x, x∗) ≥ −〈x∗, x〉 − 〈z∗, x〉 we get
f(x, x∗) + g(x, x∗) ≥ 0. Thus inf(x,x∗)∈X×X∗{f(x, x∗) + g(x, x∗)} ≥ 0 and taking
it into (7) one gets f ∗(x̄∗, x̄) + g∗(−x̄∗,−x̄) ≤ 0, i.e.

(ϕT ◦B)∗(x̄∗, A(x̄ + z))− 〈x̄∗, z〉 − 〈z∗, x̄〉+
1

2
‖ − x̄∗ + z∗‖2

∗ +
1

2
‖ − x̄‖2 ≤ 0. (8)

From Proposition 2 we have

(ϕT ◦ B)∗(x̄∗, A(x̄ + z)) = min
(y∗,y)∈Y ∗×Y

{ϕ∗
T (y∗, y) : B∗(y∗, y) = (x̄∗, A(x̄ + z))},

with the minimum attained at some (ȳ∗, ȳ) ∈ Y ∗ × Y . As the adjoint operator
of B is B∗ : Y ∗ × Y → X∗ × Y , B∗(y∗, y) = (A∗y∗, y), it follows B∗(ȳ∗, ȳ) =
(A∗ȳ∗, ȳ) = (x̄∗, A(x̄ + z)). Taking the last two relations into (8) we have

0 ≥ ϕ∗
T (ȳ∗, ȳ) − 〈x̄∗, z〉 − 〈z∗, x̄〉 +

1

2
‖x̄∗ − z∗‖2

∗ +
1

2
‖x̄‖2

= ϕ∗
T (ȳ∗, A(x̄ + z)) − 〈ȳ∗, Az〉 − 〈ȳ∗, Ax̄〉 + 〈ȳ∗, Ax̄〉 − 〈z∗, x̄〉 +

1

2
‖x̄‖2

+
1

2
‖A∗ȳ∗ − z∗‖2

∗ =
(
ϕ∗

T (ȳ∗, A(x̄ + z)) − 〈ȳ∗, A(x̄ + z)〉
)

+
(
〈A∗ȳ∗ − z∗, x̄〉 +

1

2
‖A∗ȳ∗ − z∗‖2

∗ +
1

2
‖x̄‖2

)
≥ 0,
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where the last inequality results from Proposition 4. Thus the inequalities above
must be fulfilled as equalities, so

ϕ∗
T (ȳ∗, A(x̄ + z)) − 〈ȳ∗, A(x̄ + z)〉 = 0,

i.e., by Proposition 4, ȳ∗ ∈ T ◦ A(x̄ + z) and

〈A∗ȳ∗ − z∗, x̄〉 +
1

2
‖A∗ȳ∗ − z∗‖2

∗ +
1

2
‖x̄‖2 = 0,

i.e. z∗−A∗ȳ∗ ∈ ∂ 1
2
‖ ·‖2(x̄). Further one has A∗ȳ∗ ∈ A∗ ◦T ◦A(z + x̄) = TA(z + x̄)

and z∗−A∗ȳ∗ ∈ J(x̄), so z∗ ∈ TA(z+ x̄)+J(x̄). As z and z∗ have been arbitrarily
chosen, Proposition 3 yields the conclusion. �

Until [2], the weakest constraint qualification known so far in the literature
for the maximal monotonicity of TA was (cf. [21])

(CQZ) ∪
λ>0

λ(D(T ) − Im(A)) is a closed linear subspace.

Assuming (CQZ), one has that 0 ∈ic (dom(ϕT )− Im(B)). Theorem 2.3.8(vii)
in [22] yields

(ϕT ◦ B)∗(w∗, Aw) = min
B∗(y∗,y)=(w∗,Aw)

{ϕ∗
T (y∗, y)},

which is equivalent to (CQ). Therefore (CQZ) ⇒ (CQ).
As we have remarked in [2], the maximal monotonicity of TA is valid also

when imposing the constraint qualification

(C̃Q) A∗ × idY × idR(epi(ϕ∗
T )) is closed,

considered then also in [11]. One may notice that we have (CQZ) ⇒ (C̃Q) ⇒
(CQ). The following example shows that these conditions are indeed weaker than
(CQZ).

Example 3. Let X = R and Y = R × R. Then X∗ = R and Y ∗ = R × R. Let
T : R × R → 2R×R be defined ∀(x, y) ∈ R × R by

T (x, y) =





(−∞, 0] × {0}, if x = 0, y < 0,
(−∞, 0] × [0, +∞), if x = y = 0,
{x} × {0}, if x > 0, y < 0,
{x} × [0, +∞), if x > 0, y = 0,
∅, otherwise,

Considering the proper, convex and lower semicontinuous functions f, g : R →
R, f(x) = (1/2)x2 + δ[0,+∞)(x) and g = δ(−∞,0], for any (x, y) ∈ R × R we have
T (x, y) =

(
∂f(x), ∂g(y)

)
, thus T is a maximal monotone operator.
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Taking A : R → R × R, Ax = (x, x), one gets, for any x ∈ R,

TA(x) = A∗ ◦ T ◦ A(x) = ∂f(x) + ∂g(x) =

{
R, if x = 0,
∅, otherwise,

thus TA is a maximal monotone operator, too.
The epigraph of the conjugate of ϕT is

epi(ϕ∗
T ) = ∪

x≥0

(
(−∞, x] × [0, +∞) × {x} × (−∞, 0] × [x2, +∞)

)
,

so
A∗ × idR×R × idR(epi(ϕ∗

T )) = R × ∪
x≥0

(
{x} × (−∞, 0] × [x2, +∞)

)
,

which is closed, i.e. (C̃Q) is valid. Consequently, the constraint qualification
(CQ) is satisfied for the chosen T and A.

On the other hand, we have D(T ) − Im(A) = {[x, +∞) × (−∞, x] : x ∈ R},
so

∪
λ>0

λ(D(T ) − Im(A)) = {[x, +∞) × (−∞, x] : x ∈ R} = {(x, y) ∈ R
2 : x ≥ y},

which is not a subspace, thus (CQZ) is violated.

4.3 Maximal monotonicity for the sum of two maximal

monotone operators

Take now Y = X ×X, A(x) = (x, x) for any x ∈ X and T : X ×X → X∗ ×X∗,
T (x, y) = (T1(x), T2(y)) when (x, y) ∈ X × X, where T1 and T2 are maximal
monotone operators on X.

One can prove that T is maximal monotone and TA(x) = T1(x)+T2(x) ∀x ∈ X.
The condition on the domain of ϕT becomes pr1(dom(ϕT1

)) ∩ pr1(dom(ϕT2
)) 6= ∅.

The constraint qualification (CQ) becomes in this case

(CQs) {(x∗ + y∗, x, y, r) : ϕ∗
T1

(x∗, x) + ϕ∗
T2

(y∗, y) ≤ r} is closed regarding the
subspace X∗ × ∆X × R.

We are ready to formulate the statement that gives the weakest constraint
qualification known so far which guarantees the maximal monotonicity of the
sum of two maximal monotone operators on a reflexive Banach space.

Theorem 10. Let T1 and T2 be maximal monotone operators on X such
that pr1(dom(ϕT1

)) ∩ pr1(dom(ϕT2
)) 6= ∅. If (CQs) is fulfilled, then T1 + T2 is a

maximal monotone operator on X.
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5 Conclusions

We gathered in this survey some of our recent results concerning regularity con-
ditions in convex analysis, namely we give the weakest such conditions known at
the moment that guarantee the validity of the subdifferential sum formula and,
respectively, Fenchel duality. These are also applied for maximal monotone oper-
ators. Using the Fitzpatrick function, we give the weakest regularity conditions
known so far that guarantee the maximal monotonicity of A∗ ◦ T ◦A, where T is
a maximal monotone operator on a reflexive Banach space and A a linear contin-
uous mapping, respectively of the sum of two maximal monotone operators on a
reflexive Banach space.
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