
On the Brézis - Haraux - type approximation in
nonreflexive Banach spaces
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Abstract. We give Brézis - Haraux - type approximation results for the range
of the monotone operator S + A∗ ◦ T ◦A when A is a linear continuous mapping
between two Banach spaces and S and T are star - monotone operators. These
lead to Brézis - Haraux - type approximation results for the range of the subdif-
ferential of the sum between a proper convex lower - semicontinuous function and
the precomposition to A of another proper convex lower - semicontinuous func-
tion defined on a Banach space. This is proven to hold under a weak sufficient
condition. The results in this paper extend some existing ones in the literature.
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1 Introduction

The sum of the ranges of two monotone operators defined on Banach spaces is
usually larger than the range of their sum. Under some additional conditions
these sets are almost equal, i.e. their interiors and closures coincide. Brézis
and Haraux wrote the first papers on the subject, namely [8, 9] and since then
determining when the sum of the ranges of two monotone operators is almost
equal in the sense mentioned above to the range of their sum is known as the
Brézis - Haraux approximation problem. Given in Hilbert spaces, their original
result has been extended and generalized in more general frameworks and also
for monotone composite operators like A∗ ◦ T ◦A, where A is a linear continuous
mapping and T is a monotone operator. We recall here the works due to Reich
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([20]), Chu ([13, 14]), Pennanen ([17]) and Simons ([24]), who treated the problem
in reflexive Banach spaces, respectively of Chbani and Riahi ([12]), of Riahi ([21])
and of the authors of the present paper ([5]), who dealt with the problem in
general Banach spaces.

There is a rich literature on the applications of the Brézis - Haraux approxima-
tion. From the large class of areas where these results are applied in we mention
variational inequality problems ([1]), Hammerstein equations and Neumann prob-
lem ([8, 9]), generalized equations of maximal monotone type ([16]), Kruzkov’s
solutions of the Burger - Carleman’s system ([11]), projection algorithms ([2]),
Bregman algorithms ([3]), Fenchel - Rockafellar - Moreau generalized duality
model ([16, 17]), optimization problems, Hammerstein differential inclusions and
complementarity problems ([12]), and the list could go on.

In this paper we work in non - reflexive Banach spaces and we give Brézis -
Haraux - type approximation statements for the range of S + A∗ ◦ T ◦ A, where
S and T are monotone operators and A is a linear continuous mapping. Then
we use a weak constraint qualification that ensures a Brézis - Haraux - type
approximation assertion for the range of the subdifferential of f + g ◦A, where f
and g are proper convex lower semicontinuous functions. These results generalize
our previous ones in [5, 6] and also those in [12, 21]. An application of our new
results concerning the Brézis - Haraux - type approximation is also brought into
attention, namely the existence of a solution to an optimization problem and the
so - called locally stable total generalized Fenchel duality.

We have structured the paper as follows. The next section contains some
necessary preliminaries, definitions and results used later. The third part is the
core of the paper and here we give our new Brézis - Haraux - type approximation
results for S + A∗ ◦T ◦A and then for ∂(f + g ◦A) and some special cases. After
the mentioned application a comprehensive list of references closes the paper.

2 Preliminaries

In the following we introduce the context we work within and we recall the nec-
essary notions and results, in order to make the paper self - contained. Consider
the locally convex spaces X and Y and their continuous dual spaces X∗ and
Y ∗, endowed with the weak∗ topologies w(X∗, X) and w(Y ∗, Y ), respectively.
By 〈x∗, x〉 we denote the value of the linear continuous functional x∗ ∈ X∗ at
x ∈ X. Having a subset M of X, we denote by int(M) and cl(M) its interior,
respectively its closure in the corresponding topology. We call it closed regarding
the subspace Z ⊆ X if M ∩ Z = cl(M) ∩ Z and we have its indicator function
δM : X → R = R ∪ {±∞}, defined by

δM(x) =

{
0, if x ∈ M,
+∞, otherwise.



For a function f : X → R, we have

· the domain: dom(f) = {x ∈ X : f(x) < +∞},

· the epigraph: epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

· the conjugate: f ∗ : X∗ → R given by f ∗(x∗) = sup{〈x∗, x〉− f(x) : x ∈ X},

· the subdifferential of f at x ∈ X where f(x) ∈ R: ∂f(x) = {x∗ ∈ X∗ :
f(y)− f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X},

· f is proper : f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅.

When f, g : X → R are proper functions, their infimal convolution is defined by

f�g : X → R, f�g(a) = inf{f(x) + g(a− x) : x ∈ X}.

For f : X → R and g : Y → R, we define the product function

(f × g) : X × Y → R× R, (f × g)(x, y) = (f(x), g(y)) ∀(x, y) ∈ X × Y.

Given a linear continuous mapping A : X → Y , its adjoint is

A∗ : Y ∗ → X∗, 〈A∗y∗, x〉 = 〈y∗, Ax〉 ∀(x, y∗) ∈ X × Y ∗.

For a proper function f : X → R we recall also the definition of the infimal
function of f through A as being

Af : Y → R, Af(y) = inf
{
f(x) : x ∈ X,Ax = y

}
∀y ∈ Y.

Consider also the identity function on X defined by

idX : X → X, idX(x) = x ∀x ∈ X.

Let us mention moreover that all around this paper we write min (max) instead
of inf (sup) when the infimum (supremum) is attained.

Lemma 1. ([7]) Let A : X → Y be a linear continuous mapping and f : X →
R and g : Y → R two proper, convex and lower semicontinuous functions such
that A(dom(f)) ∩ dom(g) 6= ∅. Then

(a) epi(f ∗) + A∗ × idR
(
epi(g∗)

)
is closed in the product topology of

(
X∗, w(x∗,

X))× R if and only if for any x∗ ∈ X∗ it holds

(f + g ◦ A)∗(x∗) = min
y∗∈Y ∗

[
f ∗(x∗ − A∗y∗) + g∗(y∗)

]
.



(b) If epi(f ∗)+A∗×idR
(
epi(g∗)

)
is closed in the product topology of

(
X∗, w(x∗,

X))× R, then for any x ∈ dom(f) ∩ A−1(dom(g)) one has

∂(f + g ◦ A)(x) = ∂f(x) + A∗∂g(Ax).

The second part of this section is devoted to monotone operators and some
of their properties. Until the end of the paper X and Y are considered Banach
spaces, unless otherwise specified. We denote by ‖ · ‖ the norm on X.

Definition 1. ([23]) A multifunction T : X → 2X∗
is called monotone

operator provided that for any x, y ∈ X one has

〈y∗ − x∗, y − x〉 ≥ 0 whenever x∗ ∈ T (x) and y∗ ∈ T (y).

Definition 2. ([23]) For any monotone operator T : X → 2X∗
we consider

· its effective domain D(T ) = {x ∈ X : T (x) 6= ∅},

· its range R(T ) = ∪{T (x) : x ∈ X},

· its graph G(T ) = {(x, x∗) : x ∈ X, x∗ ∈ T (x)}.

Definition 3. ([23]) A monotone operator T : X → 2X∗
is called maximal

when its graph is not properly included in the graph of any other monotone op-
erator T ′ : X → 2X∗

.

Like in [15] let τ1 be the weakest topology on X∗∗ which renders continuous
the following real functions

X∗∗ → R : x∗∗ 7→ 〈x∗∗, x∗〉 ∀x∗ ∈ X∗,
X∗∗ → R : x∗∗ 7→ ‖x∗∗‖.

The topology τ in X∗∗×X∗ is the product topology of τ1 and the strong (norm)
topology of X∗ ([15]).

Definition 4. ([15]) A monotone operator T : X → 2X∗
is called of dense

type provided that its closure operator T : X∗∗ → 2X∗
,

G(T ) =
{
(x∗∗, x∗) ∈ X∗∗ ×X∗ : ∃(xi, x

∗
i )i ∈ G(T ) with (x̂i, x

∗
i )

τ−→(x∗∗, x∗)
}

is maximal monotone, where ŷ denotes the canonical image of y in X∗∗.

Different to Riahi ([21]) and Chbani and Riahi ([12]), where these operators
are called densely maximal monotone, respectively densely monotone, we decided
to name them as Gossez ([15]) did when he introduced them. By Lemme 2.1



in [15], whenever the monotone operator T : X → 2X∗
is of dense type one has

(x∗∗, x∗) ∈ G(T ) if and only if 〈x∗∗ − ŷ, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ G(T ).

The monotone operators belonging to the following class are known as star
- monotone operators ([17]), but also as 3∗ - monotone operators ([12, 21]) and
(BH) operators ([13, 14]), being first introduced in [9].

Definition 5. ([14, 12, 17, 21]) A monotone operator T : X → 2X∗
is called

star - monotone if for all x∗ ∈ R(T ) and x ∈ D(T ) there is some β(x∗, x) ∈ R
such that inf(y,y∗)∈G(T )〈x∗ − y∗, x− y〉 ≥ β(x∗, x).

Remark 1. The subdifferential of a proper convex lower semicontinuous func-
tion on X is a classical example for all these classes of monotone operators. We
refer to [15, 17, 19, 21, 22, 24, 25, 26] for proofs and more on these subjects.

Lemma 2. ([15]) In reflexive Banach spaces every maximal monotone oper-
ator is of dense type and coincides with its closure operator.

Lemma 3. ([21]) Given the dense type operator T : X → 2X∗
and the

nonempty subset E ⊆ X∗ such that for any x∗ ∈ E there is some x ∈ X fulfill-
ing inf(y,y∗)∈G(T )〈x∗−y∗, x−y〉 > −∞, one has E ⊆ cl(R(T )) and int(E) ⊆ R(T ).

Remark 2. Let E be a nonempty subset of X∗. In [14] an operator T : X →
2X∗

for which for every x∗ ∈ E there is some x ∈ X fulfilling inf(y,y∗)∈G(T )〈x∗ −
y∗, x− y〉 > −∞ is called E - operator.

3 Brézis - Haraux - type approximation of the

range of the sum between a monotone opera-

tor and a monotone operator composed with

a linear mapping

We give in this section the main results concerning the so - called Brézis - Haraux
- type approximation (cf. [5, 9, 24]) of the range of the sum between a monotone
operator and a monotone operator composed with a linear mapping. These results
are then particularized by taking for the monotone operators the subdifferentials
of some proper, convex and lower semicontinuous functions. We extend here our
earlier results from [5] and let us notice that some results related to ours were
obtained by Pennanen in [17], but in reflexive spaces, while we work in general
Banach spaces.

Consider two monotone operators S : X → 2X∗
and T : Y → 2Y ∗

and a



linear continuous mapping A : X → Y . It is known that S + A∗ ◦ T ◦ A is a
monotone operator and under certain conditions it is maximal monotone (see
[18, 17], for instance). Before presenting our main results let us mention that the
corollaries given after each theorem arise easily by choosing S the zero operator
defined as S(x) = {0} ∀x ∈ X, respectively for A the identity mapping on X. We
show first that S+A∗◦T ◦A is star - monotone when S and T are star - monotone.

Theorem 1. If S : X → 2X∗
and T : Y → 2Y ∗

are star - monotone operators
and A : X → Y is a linear continuous mapping, then S + A∗ ◦ T ◦ A is star -
monotone, too.

Proof. If D(S +A∗ ◦T ◦A) = ∅, the conclusion arises trivially. Elsewise take
w∗ ∈ R(S + A∗ ◦ T ◦ A), i.e. there are some w ∈ X and x∗, z∗ ∈ X∗ such that
x∗ ∈ S(w), z∗ ∈ A∗ ◦ T ◦A(w) and w∗ = x∗ + z∗. Let x ∈ D(S + A∗ ◦ T ◦A). We
have

inf
(y,y∗)∈G(S+A∗◦T◦A)

〈w∗ − y∗, x− y〉 = inf
(y,u∗)∈G(S),

(y,v∗)∈G(A∗◦T◦A),
u∗+v∗=y∗

〈x∗ + z∗ − (u∗ + v∗), x− y〉

≥ inf
(y,u∗)∈G(S)

〈x∗ − u∗, x− y〉+ inf
(y,v∗)∈G(A∗◦T◦A)

〈z∗ − v∗, x− y〉. (1)

As z∗ ∈ A∗ ◦ T ◦ A(w), there is some r∗ ∈ T ◦ A(w) such that z∗ = A∗r∗.
Clearly, r∗ ∈ R(T ). Denote u = Ax ∈ D(T ). When v∗ ∈ A∗ ◦ T ◦ A(y) there is
some s∗ ∈ T ◦ A(y) such that v∗ = A∗s∗. We have

inf
(y,v∗)∈G(A∗◦T◦A)

〈z∗ − y∗, x− y〉 = inf
(y,s∗)∈G(T◦A)

〈A∗r∗ − A∗s∗, x− y〉

= inf
(y,s∗)∈G(T◦A)

〈r∗ − s∗, A(x− y)〉

≥ inf
(v,s∗)∈G(T )

〈r∗ − s∗, u− v〉 ≥ β(r∗, u) ∈ R,

since T is star - monotone. As S is also star - monotone, (1) yields that
S + A∗ ◦ T ◦ A is star - monotone, too. �

Corollary 1. If T : Y → 2Y ∗
is a star - monotone operator and A : X → Y

is a linear continuous mapping, then A∗ ◦ T ◦ A is star - monotone, too.

Remark 3. The statement in Corollary 1 rediscovers the result given in Propo-
sition 5 in [5].

Corollary 2. If S, T : X → 2X∗
are star - monotone operators, then S + T

is star - monotone, too.



Lemma 4. If S : X → 2X∗
and T : Y → 2Y ∗

are star - monotone operators
and A : X → Y is a linear continuous mapping such that S + A∗ ◦ T ◦ A is of
dense type, then

(i) R(S) + A∗(R(T )) ⊆ cl(R(S + A∗ ◦ T ◦ A)), and

(ii) int(R(S) + A∗(R(T ))) ⊆ R(S + A∗ ◦ T ◦ A).

Proof. The operator S + A∗ ◦ T ◦A being of dense type implies that D(S +
A∗ ◦ T ◦ A) 6= ∅, thus D(S) ∩D(A∗ ◦ T ◦ A) 6= ∅.

Let x∗ ∈ R(S)+A∗(R(T )), thus there are some x∗1 ∈ R(S), x∗2 ∈ R(A∗ ◦T ◦A)
and z∗ ∈ R(T ) such that x∗ = x∗1 + x∗2 and x∗2 = A∗z∗. Taking some x ∈
D(S + A∗ ◦ T ◦ A) there holds

inf
(y,y∗)∈G(S+A∗◦T◦A)

〈x∗ − y∗, x− y〉 = inf
(y,u∗)∈G(S),

(y,v∗)∈G(A∗◦T◦A),
u∗+v∗=y∗

〈x∗1 + x∗2 − (u∗ + v∗), x− y〉

≥ inf
(y,u∗)∈G(S)

〈x∗1 − u∗, x− y〉+ inf
(y,v∗)∈G(A∗◦T◦A)

〈x∗2 − v∗, x− y〉 > −∞,

as both S and A∗ ◦ T ◦ A are star - monotone. Applying Lemma 3 for E =
R(S) + A∗(R(T )) and the dense type monotone operator S + A∗ ◦ T ◦ A, we
obtain (i) and (ii). �

Using this intermediate assertion we give the main result in the paper, the
Brézis - Haraux - type approximation of the range of the monotone operator
S + A∗ ◦ T ◦ A.

Theorem 2. If S : X → 2X∗
and T : Y → 2Y ∗

are star - monotone operators
and A : X → Y is a linear continuous mapping such that S + A∗ ◦ T ◦ A is of
dense type, then

(i) cl(R(S) + A∗(R(T ))) = cl(R(S + A∗ ◦ T ◦ A)), and

(ii) int(R(S + A∗ ◦ T ◦A)) ⊆ int(R(S) + A∗(R(T ))) ⊆ int(R(S + A∗ ◦ T ◦ A)).

Proof. The operator S + A∗ ◦ T ◦ A being of dense type implies that
D(S + A∗ ◦ T ◦A) 6= ∅. Take some x∗ ∈ R(S + A∗ ◦ T ◦A). Then there are some
x ∈ D(S + A∗ ◦ T ◦ A), y∗, z∗ ∈ X∗ such that x∗ = y∗ + z∗, y∗ ∈ S(x) and z∗ ∈
A∗ ◦ T ◦ A(x). Obviously z∗ ∈ A∗(R(T )), thus x∗ = y∗ + z∗ ∈ R(S) + A∗(R(T )).
Consequently R(S +A∗◦T ◦A) ⊆ R(S)+A∗(R(T )) and the same inclusion exists
also between the closures, respectively the interiors, of these sets. By Lemma 4
we obtain immediately (i) and (ii). �

Corollary 3. If T : Y → 2Y ∗
is star - monotone and A : X → Y is a linear

continuous mapping such that A∗ ◦ T ◦ A is of dense type, then



(i) cl(A∗(R(T ))) = cl(R(A∗ ◦ T ◦ A)), and

(ii) int(R(A∗ ◦ T ◦ A)) ⊆ int(A∗(R(T ))) ⊆ int(R(A∗ ◦ T ◦ A)).

Corollary 4. If S : X → 2X∗
and T : X → 2X∗

are star - monotone operators
such that S + T is of dense type, then

(i) cl(R(S) + R(T )) = cl(R(S + T )), and

(ii) int(R(S + T )) ⊆ int(R(S) + (R(T ))) ⊆ int(R(S + T )).

Remark 4. Corollary 3 rediscovers as a special case of Theorem 2 the result
given in Theorem 1 in [5], while Corollary 4 does the same with Theorem 3.1 in
[12] and Theorem 1 in [21].

When X is moreover reflexive the inequalities in Theorem 2(ii) turn into
equalities and we get a more accurate Brézis - Haraux approximation of the
range of S + A∗ ◦ T ◦ A.

Theorem 3. If the Banach space X is moreover reflexive, S : X → 2X∗
and

T : Y → 2Y ∗
are star - monotone operators and A : X → Y is a linear continuous

mapping such that S + A∗ ◦ T ◦ A is maximal monotone, then

(i) cl(R(S) + A∗(R(T ))) = cl(R(S + A∗ ◦ T ◦ A)), and

(ii) int(R(S + A∗ ◦ T ◦ A)) = int(R(S) + A∗(R(T ))).

Proof. As X is reflexive, Lemma 2 yields that S + A∗ ◦ T ◦ A is maximal
monotone of dense type and S + A∗ ◦ T ◦ A and S+A∗◦T ◦A coincide. Theorem
2 delivers the conclusion. �

Corollary 5. If the Banach space X is moreover reflexive, T : Y → 2Y ∗
is

a star - monotone operator and A : X → Y is a linear continuous mapping such
that A∗ ◦ T ◦ A is maximal monotone, then

cl(A∗(R(T ))) = cl(R(A∗ ◦ T ◦ A)) and int(R(A∗ ◦ T ◦ A)) = int(A∗(R(T ))).

Corollary 6. If X is a reflexive Banach space, S, T : X → 2X∗
are star -

monotone operators such that S + T is maximal monotone, then

cl(R(S) + R(T )) = cl(R(S + T )) and int(R(S) + R(T )) = int((R(S + T ))).

Remark 5. Corollary 5 rediscovers as a special case of Theorem 3 the result
given in Corollary 1 in [5], while Corollary 6 does the same with Corollary 3.1 in



[12] and Corollary 1 in [21].

Now we turn our attention to the most usual example for many classes of
monotone operators, namely the subdifferentials of proper convex lower semicon-
tinuous functions. In [5] we have generalized and corrected the statement given
in both Corollary 3.2 in [12] and Corollary 2 in [21], providing a Brézis - Haraux -
type approximation of the range of the subdifferential of the precomposition of a
proper convex lower semicontinuous function with a linear continuous mapping.
We generalize here this result, too. The mentioned statements appear bellow as
corollaries of the following theorem. Before stating it we introduce the following
constraint qualification (cf. [7])

(CQ) epi(f ∗) + A∗ × idR
(
epi(g∗)

)
is closed in the product topology of(

X∗, w(x∗, X))× R.

Theorem 4. Let the proper convex lower semicontinuous functions f : X →
R and g : Y → R, and the linear continuous mapping A : X → Y such that
f + g ◦ A is proper, A(dom(f)) ∩ dom(g) 6= ∅ and (CQ) is valid. Then one has

(i) cl(R(∂f) + A∗(R(∂g))) = cl(R(∂(f + g ◦ A))), and

(ii) int(R(∂(f + g ◦ A))) ⊆ int(R(∂f) + A∗(R(∂g))) ⊆ int(D(∂(f ∗�A∗g∗))).

Proof. As f +g◦A is proper, convex and lower semicontinuous, by Théoréme
3.1 in [15] we know that ∂(f +g◦A) is an operator of dense type, while according
to Theorem B in [22] (see also [17, 21]) ∂f and ∂g are star - monotone.

By Lemma 1(ii) we know that (CQ) implies ∂f + A∗ ◦ ∂g ◦A = ∂(f + g ◦A).
Therefore ∂f + A∗ ◦ ∂g ◦ A is an operator of dense type, too.
Applying Theorem 2 for S = ∂f and T = ∂g we get

cl(R(∂f) + A∗(R(∂g))) = cl(R(∂f + A∗ ◦ ∂g ◦ A)) = cl(R(∂(f + g ◦ A)))

and

int(R(∂f + A∗ ◦ ∂g ◦A)) ⊆ int(R(∂f) + A∗(R(∂f))) ⊆ int(R(∂f + A∗ ◦ ∂g ◦ A)).

The relation above that involves closures yields (i), while the other becomes

int(R(∂(f + g ◦ A))) ⊆ int(R(∂f) + A∗(R(∂g))) ⊆ int(R(∂(f + g ◦ A))). (2)

As from Lemma 1(i) one may deduce that under (CQ) the equality (f +g◦A)∗ =
f ∗�A∗g∗ holds, by Théoréme 3.1 in [15] we get R(∂(f + g ◦ A)) = D(∂(f + g ◦
A)∗) = D(∂(f ∗� A∗g∗)). Putting this into (2) we get (ii). �

Corollary 7. (see [5]) Let the proper convex lower semicontinuous function
g : Y → R and the linear continuous mapping A : X → Y be such that g ◦ A is



proper and assume the constraint qualification

(CQA) A∗× idR(epi(g∗)) is closed in the product topology of (X∗, w(X∗, X))×R

valid. Then one has

(i) cl(A∗(R(∂g))) = cl(R(∂(g ◦ A))), and

(ii) int(R(∂(g ◦ A))) ⊆ int(A∗(R(∂g))) ⊆ int(D(∂(A∗g∗))).

Corollary 8. (see [5, 6]) Let f and g be two proper convex lower semicon-
tinuous functions on the Banach space X with extended real values such that
dom(f) ∩ dom(g) 6= ∅. Assume the constraint qualification

(CQs) epi(f ∗) + epi(g∗) is closed in the product topology of (X∗, w(X∗, X))× R

satisfied. Then one has

(i) cl(R(∂f) + R(∂g)) = cl(R(∂(f + g))), and

(ii) int(R(∂f +∂g)) ⊆ int(R(∂f)+R(∂g)) ⊆ int(D(∂(f ∗�g∗))) = int(D(∂((f +
g)∗))).

Remark 6. Similar results to the ones in the last statement have been ob-
tained by Riahi in Corollary 2 in [21] and by Chbani and Riahi in Corollary 3.2
in [12], under the constraint qualification

(CQR) ∪
t>0

t(dom(f)− dom(g)) is a closed linear subspace of X.

In [21] (CQR) is said to imply (i) in Corollary 8 and int(R(∂f) + R(∂g)) =
int(D(∂(f ∗�g∗))), while according to [12] it yields (i) in Corollary 8 and int(
R(∂f) + R(∂g)) = int(D(∂(f + g)∗)).

We have proved in [5, 6] that the equalities involving interiors from above are
not always true in non - reflexive Banach spaces. We have shown it by using
Example 2.21 in [19], originally given by Fitzpatrick.

Remark 7. As proven in Proposition 3.1 in [10] (see also [7]), (CQR) implies
(CQs), but the converse is not true, as shown by Example 3.1 in [10]. Therefore
our Corollary 8 extends, by weakening the constraint qualification, and corrects
Corollary 3.2 in [12] and Corollary 2 in [21].



4 Application: existence of a solution to an op-

timization problem

We work within the framework of Theorem 4, i.e. consider the proper convex
lower semicontinuous functions f : X → R and g : Y → R and the linear continu-
ous mapping A : X → Y such that f+g◦A is proper and A(dom(f))∩dom(g) 6= ∅.

Theorem 5. Assume (CQ) satisfied and moreover that 0 ∈ int(R(∂f) +
A∗(R(∂g))). Then there is a neighborhood V of 0 in X∗ such that ∀x∗ ∈ V there
exists an x̄ ∈ dom(f) ∩ A−1(dom(g)) for which

f(x̄) + g(A(x̄))− 〈x∗, x̄〉 = min
x∈X

[f(x) + g(A(x))− 〈x∗, x〉].

Proof. By Theorem 4 we have int(R(∂f) + A∗(R(∂g))) ⊆ int(D(∂(f ∗�
A∗g∗))), thus 0 ∈ int(D(∂(f ∗�A∗g∗))), i.e. there is a neighborhood V of 0 in X∗

such that V ⊆ D(∂(f ∗�A∗g∗)) = D(∂((f + g ◦ A)∗))
Fix some x∗ ∈ V . The properties of the subdifferential yield that there is

an x̄ ∈ dom(f) ∩ A−1(dom(g)) such that (f + g ◦ A)∗(x∗) + (f + g ◦ A)∗∗(x̄) =
〈x∗, x̄〉. As f + g ◦ A is a proper convex lower semicontinuous function we have
(f + g ◦ A)∗∗ = f + g ◦ A, thus the equality above becomes

f(x̄)+ g(A(x̄))−〈x∗, x̄〉 = −(f + g ◦A)∗(x∗) = −max
x∈X

{〈x∗, x〉− f(x)− g(A(x))}.

This means actually that the conclusion is valid. �

Remark 8. Remaining in the hypotheses of Theorem 5, we know (cf. [7]) that
(CQ) is equivalent to

inf
x∈X

[f(x) + g(A(x))− 〈x∗, x〉] = max
y∗∈Y ∗

{−f ∗(x∗ − A∗y∗)− g∗(y∗)} ∀x∗ ∈ X∗.

Thus one may notice that under the assumptions of the problem we obtain some-
thing that may be called locally stable total Fenchel duality, i.e. the situation
where both problems, the primal on the left - hand side and the dual on the right
- hand side, have optimal solutions and their values coincide for small enough lin-
ear perturbations of the objective function of the primal problem. Let us notice
moreover that as 0 ∈ V , for x∗ = 0 we obtain also the Fenchel duality statement,
but where moreover the primal problem has a solution, too. Taking also A the
identity mapping in X we obtain the classical Fenchel duality statement where
both the primal and the dual have solutions.
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