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A comparison of some recent regularity
conditions for Fenchel duality

Radu Ioan Boţ and Ernö Robert Csetnek

Abstract This article provides an overview on regularity conditions for Fenchel du-
ality in convex optimization. Our attention is focused, on the one hand, on three
generalized interior-point regularity conditions expressed by means of the quasi in-
terior and of the quasi-relative interior and, on the other hand, on two closedness-
type conditions that have been recently introduced in the literature. We discuss how
they do relate to each other, but also to several other classical ones and illustrate
these investigations by numerous examples.
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1.1 Introduction

The primal problem we investigate in this section is an unrestricted optimization
problem having as objective function the sum of two proper and convex functions
defined on a separated locally convex space. To it we attach the Fenchel dual prob-
lem and further we concentrate ourselves on providing regularity conditions for
strong duality for this primal-dual pair, which is the situation when the optimal
objective values of the two problems coincide and the dual has an optimal solution.
First of all, we bring into the discussion several conditions of this kind that one can
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find in the literature, where along the one which asks for the continuity of one of the
two functions at a point from the intersection of the effective domains, we enumerate
some classical generalized interior-point ones. Here we refer to the regularity condi-
tions employing the interior, but also the algebraic interior (cf. [21]), the intrinsic
core (cf. [17]) and the strong-quasi relative interior (cf. [1, 24]) of the difference
of the domains of the two functions. The latter conditions guarantee strong duality
if we suppose additionally that the two functions are lower semicontinuous and the
space we work within is a Fréchet one. A general scheme containing the relations
between these sufficient conditions is also furnished.

The central role in the paper is played by some regularity conditions for Fenchel
duality recently introduced in the literature. First of all, we consider some regular-
ity conditions expressed via the quasi interior and quasi-relative interior (cf. [7,8]),
which presents the advantage that they do not ask for any topological assumption re-
garding the functions involved and work in general separated locally convex spaces.
We consider three conditions of this kind, relate them to each other, but also to the
classical ones mentioned above. By means of some examples we are able to under-
line their wider applicability, by providing optimization problems where these are
fulfilled, while the consecrated ones fail.

The second class of recently introduced regularity conditions we discuss here is
the one of the so-called closedness-type regularity conditions, which additionally
ask for lower semicontinuity for the two functions, but work in general separated
locally convex spaces, too. We discuss here two closedness-type conditions (cf. [9,
10]), we relate them to each other, to the classical interior-point ones, but also, more
important, to the ones expressed via the quasi interior and quasi-relative interior.
More precisely, we show that, unlike in finite-dimensional spaces, in the infinite-
dimensional setting these two classes of regularity conditions for Fenchel duality
are not comparable. In this way we give a negative answer to an open problem
stated in [19, Remark 4.3].

The paper is organized as follows. In Section 1.2 we introduce some elements
of convex analysis, whereby the accent is put on different generalized interiority
notions. The notions quasi interior and quasi-relative interior are also introduced
and some of their important properties are mentioned. The third section starts with
the definition of the Fenchel dual problem, followed by a subsection dedicated to
the classical interior-point regularity conditions. The second subsection of Section
1.3 deals with the new conditions expressed via the quasi interior and quasi-relative
interior, while in the third one the closedness-type conditions are studied.

1.2 Preliminary notions and results

Consider X a (real) separated locally convex space and X∗ its topological dual space.
We denote by w(X∗,X) the weak∗ topology on X∗ induced by X . For a nonempty
set U ⊆ X , we denote by co(U),cone(U),coneco(U),aff(U), lin(U), int(U), cl(U),
its convex hull, conic hull, convex conic hull, affine hull, linear hull, interior and
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closure, respectively. In case U is a linear subspace of X we denote by U⊥ the
annihilator of U . Let us mention the following property: if U is convex then

coneco(U ∪{0}) = cone(U). (1.1)

If U ⊆ Rn (n ∈ N) we denote by ri(U) the relative interior of U , that is the interior
of U with respect to its affine hull. We denote by 〈x∗,x〉 the value of the linear
continuous functional x∗ ∈ X∗ at x ∈ X and by kerx∗ the kernel of x∗. The indicator
function of U , δU : X → R, is defined as

δU (x) =
{

0, if x ∈U,
+∞, otherwise,

where R = R∪{±∞} is the extended real line. We make the following conventions:
(+∞)+(−∞) = +∞, 0 ·(+∞) = +∞ and 0 ·(−∞) = 0. For a function f : X→R we
denote by dom f = {x ∈ X : f (x) < +∞} the domain of f and by epi f = {(x,r) ∈
X ×R : f (x)≤ r} its epigraph. Moreover, we denote by êpi( f ) = {(x,r) ∈ X ×R :
(x,−r) ∈ epi f}, the symmetric of epi f with respect to the x-axis. For a given real
number α , f −α : X→R is, as usual, the function defined by ( f −α)(x) = f (x)−α

for all x∈X . We call f proper if dom f 6= /0 and f (x) >−∞ for all x∈X . The normal
cone of U at x ∈U is NU (x) = {x∗ ∈ X∗ : 〈x∗,y− x〉 ≤ 0 ∀y ∈U}.

The Fenchel-Moreau conjugate of f is the function f ∗ : X∗→ R defined by

f ∗(x∗) = sup
x∈X
{〈x∗,x〉− f (x)} ∀x∗ ∈ X∗.

We have the so-called Young-Fenchel inequality

f ∗(x∗)+ f (x)≥ 〈x∗,x〉 ∀x ∈ X ∀x∗ ∈ X∗.

Having f ,g : X → R two functions we denote by f �g : X → R their infimal con-
volution, defined by f �g(x) = infu∈X{ f (u)+ g(x− u)} for all x ∈ X . We say that
the infimal convolution is exact at x ∈ X if the infimum in its definition is attained.
Moreover, f �g is said to be exact if it is exact at every x ∈ X .

Let us recall in the following the most important generalized interiority notions
introduced in the literature. The set U ⊆ X is supposed to be nonempty and convex.
We have:

• core(U) := {x ∈ U : cone(U − x) = X}, the algebraic interior (the core) of U
(cf. [21, 26]);

• icr(U) := {x ∈U : cone(U−x) is a linear subspace of X}, the relative algebraic
interior (intrinsic core) of U (cf. [2, 18, 26]);

• sqri(U) := {x ∈ U : cone(U − x) is a closed linear subspace of X} the strong
quasi-relative interior (intrinsic relative algebraic interior) of U (cf. [3, 26]).

We mention the following characterization of the strong quasi-relative interior
(cf. [17, 26]): x ∈ sqri(U)⇔ x ∈ icr(U) and aff(U− x) is a closed linear subspace.

The quasi-relative interior of U is the set (cf. [4])
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qri(U) = {x ∈U : cl
(

cone(U− x)
)

is a linear subspace of X}.

The quasi-relative interior of a convex set is characterized by means of the normal
cone as follows.

Proposition 1. (cf. [4]) Let U be a nonempty convex subset of X and x ∈U. Then
x ∈ qri(U) if and only if NU (x) is a linear subspace of X∗.

Next we consider another generalized interiority notion introduced in connection
with a convex set, which is close to the quasi-relative interior. The quasi interior of
U is the set

qi(U) = {x ∈U : cl
(

cone(U− x)
)

= X}.

It can be characterized as follows.

Proposition 2. (cf. [8, Proposition 2.4]) Let U be a nonempty convex subset of X
and x ∈U. Then x ∈ qi(U) if and only if NU (x) = {0}.

Remark 1. The above characterization of the quasi interior of a convex set was given
in [16], where the authors supposed that X is a reflexive Banach space. It is proved
in [8, Proposition 2.4] that this property holds in a more general context, namely in
separated locally convex spaces.

We have the following relations between the different generalized interiority no-
tions considered above

int(U)⊆ core(U)⊆
sqri(U)⊆ icr(U)

qi(U)
⊆ qri(U)⊆U, (1.2)

all the inclusions being in general strict. As one can also deduce from some of the
examples which follows in this paper in general between sqri(U) and icr(U), on the
one hand, and qi(U), on the other hand, no relation of inclusion can be provided. In
case int(U) 6= /0 all the generalized interior-notions considered in (1.2) collapse into
int(U) (cf. [4, Corollary 2.14]).

It follows from the definition of the quasi-relative interior that qri({x}) = {x}
for all x ∈ X . Moreover, if qi(U) 6= /0, then qi(U) = qri(U). Although this prop-
erty is given in [20] in the case of real normed spaces, it holds also in separated
locally convex spaces, as it easily follows from the properties given above. For
U,V two convex subsets of X such that U ⊆ V , we have qi(U) ⊆ qi(V ), a prop-
erty which is no longer true for the quasi-relative interior (however this holds when-
ever aff(U) = aff(V ), see [13, Proposition 1.12]). If X if finite-dimensional then
qri(U) = sqri(U) = icr(U) = ri(U) (cf. [4, 17]) and core(U) = qi(U) = int(U)
(cf. [20, 21]). We refer the reader to [2, 4, 17, 18, 20, 21, 23, 26] and to the references
therein for more properties and examples regarding the above considered general-
ized interiority notions.
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Example 1. Take an arbitrary p ∈ [1,+∞) and consider the real Banach space `p =
`p(N) of real sequences (xn)n∈N such that ∑

∞
n=1 |xn|p < +∞, equipped with the norm

‖ · ‖ : `p→ R, ‖x‖=
(

∑
∞
n=1 |xn|p

)1/p
for all x = (xn)n∈N ∈ `p. Then (cf. [4])

qri(`p
+) = {(xn)n∈N ∈ `p : xn > 0 ∀n ∈ N},

where `p
+ = {(xn)n∈N ∈ `p : xn ≥ 0 ∀n ∈ N} is the positive cone of `p. Moreover,

one can prove that

int(`p
+) = core(`p

+) = sqri(`p
+) = icr(`p

+) = /0.

In the setting of separable Banach spaces every nonempty closed convex set has
a nonempty quasi-relative interior (cf. [4, Theorem 2.19], see also [2, Theorem 2.8]
and [26, Proposition 1.2.9]) and every nonempty convex set which is not contained
in a hyperplane possesses a nonempty quasi interior (cf. [20]). This result may fail
if the condition X is separable is removed, as the following example shows.

Example 2. For p ∈ [1,+∞) consider the real Banach space

`p(R) = {s : R→ R ∑
r∈R
|s(r)|p < ∞},

equipped with the norm ‖·‖ : `p(R)→R, ‖s‖=
(

∑r∈R |s(r)|p
)1/p

for all s∈ `p(R),
where

∑
r∈R
|s(r)|p = sup

F⊆R,Ffinite
∑
r∈F
|s(r)|p.

Considering the positive cone `p
+(R) = {s ∈ `p(R) : s(r) ≥ 0 ∀r ∈ R}, we have

(cf. [4, Example 3.11(iii)], see also [5, Remark 2.20]) that qri
(
`p
+(R)

)
= /0.

Let us mention some properties of the quasi-relative interior. For the proof of
(i)− (ii) we refer to [2, 4], while property (iii) was proved in [8, Proposition 2.5]
(see also [7, Proposition 2.3]).

Proposition 3. Consider U a nonempty convex subset of X. Then:

(i) t qri(U)+(1− t)U ⊆ qri(U) ∀t ∈ (0,1]; hence qri(U) is a convex set.

If, additionally, qri(U) 6= /0 then:

(ii) cl
(

qri(U)
)

= cl(U);

(iii) cl
(

cone
(

qri(U)
))

= cl
(

cone(U)
)
.

The first part of the next lemma was proved in [8, Lemma 2.6] (see also [7, Lemma
2.1]).

Lemma 1. Let U and V be nonempty convex subsets of X and x ∈ X. Then:

(i) if qri(U)∩V 6= /0 and 0 ∈ qi(U−U), then 0 ∈ qi(U−V );
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(ii) x ∈ qi(U) if and only if x ∈ qri(U) and 0 ∈ qi(U−U).

Proof. (ii) Suppose that x ∈ qi(U). Then x ∈ qri(U) and since U − x ⊆U −U and
0 ∈ qi(U − x), the direct implication follows. The reverse one follows as a direct
consequence of (i) by taking V := {x}. ut

Remark 2. Consider the setting of Example 1. By applying the previous result we
get (since `p

+− `p
+ = `p) that

qi(`p
+) = qri(`p

+) = {(xn)n∈N ∈ `p : xn > 0 ∀n ∈ N}.

The proof of the duality theorem presented in the next section is based on the fol-
lowing separation theorem.

Theorem 1. (cf. [8, Theorem 2.7]) Let U be a nonempty convex subset of X and
x ∈U. If x 6∈ qri(U), then there exists x∗ ∈ X∗,x∗ 6= 0, such that

〈x∗,y〉 ≤ 〈x∗,x〉 ∀y ∈U.

Viceversa, if there exists x∗ ∈ X∗, x∗ 6= 0, such that

〈x∗,y〉 ≤ 〈x∗,x〉 ∀y ∈U

and
0 ∈ qi(U−U),

then x 6∈ qri(U).

Remark 3. (a) The above separation theorem is a generalization to separated locally
convex spaces of a result stated in [15, 16] in the framework of real normed spaces
(cf. [8, Remark 2.8]).

(b) The condition x∈U in Theorem 1 is essential (see [16, Remark 2]). However,
if x is an arbitrary element of X , an alternative separation theorem has been given
by Cammaroto and Di Bella in [12, Theorem 2.1]. Let us mention that some strict
separation theorems involving the quasi-relative interior can be found in [13].

1.3 Fenchel duality

Let us briefly recall some considerations regarding Fenchel duality. We deal in the
following with the following optimization problem

(PF) inf
x∈X
{ f (x)+g(x)},

where X is a separated locally convex space and f ,g : X → R are proper functions
such that dom f ∩domg 6= /0.

The classical Fenchel dual problem to (PF) has the following form
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(DF) sup
y∗∈X∗

{− f ∗(−y∗)−g∗(y∗)}.

We denote by v(PF) and v(DF) the optimal objective values of the primal and dual
problems, respectively. Weak duality always holds, that is v(PF) ≥ v(DF). In order
to guarantee strong duality, the situation when v(PF) = v(DF) and (DF) has an
optimal solution, several regularity conditions were introduced in the literature.

1.3.1 Classical interior-point regularity conditions

In this subsection we deal with generalized interior-point regularity conditions, by
enumerating the classical ones existing in the literature and by studying the relations
between them. Let us start by recalling the most known conditions of this type:

(RCF
1 ) ∃x′ ∈ dom f ∩domg such that f (or g) is continuous at x′;

(RCF
2 ) X is a Fréchet space, f and g are lower semicontinuous and

0 ∈ int(dom f −domg);

(RCF
3 ) X is a Fréchet space, f and g are lower semicontinuous and

0 ∈ core(dom f −domg);

(RCF
4 ) X is a Fréchet space, f and g are lower semicontinuous,

aff(dom f −domg) is a closed linear subspace of X and
0 ∈ icr(dom f −domg)

and

(RCF
5 ) X is a Fréchet space, f and g are lower semicontinuous and

0 ∈ sqri(dom f −domg).

The condition (RCF
3 ) was considered by Rockafellar (cf. [21]), (RCF

5 ) by Attouch
and Brézis (cf. [1]) and Zălinescu (cf. [24]), while Gowda and Teboulle proved that
(RCF

4 ) and (RCF
5 ) are equivalent (cf. [17]).

Theorem 2. Let f ,g : X→R be proper and convex functions. If one of the regularity
conditions (RCF

i ), i ∈ {1,2,3,4,5}, is fulfilled, then v(PF) = v(DF) and (DF) has
an optimal solution.

Remark 4. In case X is a Fréchet space and f ,g are proper, convex and lower semi-
continuous functions we have the following relations between the above regularity
conditions (see also [17, 25] and [26, Theorem 2.8.7])

(RCF
1 )⇒ (RCF

2 )⇔ (RCF
3 )⇒ (RCF

4 )⇔ (RCF
5 ).

Let us notice that the regularity conditions (RCF
2 ) and (RCF

3 ) are equivalent. Indeed,
assume that X is a Fréchet space, f ,g are proper, convex and lower semicontinuous
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functions such that dom f ∩ domg 6= /0 and consider the infimal value function h :
X → R, defined by h(y) = infx∈X{ f (x) + g(x− y)} for all y ∈ X . The function h
is convex and not necessarily lower semicontinuous, while one has that domh =
dom f −domg. Nevertheless, the function (x,y) 7→ f (x)+g(x−y) is ideally convex
(being convex and lower semicontinuous), hence h is li-convex (cf. [26, Proposition
2.2.18]). Now by [26, Theorem 2.2.20] it follows that core(domh) = int(domh),
which has as consequence the equivalence of the regularity conditions (RCF

2 ) and
(RCF

3 ). Let us mention that this fact has been noticed in the setting of Banach spaces
by S. Simons in [22, Corollary 14.3].

1.3.2 Interior-point regularity conditions expressed via quasi
interior and quasi-relative interior

Taking into account the relations that exist between the generalized interiority
notions presented in Section 1.2 a natural question arises: is the condition 0 ∈
qri(dom f − domg) sufficient for strong duality? The following example (which
can be found in [17]) shows that even if we impose a stronger condition, namely
0 ∈ qi(dom f − domg), the above question has a negative answer and this means
that we need to look for additional assumptions in order to guarantee Fenchel dual-
ity.

Example 3. Consider the Hilbert space X = `2(N) and the sets

C = {(xn)n∈N ∈ `2 : x2n−1 + x2n = 0 ∀n ∈ N}

and
S = {(xn)n∈N ∈ `2 : x2n + x2n+1 = 0 ∀n ∈ N},

which are closed linear subspaces of `2 and satisfy C∩S = {0}. Define the functions
f ,g : `2→R by f = δC and g(x) = x1 +δS(x), respectively, for all x = (xn)n∈N ∈ `2.
One can see that f and g are proper, convex and lower semicontinuous functions
with dom f = C and domg = S. As v(PF) = 0 and v(DF) = −∞ (cf. [17, Exam-
ple 3.3]), there is a duality gap between the optimal objective values of the pri-
mal problem and its Fenchel dual problem. Moreover, S−C is dense in `2 (cf.
[17]), thus cl

(
cone(dom f − domg)

)
= cl(C− S) = `2. The last relation implies

0 ∈ qi(dom f −domg), hence 0 ∈ qri(dom f −domg).

We notice that if v(PF) = −∞, by the weak duality result follows that for the
primal-dual pair (PF)− (DF) strong duality holds. This is the reason why we sup-
pose in what follows that v(PF) ∈ R.

Consider now the following regularity conditions expressed by means of the
quasi interior and quasi-relative interior:

(RCF
6 ) dom f ∩qri(domg) 6= /0, 0 ∈ qi(domg−domg) and

(0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
;
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(RCF
7 ) 0 ∈ qi(dom f −domg) and

(0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
and

(RCF
8 ) 0 ∈ qi

[
(dom f −domg)− (dom f −domg)

]
, 0 ∈ qri(dom f −domg) and

(0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.

Let us notice that these three regularity conditions were first introduced in [8].
We study in the following the relations between these conditions. We remark that

epi f − êpi(g− v(PF)) =

{(x− y, f (x)+g(y)− v(PF)+ ε) : x ∈ dom f ,y ∈ domg,ε ≥ 0},

thus if the set epi f − êpi(g− v(PF) is convex, then dom f −domg is convex, too.

Proposition 4. Let f ,g : X→R be proper functions such that v(PF)∈R and epi f −
êpi(g− v(PF)) is a convex subset of X ×R (the latter is the case if for instance f
and g are convex functions). The following statements are true:

(i) (RCF
7 ) ⇔ (RCF

8 ); if, moreover, f and g are convex, then (RCF
6 ) ⇒ (RCF

7 ) ⇔
(RCF

8 );

(ii) if (PF) has an optimal solution, then (0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪

{(0,0)}
)]

can be equivalently written as (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

;

(iii) if 0 ∈ qi
[
(dom f − domg)− (dom f − domg)

]
, then (0,0) /∈ qri

[
co
(
(epi f −

êpi(g− v(PF))) ∪ {(0,0)}
)]

is equivalent to (0,0) /∈ qi
[

co
(
(epi f − êpi(g−

v(PF)))∪{(0,0)}
)]

.

Proof. (i) That (RCF
7 ) is equivalent to (RCF

8 ) is a direct consequence of Lemma 1(ii).
Let us suppose that f and g are convex and (RCF

6 ) is fulfilled. By applying Lemma
1(i) with U := domg and V := dom f we get 0∈ qi(domg−dom f ) or, equivalently,
0 ∈ qi(dom f −domg). This means that (RCF

7 ) holds.
(ii) One can prove that the primal problem (PF) has an optimal solution if and

only if (0,0) ∈ epi f − êpi(g− v(PF))) and the conclusion follows.
(iii) See [8, Remark 3.4 (a)]. ut

Remark 5. (a) The condition 0∈ qi(dom f−domg) implies relation 0∈ qi
[
(dom f−

domg)− (dom f −domg)
]

in Proposition 4(iii). This is a direct consequence of the
inclusion dom f −domg⊆ (dom f −domg)− (dom f −domg).

(b) We have the following implication

(0,0) ∈ qi
[

co
((

epi f − êpi(g− v(PF))
)
∪{(0,0)}

)]
⇒ 0 ∈ qi(dom f −domg).
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Indeed, suppose that (0,0) ∈ qi
[

co
((

epi f − êpi(g− v(PF))
)
∪{(0,0)}

)]
. Then

cl
[

coneco
((

epi f − êpi(g− v(PF))
)
∪{(0,0)}

)]
= X×R, hence (cf. (1.1))

cl
[

cone
(

epi f − êpi(g− v(PF))
)]

= X×R.

As the inclusion

cl
[

cone
(

epi f − êpi(g− v(PF))
)]
⊆ cl

(
cone(dom f −domg)

)
×R

trivially holds, we have cl
(

cone(dom f − domg)
)

= X , that is 0 ∈ qi(dom f −
domg). Hence the following implication is true

0 6∈ qi(dom f −domg)⇒ (0,0) /∈ qi
[

co
((

epi f − êpi(g− v(PF))
)
∪{(0,0)}

)]
.

Nevertheless, in the regularity conditions given above one cannot substitute the con-
dition (0,0) /∈ qi

[
co
((

epi f − êpi(g− v(PF))
)
∪ {(0,0)}

)]
by the stronger, but

more handleable one 0 6∈ qi(dom f − domg), since in all the regularity conditions
(RCF

i ), i ∈ {6,7,8}, the other hypotheses imply 0 ∈ qi(dom f −domg) (cf. Propo-
sition 4(i)).

We give now the following strong duality result concerning the primal-dual pair
(PF)− (DF). It was first stated in [8] under convexity assumptions for the functions
involved.

Theorem 3. Let f ,g : X → R be proper functions such that v(PF) ∈ R and epi f −
êpi(g− v(PF)) is a convex subset of X ×R (the latter is the case if, for instance, f
and g are convex functions). Suppose that either f and g are convex and (RCF

6 ) is
fulfilled, or one of the regularity conditions (RCF

i ), i ∈ {7,8}, holds. Then v(PF) =
v(DF) and (DF) has an optimal solution.

Proof. One has to use the techniques employed in the proof of [8, Theorem 3.5].
ut

When the condition (0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
is re-

moved, the duality result given above may fail. In the setting of Example 3, strong
duality does not hold. Moreover, it has been proved in [8, Example 3.12(b)] that
(0,0) ∈ qri

[
co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.

The following example (given in [8, Example 3.13]) justifies the study of the
regularity conditions expressed by means of the quasi interior and quasi-relative
interior.

Example 4. Consider the real Hilbert space `2 = `2(N). We define the functions
f ,g : `2→ R by

f (x) =
{
‖x‖, if x ∈ x0− `2

+,
+∞, otherwise
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and

g(x) =
{
〈c,x〉, if x ∈ `2

+,
+∞, otherwise,

respectively, where x0,c ∈ `2
+ are arbitrarily chosen such that x0

n > 0 for all n ∈ N.
Note that

v(PF) = inf
x∈`2

+∩(x0−`2
+)
{‖x‖+ 〈c,x〉}= 0

and the infimum is attained at x = 0. We have dom f = x0− `2
+ = {(xn)n∈N ∈ `2 :

xn ≤ x0
n ∀n ∈ N} and domg = `2

+. By using Example 1 we get

dom f ∩qri(domg) = {(xn)n∈N ∈ `2 : 0 < xn ≤ x0
n ∀n ∈ N} 6= /0.

Also, cl
(

cone(domg−domg)
)

= `2 and so 0 ∈ qi(domg−domg). Further,

epi f − êpi(g− v(PF)) = {(x− y,‖x‖+ 〈c,y〉+ ε) : x ∈ x0− `2
+,y ∈ `2

+,ε ≥ 0}.

In the following we prove that (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

. Assuming

the contrary, one would have that the set cl
[

cone
(

epi f − êpi(g− v(PF))
)]

is a

linear subspace of `2×R. Since (0,1) ∈ cl
[

cone
(

epi f − êpi(g− v(PF))
)]

(take
x = y = 0 and ε = 1), (0,−1) must belong to this set, too. On the other hand, one
can easily see that for all (x,r) belonging to cl

[
cone

(
epi f − êpi(g− v(PF))

)]
it

holds r ≥ 0. This leads to the desired contradiction.
Hence the regularity condition (RCF

6 ) is fulfilled, thus strong duality holds (cf.
Theorem 3). On the other hand, `2 is a Fréchet space (being a Hilbert space), the
functions f and g are proper, convex and lower semicontinuous and, as sqri(dom f −
domg) = sqri(x0− `2

+) = /0, none of the conditions (RCF
i ), i ∈ {1,2,3,4,5}, listed

at the beginning of this section, can be applied for this optimization problem.
As for all x∗ ∈ `2 it holds g∗(x∗) = δc−`2

+
(x∗) and (cf. [26, Theorem 2.8.7])

f ∗(−x∗) = inf
x∗1+x∗2=−x∗

{‖ · ‖∗(x∗1)+δ
∗
x0−l2

+
(x∗2)}= inf

x∗1+x∗2=−x∗,
‖x∗1‖≤1,x∗2∈`

2
+

〈x∗2,x0〉,

the optimal objective value of the Fenchel dual problem is

v(DF) = sup
x∗2∈`

2
+−c−x∗1,

‖x∗1‖≤1,x∗2∈`
2
+

〈−x∗2,x
0〉= sup

x∗2∈`
2
+

〈−x∗2,x
0〉= 0

and x∗2 = 0 is the optimal solution of the dual.

The following example (see also [14, Example 2.5]) underlines the fact that in
general the regularity condition (RCF

7 ) (and automatically also (RCF
8 )) is weaker

than (RCF
6 ) (see also Example 9 below).
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Example 5. Consider the real Hilbert space `2(R) and the functions f ,g : `2(R)→R
defined for all s ∈ `2(R) by

f (s) =
{

s(1), if s ∈ `2
+(R),

+∞, otherwise

and

g(s) =
{

s(2), if s ∈ `2
+(R),

+∞, otherwise,

respectively. The optimal objective value of the primal problem is

v(PF) = inf
s∈`2

+(R)
{s(1)+ s(2)}= 0

and s = 0 is an optimal solution (let us notice that (PF) has infinitely many optimal
solutions). We have qri(domg) = qri(`2

+(R)) = /0 (cf. Example 2), hence the con-
dition (RCF

6 ) fails. In the following we show that (RCF
7 ) is fulfilled. One can prove

that dom f −domg = `2
+(R)− `2

+(R) = `2(R), thus 0 ∈ qi(dom f −domg). Like in
the previous example, we have

epi f − êpi(g− v(PF)) = {(s− s′,s(1)+ s′(2)+ ε) : s,s′ ∈ `2
+(R),ε ≥ 0}

and with the same technique one can show that (0,0) /∈ qri
(

epi f − êpi(g−v(PF))
)

,

hence the condition (RCF
7 ) holds.

Let us take a look at the formulation of the dual problem. To this end we have to
calculate the conjugates of f and g. Let us recall that the scalar product on `2(R),
〈·, ·〉 : `2(R)×`2(R)→R is defined by 〈s,s′〉= supF⊆R,Ffinite ∑r∈F s(r)s′(r), for s,s′ ∈
`2(R) and that the dual space

(
`2(R)

)∗ is identified with `2(R). For an arbitrary
u ∈ `2(R) we have

f ∗(u) = sup
s∈`2

+(R)
{〈u,s〉− s(1)}= sup

s∈`2
+(R)

{
sup

F⊆R,Ffinite
∑
r∈F

u(r)s(r)− s(1)

}

= sup
F⊆R,Ffinite

{
sup

s∈`2
+(R)

{
∑
r∈F

u(r)s(r)− s(1)
}}

.

If there exists r ∈R\{1}with u(r) > 0 or if u(1) > 1, then one has f ∗(u) = +∞. As-
suming the contrary, for every finite subset F of R, independently from the fact that
1 belongs to F or not, it holds sups∈`2

+(R){∑r∈F u(r)s(r)− s(1)}= 0. Consequently,

f ∗(u) =
{

0, if u(r)≤ 0 ∀r ∈ R\{1} and u(1)≤ 1,
+∞, otherwise.
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Similarly one can provide a formula for g∗ and in this way we obtain that v(DF) = 0
and that u = 0 is an optimal solution of the dual ((DF) has actually infinitely many
optimal solutions).

Let us compare in the following the regularity conditions expressed by means of
the quasi interior and quasi relative interior with the classical ones form the litera-
ture, mentioned at the beginning of the section. To this end, we need an auxiliary
result.

Proposition 5. Suppose that for the primal-dual pair (PF)− (DF) strong duality

holds. Then (0,0) /∈ qi
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.

Proof. By the assumptions we made, there exists x∗ ∈ X∗ such that v(PF) =
− f ∗(−x∗)−g∗(x∗) = infx∈X{〈x∗,x〉+ f (x)}+ infx∈X{〈−x∗,x〉+g(x)}, hence

v(PF)≤ 〈x∗,x〉+ f (x)+ 〈−x∗,y〉+g(y) ∀(x,y) ∈ X×Y,

that is

〈−x∗,x− y〉− ( f (x)+g(y)− v(PF))≤ 0 ∀(x,y) ∈ dom f ×domg.

We obtain

〈(−x∗,−1),(z,r)〉 ≤ 0 ∀(z,r) ∈ epi f − êpi(g− v(PF)),

hence

〈(−x∗,−1),(z,r)〉 ≤ 0 ∀(z,r) ∈ co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)
.

The last relation ensures (−x∗,−1) ∈ N[
co
(

(epi f−êpi(g−v(PF )))∪{(0,0)}
)](0,0) and

Proposition 2 implies that (0,0) /∈ qi
[

co
(
(epi f − êpi(g−v(PF)))∪{(0,0)}

)]
. ut

A comparison of the above regularity conditions is provided in the following.

Proposition 6. Suppose that X is a Fréchet space and f ,g : X → R are proper,
convex and lower semicontinuous functions. The following relations hold

(RCF
1 )⇒ (RCF

2 )⇔ (RCF
3 )⇒ (RCF

7 )⇔ (RCF
8 ).

Proof. In view of Remark 4 and Proposition 4(i) we have to prove only the im-
plication (RCF

3 )⇒ (RCF
7 ). Let us suppose that (RCF

3 ) is fulfilled. We apply (1.2)
and obtain 0 ∈ qi

(
dom f − domg

)
. Moreover, the regularity condition (RCF

3 ) en-
sures strong duality for the pair (PF)− (DF) (cf. Theorem 2), hence (0,0) /∈
qi
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
(cf. Proposition 5). Applying Propo-

sition 4(iii) (see also Remark 5(a)) we get that the condition (RCF
7 ) holds and the

proof is complete. ut
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Remark 6. One can notice that the implications

(RCF
1 )⇒ (RCF

7 )⇔ (RCF
8 )

hold in the framework of separated locally convex spaces and for f ,g : X→R proper
and convex functions (nor completeness for the space neither lower semicontinuity
for the functions is needed here).

Next we show that, in general, the conditions (RCF
i ), i ∈ {4,5}, cannot be com-

pared with (RCF
i ), i ∈ {6,7,8}. Example 4 provides a situation for which (RCF

i ),
i ∈ {6,7,8}, are fulfilled, unlike (RCF

i ), i ∈ {4,5}. In the following example the
conditions (RCF

i ), i ∈ {4,5}, are fulfilled, while (RCF
i ), i ∈ {6,7,8}, fail.

Example 6. Consider (X ,‖ · ‖) a nonzero real Banach space, x∗0 ∈ X∗ \ {0} and the
functions f ,g : X →R defined by f = δkerx∗0

and g = ‖ ·‖+δkerx∗0
, respectively. The

optimal objective value of the primal problem is

v(PF) = inf
x∈kerx∗0

‖x‖= 0

and x̄ = 0 is the unique optimal solution of (PF). The functions f and g are
proper, convex and lower semicontinuous. Further, dom f − domg = kerx∗0, which
is a closed linear subspace of X , hence (RCF

i ), i ∈ {4,5}, are fulfilled. Moreover,
domg−domg = dom f −domg = kerx∗0 and it holds cl(kerx∗0) = kerx∗0 6= X . Thus
0 /∈ qi(domg−domg) and 0 /∈ qi(dom f −domg) and this means that all the three
regularity conditions (RCF

i ), i ∈ {6,7,8}, fail.
The conjugate functions of f and g are f ∗ = δ(kerx∗0)⊥ = δRx∗0

and, respectively,
g∗ = δB∗(0,1)�δRx∗0

= δB∗(0,1)+Rx∗0
(cf. [26, Theorem 2.8.7]), where B∗(0,1) is the

closed unit ball of the dual space X∗. Hence v(DF) = 0 and the set of optimal solu-
tions of (DF) coincides with Rx∗0. Finally, let us notice that instead of kerx∗0 one can
consider any closed linear subspace S of X such that S 6= X .

1.3.3 Closedness-type regularity conditions

Besides the generalized interior-point regularity conditions, there exist in the liter-
ature so-called closedness-type regularity conditions for conjugate duality. In the
following we will recall two sufficient conditions of this type for Fenchel duality
and we will relate them to the ones investigate in the previous subsection. Let these
two conditions be:

(RCF
9 ) f and g are lower semicontinuous and

epi f ∗+ epig∗ is closed in (X∗,w(X∗,X))×R

and

(RCF
10) f and g are lower semicontinuous, f ∗�g∗ is w(X∗,X)-lower

semicontinuous on X∗ and exact at 0.
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The condition (RCF
9 ) has been first considered by Burachik and Jeyakumar in

Banach spaces (cf. [10]) and by Boţ and Wanka in separated locally convex spaces
(cf. [9]), while the second one, (RCF

10), has been introduced in [9]. We have the
following duality results (cf. [9]).

Theorem 4. Let f ,g : X → R be proper and convex functions such that dom f ∩
domg 6= /0. If (RCF

9 ) is fulfilled, then

( f +g)∗(x∗) = min{ f ∗(x∗− y∗)+g∗(y∗) : y∗ ∈ X∗} ∀x∗ ∈ X∗. (1.3)

Theorem 5. Let f ,g : X → R be proper and convex functions such that dom f ∩
domg 6= /0. If (RCF

10) is fulfilled, then v(PF) = v(DF) and (DF) has an optimal solu-
tion.

Remark 7. (a) Let us notice that condition (1.3) is referred in the literature as sta-
ble strong duality (see [6, 11, 22] for more details) and obviously guarantees strong
duality for (PF)− (DF). When f ,g : X → R are proper, convex and lower semicon-
tinuous functions with dom f ∩ domg 6= /0 one has in fact that (RCF

9 ) is fulfilled if
and only if (1.3) holds (cf. [9, Theorem 3.2]).

(b) If f ,g are proper, convex and lower semicontinuous such that dom f ∩
domg 6= /0, then (RCF

9 )⇒ (RCF
10) (cf. [9, Section 4]). Moreover, there are exam-

ples showing that in general (RCF
10) is weaker than (RCF

9 ) (see [9]). Finally, let us
mention that (under the same hypotheses) f ∗�g∗ is a w(X∗,X)-lower semicontinu-
ous function on X∗ if and only if ( f +g)∗ = f ∗�g∗. This is a direct consequence of
the equality ( f + g)∗ = cl( f ∗�g∗), where the closure is considered with respect to
the weak∗ topology on X∗ (cf. [9, Thorem 2.1]).

(c) In case X is a Fréchet space and f ,g are proper, convex and lower semicon-
tinuous functions we have the following relations between the regularity conditions
considered for the primal-dual pair (PF)− (DF) (cf. [9], see also [17] and [26, The-
orem 2.8.7])

(RCF
1 )⇒ (RCF

2 )⇔ (RCF
3 )⇒ (RCF

4 )⇔ (RCF
5 )⇒ (RCF

9 )⇒ (RCF
10).

We refer to [6,9,10,22] for several examples showing that in general the implications
above are strict. The implication (RCF

1 )⇒ (RCF
9 )⇒ (RCF

10) holds in the general
setting of separated locally convex spaces (in the hypotheses that f ,g are proper,
convex and lower semicontinuous).

We observe that if X is a finite-dimensional space and f ,g are proper, convex and
lower semicontinuous, then (RCF

6 )⇒ (RCF
7 )⇔ (RCF

8 )⇒ (RCF
9 )⇒ (RCF

10). How-
ever, in the infinite-dimensional setting this is no longer true. In the following two
examples the conditions (RCF

9 ) and (RCF
10) are fulfilled, unlike (RCF

i ), i ∈ {6,7,8}
(we refer to [6, 9, 10, 19, 22] for examples in the finite-dimensional setting).

Example 7. Consider the same setting as in Example 6. We know that (RCF
5 ) is ful-

filled, hence also (RCF
9 ) and (RCF

10) (cf. Remark 7(c)). This is not surprising, since
epi f ∗+epig∗= (B∗(0,1)+Rx∗0)× [0,∞), which is closed in (X∗,w(X∗,X))×R (by
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the Banach-Alaoglu Theorem the unit ball B∗(0,1) is compact in (X∗,w(X∗,X))).
As shown in Example 6, none of the regularity conditions (RCF

i ), i ∈ {6,7,8}, is
fulfilled.

Example 8. Consider the real Hilbert space `2(R) and the functions f ,g : `2(R)→R
defined by f = δ`2

+(R) and g = δ−`2
+(R), respectively. We have qri(dom f −domg) =

qri
(
`2
+(R)

)
= /0 (cf. Example 2), hence all the generalized interior-point regular-

ity conditions (RCF
i ), i ∈ {1,2,3,4,5,6,7,8}, fail (see also Proposition 4(i)). The

conjugate functions of f and g are f ∗ = δ−`2
+(R) and g∗ = δ`2

+(R), respectively,

hence epi f ∗+epig∗ = `2(R)× [0,∞), that is the condition (RCF
9 ) holds (hence also

(RCF
10), cf. Remark 7(b)). One can see that v(PF) = v(DF) = 0 and y∗ = 0 is an

optimal solution of the dual problem.

The next issue we investigate concerns the relation between the generalized
interior-point conditions (RCF

i ), i ∈ {6,7,8} and the closedness-type ones (RCF
9 )

and (RCF
10). In the last two examples the conditions (RCF

9 ) and (RCF
10) are fulfilled,

while (RCF
i ), i ∈ {6,7,8}, fail. In the following we provide an example for which

(RCF
7 ) is fulfilled, unlike (RCF

i ), i ∈ {9,10}. In this way we give a negative an-
swer to an open problem stated in [19, Remark 4.3], concomitantly proving that in
general (RCF

7 ) (and automatically also (RCF
8 )) and (RCF

9 ) are not comparable.

Example 9. (see also [14, Example 2.7]) Like in Example 3, consider the real Hilbert
space X = `2(N) and the sets

C = {(xn)n∈N ∈ `2 : x2n−1 + x2n = 0 ∀n ∈ N}

and
S = {(xn)n∈N ∈ `2 : x2n + x2n+1 = 0 ∀n ∈ N},

which are closed linear subspaces of `2 and satisfy C∩S = {0}. Define the functions
f ,g : `2→R by f = δC and g = δS, respectively, which are proper, convex and lower
semicontinuous. The optimal objective value of the primal problem is v(PF) = 0
and x = 0 is the unique optimal solution of v(PF). Moreover, S−C is dense in
`2 (cf. [17, Example 3.3]), thus cl

(
cone(dom f − domg)

)
= cl(C− S) = `2. This

implies 0 ∈ qi(dom f −domg). Further, one has

epi f − êpi(g− v(PF)) = {(x− y,ε) : x ∈C,y ∈ S,ε ≥ 0}= (C−S)× [0,+∞)

and cl
[

cone
(

epi f − êpi(g− v(PF))
)]

= `2× [0,+∞), which is not a linear sub-

space of `2×R, hence (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

. All together, we get

that the condition (RCF
7 ) is fulfilled, hence strong duality holds (cf. Theorem 3).

One can prove that f ∗ = δC⊥ and g∗ = δS⊥ , where

C⊥ = {(xn)n∈N ∈ `2 : x2n−1 = x2n ∀n ∈ N}

and
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S⊥ = {(xn)n∈N ∈ `2 : x1 = 0,x2n = x2n+1 ∀n ∈ N}.

Further, v(DF) = 0 and the set of optimal solutions of the dual problem is exactly
C⊥∩S⊥ = {0}.

We show that (RCF
10) is not fulfilled (hence (RCF

9 ) fails too, cf. Remark 7(b)). Let
us consider the element e1 ∈ `2, defined by e1

1 = 1 and e1
k = 0 for all k ∈ N \ {1}.

We compute ( f +g)∗(e1) = supx∈`2{〈e1,x〉− f (x)−g(x)}= 0 and ( f ∗�g∗)(e1) =
δC⊥+S⊥(e

1). If we suppose that e1 ∈C⊥+S⊥, then we would have (e1 +S⊥)∩C⊥ 6=
/0. However, it has been proved in [17, Example 3.3] that (e1 + S⊥)∩C⊥ = /0. This
shows that ( f ∗�g∗)(e1) = +∞ > 0 = ( f +g)∗(e1). Via Remark 7(b) it follows that
the condition (RCF

10) is not fulfilled and, consequently, (RCF
i ), i ∈ {1,2,3,4,5,9},

fail, too (cf. Remark 7(c)), unlike condition (RCF
7 ). Concerning (RCF

6 ), one can see
that this condition is not fulfilled, since 0 ∈ qi(domg−domg) does not hold.

In the next example the conditions (RCF
i ), i ∈ {6,7,8}, are fulfilled and (RCF

9 )
fails.

Example 10. The example we consider in the following is inspired by [22, Example
11.3]. Consider X an arbitrary Banach space, C a convex and closed subset of X
and x0 an extreme point of C which is not a support point of C. Taking for instance
X = `2, 1 < p < 2 and C :=

{
x ∈ `2 : ∑

∞
n=1 |xn|p ≤ 1

}
one can find extreme points

in C that are not support points (see [22]). Consider the functions f ,g : X → R
defined as f = δx0−C and g = δC−x0 , respectively. They are both proper, convex and
lower semicontinuous and fulfill, as x0 is an extreme point of C, f +g = δ{0}. Thus
v(PF) = 0 and x = 0 is the unique optimal solution of (PF). We show that, different to
the previous example, (RCF

6 ) is fulfilled and this will guarantee that both (RCF
7 ) and

(RCF
8 ) are valid, too (cf. Proposition 4 (i)). To this end we notice first that x0 ∈ qi(C).

Assuming the contrary, one would have that there exists x∗ ∈ X∗ \ {0} such that
〈x∗,x0〉 = supx∈C〈x∗,x〉 (cf. Proposition 2), contradicting the hypothesis that x0 is
not a support point of C. This means that x0 ∈ qri(C), too, and so 0 ∈ dom f ∩
qri(domg). Further, since it holds cl(cone(C− x0)) ⊆ cl(cone(C−C)), we have
cl(cone(C−C)) = X and from here 0 ∈ qi(C−C) = qi(domg− domg). Noticing
that

epi f − êpi(g− v(PF)) = {(x− y,ε) : x,y ∈C,ε ≥ 0}= (C−C)× [0,+∞),

it follows that cl
[

cone
(

epi f − êpi(g− v(PF))
)]

= X × [0,+∞), which is not a

linear subspace of X×R. Thus (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

and this has as

consequence the fact that (RCF
6 ) is fulfilled. Hence strong duality holds (cf. Theorem

3), v(DF) = 0 and 0 is an optimal solution of the dual problem.
We show that (RCF

9 ) is not fulfilled. Assuming the contrary, one would have that
the equality in (1.3) holds for all x∗ ∈ X∗. On the other hand, in [22, Example 11.3]
it is proven that this is the case only when x∗ = 0 and this provides the desired
contradiction.

Remark 8. Consider the following optimization problem
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(PA
F ) inf

x∈X
{ f (x)+(g◦A)(x)},

where X and Y are separated locally convex spaces with topological dual spaces
X∗ and Y ∗, respectively, A : X → Y is a linear continuous mapping, f : X → R and
g : Y → R are proper functions such that A(dom f )∩ domg 6= /0. The Fenchel dual
problem to (PA

F ) is

(DA
F) sup

y∗∈Y ∗
{− f ∗(−A∗y∗)−g∗(y∗)},

where A∗ : Y ∗→ X∗ is the adjoint operator, defined by 〈A∗y∗,x〉 = 〈y∗,Ax〉 for all
y∗ ∈ Y ∗ and x ∈ X . We denote by v(PA

F ) and v(DA
F) the optimal objective values

of the primal and the dual problem, respectively, and suppose that v(PA
F ) ∈ R. We

consider the set

A× idR(epi f ) = {(Ax,r) ∈ Y ×R : f (x)≤ r}.

By using the approach presented in the previous section one can provide sim-
ilar discussions regarding strong duality for the primal-dual pair (PA

F )− (DA
F).

To this end, we introduce the following functions: F,G : X ×Y → R, F(x,y) =
f (x) + δ{u∈X :Au=y}(x) and G(x,y) = g(y) for all (x,y) ∈ X ×Y . The functions F
and G are proper and their domains fulfill the relation

domF−domG = X×
(
A(dom f )−domg

)
.

Since epiF = {(x,Ax,r) : f (x)≤ r} and êpi(G−v(PA
F )) = {(x,y,r) : r≤−G(x,y)+

v(PA
F )}= X× êpi(g− v(PA

F )), we obtain

epiF− êpi(G− v(PA
F )) = X×

(
A× idR(epi f )− êpi(g− v(PA

F ))
)
.

Moreover,

inf
(x,y)∈X×Y

{F(x,y)+G(x,y)}= inf
x∈X
{ f (x)+(g◦A)(x)}= v(PA

F ).

On the other hand, for all (x∗,y∗)∈ X∗×Y ∗ we have F∗(x∗,y∗) = f ∗(x∗+A∗y∗) and

G∗(x∗,y∗) =
{

g∗(y∗), if x∗ = 0,
+∞, otherwise.

Therefore

sup
x∗∈X∗
y∗∈Y ∗

{−F∗(−x∗,−y∗)−G∗(x∗,y∗)}= sup
y∗∈Y ∗
{− f ∗(−A∗y∗)−g∗(y∗)}= v(DA

F).

For more details concerning this approach we refer to [8, 14].
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We remark that Borwein and Lewis gave in [4] some regularity conditions by
means of the quasi-relative interior, in order to guarantee strong duality for (PA

F ) and
(DA

F). However, they considered a more restrictive case, namely when the codomain
of the operator A is finite-dimensional. Here we have considered the more general
case, when both spaces X and Y are infinite-dimensional.

Finally, let us notice that several regularity conditions by means of the quasi in-
terior and quasi-relative interior were introduced in the literature in order to guaran-
tee strong duality between a primal optimization problem with geometric and cone
constraints and its Lagrange dual problem. However, they have either contradictory
assumptions, like in [12], or superfluous conditions, like in [16]. For a detailed ar-
gumentation of these considerations and also for correct alternative strong duality
results in the case of Lagrange duality we refer to [7, 8].
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