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Abstract. In this note we give a Brøndsted-Rockafellar Theorem for diagonal subdif-
ferential operators in Banach spaces. To this end we apply an Ekeland-type variational
principle for monotone bifunctions.
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1 Introduction and preliminaries

Throughout this paper X denotes a real Banach space and X∗ its topological dual space
endowed with the dual norm. Since there is no danger of confusion, we use ‖·‖ as notation
for the norms of both spaces X and X∗. We denote by 〈x∗, x〉 the value of the linear and
continuous functional x∗ ∈ X∗ at x ∈ X.

A function f : X → R := R ∪ {±∞} is called proper if the set dom f := {x ∈ X :
f(x) < +∞}, called effective domain of f , is nonempty and f(x) > −∞ for all x ∈ X.
We consider also the epigraph of f , which is the set epi f = {(x, r) ∈ X × R : f(x) ≤ r}.
For a set C ⊆ X, let δC : X → R be its indicator function, which is the function taking
the values 0 on C and +∞ otherwise.

The (convex) subdifferential of f at an element x ∈ X such that f(x) ∈ R is defined
as ∂f(x) := {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}, while in case f(x) /∈ R one
takes by convention ∂f(x) := ∅. For every ε ≥ 0, the ε-subdifferential of f , defined as
∂εf(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y− x〉 − ε ∀y ∈ X} for x ∈ X such that f(x) ∈ R,
and ∂εf(x) := ∅ otherwise, represents an enlargement of its subdifferential. Let us notice
that in contrast to the classical subdifferential, the ε-subdifferential of a proper, convex
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and lower semicontinuous function at each point of its effective domain is in general a
nonempty set, provided that ε > 0 (cf. [12, Proposition 3.15], see also [15, Theorem
2.4.4(iii)]).

For ε ≥ 0, the ε-normal set of C at x ∈ X is defined by N ε
C(x) := ∂εδC(x), that is

N ε
C(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε ∀y ∈ C} if x ∈ C, and N ε

C(x) = ∅ otherwise. The
normal cone of the set C at x ∈ X is NC(x) := N0

C(x), that is NC(x) = {x∗ ∈ X∗ :
〈x∗, y − x〉 ≤ 0 ∀y ∈ C} if x ∈ C, and NC(x) = ∅ otherwise.

For the following characterizations of the ε-subdifferential via the ε-normal set we refer,
for instance, to [13] (the extension from finite to infinite dimensional spaces is straight-
forward). If x ∈ X is such that f(x) ∈ R, then for all ε ≥ 0 it holds x∗ ∈ ∂εf(x) if
and only if (x∗,−1) ∈ N ε

epi f (x, f(x)). Moreover, for r ∈ R with f(x) ≤ r, the relation
(x∗,−1) ∈ Nepi f (x, r) implies r = f(x). Furthermore, if (x∗,−s) ∈ Nepi f (x, r), then s ≥ 0
and, if, additionally, s 6= 0, then r = f(x) and (1/s)x∗ ∈ ∂f(x).

The celebrated Brøndsted-Rockafellar Theorem [7], which we recall as follows, em-
phasizes the fact that the ε-subdifferential of a proper, convex and lower semicontinuous
function can be seen as an approximation of its subdifferential.

Theorem 1 (Brøndsted-Rockafellar Theorem [7]) Let f : X → R be a proper, convex and
lower semicontinuous function and x0 ∈ dom f . Take ε > 0 and x∗0 ∈ ∂εf(x0). Then for
all λ > 0 there exist x ∈ X and x∗ ∈ X∗ such that

x∗ ∈ ∂f(x), ‖x− x0‖ ≤
ε

λ
and ‖x∗ − x∗0‖ ≤ λ.

Let us mention that a method for proving this result is by applying the Ekeland
variational principle (see [12, Theorem 3.17]). For a more elaborated version of Theorem
1 we refer the interested reader to a result given by Borwein in [5] (see, also, [15, Theorem
3.1.1].

The aim of this note is to provide a Brøndsted-Rockafellar Theorem for so-called
diagonal subdifferential operators. These are set-valued operators AF : X ⇒ X∗ defined
by (see [1, 6, 9–11])

AF (x) =
{
{x∗ ∈ X∗ : F (x, y)− F (x, x) ≥ 〈x∗, y − x〉 ∀y ∈ C}, if x ∈ C,
∅, otherwise,

where C is a nonempty subset of X and F : C×C → R is a so-called bifunction. The term
diagonal subdifferential operator is justified by the formula AF (x) = ∂(F (x, ·) + δC)(x) for
all x ∈ X.

Bifunctions have been intensively studied in connection with equilibrium problems
since the publication of the seminal work of Blum and Oettli [4] and, recently, in the
context of diagonal subdifferential operators, when characterizing properties like local
boundedness [1], monotonicity and maximal monotonicity in both reflexive [9, 10] and
non-reflexive Banach spaces [6, 11].

A further operator of the same type, which has been considered in the literature, is
FA : X ⇒ X∗, defined by

FA(x) =
{
{x∗ ∈ X∗ : F (x, x)− F (y, x) ≥ 〈x∗, y − x〉 ∀y ∈ C}, if x ∈ C,
∅, otherwise.

Notice that when F is monotone, namely, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C, (see [4])
and F (x, x) = 0 for all x ∈ C, then AF (x) ⊆ FA(x) for all x ∈ C. Furthermore, if C is
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convex and closed, F (x, x) = 0, F (x, ·) is convex and F (·, y) is upper hemicontinuous, i.e.
upper semicontinuous along segments, for all x, y ∈ C, then FA(x) ⊆ AF (x) for all x ∈ C
(cf. [6, Lemma 5]). Under these hypotheses on can transfer properties from FA to AF and
viceversa.

In the following we will concentrate ourselves on AF and consider, in analogy to the
definition of the ε-subdifferential, what we call to be the ε-diagonal subdifferential operator
of F , AFε : X ⇒ X∗, defined by,

AFε (x) =
{
{x∗ ∈ X∗ : F (x, y)− F (x, x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ C}, if x ∈ C,
∅, otherwise.

If C is a nonempty, convex and closed set and x ∈ C is such that F (x, ·) is convex and
lower semicontinuous, then AFε (x) 6= ∅ for all ε > 0.

The main result of this paper is represented by a Brøndsted-Rockafellar Theorem
for the diagonal subdifferential operator AF , the proof of which relies on the Ekeland
variational principle for bifunctions given in [3].

For a generalization of the Brøndsted-Rockafellar Theorem for maximal monotone
operators we refer to [14, Theorem 29.9], whereby, as pointed out in [14, pages 152–153]
this result holds only in reflexive Banach spaces. Later, a special formulation of this
theorem in the non-reflexive case was given in [2].

In contrast to this, our approach does not rely on the maximal monotonicity of the
diagonal subdifferential operator, while the result holds in general Banach spaces. We
present also some consequences of the given Brøndsted-Rockafellar Theorem concerning
the density of the domain of diagonal subdifferential operators. We close the note by
showing that a Brøndsted-Rockafellar-type Theorem for subdifferential operators can be
obtained as a particular case of our main result.

2 A Brøndsted-Rockafellar Theorem

The following Ekeland variational principle for bifunctions was given in [3]. Although this
result was stated there in Euclidian spaces, it is valid in general Banach spaces, too.

Theorem 2 Assume that C is nonempty, convex and closed set and f : C × C → R
satisfies:

(i) f(x, ·) is lower bounded and lower semicontinuous for every x ∈ C;

(ii) f(x, x) = 0 for every x ∈ C;

(iii) f(x, y) + f(y, z) ≥ f(x, z) for every x, y, z ∈ C.

Then, for every ε > 0 and for every x0 ∈ C, there exists x ∈ C such that

f(x0, x) + ε‖x0 − x‖ ≤ 0

and
f(x, x) + ε‖x− x‖ > 0 ∀x ∈ C, x 6= x.

Remark 1 By taking z = x, the assumptions (iii) and (ii) in the above theorem imply
that f(x, y) + f(y, x) ≥ 0 for all x, y ∈ C, which means that −f is monotone.
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Theorem 2 will be an essential ingredient in proving the following Brøndsted-Rockafellar
Theorem for diagonal subdifferential operators.

Theorem 3 Assume that C is a nonempty, convex and closed set and F : C × C → R
satisfies:

(i) F (x, ·) is a convex and lower semicontinuous function for every x ∈ C;

(ii) F (x, x) = 0 for every x ∈ C;

(iii) F (x, y) + F (y, z) ≥ F (x, z) for every x, y, z ∈ C.

Take ε > 0, x0 ∈ C and x∗0 ∈ AFε (x0). Then for all λ > 0 there exist x∗ ∈ X∗ and x ∈ C
such that

x∗ ∈ AF (x), ‖x− x0‖ ≤
ε

λ
and ‖x∗ − x∗0‖ ≤ λ.

Proof. We fix ε > 0, x0 ∈ C and x∗0 ∈ AFε (x0). According to the definition of the operator
AFε we have

F (x0, y) ≥ 〈x∗0, y − x0〉 − ε ∀y ∈ C. (1)

Let us define the bifunction f : C × C → R by

f(x, y) = F (x, y)− 〈x∗0, y − x〉 for all (x, y) ∈ C × C.

We want to apply Theorem 2 to f and show to this aim that the assumptions (i)-(iii)
in Theorem 2 are verified. Indeed, the lower semicontinuity of the function f(x, ·) and the
relation f(x, x) = 0, for all x ∈ C, are inherited from the corresponding properties of F .
One can easily see that (iii) is fulfilled, too: for x, y, z ∈ C it holds

f(x, y) + f(y, z) = F (x, y) + F (y, z)− 〈x∗0, z − x〉 ≥ F (x, z)− 〈x∗0, z − x〉 = f(x, z).

It remains to prove that f(x, ·) is lower bounded for all x ∈ C. Take an arbitrary
x ∈ C. By using (1) we get for all y ∈ C

f(x, y) ≥ f(x0, y)− f(x0, x) = F (x0, y)− 〈x∗0, y − x0〉 − f(x0, x) ≥ −ε− f(x0, x)

and the desired property follows.
Take now λ > 0. A direct application of Theorem 2 guarantees the existence of x ∈ C

such that

f(x0, x) + λ‖x0 − x‖ ≤ 0 (2)

and

f(x, x) + λ‖x− x‖ > 0 ∀x ∈ C, x 6= x. (3)

From (2) we obtain
F (x0, x)− 〈x∗0, x− x0〉+ λ‖x0 − x‖ ≤ 0,

which combined with (1) ensures

4



λ‖x0 − x‖ ≤ 〈x∗0, x− x0〉 − F (x0, x) ≤ ε,

hence ‖x0 − x‖ ≤ ε
λ .

Further, notice that (3) implies

0 ∈ ∂
(
f(x, ·) + δC + λ‖x− ·‖

)
(x).

Since the functions in the above statement are convex and ‖x − ·‖ is continuous, we
obtain via the subdifferential sum formula (cf. [15, Theorem 2.8.7])

0 ∈ ∂
(
f(x, ·) + δC

)
(x) + ∂

(
λ‖x− ·‖

)
(x). (4)

Taking into account the definition of the bifunction f , we get (cf. [15, Theorem
2.4.2(vi)]) ∂

(
f(x, ·) + δC

)
(x) = ∂

(
F (x, ·) + δC

)
(x)− x∗0 = AF (x)− x∗0. Moreover, ∂

(
λ‖x−

·‖
)
(x) = λBX∗ , where BX∗ denotes the closed unit ball of the dual space X∗ (see, for

instance, [15, Corollary 2.4.16]). Hence (4) is nothing else than

0 ∈ AF (x)− x∗0 + λBX∗ ,

from which we conclude that there exists x∗ ∈ AF (x) with ‖x∗− x∗0‖ ≤ λ and the proof is
complete. �

For a similar result like the one given in Theorem 3, but formulated in reflexive Banach
spaces and by assuming (Blum-Oettli-) maximal monotonicity for the bifunction F (see [4]
for the definition of this notion), we refer the reader to [8, Theorem 1.1].

A direct consequence of the above Brøndsted-Rockafellar Theorem is the following
result concerning the density of D(AF ) in C, where D(AF ) = {x ∈ X : AF (x) 6= ∅} is the
domain of the operator AF .

Corollary 4 Assume that the hypotheses of Theorem 3 are fulfilled. Then D(AF ) = C,
hence D(AF ) is a convex set.

Proof. The implication D(AF ) ⊆ C is obvious. Take now an arbitrary x0 ∈ C. For
all n ∈ N we have that AF1/n(x0) 6= ∅, hence we can choose x∗n ∈ AF1/n(x0). Theorem 3
guarantees the existence of u∗n ∈ X∗ and un ∈ C such that

u∗n ∈ AF (un), ‖un − x0‖ ≤
√

1/n and ‖u∗n − x∗n‖ ≤
√

1/n for all n ∈ N.

Since un ∈ D(AF ) for all n ∈ N, we get from above that x0 ∈ D(AF ). �

Remark 2 Similar statements to the one in Corollary 4 were furnished in [9, Section 4]
in reflexive Banach spaces and by assuming maximal monotonicity for AF .

Let us show how Theorem 3 can be used in order to derive the classical Brøndsted-
Rockafellar theorem for the subdifferential operator in case the domain of the function is
closed.
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Corollary 5 Let f : X → R be a proper, convex and lower semicontinuous function such
that dom f is closed. Take x0 ∈ dom f , ε > 0 and x∗0 ∈ ∂εf(x0). Then for all λ > 0 there
exist x∗ ∈ X∗ and x ∈ X such that

x∗ ∈ ∂f(x), ‖x− x0‖ ≤
ε

λ
and ‖x∗ − x∗0‖ ≤ λ.

Proof. The result follows by applying Theorem 3 for C = dom f and the bifunction
F : dom f × dom f → R defined by F (x, y) = f(y)− f(x). �

The restriction “dom f closed” comes from the fact that in Theorems 2 and 3 the set
C is assumed to be a closed set. In the following Brøndsted-Rockafellar-type Theorem for
subdifferential operators, which we obtain as a consequence of Corollary 5, we abandon
this assumption.

Corollary 6 Let f : X → R be a proper, convex and lower semicontinuous function.
Take x0 ∈ dom f , ε > 0 and x∗0 ∈ ∂εf(x0). Then for all λ > 0 there exist x∗ ∈ X∗ and
x ∈ X such that

x∗ ∈ ∂f(x), ‖x− x0‖ ≤ ε
(

1
λ

+ 1
)

and ‖x∗ − x∗0‖ ≤ λ.

Proof. Take x0 ∈ dom f , ε > 0, x∗0 ∈ ∂εf(x0) and λ > 0. We consider X × R endowed
with the norm defined for all (x, r) ∈ X ×R as being ‖(x, r)‖ = (‖x‖2 + r2)1/2. We divide
the proof in two steps.

(I) Consider the case x∗0 = 0. We have 0 ∈ ∂εf(x0), hence (0,−1) ∈ N ε
epi f (x0, f(x0)) =

∂εδepi f (x0, f(x0)). By applying Corollary 5 for the function δepi f and λ := λ/(λ + 1) we
obtain the existence of (x, r) ∈ epi f and (x∗,−s) ∈ ∂δepi f (x, r) = Nepi f (x, r) such that

‖(x, r)− (x0, f(x0))‖ ≤ ε1 + λ

λ
and ‖(x∗,−s)− (0,−1)‖ ≤ λ

1 + λ
.

From here, it follows

‖x− x0‖ ≤ ε/λ+ ε, s ≥ 0, ‖x∗‖ ≤ λ

1 + λ
and |s− 1| ≤ λ

1 + λ
.

The last inequality ensures 0 < 1
1+λ ≤ s, hence r = f(x) and (1/s)x∗ ∈ ∂f(x). Moreover,

‖(1/s)x∗‖ ≤ λ
1+λ · (1 + λ) = λ.

(II) Let us consider now the general case, when x∗0 ∈ ∂εf(x0) is an arbitrary element.
Define the function g : X → R, g(x) = f(x)−〈x∗0, x〉, for all x ∈ X. Notice that ∂αg(x) =
∂αf(x) − x∗0 for all α ≥ 0, hence the condition x∗0 ∈ ∂εf(x0) guarantees 0 ∈ ∂εg(x0).
Applying the statement obtained in the first part of the proof for g, we obtain that there
exist x∗ ∈ X∗ and x ∈ X such that

x∗ ∈ ∂g(x), ‖x− x0‖ ≤ ε
(

1
λ

+ 1
)

and ‖x∗‖ ≤ λ.

Thus x∗ + x∗0 ∈ ∂f(x), ‖x− x0‖ ≤ ε
(

1
λ + 1

)
and ‖(x∗ + x∗0)− x∗0‖ = ‖x∗‖ ≤ λ, hence the

proof is complete. �
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The bounds in Corollary 6 differ from the ones in Theorem 1, nevertheless, by taking
λ =

√
ε, they become

√
ε + ε and, respectively,

√
ε, and allow one to derive (by letting

ε↘ 0) the classical density result regarding the domain of the subdifferential.
However, it remains an open question if Theorem 1 can be deduced from Theorem 3.
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[6] R.I. Boţ, S.-M. Grad, Approaching the maximal monotonicity of bifunctions via rep-
resentative functions, Journal of Convex Analysis 19(3), 2012.

[7] A. Brøndsted, R.T. Rockafellar, On the subdifferentiability of convex functions, Pro-
ceedings of the American Mathematical Society 16, 605–611, 1965.

[8] Z. Chbani, H. Riahi, Variational principles for monotone operators and maximal
bifunctions, Serdica Mathematical Journal 29, 159-166, 2003.

[9] N. Hadjisavvas, H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization
59(2), 147–160, 2010.

[10] A.N. Iusem, On the maximal monotonicity of diagonal subdifferential operators, Jour-
nal of Convex Analysis 18(2), 489–503, 2011.

[11] A.N. Iusem, B.F. Svaiter, On diagonal subdifferential operators in nonreflexive Ba-
nach spaces, Set Valued and Variational Analysis 20, 1-14, 2012.

[12] R.R. Phelps, Convex Functions, Monotone Operators and Differentiabilty, Second
edition. Lecture Notes in Mathematics 1364, Springer-Verlag, Berlin, 1993.

[13] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 317,
Springer-Verlag, Berlin, 1998.

[14] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, Berlin, 2008.
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