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ing monotone inclusion problems involving maximally monotone operators, linear
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hypothesis that strong monotonicity assumptions for some of the involved opera-
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the point of view of their convergence. Finally, we discuss the employment of the
primal-dual methods in the context of solving convex optimization problems arising
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location theory, portfolio optimization and clustering.
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1 Introduction

In the last couple of years a particular attention was given to the development of a
new class of so-called primal-dual splitting methods for solving monotone inclusion
problems, especially, when they involve mixtures of linearly composed maximally
monotone operators, parallel sums of maximally monotone operators and/or single-
valued Lipschitzian or cocoercive monotone operators. The efforts done in this sense
were motivated by the fact that a wide variety of convex optimization problems
such as location problems, support vector machine problems for classication and
regression, problems in clustering and portfolio optimization as well as signal and
image processing problems, all of them potentially possessing nonsmooth terms in
their objectives, can be reduced to the solving of monotone inclusion problems with
such an intricate formulation. The classical splitting algorithms, like the forward-
backward algorithm [2], Tseng’s forward-backward-forward algorithm [39] and the
Douglas-Rachford algorithm [2, 25] have considerable limitations when employed
on monotone inclusion problems with such an intricate formulation, as they would
assume the calculation of the resolvents of linearly composed maximally monotone
operators or of parallel sums of maximally monotone operators, for which exact
formulae are available only in very exceptional situations (see [2]).

In order to overcome this shortcoming, the primal-dual splitting algorithms solve
actually the primal-dual pair formed by the monotone inclusion problem under in-
vestigation and its dual inclusion problem in the sense of Attouch-Théra ([1, 2])
by reformulating it as a monotone inclusion problem in a corresponding product
space. The algorithmic scheme follows by applying in an appropriate way one of
the standard splitting algorithms and have the remarkable property that the opera-
tors involved are evaluated separately in each iteration, either by forward steps in
the case of the single-valued ones, including here the linear continuous operators
and their adjoints, or by backward steps for the set-valued ones, by using the corre-
sponding resolvents.

After presenting in the next section some elements of convex analysis and of
the theory of maximally monotone operators, we present in Section 3 three main
classes of primal-dual splitting algorithms for solving monotone inclusion problems
having an intricate formulation along with corresponding convergence statements
and discuss possible accelerations, provided that some of the involved operators
fulfill strong monotonicity assumptions.

In the hypothesis that the single-valued monotone operator arising in the formula-
tion of the monotone inclusion problem is cocoercive, we present first an adaptation
of the primal-dual algorithm proposed by Vũ in [40], that relies on the employment
of the forward-backward splitting method in an appropriate product space. For par-
ticular instances of this iterative scheme in the context of monotone inclusion prob-
lems we refer the reader to [8] and in the context of convex optimization problems
to [19, 24]. Further, we discuss two accelerated versions of it proposed in [9], for
which an evaluation of the convergence behaviour of the sequences of primal and
dual iterates, respectively, is possible.
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In Subsection 3.2, provided that the single-valued monotone operator arising in
the formulation of the monotone inclusion problem is Lipschitzian, we turn out our
attention to a primal-dual method due to Combettes and Pesquet ([23]; see, also,
[17]), which can be reduced to Tseng’s forward-backward-forward splitting method
in a product space. Two accelerated versions of the forward-backward-forward type
primal-dual algorithm introduced in [13] are presented under strong monotonicity
assumptions, as well, along with the corresponding convergence statements.

In the last subsection of Section 3 we present two primal-dual methods proposed
in [14] that rely on the Douglas-Rachford splitting algorithm in a product space and
discuss their convergence behaviour.

In the last part of the article we discuss the employment of the presented primal-
dual methods in the context of solving convex optimization problems. Numerical
experiments are made in the context of applications arising in the fields of image
denoising and deblurring, support vector machine learning, location theory, portfo-
lio optimization and clustering.

2 Preliminaries

Let us start by presenting some notations which are used throughout the work (see
[2, 6, 7, 26, 37, 41]). We consider real Hilbert spaces H and Gi, i = 1, ...,m, en-
dowed with the inner product 〈·, ·〉 and associated norm ‖·‖ =

√
〈·, ·〉 for which

we use the same notation, respectively, as there is no risk of confusion. The sym-
bols ⇀ and→ denote weak and strong convergence, respectively,R++ denotes the
set of strictly positive real numbers and R+ = R++ ∪{0}. By B(0,r) we denote
the closed ball with center 0 and radius r ∈ R++. For a function f : H → R =
R∪{±∞} we denote by dom f := {x ∈H : f (x) < +∞} its effective domain and
call f proper if dom f 6= ∅ and f (x) > −∞ for all x ∈H . Let be Γ (H ) := { f :
H → R : f is proper, convex and lower semicontinuous}. The conjugate function
of f is f ∗ : H → R, f ∗(p) = sup{〈p,x〉− f (x) : x ∈H } for all p ∈H and, if
f ∈ Γ (H ), then f ∗ ∈ Γ (H ), as well. The (convex) subdifferential of f : H →R

at x ∈ H is the set ∂ f (x) = {p ∈ H : f (y)− f (x) ≥ 〈p,y− x〉 ∀y ∈ H }, if
f (x) ∈R, and is taken to be the empty set, otherwise. For a linear continuous op-
erator Li : H → Gi, the operator L∗i : Gi →H , defined via 〈Lix,y〉 = 〈x,L∗i y〉 for
all x ∈H and all y ∈ Gi, denotes its adjoint, for i = 1, . . . ,m. Having two proper
functions f , g : H → R, their infimal convolution is defined by f �g : H → R,
( f �g)(x) = infy∈H { f (y)+g(x− y)} for all x ∈H .

Let M : H → 2H be a set-valued operator. We denote by zerM = {x ∈H : 0 ∈
Mx} its set of zeros, by fixM = {x ∈H : x ∈Mx} its set of fixed points, by graM =
{(x,u) ∈H ×H : u ∈Mx} its graph and by ranM = {u ∈H : ∃x ∈H , u ∈Mx}
its range. The inverse of M is M−1 : H → 2H , u 7→ {x ∈H : u ∈ Mx}. We say
that the operator M is monotone, if 〈x− y,u− v〉 ≥ 0 for all (x,u), (y,v) ∈ graM
and it is said to be maximally monotone, if there exists no monotone operator
M′ : H → 2H such that graM′ properly contains graM. The operator M is said
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to be uniformly monotone with modulus φM : R+ → [0,+∞], if φM is increasing,
vanishes only at 0, and 〈x− y,u− v〉 ≥ φM (‖x− y‖) for all (x,u), (y,v) ∈ graM.
A prominent representative of the class of uniformly monotone operators are the
strongly monotone ones. Let γ > 0 be arbitrary. We say that M is γ-strongly mono-
tone, if 〈x− y,u− v〉 ≥ γ‖x− y‖2 for all (x,u), (x,v) ∈ graM. A single-valued oper-
ator M : H →H is said to be γ-cocoercive, if 〈x− y,Mx−My〉 ≥ γ‖Mx−My‖2

for all (x,y) ∈H ×H . Moreover, M is γ-Lipschitzian, if ‖Mx−My‖ ≤ γ‖x− y‖
for all (x,y) ∈H ×H . A single-valued linear operator M : H →H is said to be
skew, if 〈x,Mx〉= 0 for all x ∈H .

The resolvent and the reflected resolvent of an operator M : H → 2H are

JM = (Id+M)−1 and RM = 2JM− Id,

respectively, the operator Id denoting the identity on the underlying Hilbert space.
When M is maximally monotone, its resolvent (and, consequently, its reflected re-
solvent) is a single-valued operator and, by [2, Proposition 23.18], we have for
γ ∈R++

Id = JγM + γJγ−1M−1 ◦ γ
−1Id. (1)

Moreover, for f ∈ Γ (H ) and γ ∈ R++ the subdifferential ∂ (γ f ) is maximally
monotone (see [34]) and it holds Jγ∂ f = (Id+ γ∂ f )−1 = Proxγ f . Here, Proxγ f (x)
denotes the proximal point of γ f at x ∈H and it represents the unique optimal
solution of the optimization problem

inf
y∈H

{
γ f (y)+

1
2
‖y− x‖2

}
.

In this particular situation, (1) becomes Moreau’s decomposition formula

Id = Proxγ f +γ Proxγ−1 f ∗ ◦γ
−1Id. (2)

When Ω ⊆H is a nonempty, convex and closed set, the function δΩ : H → R,
defined by δΩ (x) = 0 for x ∈Ω and δΩ (x) = +∞, otherwise, denotes the indicator
function of the set Ω . For each γ > 0 the proximal point of γδΩ at x ∈H is nothing
else than

ProxγδΩ
(x) = ProxδΩ

(x) = PΩ (x) = argmin
y∈Ω

1
2
‖y− x‖2,

where PΩ : H →Ω denotes the projection operator on Ω .
Finally, the parallel sum of two set-valued operators M1, M2 : H → 2H is de-

fined as M1 �M2 : H → 2H , M1 �M2 =
(
M−1

1 +M−1
2

)−1
.
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3 Primal-dual algorithms for monotone inclusion problems

The following monotone inclusion problem will be in the focus of our investigations.

Problem 1. Let H be a real Hilbert space, z ∈ H , A : H → 2H a maximally
monotone operator and C : H → H a monotone operator. Let m be a strictly
positive integer and for any i = 1, ...,m, let Gi be a real Hilbert space, ri ∈ Gi,
Bi, Di : Gi → 2Gi be maximally monotone operators and Li : H → Gi a nonzero
linear continuous operator. The problem is to solve the primal inclusion

find x ∈H such that z ∈ Ax+
m

∑
i=1

L∗i
(
(Bi �Di)(Lix− ri)

)
+Cx, (3)

together with the dual inclusion of Attouch-Théra type (see [1, 23, 40])

find v1 ∈G1, ...,vm ∈Gm such that ∃x∈H :
{

z−∑
m
i=1 L∗i vi ∈ Ax+Cx

vi ∈ (Bi �Di)(Lix− ri), i = 1, ...,m.
(4)

We say that (x,v1, ...,vm) ∈H × G1× ...×Gm is a primal-dual solution to Prob-
lem 1, if

z−
m

∑
i=1

L∗i vi ∈ Ax+Cx and vi ∈ (Bi �Di)(Lix− ri), i = 1, ...,m. (5)

If x∈H is a solution to (3), then there exists (v1, ...,vm)∈ G1× ...×Gm such that
(x,v1, ...,vm) is a primal-dual solution to Problem 1 and, if (v1, ...,vm)∈ G1× ...×Gm
is a solution to (4), then there exists x ∈H such that (x,v1, ...,vm) is a primal-dual
solution to Problem 1. Moreover, if (x,v1, ...,vm) ∈H × G1× ...×Gm is a primal-
dual solution to Problem 1, then x is a solution to (3) and (v1, ...,vm) ∈ G1× ...×Gm
is a solution to (4).

3.1 Forward-backward type algorithms

By employing the classical forward-backward algorithm (see [21, 39]) in an appro-
priate product space, Vũ proposed in [40] an iterative scheme for solving a slightly
modified version of Problem 1 formulated in the presence of some given weights
wi ∈ (0,1], i = 1, ...,m, with ∑

m
i=1 wi = 1 for the terms occurring in the second sum-

mand of the primal inclusion problem. The following result is an adaption of [40,
Theorem 3.1] in the error-free case and when λn = 1 for any n≥ 0.

Theorem 1. In Problem 1 suppose that C is η-cocoercive and Di is νi-strongly
monotone with η ,νi > 0 for i = 1, ...,m. Moreover, assume that
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z ∈ ran

(
A+

m

∑
i=1

L∗i
(
(Bi �Di)(Li ·−ri)

)
+C

)
.

Let τ and σi, i = 1, ...,m, be strictly positive numbers such that

2 ·min{τ−1,σ−1
1 , ...,σ−1

m } ·min{η ,ν1, ...,νm}

(
1−

√
τ

m

∑
i=1

σi‖Li‖2

)
> 1.

Let (x0,v1,0, ...,vm,0) ∈H × G1 ×...× Gm and set:

(∀n≥ 0)

 xn+1 = JτA
[
xn− τ

(
∑

m
i=1 L∗i vi,n +Cxn− z

)]
yn = 2xn+1− xn

vi,n+1 = J
σiB−1

i
[vi,n +σi(Liyn−D−1

i vi,n− ri)], i = 1, ...,m.

Then there exists a primal-dual solution (x,v1, ...,vm) to Problem 1 such that xn ⇀ x
and (v1,n, ...,vm,n) ⇀ (v1, ...,vm) as n→+∞.

In the remaining of this subsection we propose in two different settings modified
versions of the algorithm in Theorem 1 and discuss the orders of convergence of the
sequences of iterates generated by the new iterative schemes.

3.1.1 The case A+C is strongly monotone

Additionally to the hypotheses in Problem 1 we assume throughout this subsection
that

(H1)


(i) A+C is γ− strongly monotone with γ > 0;
(ii) D−1

i (x) = 0 for all x ∈ Gi, i = 1, ...,m;
(iii) C is η−Lipschitzian with η > 0.

We show that in case A +C is strongly monotone one can guarantee an order of
convergence of O( 1

n ) for the sequence of primal iterates (xn)n≥0. To this end, we
update in each iteration the parameters τ and σi, i = 1, ...,m, and use a modified
formula for the sequence (yn)n≥0. Due to technical reasons, we apply this method in
the particular case stated by (ii) above. In the light of the approach described in Re-
mark 3 below, one can extend the statement of Theorem 3, which is the convergence
statement for the modified iterative scheme, to the primal-dual pair of monotone
inclusions stated in Problem 1.

Remark 1. Different to the hypotheses of Problem 1, we relax the assumptions made
on the operator C. It is obvious that, if C is a η-cocoercive operator with η > 0, then
C is monotone and 1/η-Lipschitzian. Although in case C is the gradient of a convex
and differentiable function, due to the celebrated Baillon-Haddad Theorem (see, for
instance, [2, Corollary 8.16]), the two classes of operators coincide, in general the
second one is larger. Indeed, nonzero linear, skew and Lipschitzian operators are not
cocoercive. For example, when H and G are real Hilbert spaces and L : H → G
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is nonzero linear continuous, (x,v) 7→ (L∗v,−Lx) is an operator having all these
properties. This operator appears in a natural way when considering primal-dual
monotone inclusion problems as done in [17].

We propose the following modification of the iterative scheme in Theorem 1.

Algorithm 2. Let (x0,v1,0, ...,vm,0) ∈H × G1 ×...× Gm, let τ0 > 0, σi,0 > 0, i =
1, ...,m, such that τ0 < 2γ/η , λ ≥ η +1, τ0 ∑

m
i=1 σi,0‖Li‖2 ≤

√
1+ τ0(2γ−ητ0)/λ

and θ0 = 1/
√

1+ τ0(2γ−ητ0)/λ . Set

(∀n≥ 0)


xn+1 = J(τn/λ )A

[
xn− (τn/λ )

(
∑

m
i=1 L∗i vi,n +Cxn− z

)]
yn = xn+1 +θn(xn+1− xn)
vi,n+1 = J

σi,nB−1
i

[vi,n +σi,n(Liyn− ri)], i = 1, ...,m

τn+1 = θnτn, θn+1 = 1/
√

1+ τn+1(2γ−ητn+1)/λ

σi,n+1 = σi,n/θn+1, i = 1, ...,m.

Theorem 3. In Problem 1 suppose that (H1) holds and let (x,v1, ...,vm) be a primal-
dual solution to Problem 1. Then the sequences generated by Algorithm 2 fulfill for
any n≥ 0

λ‖xn+1− x‖2

τ2
n+1

+

(
1− τ1

m

∑
i=1

σi,0‖Li‖2

)
m

∑
i=1

‖vi,n− vi‖2

τ1σi,0
≤

λ‖x1− x‖2

τ2
1

+
m

∑
i=1

‖vi,0− vi‖2

τ1σi,0
+
‖x1− x0‖2

τ2
0

+
2
τ0

m

∑
i=1
〈Li(x1− x0),vi,0− vi〉.

Moreover, lim
n→+∞

nτn = λ

γ
, hence one obtains for (xn)n≥0 an order of convergence of

O( 1
n ).

Proof. The idea of the proof relies on showing that the following Fejér-type inequal-
ity is true for any n≥ 0

λ

τ2
n+2
‖xn+2− x‖2 +

m

∑
i=1

‖vi,n+1− vi‖2

τ1σi,0
+
‖xn+2− xn+1‖2

τ2
n+1

−

2
τn+1

m

∑
i=1
〈Li(xn+2− xn+1),−vi,n+1 + vi〉 ≤ (6)

λ

τ2
n+1
‖xn+1− x‖2 +

m

∑
i=1

‖vi,n− vi‖2

τ1σi,0
+
‖xn+1− xn‖2

τ2
n

−

2
τn

m

∑
i=1
〈Li(xn+1− xn),−vi,n + vi〉.

To this end we use first that in the light of the definition of the resolvents it holds
for any n≥ 0
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λ

τn+1
(xn+1− xn+2)−

(
m

∑
i=1

L∗i vi,n+1 +Cxn+1− z

)
+Cxn+2 ∈ (A+C)xn+2. (7)

Since A+C is γ-strongly monotone, (5) and (7) yield for any n≥ 0

γ‖xn+2− x‖2 ≤ λ

τn+1
〈xn+2− x,xn+1− xn+2〉+ 〈xn+2− x,Cxn+2−Cxn+1〉

+
m

∑
i=1
〈Li(xn+2− x),vi− vi,n+1〉 .

Further, we have

〈xn+2− x,xn+1− xn+2〉=
‖xn+1− x‖2

2
− ‖xn+2− x‖2

2
− ‖xn+1− xn+2‖2

2
(8)

and, since C is η-Lipschitzian,

〈xn+2− x,Cxn+2−Cxn+1〉 ≤
ητn+1

2
‖xn+2− x‖2 +

η

2τn+1
‖xn+2− xn+1‖2,

hence for any n≥ 0 it yields (taking into account that λ ≥ η +1)(
λ

τn+1
+2γ−ητn+1

)
‖xn+2− x‖2 ≤

λ

τn+1
‖xn+1− x‖2− 1

τn+1
‖xn+2− xn+1‖2 +2

m

∑
i=1
〈Li(xn+2− x),vi− vi,n+1〉. (9)

On the other hand, for every i = 1, ...,m and any n≥ 0, from

1
σi,n

(vi,n− vi,n+1)+Liyn− ri ∈ B−1
i vi,n+1, (10)

the monotonicity of B−1
i and (5) we obtain

0 ≤ 1
2σi,n

‖vi,n− vi‖2− 1
2σi,n

‖vi,n− vi,n+1‖2− 1
2σi,n

‖vi,n+1− vi‖2

+ 〈Li(yn− x),vi,n+1− vi〉,

which yields (use also (9)) for any n≥ 0(
λ

τn+1
+2γ−ητn+1

)
‖xn+2− x‖2 +

m

∑
i=1

‖vi,n+1− vi‖2

σi,n
≤

λ

τn+1
‖xn+1− x‖2 +

m

∑
i=1

‖vi,n− vi‖2

σi,n
− ‖xn+2− xn+1‖2

τn+1
−

m

∑
i=1

‖vi,n− vi,n+1‖2

σi,n
(11)
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+2
m

∑
i=1
〈Li(xn+2− yn),−vi,n+1 + vi〉.

Further, since yn = xn+1 + θn(xn+1− xn), for every i = 1, ...,m and any n ≥ 0 it
holds

〈Li(xn+2− yn),−vi,n+1 + vi〉 ≤ 〈Li(xn+2− xn+1),−vi,n+1 + vi〉

−θn〈Li(xn+1− xn),−vi,n + vi〉+
θ 2

n ‖Li‖2σi,n

2
‖xn+1− xn‖2 +

‖vi,n− vi,n+1‖2

2σi,n
.

By combining the last inequality with (11) we obtain for any n≥ 0(
λ

τn+1
+2γ−ητn+1

)
‖xn+2− x‖2 +

m

∑
i=1

‖vi,n+1− vi‖2

σi,n
+
‖xn+2− xn+1‖2

τn+1
−

2
m

∑
i=1
〈Li(xn+2− xn+1),−vi,n+1 + vi〉 ≤ (12)

λ

τn+1
‖xn+1− x‖2 +

m

∑
i=1

‖vi,n− vi‖2

σi,n
+

(
m

∑
i=1
‖Li‖2

σi,n

)
θ

2
n ‖xn+1− xn‖2−

2
m

∑
i=1

θn〈Li(xn+1− xn),−vi,n + vi〉.

After dividing (12) by τn+1 and noticing that for any n≥ 0,

λ

τ2
n+1

+
2γ

τn+1
−η =

λ

τ2
n+2

,τn+1σi,n = τnσi,n−1 = ... = τ1σi,0

and (
∑

m
i=1 ‖Li‖2σi,n

)
θ 2

n

τn+1
=

τn+1 ∑
m
i=1 ‖Li‖2σi,n

τ2
n

=
τ1 ∑

m
i=1 ‖Li‖2σi,0

τ2
n

≤ 1
τ2

n
,

it follows that the Fejér-type inequality (6) is true.
Let N ∈N,N ≥ 2. Summing up the inequality in (6) from n = 0 to N−1, it yields

λ

τ2
N+1
‖xN+1− x‖2 +

m

∑
i=1

‖vi,N− vi‖2

τ1σi,0
+
‖xN+1− xN‖2

τ2
N

≤ λ

τ2
1
‖x1− x‖2 +

m

∑
i=1

‖vi,0− vi‖2

τ1σi,0
+
‖x1− x0‖2

τ2
0

+2
m

∑
i=1

(
1

τN
〈Li(xN+1− xN),−vi,N + vi〉−

1
τ0
〈Li(x1− x0),−vi,0 + vi〉

)
.

Further, for every i = 1, ...,m we use the inequality
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2
τN
〈Li(xN+1− xN),−vi,N + vi〉 ≤

σi,0‖Li‖2

τ2
N(∑m

i=1 σi,0‖Li‖2)
‖xN+1− xN‖2 +

∑
m
i=1 σi,0‖Li‖2

σi,0
‖vi,N− vi‖2

and obtain finally the inequality in the statement of the theorem.
We close the proof by showing that lim

n→+∞
nτn = λ/γ . Notice that for any n≥ 0

τn+1 =
τn√

1+ τn
λ

(2γ−ητn)
. (13)

Since 0 < τ0 < 2γ/η , it follows by induction that 0 < τn+1 < τn < τ0 < 2γ/η for any
n≥ 1, hence the sequence (τn)n≥0 converges. In the light of (13) one easily obtains
that lim

n→+∞
τn = 0 and, further, that lim

n→+∞

τn
τn+1

= 1. As ( 1
τn

)n≥0 is a strictly increasing

and unbounded sequence, by applying the Stolz-Cesàro Theorem, it yields (see [9])

lim
n→+∞

n
1
τn

= lim
n→+∞

n+1−n
1

τn+1
− 1

τn

= lim
n→+∞

τnτn+1

τn− τn+1
= lim

n→+∞

τnτn+1(τn + τn+1)
τ2

n − τ2
n+1

=
λ

γ
.

ut

Remark 2. If A + C is strongly monotone, then the operator A + ∑
m
i=1 L∗i (Bi(Li ·

−ri))+C is strongly monotone as well, thus the monotone inclusion problem (3)
has at most one solution. Hence, if (x,v1, ...,vm) is a primal-dual solution to Problem
1, then x is the unique solution to (3). Notice that the problem (4) may not have a
unique solution.

Remark 3. In Algorithm 2 and Theorem 3 we assumed that D−1
i = 0 for i = 1, . . . ,m,

however, similar statements can be also provided for Problem 1 under the additional
assumption that the operators Di : Gi → 2Gi are ν

−1
i -cocoercive with νi ∈ R++

for i = 1, . . . ,m. This assumption is in general stronger than assuming that Di is
monotone and D−1

i is νi-Lipschitzian for i = 1, ...,m and it guarantees that Di is
ν
−1
i -strongly monotone and maximally monotone for i = 1, ...,m (see [2, Example

20.28, Proposition 20.22 and Example 22.6]). We introduce the Hilbert space H̃ =
H × G̃ , where G̃ =G1 ×...× Gm, the element z̃ = (z,0, . . . ,0) ∈ H̃ and the max-
imally monotone operator Ã : H̃ → 2H̃ , Ã(x,y1, . . . ,ym) = (Ax,D1y1, . . . ,Dmym)
and the monotone and Lipschitzian operator C̃ : H̃ → H̃ , C̃(x,y1, . . . ,ym) =
(Cx,0, . . . ,0). Notice also that Ã + C̃ is strongly monotone. Furthermore, we in-
troduce the element r̃ = (r1, . . . ,rm) ∈ G̃ , the maximally monotone operator B̃ :
G̃ → 2G̃ , B̃(y1, . . . ,ym) = (B1y1, . . . ,Bmym), and the linear continuous operator L̃ :
H̃ → G̃ , L̃(x,y1 . . . ,ym) = (L1x−y1, . . . ,Lmx−ym), having as adjoint L̃

∗
: G̃ → H̃ ,

L̃
∗
(q1, . . . ,qm) = (∑m

i=1 L∗i qi,−q1, . . . ,−qm). We consider the primal problem

find x̃ = (x, p1 . . . pm) ∈ H̃ such that z̃ ∈ Ãx̃+ L̃
∗
B̃
(

L̃x̃− r̃
)

+C̃x̃, (14)



Recent developments on primal-dual splitting methods 11

together with the dual inclusion problem

find ṽ ∈ G̃ such that ∃x̃ ∈ H̃ :
{

z̃− L̃
∗
ṽ ∈ Ãx̃+C̃x̃

ṽ ∈ B̃(L̃x̃− r̃)
. (15)

We notice that Algorithm 2 can be employed for solving this primal-dual pair of
monotone inclusion problems and that in its formulation the resolvents of A,Bi and
Di, i = 1, ...,m are separately involved, as for γ ∈R++

J
γÃ(x,y1, . . . ,ym) = (JγAx,JγD1y1, . . . ,JγDmym) ∀(x,y1, . . . ,ym) ∈ H̃

J
γB̃(q1, . . . ,qm) = (JγB1q1, . . . ,JγBmqm) ∀(q1, . . . ,qm) ∈ G̃ .

We have that (x̃, ṽ) is a a primal-dual solution to (14)-(15) if and only if

z̃− L̃
∗
ṽ ∈ Ãx̃+C̃x̃ and ṽ ∈ B̃

(
L̃x̃− r̃

)
⇔ z−

m

∑
i=1

L∗i vi ∈ Ax+Cx and vi ∈ Di pi,vi ∈ Bi (Lix− pi− ri) , i = 1, . . . ,m

⇔ z−
m

∑
i=1

L∗i vi ∈ Ax+Cx and vi ∈ Di pi,Lix− ri ∈ B−1
i vi + pi, i = 1, . . . ,m.

Thus, if (x̃, ṽ) is a primal-dual solution to (14)-(15), then (x, ṽ) is a primal-dual
solution to Problem 1. Viceversa, if (x, ṽ) is a primal-dual solution to Problem 1,
then, choosing pi ∈D−1

i vi, i = 1, ...,m, and x̃ = (x, p1 . . . pm), it yields that (x̃, ṽ) is a
primal-dual solution to (14)-(15). In conclusion, the first component of every primal
iterate in H̃ generated by Algorithm 2 for finding a primal-dual solution (x̃, ṽ) to
(14)-(15) will furnish a sequence of iterates in H fulfilling the inequality in the
formulation of Theorem 3 for the primal-dual solution (x, ṽ) to Problem 1.

3.1.2 The case A+C and B−1
i +D−1

i , i = 1, ...,m, are strongly monotone

In this subsection we propose a modified version of the algorithm in Theorem 1
which guarantees, when A +C and B−1

i + D−1
i , i = 1, ...,m, are strongly monotone,

orders of convergence of O(ωn), for ω ∈ (0,1), for the sequences of iterates (xn)n≥0
and (vi,n)n≥0, i = 1, ...,m. The algorithm aims to solve the primal-dual pair of mono-
tone inclusions stated in Problem 1 under the following hypotheses

(H2)


(i) A+C is γ− strongly monotone with γ > 0;
(ii) B−1

i +D−1
i is δi− strongly monotone with δi > 0, i = 1, ....m;

(iii) D−1
i is νi−Lipschitzian with νi > 0, i = 1, ...,m;

(iv) C is η−Lipschitzian with η > 0.

We propose the following modification of the iterative scheme in Theorem 1.
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Algorithm 4. Let (x0,v1,0, ...,vm,0) ∈H × G1 ×...× Gm, let µ > 0 such that µ ≤
min

{
γ2/η2 , δ 2

1 /ν2
1 , . . . ,δ 2

m/ν2
m,
√

γ/(∑m
i=1 ‖Li‖2/δi)

}
, τ = µ/(2γ), σi = µ/(2δi),

i = 1, ...,m, and θ ∈ [2/(2+ µ),1]. Set

(∀n≥ 0)

 xn+1 = JτA
[
xn− τ

(
∑

m
i=1 L∗i vi,n +Cxn− z

)]
yn = xn+1 +θ(xn+1− xn)
vi,n+1 = J

σiB−1
i

[vi,n +σi(Liyn−D−1
i vi,n− ri)], i = 1, ...,m.

For the proof of the following result we refer to [9].

Theorem 5. In Problem 1 suppose that (H2) holds and let (x,v1, ...,vm) be a primal-
dual solution to Problem 1. Then the sequences generated by Algorithm 4 fulfill for
any n≥ 0

γ‖xn+1− x‖2 +(1−ω)
m

∑
i=1

δi‖vi,n− vi‖2 ≤

ω
n

(
γ‖x1− x‖2 +

m

∑
i=1

δi‖vi,0− vi‖2 +
γ

2
ω‖x1− x0‖2 + µω

m

∑
i=1
〈Li(x1− x0),vi,0− vi〉

)
,

where 0 < ω = 2(1+θ)
4+µ

< 1.

Remark 4. If A +C and B−1
i + D−1

i are strongly monotone i = 1, ...,m, then there
exists at most one primal-dual solution to Problem 1. Hence, if (x,v1, ...,vm) is a
primal-dual solution to Problem 1, then x is the unique solution to the primal inclu-
sion (3) and (v1, ...,vm) is the unique solution to the dual inclusion (4).

3.2 Forward-backward-forward type algorithms

In this subsection we recall the error-free variant of the primal-dual algorithm in
[23] and the corresponding convergence statements, as given in [23, Theorem 3.1],
and propose two accelerated versions of it. The proof of the following statement
relies on the application of the error Tseng’s forward-backward-forward algorithm
in a product space.

Theorem 6. In Problem 1 suppose that C is µ-Lipschitian with µ > 0 and D−1
i is

νi-Lipschitzian with νi > 0 for i = 1, ...,m. Moreover, assume that

z ∈ ran

(
A+

m

∑
i=1

L∗i (Bi �Di)(Li ·−ri)+C

)
.

Let x0 ∈ H and (v1,0, . . . ,vm,0) ∈ G1 × ...× Gm, set β = max{µ,ν1 . . . ,νm}+√
∑

m
i=1 ‖Li‖2, choose ε ∈ (0, 1

β+1 ) and (γn)n≥0 a sequence in
[
ε, 1−ε

β

]
and set
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(∀n≥ 0)


p1,n = JγnA (xn− γn (Cxn +∑

m
i=1 L∗i vi,n− z))

For i = 1, . . . ,m⌊
p2,i,n = J

γnB−1
i

(
vi,n + γn(Lixn−D−1

i vi,n− ri)
)

vi,n+1 = γnLi(p1,n− xn)+ γn(D−1
i vi,n−D−1

i p2,i,n)+ p2,i,n

xn+1 = γn ∑
m
i=1 L∗i (vi,n− p2,i,n)+ γn(Cxn−Cp1,n)+ p1,n.

(16)

Then there exists a primal-dual solution (x,v1, . . . ,vm)∈H ×G1× ...×Gm to Prob-
lem 1 such that xn ⇀ x, p1,n ⇀ x, (v1,n, ...,vm,n) ⇀ (v1, ...,vm) and (p2,1,n, ..., p2,m,n)
⇀ (v1, ...,vm) as n→+∞.

3.2.1 The case A+C is strongly monotone

Additionally to the hypotheses mentioned in Problem 1 we assume throughout this
subsection that

(H3)


(i) A+C is ρ− strongly monotone with ρ > 0;
(ii) D−1

i (x) = 0 for all x ∈ Gi, i = 1, ...,m;
(iii) C is µ−Lipschitzian with µ > 0.

We refer to Remark 3 for how to handle the general Problem 1 in the situation
when the operators Di are involved, as well. The subsequent algorithm represents
an accelerated version of the one given in Theorem 6 and relies on the fruitful idea of
using a second sequence of variable step length parameters (σn)n≥0 ⊆R++, which,
together with the sequence of parameters (γn)n≥0 ⊆R++, play an important role in
the convergence analysis.

Algorithm 7. Let x0 ∈H , (v1,0, . . . ,vm,0) ∈ G1× ...×Gm,

γ0 ∈
(

0,min
{

1,

√
1+4ρ

2(1+2ρ)µ

})
and let σ0 ∈

(
0,

1
2γ0(1+2ρ)∑

m
i=1 ‖Li‖2

]
.

Consider the following updates:

(∀n≥ 0)



p1,n = JγnA (xn− γn (Cxn +∑
m
i=1 L∗i vi,n− z))

For i = 1, . . . ,m⌊
p2,i,n = J

σnB−1
i

(vi,n +σn(Lixn− ri))
vi,n+1 = σnLi(p1,n− xn)+ p2,i,n

xn+1 = γn ∑
m
i=1 L∗i (vi,n− p2,i,n)+ γn(Cxn−Cp1,n)+ p1,n

θn = 1/
√

1+2ργn(1− γn), γn+1 = θnγn, σn+1 = σn/θn.

(17)

For the proof of the following convergence theorem we refer the reader to [13].

Theorem 8. In Problem 1 suppose that (H3) holds and let (x,v1, . . . ,vm) ∈H ×
G1× ...×Gm be a primal-dual solution to Problem 1. Then the sequences generated
by Algorithm 7 satisfy for every n≥ 0 the inequality
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‖xn− x‖2 + γn

m

∑
i=1

‖vi,n− vi‖2

σn
≤ γ

2
n

(
‖x0− x‖2

γ2
0

+
m

∑
i=1

‖vi,0− vi‖2

γ0σ0

)
. (18)

Moreover, lim
n→+∞

nγn = 1
ρ

, hence one obtains for (xn)n≥0 an order of convergence of

O( 1
n ).

3.2.2 The case A+C and B−1
i +D−1

i , i = 1, ...,m, are strongly monotone

Assuming the hypotheses

(H4)


(i) A+C is ρ− strongly monotone with γ > 0;
(ii) B−1

i +D−1
i is τi− strongly monotone with τi > 0, i = 1, ....m;

(iii) D−1
i is νi−Lipschitzian with νi > 0, i = 1, ...,m;

(iv) C is µ−Lipschitzian with µ > 0

fulfilled, we provide as follows a second accelerated version of the algorithm in
Theorem 6 which generates sequences of primal and dual iterates that converge to
the primal-dual solution to Problem 1 with an improved rate of convergence.

Algorithm 9. Let x0 ∈H , (v1,0, . . . ,vm,0) ∈ G1× ...×Gm, and γ ∈ (0,1) such that

γ ≤ 1√
1+2min{ρ,τ1, . . . ,τm}

(√
∑

m
i=1 ‖Li‖2 +max{µ,ν1, . . . ,νm}

) .

Consider the following updates:

(∀n≥ 0)


p1,n = JγA (xn− γ (Cxn +∑

m
i=1 L∗i vi,n− z))

For i = 1, . . . ,m⌊
p2,i,n = J

γB−1
i

(
vi,n + γ(Lixn−D−1

i vi,n− ri)
)

vi,n+1 = γLi(p1,n− xn)+ γ(D−1
i vi,n−D−1

i p2,i,n)+ p2,i,n

xn+1 = γ ∑
m
i=1 L∗i (vi,n− p2,i,n)+ γ(Cxn−Cp1,n)+ p1,n.

(19)

Theorem 10. In Problem 1 suppose (H4) holds and let (x,v1, . . . ,vm) ∈H ×G1×
...×Gm be a primal-dual solution to Problem 1. Then the sequences generated by
Algorithm 9 satisfy for every n≥ 0 the inequality

‖xn− x‖2 +
m

∑
i=1
‖vi,n− vi‖2 ≤

(
1

1+2ρminγ(1− γ)

)n
(
‖x0− x‖2 +

m

∑
i=1
‖vi,0− vi‖2

)
,

where ρmin = min{ρ,τ1, . . . ,τm}.

Proof. Taking into account the definitions of the resolvents occurring in the iterative
scheme of Algorithm 9, we obtain for every n≥ 0
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xn− xn+1

γ
−

m

∑
i=1

L∗i p2,i,n + z ∈ (A+C)p1,n

and

vi,n− vi,n+1

γ
+Li p1,n− ri ∈ (B−1

i +D−1
i )p2,i,n, i = 1, . . . ,m.

By the strong monotonicity of A+C and B−1
i +D−1

i , i = 1, . . . ,m, from (5) we obtain
for every n≥ 0〈

p1,n− x,
xn− xn+1

γ
−

m

∑
i=1

L∗i p2,i,n + z−

(
z−

m

∑
i=1

L∗i vi

)〉
≥ ρ‖p1,n− x‖2 (20)

and, respectively,〈
p2,i,n− vi,

vi,n− vi,n+1

γ
+Li p1,n− ri− (Lix− ri)

〉
≥ τi‖p2,i,n− vi‖2, i = 1, ...,m.

(21)

Consider the Hilbert space H̃ = H ×G1× ...×Gm, equipped with the usual inner
product and associated norm, and set

x̃ = (x,v1, . . . ,vm), x̃n = (xn,v1,n, . . . ,vm,n), p̃n = (p1,n, p2,1,n, . . . , p2,m,n).

Summing up the inequalities (20) and (21) and using〈
p̃n− x̃,

x̃n− x̃n+1

γ

〉
=
‖x̃n+1− p̃n‖2

2γ
− ‖x̃n− p̃n‖2

2γ
+
‖x̃n− x̃‖2

2γ
− ‖x̃n+1− x̃‖2

2γ
,

we obtain for every n≥ 0

‖x̃n− x̃‖2

2γ
≥ ρmin‖p̃n− x̃‖2 +

‖x̃n+1− x̃‖2

2γ
+
‖x̃n− p̃n‖2

2γ
− ‖x̃n+1− p̃n‖2

2γ
. (22)

Further, we obtain

ρmin‖p̃n− x̃‖2 ≥ 2ρminγ(1− γ)
2γ

‖x̃n+1− x̃‖2− 2ρmin

2γ
‖x̃n+1− p̃n‖2 ∀n≥ 0.

Hence, from (22) we get for all n≥ 0

‖x̃n− x̃‖2

2γ
≥ (1+2ρminγ(1− γ))‖x̃n+1− x̃‖2

2γ
+
‖x̃n− p̃n‖2

2γ

− (1+2ρmin)‖x̃n+1− p̃n‖2

2γ
.
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Further, we have for every n≥ 0 (see [13])

‖x̃n− p̃n‖2

2γ
− (1+2ρmin)‖x̃n+1− p̃n‖2

2γ
≥ 0,

therefore, we obtain

‖x̃n− x̃‖2 ≥ (1+2ρminγ(1− γ))‖x̃n+1− x̃‖2 ∀n≥ 0,

which leads to

‖x̃n− x̃‖2 ≤
(

1
1+2ρminγ(1− γ)

)n

‖x̃0− x̃‖2 ∀n≥ 0. ut

3.3 Douglas-Rachford type algorithms

The third class of primal-dual methods for solving Problem 1 that we discuss in
this paper is the one of Douglas-Rachford type algorithms which was introduced in
[14]. It has the particularity that the operators occurring in the parallel sums can be
arbitrary maximally monotone ones, however, provided that Cx = 0 for all x ∈H .

3.3.1 A first Douglas-Rachford type primal-dual algorithm

The first iterative scheme of Douglas-Rachford type we deal with has the particular-
ity that the operators A, B−1

i and D−1
i , i = 1, ...,m, are accessed via their resolvents

and that it processes each operator Li and its adjoint L∗i , i = 1, ...,m, two times.

Algorithm 11. Let x0 ∈H , (v1,0, . . . ,vm,0)∈G1× . . .×Gm and τ and σi, i = 1, ...,m,
be strictly positive real numbers such that τ ∑

m
i=1 σi‖Li‖2 < 4. Furthermore, let

(λn)n≥0 be a sequence in (0,2) and set

(∀n≥ 0)



p1,n = JτA
(
xn− τ

2 ∑
m
i=1 L∗i vi,n + τz

)
w1,n = 2p1,n− xn
For i = 1, . . . ,m⌊

p2,i,n = J
σiB−1

i

(
vi,n + σi

2 Liw1,n−σiri
)

w2,i,n = 2p2,i,n− vi,n

z1,n = w1,n− τ

2 ∑
m
i=1 L∗i w2,i,n

xn+1 = xn +λn(z1,n− p1,n)
For i = 1, . . . ,m⌊

z2,i,n = J
σiD−1

i

(
w2,i,n + σi

2 Li(2z1,n−w1,n)
)

vi,n+1 = vi,n +λn(z2,i,n− p2,i,n).

(23)

Theorem 12. For Problem 1 assume that Cx = 0 for all x ∈H ,



Recent developments on primal-dual splitting methods 17

z ∈ ran

(
A+

m

∑
i=1

L∗i (Bi �Di)(Li ·−ri)

)
(24)

and consider the sequences generated by Algorithm 11.

1. If ∑
+∞

n=0 λn(2−λn) = +∞, then

a. (xn,v1,n, . . . ,vm,n)n≥0 converges weakly to a point (x,v1, . . . ,vm) ∈ H ×
G1× . . .×Gm such that, when setting

p1 = JτA

(
x− τ

2

m

∑
i=1

L∗i vi + τz

)
,

and p2,i = J
σiB−1

i

(
vi +

σi

2
Li(2p1− x)−σiri

)
, i = 1, ...,m,

the element (p1, p2,1, . . . , p2,m) is a primal-dual solution to Problem 1.
b. λn(z1,n − p1,n)→ 0 (n→ +∞) and λn(z2,i,n − p2,i,n)→ 0 (n→ +∞) for

i = 1, ...,m.
c. whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert spaces,

(p1,n, p2,1,n, . . . , p2,m,n)n≥0 converges strongly to a primal-dual solution to
Problem 1.

2. If infn≥0 λn > 0 and

A and B−1
i , i = 1, ...,m, are uniformly monotone,

then (p1,n, p2,1,n, . . . , p2,m,n)n≥0 converges strongly to the unique primal-dual
solution to Problem 1.

Proof. Consider the Hilbert space G = G1× . . .×Gm endowed with inner product
and associated norm defined, for v = (v1, . . . ,vm), q = (q1, . . . ,qm) ∈ G , as

〈v,q〉=
m

∑
i=1
〈vi,qi〉 and ‖v‖=

√
m

∑
i=1
‖vi‖2, (25)

respectively. Furthermore, consider the Hilbert space K = H ×G endowed with
inner product and associated norm defined, for (x,v),(y,q) ∈K , as

〈(x,v),(y,q)〉= 〈x,y〉+ 〈v,q〉 and ‖(x,v)‖=
√
‖x‖2 +‖v‖2, (26)

respectively. Consider the maximally monotone operator

M : K → 2K , (x,v1, . . . ,vm) 7→ (−z+Ax,r1 +B−1
1 v1, . . . ,rm +B−1

m vm),

and the linear continuous operator
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S : K →K , (x,v1, . . . ,vm) 7→

(
m

∑
i=1

L∗i vi,−L1x, . . . ,−Lmx

)
,

which proves to be skew (i. e. S∗ = −S) and hence maximally monotone (cf. [2,
Example 20.30]). Further, consider the maximally monotone operator

Q : K → 2K , (x,v1, . . . ,vm) 7→
(
0,D−1

1 v1, . . . ,D−1
m vm

)
.

Since domS = K , both 1
2 S + Q and 1

2 S + M are maximally monotone (cf. [2,
Corollary 24.4(i)]). On the other hand, according to [23, Eq. (3.12)], it holds (24)
⇔ zer(M +S +Q) 6= ∅, while [23, Eq. (3.21) and (3.22)] yield

(x,v1, . . . ,vm) ∈ zer(M +S +Q)⇒(x,v1, . . . ,vm) is a primal-dual
solution to Problem 1. (27)

Finally, we introduce the linear continuous operator

V : K →K , (x,v1, . . . ,vm) 7→

(
x
τ
− 1

2

m

∑
i=1

L∗i vi,
v1

σ1
− 1

2
L1x, . . . ,

vm

σm
− 1

2
Lmx

)
.

It is a simple calculation to prove that V is self-adjoint, i. e. V ∗ = V . Furthermore,
the operator V is ρ-strongly positive (see [14]) for

ρ =

(
1− 1

2

√
τ

m

∑
i=1

σi‖Li‖2

)
min

{
1
τ
,

1
σ1

, . . . ,
1

σm

}
,

which is a positive real number due to the assumptions made. Indeed for each i =
1, . . . ,m

2‖Li‖‖x‖‖vi‖ ≤
σi‖Li‖2√

τ ∑
m
i=1 σi‖Li‖2

‖x‖2 +

√
τ ∑

m
i=1 σi‖Li‖2

σi
‖vi‖2 (28)

and, consequently, for each x̃ = (x,v1, . . . ,vm) ∈K , it follows that

〈x̃,V x̃〉 ≥ ‖x‖
2

τ
+

m

∑
i=1

‖vi‖2

σi
−

m

∑
i=1
‖Li‖‖x‖‖vi‖

≥

(
1− 1

2

√
τ

m

∑
i=1

σi‖Li‖2

)(
‖x‖2

τ
+

m

∑
i=1

‖v2
i ‖

σi

)

≥

(
1− 1

2

√
τ

m

∑
i=1

σi‖Li‖2

)
min

{
1
τ
,

1
σ1

, . . . ,
1

σm

}
‖x̃‖2

= ρ‖x̃‖2. (29)
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Since V is ρ-strongly positive, we have cl(ranV ) = ranV (cf. [2, Fact 2.19]), zerV =
{0} and, as (ranV )⊥ = zerV ∗ = zerV = {0} (see, for instance, [2, Fact 2.18]), it
holds ranV = K . Consequently, V−1 exists and ‖V−1‖ ≤ 1

ρ
.

The algorithmic scheme (23) is equivalent to

(∀n≥ 0)



xn−p1,n
τ
− 1

2 ∑
m
i=1 L∗i vi,n ∈ Ap1,n− z

w1,n = 2p1,n− xn
For i = 1, . . . ,m⌊

vi,n−p2,i,n
σi

− 1
2 Li(xn− p1,n) ∈ − 1

2 Li p1,n +B−1
i p2,i,n + ri

w2,i,n = 2p2,i,n− vi,n
w1,n−z1,n

τ
− 1

2 ∑
m
i=1 L∗i w2,i,n = 0

xn+1 = xn +λn(z1,n− p1,n)
For i = 1, . . . ,m⌊

w2,i,n−z2,i,n
σi

− 1
2 Li(w1,n− z1,n) ∈ − 1

2 Liz1,n +D−1
i z2,i,n

vi,n+1 = vi,n +λn(z2,i,n− p2,i,n).

(30)

We introduce for every n≥ 0 the following notations:
x̃n = (xn,v1,n, . . . ,vm,n)
ỹn = (p1,n, p2,1,n, . . . , p2,m,n)
w̃n = (w1,n,w2,1,n, . . . ,w2,m,n)
z̃n = (z1,n,z2,1,n, . . . ,z2,m,n)

. (31)

The scheme (30) can equivalently be written in the form

(∀n≥ 0)


V (x̃n− ỹn) ∈

( 1
2 S +M

)
ỹn

w̃n = 2ỹn− x̃n
V (w̃n− z̃n) ∈

( 1
2 S +Q

)
z̃n

x̃n+1 = x̃n +λn (̃zn− ỹn) .

(32)

Next we introduce the Hilbert space K V with inner product and norm respec-
tively defined, for x̃, ỹ ∈K , as

〈x̃, ỹ〉K V
= 〈x̃,V ỹ〉 and ‖x̃‖K V =

√
〈x̃,V x̃〉, (33)

respectively. Since 1
2 S +M and 1

2 S +Q are maximally monotone on K , the opera-
tors

B := V−1
(

1
2

S +M
)

and A := V−1
(

1
2

S +Q
)

(34)

are maximally monotone on K V . Moreover, since V is self-adjoint and ρ-strongly
positive, one can easily see that weak and strong convergence in K V are equivalent
with weak and strong convergence in K , respectively.

Consequently, for every n≥ 0 we have (see [14])
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V (x̃n− ỹn) ∈
(

1
2

S +M
)

ỹn⇔V x̃n ∈
(

V +
1
2

S +M
)

ỹn

⇔ x̃n ∈
(

Id+V−1
(

1
2

S +M
))

ỹn⇔ ỹn =
(

Id+V−1
(

1
2

S +M
))−1

x̃n

⇔ ỹn = (Id+B)−1 x̃n (35)

and

V (w̃n− z̃n) ∈
(

1
2

S +Q
)

z̃n⇔ z̃n =
(

Id+V−1
(

1
2

S +Q
))−1

w̃n

⇔ z̃n = (Id+A)−1 w̃n. (36)

Thus, the iterative rules in (32) become

(∀n≥ 0)

 ỹn = JBx̃n
z̃n = JA (2ỹn− x̃n)
x̃n+1 = x̃n +λn(̃zn− ỹn)

, (37)

which is nothing else than the error-free Douglas-Rachford algorithm (see [22]).
1. We assume that ∑

+∞

n=0 λn(2−λn) = +∞ and are going to prove the statements
in the first item.

1.a. According to [22, Theorem 2.1(i)(a)] the sequence (x̃n)n≥0 converges weakly
in K V and, consequently, in K to a point x ∈ fix(RARB) with JBx ∈ zer(A + B).
The claim follows by identifying JBx and by noting (27).

1.b. According to [22, Theorem 2.1(i)(b)] it follows that (RARBx̃n− x̃n)→ 0 (n→
+∞). The claim follows by taking into account that for every n≥ 0

λn(zn− yn) =
λn

2
(RARBx̃n− x̃n) .

1.c. As shown in a., we have that x̃n → x ∈ fix(RARB) (n→ +∞) with JBx ∈
zer(A+B) = zer(M +S +Q). Hence, by the continuity of JB, we have

ỹn = JBx̃n→ JBx ∈ zer(M +S +Q) (n→+∞).

2. Assume that infn≥0 λn > 0 and A and B−1
i , i = 1, ...,m, are uniformly mono-

tone. Then there exist increasing functions φA : R+ → [0,+∞] and φB−1
i

: R+ →
[0,+∞], i = 1, ...,m, vanishing only at 0, such that

〈x− y,u− z〉 ≥ φA (‖x− y‖H ) ∀(x,u),(y,z) ∈ graA

〈v−w, p−q〉 ≥ φB−1
i

(
‖v−w‖Gi

)
∀(v, p),(w,q) ∈ graB−1

i ∀i = 1, ...,m.
(38)

The function φM :R+→ [0,+∞],
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φM(c) = inf

{
φA(a)+

m

∑
i=1

φB−1
i

(bi) :

√
a2 +

m

∑
i=1

b2
i = c

}
, (39)

is increasing and vanishes only at 0 and it fulfills for each (x,u),(y,z) ∈ graM

〈x− y,u− z〉K ≥ φM (‖x− y‖K ) . (40)

Thus, M is uniformly monotone on K .

The function φB : R+ → [0,+∞], φB(t) = φM

(
1√
‖V‖

t
)

, is increasing and van-

ishes only at 0. Let be (x,u),(y,z) ∈ graB. Then there exist v ∈ Mx and w ∈ My
fulfilling V u = 1

2 Sx+ v and V z = 1
2 Sy+w and it holds (see [14])

〈x− y,u− z〉K V
≥ φM

(
1√
‖V‖
‖x− y‖K V

)
≥ φB

(
‖x− y‖K V

)
. (41)

Consequently, B is uniformly monotone on K V and, according to [22, Theorem
2.1(ii)(b)], (JBxn)n≥0 converges strongly to the unique element y ∈ zer(A + B) =
zer(M +S +Q). Thus, ỹn→ y as n→+∞. ut

Remark 5. In the following we emphasize the relations between the proposed algo-
rithm and other existent primal-dual iterative schemes.

(i) Other iterative methods for solving the primal-dual monotone inclusion pair
introduced in Problem 1 were given in [23] and [40] for D−1

i , i = 1, ...,m, monotone
Lipschitzian and cocoercive operators, respectively. Different to the approach pro-
posed in this subsection, there, the operators D−1

i , i = 1, ...,m, are processed within
forward steps.

(ii) When for every i = 1, ...,m one takes Di(0) = Gi and Di(v) = ∅ ∀v∈ Gi \{0},
the algorithms proposed in [23, Theorem 3.1] (see, also, [17, Theorem 3.1] for the
case m = 1) and [40, Theorem 3.1] applied to Problem 1 differ from Algorithm 11.

(iii) When solving the particular case of a primal-dual pair of convex optimiza-
tion problems

inf
x∈H
{ f (x)+g(Lx)} ,

and

sup
v∈G
{− f ∗(−L∗v)−g∗(v)} ,

where f ∈ Γ (H ),g ∈ Γ (G ) and L : H → G is a linear continuous operator, one
can make use of the iterative schemes provided in [24, Algorithm 3.1] and [19,
Algorithm 1]. Let us notice that particularizing Algorithm 11 to this framework
gives rise to a numerical scheme different to the ones in the mentioned literature.
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3.3.2 A second primal-dual Douglas-Rachford type algorithm

In Algorithm 11 each operator Li and its adjoint L∗i , i = 1, ...,m are processed two
times, however, for large-scale optimization problems these matrix-vector multi-
plications may be expensive compared with the computation of the resolvents of
the operators A, B−1

i and D−1
i , i = 1, ...,m. The second primal-dual algorithm of

Douglas-Rachford type we propose for solving the monotone inclusions in Problem
1 has the particularity that it evaluates each operator Li and its adjoint L∗i , i = 1, ...,m,
only once.

Algorithm 13. Let x0 ∈H , (y1,0, . . . ,ym,0) ∈ G1× . . .×Gm, (v1,0, . . . ,vm,0) ∈ G1×
. . .× Gm, and τ and σi, i = 1, ...,m, be strictly positive real numbers such that
τ ∑

m
i=1 σi‖Li‖2 < 1

4 . Furthermore, let γi ∈R++, γi≤ 2σ
−1
i τ ∑

m
i=1 σi‖Li‖2, i = 1, ...,m,

let (λn)n≥0 be a sequence in (0,2) and set

(∀n≥ 0)



p1,n = JτA (xn− τ (∑m
i=1 L∗i vi,n− z))

xn+1 = xn +λn(p1,n− xn)
For i = 1, . . . ,m

p2,i,n = JγiDi (yi,n + γivi,n)
yi,n+1 = yi,n +λn(p2,i,n− yi,n)
p3,i,n = J

σiB−1
i

(vi,n +σi (Li(2p1,n− xn)− (2p2,i,n− yi,n)− ri))
vi,n+1 = vi,n +λn(p3,i,n− vi,n).

(42)

Theorem 14. In Problem 1 suppose that Cx = 0 for all x ∈H ,

z ∈ ran

(
A+

m

∑
i=1

L∗i (Bi �Di)(Li ·−ri)

)
(43)

and consider the sequences generated by Algorithm 13.

1. If ∑
+∞

n=0 λn(2−λn) = +∞, then

a. (xn,y1,n, . . . ,ym,n,v1,n, . . . ,vm,n)n≥0 converges weakly to a point (x,y1, ...,ym,
v1, ...,vm) ∈H ×G1× . . .×Gm×G1× . . .×Gm such that (x,v1, ...,vm) is a
primal-dual solution to Problem 1.

b. λn(p1,n−xn)→ 0 (n→+∞), λn(p2,i,n−yi,n)→ 0 (n→+∞) and λn(p3,i,n−
vi,n)→ 0 (n→+∞) for i = 1, ...,m.

c. whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert spaces,
(xn,v1,n, . . . ,vm,n)n≥0 converges strongly to a primal-dual solution of Prob-
lem 1.

2. If infn≥0 λn > 0 and

A,B−1
i and Di, i = 1, ...,m, are uniformly monotone,

then (p1,n, p3,1,n, . . . , p3,m,n)n≥0 converges strongly to the unique primal-dual
solution of Problem 1.
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For the proof of Theorem 14 we refer the reader to [14].

Remark 6. When for every i = 1, ...,m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈
Gi \{0}, and (di,n)n≥0 as a sequence of zeros, one can show that the assertions made
in Theorem 14 hold true for step length parameters satisfying

τ

m

∑
i=1

σi‖Li‖2 < 1,

when choosing (y1,0, . . . ,ym,0) = (0, . . . ,0) in Algorithm 13, since the sequences
(y1,n, . . . ,ym,n)n≥0 and (v1,n, . . . ,vm,n)n≥0 vanish in this particular situation.

Remark 7. In the following we emphasize the relations between Algorithm 13 and
other existent primal-dual iterative schemes.

(i) When for every i = 1, ...,m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈ Gi \{0},
Algorithm 13 with (y1,0, . . . ,ym,0) = (0, . . . ,0) as initial choice provides an iterative
scheme which is identical to the one in [40, Eq. (3.3)], but differs from the one in
[23, Theorem 3.1] (see, also, [17, Theorem 3.1] for the case m = 1) when the latter
are applied to Problem 1.

(ii) When solving the particular case of a primal-dual pair of convex optimiza-
tion problems mentioned in Remark 5(iii) and when considering as initial choice
y1,0 = 0, Algorithm 13 gives rise to an iterative scheme which is equivalent to [24,
Algorithm 3.1]. Furthermore, the method in Algorithm 13 equals the one in [19,
Algorithm 1], our choice of (λn)n≥0 to be variable in the interval (0,2), however,
relaxes the assumption in [19] that (λn)n≥0 is a constant sequence in (0,1].

4 Applications to convex optimization

In this section we will employ theoretical results presented in Section 3 in the con-
text of solving convex optimization problems, an approach which relies on the fruit-
ful idea that the convex subdifferential of a proper, convex and lower semicontinu-
ous function is a maximally monotone operator. We are able to treat a wide variety
of real world problems, in fields like image denoising and deblurring, support vec-
tor machine learning, location theory, portfolio optimization and clustering, where
convex optimization problems solvable via primal-dual splitting algorithms occur.
The primal-method for which we opt will be in concordance with the nature of the
convex optimization problem under investigation.

4.1 A primal-dual pair of convex optimization problems

The primal-dual pair of convex optimization problems under investigation is de-
scribed as follows.
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Problem 2. For a real Hilbert space H , let z ∈H , f ∈ Γ (H ) and h : H →R be
a convex and differentiable function with µ-Lipschitzian gradient with µ ∈ R++.
Furthermore, for i = 1, . . . ,m, consider the real Hilbert space Gi, let ri ∈ Gi, gi, li ∈
Γ (Gi) be such that li is ν

−1
i -strongly convex with νi ∈R++ and let Li : H → Gi be a

nonzero linear continuous operator. We consider the convex minimization problem

(P) inf
x∈H

{
f (x)+

m

∑
i=1

(gi � li)(Lix− ri)+h(x)−〈x,z〉
}

(44)

and its dual problem

(D) sup
(vi,...,vm)∈G1×...×Gm

{
−( f ∗�h∗)

(
z−

m

∑
i=1

L∗i vi

)
−

m

∑
i=1

(g∗i (vi)+ l∗i (vi)+ 〈vi,ri〉)

}
.

(45)

In order to investigate the primal-dual pair (44)-(45) in the context of Problem 1,
one has to take

A = ∂ f , C = ∇h, and, for i = 1, . . . ,m, Bi = ∂gi and Di = ∂ li.

Then A and Bi, i = 1, ...,m are maximally monotone, C is monotone and µ−1-
cocoercive (resp. µ-Lipschitz continuous), by [2, Proposition 17.10], and D−1

i = ∇l∗i
is monotone and ν

−1
i -cocoercive (resp. νi-Lipschitz continuous), i = 1, . . . ,m, ac-

cording to [2, Proposition 17.10, Theorem 18.15 and Corollary 16.24].

Remark 8. When solving monotone inclusion problems arising in convex opti-
mization the problem formulations of the forward-backward and of the forward-
backward-forward type algorithms coincide, as a result of the Baillon-Haddad The-
orem (cf. [2, Corollary 18.16]). On the other hand, when h : H →R, h(x) = 0 for
all x ∈H , one can consider the Douglas-Rachford type methods treated in Section
3.3, even if the strong convexity assumption imposed on the functions li ∈ Γ (Gi),
i = 1, . . . ,m, are removed.

Whenever (x,v1, . . . ,vm)∈H ×G1 . . .×Gm is a primal-dual solution to (44)-(45),
namely,

z−
m

∑
i=1

L∗i vi ∈ ∂ f (x)+∇h(x) and vi ∈ (∂gi �∂ li)(Lix− ri), i = 1, . . . ,m, (46)

then x is an optimal solution to (P), (v1, . . . ,vm) is an optimal solution to (D) and the
optimal objective values of the two problems, which we denote by v(P) and v(D),
respectively, coincide (thus, strong duality holds).

Since a fundamental assumption in the convergence theorems provided in the
previous section asks for the existence of a solution for the monotone inclusion
problem under investigation, we formulate in the following proposition, which was
given in [23, Proposition 4.3], sufficient conditions for it in the context of convex
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optimization problems. To this end we mention that the strong quasi-relative interior
of a nonempty convex set Ω ⊆H is defined as

sqriΩ =

{
x ∈Ω :

⋃
λ≥0

λ (Ω − x) is a closed linear subspace

}
.

Proposition 1. Suppose that (P) has at least one solution and set

S := {(L1x− y1, ...,Lmx− ym) : x ∈ dom f and yi ∈ domgi +dom li, i = 1, ...,m} .

The inclusion

z ∈ ran

(
∂ f +

m

∑
i=1

L∗i
(
(∂gi �∂ li)(Li ·−ri)

)
+∇h

)

is satisfied, if one of the following holds:

(i) (r1, . . . ,rm) ∈ sqriS.
(ii) for every i ∈ {1, . . . ,m}, gi or li is real-valued.

(iii) H and Gi, i = 1, ...,m, are finite dimensional and there exists x ∈ ridom f such
that

Lix− ri ∈ ridomgi + ridom li, i = 1, ...,m.

4.2 Image processing involving total variation functionals

For the applications discussed in the context of image processing, the images have
been normalized, in order to make their pixels range in the closed interval from 0 to
1.

4.2.1 TV-based image denoising

Our first numerical experiment aims the solving of an image denoising problem via
total variation regularization. More precisely, we deal with the convex optimization
problem

inf
x∈Rn

{
λ TV (x)+

1
2
‖x−b‖2

}
, (47)

where λ ∈ R++ is the regularization parameter, TV : Rn → R is a discrete total
variation functional and b ∈Rn is the observed noisy image.

In this context, x ∈ Rn represents the vectorized image X ∈ RM×N , where n =
M ·N and xi, j denotes the normalized value of the pixel located in the i-th row and
the j-th column, for i = 1, . . . ,M and j = 1, . . . ,N. Two popular choices for the
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, λ = 0.035 (d) Denoised image, λ = 0.07

Fig. 1 The noisy image in
(a) was obtained after adding
white Gaussian noise with
standard deviation σ = 0.06
to the original 256× 256
lichtenstein test image, while
(c) shows the denoised image
for λ = 0.035. Likewise, the
noisy image when choosing
σ = 0.12 and the denoised
one for λ = 0.07 are shown in
(b) and (d), respectively.

discrete total variation functional are the isotropic total variation TViso :Rn→R,

TViso(x) =
M−1

∑
i=1

N−1

∑
j=1

√
(xi+1, j− xi, j)2 +(xi, j+1− xi, j)2

+
M−1

∑
i=1
|xi+1,N− xi,N |+

N−1

∑
j=1

∣∣xM, j+1− xM, j
∣∣ ,

and the anisotropic total variation TVaniso :Rn→R,

TVaniso(x) =
M−1

∑
i=1

N−1

∑
j=1

∣∣xi+1, j− xi, j
∣∣+ ∣∣xi, j+1− xi, j

∣∣
+

M−1

∑
i=1
|xi+1,N− xi,N |+

N−1

∑
j=1

∣∣xM, j+1− xM, j
∣∣ ,

where in both cases reflexive (Neumann) boundary conditions are assumed.
We denote Y = R

n ×Rn and define the linear operator L : Rn → Y , xi, j 7→
(L1xi, j,L2xi, j), where

L1xi, j =
{

xi+1, j− xi, j, if i < M
0, if i = M and L2xi, j =

{
xi, j+1− xi, j, if j < N
0, if j = N .
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σ = 0.12, λ = 0.07 σ = 0.06, λ = 0.035

ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

DR1 1.14s (48) 2.80s (118) 1.07s (45) 2.44s (103)
DR2 0.92s (75) 2.10s (173) 0.80s (66) 1.78s (147)
FBF 7.51s (343) 49.66s (2271) 4.08s (187) 34.44s (1586)
FBF Acc 2.20s (101) 9.84s (451) 1.61s (73) 6.70s (308)
PD 3.69s (337) 24.34s (2226) 2.02s (183) 16.74s (1532)
PD Acc 1.08s (96) 4.94s (447) 0.79s (70) 3.53s (319)
AMA 5.07s (471) 32.59s (3031) 2.74s (254) 23.49s (2184)
AMA Acc 1.06s (89) 6.63s (561) 0.75s (63) 4.53s (383)
Nesterov 1.15s (102) 6.66s (595) 0.81s (72) 4.70s (415)
FISTA 0.96s (100) 6.12s (645) 0.68s (70) 4.08s (429)

Table 1: Performance evaluation for the images in Figure 1. The entries refer to the CPU times in
seconds and to the number of iterations, respectively, needed in order to attain a root mean squared
error for the iterates below the tolerance ε .

The operator L represents a discretization of the gradient using reflexive (Neu-
mann) boundary conditions and standard finite differences. One can easily check
that ‖L‖2 ≤ 8, while its adjoint L∗ : Y →R

n is given in [18].
Within this example we will focus on the anisotropic total variation functional,

which is nothing else than the composition of the l1-norm on Y with the linear op-
erator L. Due to the full splitting characteristics of the iterative methods presented
in the previous sections, we only need to compute the proximal point of the con-
jugate of the l1-norm, the latter being the indicator function of the dual unit ball.
Thus, the calculation of the proximal point will result in the computation of a pro-
jection, which admits an efficient implementation. The more challenging isotropic
total variation functional is employed in the forthcoming subsection in the context
of image deblurring.

Thus, problem (47) reads equivalently

inf
x∈Rn
{h(x)+g(Lx)} ,

where h :Rn→R, h(x) = 1
2‖x− b‖2, is 1-strongly convex and differentiable with

1-Lipschitzian gradient and g : Y →R is defined as g(y1,y2) = λ‖(y1,y2)‖1. Then
its conjugate g∗ : Y →R is nothing else than

g∗(p1, p2) = (λ‖ · ‖1)
∗ (p1, p2) = λ

∥∥∥( p1

λ
,

p2

λ

)∥∥∥∗
1
= δS(p1, p2),

where S = [−λ ,λ ]n× [−λ ,λ ]n. We solved the regularized image denoising prob-
lem with the two Douglas-Rachford type primal-dual methods (DR1, cf. Algorithm
11, and DR2, cf. Algorithm 13), the forward-backward-forward type primal dual
method (FBF, cf. Theorem 6) and its accelerated version (FBF Acc, cf. Algorithm
7), the primal-dual method (PD) and its accelerated version (PD Acc), both given
in [19], the alternating minimization algorithm (AMA) from [38] together with its



28 Radu Ioan Boţ, Ernö Robert Csetnek and Christopher Hendrich

Nesterov-type acceleration (cf. [33]), as well as the Nesterov (cf. [32]) and FISTA
(cf. [3]) algorithm operating on the dual problem. A comparison of the obtained
results is shown in Table 1.

4.2.2 TV-based image deblurring

The second numerical experiment in image processing concerns the solving of an
ill-conditioned linear inverse problem arising in image deblurring. For a given ma-
trix A ∈ Rn×n describing a blur (or averaging) operator and a given vector b ∈Rn

representing the blurred and noisy image, our aim is to estimate the unknown origi-
nal image x ∈Rn fulfilling

Ax = b.

To this end we solved the following regularized convex nondifferentiable problem

inf
x∈Rn

{
‖Ax−b‖1 +α2 ‖Wx‖1 +α1TV (x)+δ[0,1]n(x)

}
, (48)

where the regularization is done by a combination of two functionals with different
properties. Here, α1, α2 ∈R++ are regularization parameters, TV :Rn→R is the
discrete isotropic total variation function and W : Rn → R

n is the discrete Haar
wavelet transform with four levels.

For (y,z), (p,q) ∈ Y , we introduce the inner product

〈(y,z),(p,q)〉=
M

∑
i=1

N

∑
j=1

yi, j pi, j + zi, jqi, j

and define ‖(y,z)‖× = ∑
M
i=1 ∑

N
j=1

√
y2

i, j + z2
i, j. One can check that ‖ · ‖× is a norm

on Y and that for every x ∈ Rn it holds TViso(x) = ‖Lx‖×, where L is the linear
operator defined in the previous subsection.

Consequently, the optimization problem (48) can be equivalently written as

inf
x∈Rn
{ f (x)+g1(Ax)+g2(Wx)+g3(Lx)}, (49)

where f :Rn→R, f (x) = δ[0,1]n(x), g1 :Rn→R, g1(y) = ‖y−b‖1, g2 :Rn→R,
g2(y) = α2‖y‖1 and g3 : Y → R, g3(y,z) = α1‖(y,z)‖×. The proximal points of
these functions admit explicit representations (see, for instance, [13, 14]).

Figure 2 shows the performance of Algorithm 11 (DR1) and Algorithm 13 (DR2)
when solving (49) for α1 = 3e-3 and α2 = 1e-3. It also shows the original, observed
and reconstructed versions of the 256×256 cameraman test image.
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(a) Original image (b) Blurred and noisy image (c) Reconstructed image
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Fig. 2: Top: Original, observed and reconstructed versions of the cameraman. Bottom: The evolu-
tion of the values of the objective function and of the ISNR (improvement in signal-to-noise ratio)
for Algorithm 11 (DR1), Algorithm 13 (DR2) and the forward-backward-forward method (FBF)
from Theorem 6.

4.3 Kernel based machine learning

The next numerical experiment concerns the solving of the problem of classifying
images via support vector machines classification, an approach which belongs to the
class of kernel based learning methods.

The given data set consisting of 11339 training images and 1850 test images of
size 28× 28 was taken from the website http://www.cs.nyu.edu/ roweis/data.html.
The problem we consider is to determine a decision function based on a pool of
handwritten digits showing either the number five or the number six, labeled by
+1 and −1, respectively (see Figure 3). Subsequently, we evaluate the quality of
the decision function on the test data set by computing the percentage of misclas-
sified images. In order to reduce the computational effort, we used only half of the
available images from the training data set.

The classifier functional f is assumed to be an element of the Reproducing Kernel
Hilbert Space (RHKS) Hκ , which in our case is induced by the symmetric and
finitely positive definite Gaussian kernel function
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Fig. 3: A sample of images belonging to the classes +1 and −1, respectively.

κ :Rd×Rd →R, κ(x,y) = exp

(
−‖x− y‖2

2σ2
κ

)
.

Let 〈·, ·〉κ denote the inner product on Hκ , ‖ · ‖κ the corresponding norm and K ∈
R

n×n the Gram matrix with respect to the training data set

Z = {(X1,Y1), . . . ,(Xn,Yn)} ⊆Rd×{+1,−1},

namely the symmetric and positive definite matrix with entries Ki j = κ(Xi,X j) for
i, j = 1, . . . ,n. Within this example we make use of the hinge loss v :R×R→R,
v(x,y) = max{1−xy,0}, which penalizes the deviation between the predicted value
f(x) and the true value y ∈ {+1,−1}. The smoothness of the decision function
f ∈Hκ is employed by means of the smoothness functional Ω : Hκ →R, Ω( f ) =
‖f‖2

κ
, taking high values for non-smooth functions and low values for smooth ones.

The decision function f we are looking for is the optimal solution of the Tikhonov
regularization problem

inf
f∈Hκ

{
C

n

∑
i=1

v(f(Xi),Yi)+
1
2

Ω(f)

}
, (50)

where C > 0 denotes the regularization parameter controlling the tradeoff between
the loss function and the smoothness functional.

The representer theorem (cf. [36]) ensures the existence of a vector of coefficients
c = (c1, . . . ,cn)T ∈Rn such that the minimizer f of (50) can be expressed as a kernel
expansion in terms of the training data, i.e., f(·) = ∑

n
i=1 ciκ(·,Xi). Thus, the smooth-

ness functional becomes Ω(f) = ‖f‖2
κ

= 〈f,f〉
κ

= ∑
n
i=1 ∑

n
j=1 cic jκ(Xi,X j) = cT Kc

and for i = 1, . . . ,n it holds f(Xi) = ∑
n
j=1 c jκ(Xi,X j) = (Kc)i. Hence, in order to de-

termine the decision function one has to solve the convex optimization problem

inf
c∈Rn
{g(Kc)+h(c)}, (51)

where g : Rn → R, g(z) = C ∑
n
i=1 v(zi,Yi), and h : Rn → R, h(c) = 1

2 cT Kc. The
function h : Rn → R is convex and differentiable and it fulfills ∇h(c) = Kc for
every c ∈ Rn, thus ∇h is Lipschitz continuous with constant µ = ‖K‖. It is much
easier to process the function h via its gradient than via its proximal point. For every
p ∈Rn it holds (see, also, [12, 16])
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g∗(p) = sup
z∈Rn

{
〈p,z〉−C

n

∑
i=1

v(zi,Yi)

}
=

n

∑
i=1

(Cv(·,Yi))∗(pi) = C
n

∑
i=1

v(·,Yi)∗
( pi

C

)
=
{

∑
n
i=1 piYi, if piYi ∈ [−C,0], i = 1, . . . ,n,

+∞, otherwise.

Thus, for σ ∈R++ and c ∈Rn we have

Proxσg∗ (c) = argmin
p∈Rn

{
σC

n

∑
i=1

v(·,Yi)∗
( pi

C

)
+

1
2
‖p− c‖2

}

= argmin
piYi∈[−C,0]

i=1,...,n

{
n

∑
i=1

[
σ piYi +

1
2

(pi− ci)
2
]}

=
(
PY1[−C,0] (c1−σY1) , . . . ,PYn[−C,0] (cn−σYn)

)T
.

With respect to the considered dataset, we denote by

D = {(Xi,Yi), i = 1, . . . ,5670} ⊆R784×{+1,−1}

the set of available training data consisting of 2711 images in the class +1 and 2959
images in the class −1. Notice that a sample from each class of images is shown in
Figure 3. Due to numerical reasons, the images have been normalized (cf. [28]) by

dividing each of them by the quantity
(

1
5670 ∑

5670
i=1 ‖Xi‖2

) 1
2
.

C kernel parameter σκ

0.125 0.25 0.5 0.75 1 2

0.1 1.0270 1.3514 1.3514 1.8919 2.1081 3.0270
1 1.0270 0.7027 0.7568 1.3514 1.4595 2.2162
10 1.0270 0.7568 0.9189 1.0811 1.1892 1.8378
100 1.0270 0.7568 0.8649 1.4054 1.2432 1.8378
1000 1.0270 0.7568 0.8649 1.4595 1.2432 1.8378

Table 2: Misclassification rate in percentage for different model parameters.

In order to determine a good choice for the kernel parameter σκ ∈ R++ and
the tradeoff parameter C ∈ R++, we tested different combinations of them with
the forward-backward (FB) solver given in [40]. The results are shown in Table 2,
whereby the combination σ = 0.25 and C = 1 provides with 0.7027% the lowest
misclassification rate. This means that among the 1870 images belonging to the test
data set, 13 of them were not correctly classified.

Table 3 shows some results when solving the classification problem (51) via
those primal-dual splitting methods which are able to perform a forward step
on the operator ∇h. Since the matrix K ∈ Rn×n is positive definite, the function
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misclassification rate at 0.7027 % RMSE≤ 10−3

FB 3.07s (113) 19.50s (717)
FB Acc 95.33s (3522) 348.41s (12923)
FBF 4.36s (80) 32.92s (606)
FBF Acc 3.63s (67) 32.90s (606)

Table 3: Performance evaluation for the SVM problem for C = 1 and σκ = 0.25. The entries refer
to the CPU times in seconds and the number of iterations.

h :Rn→R,h(c) = 1
2 cT Kc, is strongly convex, as well. Hence, there exists a unique

solution to (51) and we can also apply the accelerated versions of the (FB) and of
the (FBF) method described in Section 3. However, we notice that the acceleration
of the forward-backward primal-dual method (FB Acc) converges extremely slow
for this instance.

4.4 The generalized Heron problem

The following numerical experiments address the generalized Heron problem which
has been recently investigated in [30, 31] and where for its solving subgradient-type
methods have been used.

While the classical Heron problem concerns the finding of a point u on a given
straight line in the plane such that the sum of distances from u to given points u1, u2

is minimal, the problem that we address here aims to find a point in a nonempty
convex closed set Ω ⊆Rn which minimizes the sum of the distances to given convex
closed sets Ωi ⊆Rn, i = 1, . . . ,m.

The distance from a point x ∈Rn to a nonempty set Ω ⊆Rn is given by

d(x;Ω) = (‖ · ‖�δΩ )(x) = inf
z∈Ω
‖x− z‖.

Thus the generalized Heron problem we address as follows reads

inf
x∈Ω

m

∑
i=1

d(x;Ωi). (52)

We observe that, due to the formulation of the distance function as the infimal convo-
lution of two proper, convex and lower semicontinuous functions, (52) perfectly fits
into the framework considered in Problem 2 and for which the Douglas-Rachford
type algorithms were proposed, when setting

f = δΩ , and gi = ‖ · ‖, li = δΩi , i = 1, . . . ,m. (53)

However, note that (52) can be solved neither via the forward-backward type nor
the forward-backward-forward type primal-dual method, since both of them require
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the presence of at least one strongly convex function (cf. Baillon-Haddad Theorem,
[2, Corollary 18.16]) in each of the infimal convolutions ‖ ·‖�δΩi , i = 1, . . . ,m, fact
which is obviously here not the case. Notice that

g∗i :Rn→R, g∗i (p) = sup
x∈Rn
{〈p,x〉−‖x‖}= δB(0,1)(p), i = 1, ...,m,

thus the proximal points of f , g∗i and l∗i , i = 1, ...,m, can be calculated via projec-
tions, in case of the latter via Moreau’s decomposition formula.

In the following we test our algorithms on some examples taken from [30, 31].

Example 1 (Example 5.5 in [31]). Consider problem (52) with the constraint set Ω

being the closed ball centered at (5,0) having radius 2 and the sets Ωi, i = 1, . . . ,8,
being pairwise disjoint squares in right position in R2 (i. e. the edges are parallel
to the x- and y-axes, respectively), with centers (−2,4), (−1,−8), (0,0), (0,6),
(5,−6), (8,−8), (8,9) and (9,−5) and side length 1, respectively (see Figure 4
(a)).

Figure 4 gives an insight into the performance of the proposed primal-dual meth-
ods when compared with the subgradient algorithm used in [31]. After a few mil-
liseconds both splitting algorithms reach machine precision with respect to the root-
mean-square error where the following parameters were used:

• DR1: σi = 0.15, τ = 2/(∑8
j=1 σ j), λn = 1.5, x0 = (5,2), vi,0 = 0, i = 1, ...,8;

• DR2: σi = 0.1, τ = 0.24/(∑8
j=1 σ j), λn = 1.8, x0 = (5,2), vi,0 = 0, i = 1, ...,8;

• Subgradient (cf. [31, Theorem 4.1]) x0 = (5,2), αn = 1
n .

(a) Problem with optimizer
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Fig. 4: Example 1. Generalized Heron problem with squares and disc constraint set on the left-
hand side, performance evaluation for the root-mean-square error (RMSE) on the right-hand side.

Example 2 (Example 4.3 in [30]). In this example we solve the generalized Heron
problem (52) inR3, where the constraint set Ω is the closed ball centered at (0,2,0)
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with radius 1 and Ωi, i = 1, ...,5, are cubes in right position with center at (0,−4,0),
(−4,2,−3), (−3,−4,2), (−5,4,4) and (−1,8,1) and side length 2, respectively.

Figure 5 shows that also for this instance the primal-dual approaches outperform
the subgradient method from [31]. In this example we used the following parame-
ters:

• DR1: σi = 0.3, τ = 2/(∑5
j=1 σ j), λn = 1.5, x0 = (0,2,0), vi,0 = 0, i = 1, ...,5;

• DR2: σi = 0.2, τ = 0.24/(∑5
j=1 σ j), λn = 1.8, x0 = (0,2,0), vi,0 = 0, i = 1, ...,5;

• Subgradient (cf. [30, Theorem 4.1]) x0 = (5,2), αn = 1
n .

(a) Problem with optimizer
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Fig. 5: Example 2. Generalized Heron problem with cubes and ball constraint set on the left-hand
side, performance evaluation for the RMSE on the right-hand side.

4.5 Portfolio optimization under different risk measures

We let (Ω ,F,P) be an atomless probability space, where the elements ω of Ω repre-
sent future states, or individual scenarios (and are allowed to be only finitely many),
F is a σ -algebra on measurable subsets of Ω and P is a probability measure on F.
For a measurable random variable X : Ω →R∪{+∞} the expectation value with
respect to P is defined by E[X ] :=

∫
Ω

X(ω)dP(ω).
Consider further the real Hilbert space

L2 :=
{

X : Ω →R∪{+∞} : X is measurable,
∫

Ω

|X(ω)|2 dP(ω) < +∞

}
endowed with inner product and norm defined for arbitrary X ,Y ∈ L2 via

〈X ,Y 〉=
∫

Ω

X(ω)Y (ω)dP(ω) and ‖X‖= (〈X ,X〉)
1
2 =

(∫
Ω

(X(ω))2 dP(ω)
) 1

2
,
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respectively.
In this section we measure risk with the so-called Optimized Certainty Equivalent

(OCE), which was introduced for concave utility functions in [4, 5] and adapted to
convex utility functions in [10]. Here, we call u :R→R utility function, when u is
proper, convex, lower semicontinuous and nonincreasing function such that u(0) = 0
and −1 ∈ ∂u(0).

The generalized convex risk measure we use in order to quantify the risk is de-
fined as (cf. [4, 5, 10])

ρu : L2→R∪{+∞}, ρu(X) = inf
λ∈R
{λ +E [u(X +λ )]} . (54)

We consider a portfolio with a number of N ≥ 1 different positions with returns
Ri ∈ L2, i = 1, . . . ,N, a nonzero vector of expected returns µ = (E [R1] , . . . ,E [RN ])T

and µ∗ ≤maxi=1,...,N E [Ri] a given lower bound for the expected return of the port-
folio. In the following, by making use of different utility functions, we are solving
the optimization problem

inf
xT µ≥µ∗, xT

1
N=1,

x=(x1,...,xN)T∈RN
+

ρu

(
N

∑
i=1

xiRi

)
, (55)

which assumes the minimization of the risk of the portfolio subject to constraints
on the expected return of the portfolio and on the budget. Here, 1N denotes the
vector in RN having all entries equal to 1. By using (54), we obtain the following
reformulation of problem (55)

inf
xT µ≥µ∗, xT

1
N=1,

x=(x1,...,xN)T∈RN
+, λ∈R

{
λ +E

[
u

(
N

∑
i=1

xiRi +λ

)]}
, (56)

which will prove to be more suitable for being solved by means of primal-dual
proximal splitting algorithms. Therefore, we introduce the convex closed sets

S =
{

x ∈RN : xT
µ ≥ µ

∗} and T =
{

x ∈RN : xT
1

N = 1
}

,

and reformulate (56) as the unconstrained problem

inf
(x,λ )∈RN×R

{
δ
R

N
+
(x)+λ +δS×R(x,λ )+δT×R(x,λ )+(E [u]◦K)(x,λ )

}
, (57)

where K :RN×R→ L2, (x1, . . . ,xn,λ ) 7→∑
N
i=1 xiRi +λ . When calculating the prox-

imal points of the functions occurring in the formulation of this convex minimiza-
tion problem, one has only to determine the projections on the setsRN

+, S, and T , for
which explicit formulae can be given (cf. [2, Example 3.21 and Example 28.16]).
The proximal point with respect to the function E [u] can be obtained via the follow-
ing proposition (cf. [15]).
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µ∗ linear (α = 0.95) exponential indicator quadr. (β = 1) log. (θ = 5)

0.3 0.14s (500) 0.18s (402) - (> 15000) 0.05s (170) 0.53s (1891)
0.5 0.15s (520) 0.15s (336) - (> 15000) 0.06s (196) 0.38s (1335)
0.7 0.33s (1202) 0.31s (682) - (> 15000) 0.06s (186) 0.72s (2570)
0.9 0.32s (1164) 0.40s (885) - (> 15000) 0.08s (272) 1.07s (3820)
1.1 0.41s (1526) 6.80s (15222) - (> 15000) 0.14s (486) 1.18s (4198)
1.3 0.42s (1570) 5.45s (12155) - (> 15000) 0.41s (1476) 6.61s (23547)

Table 4: CPU times in seconds and the number of iterations when solving the portfolio optimiza-
tion problem (55) for different utility functions.

Proposition 2. For arbitrary random variables X ∈ L2 and γ ∈R++ it holds

ProxγE[u](X)(ω) = Proxγu (X(ω)) ∀ω ∈Ω a. s.. (58)

For our experiments we took weekly opening courses over the last 13 years from
assets belonging to the indices DAX and NASDAQ in order to obtain the returns
Ri ∈ R|Ω |, i = 1, ...,N, for |Ω | = 689 and N = 106. The data was provided by the
Yahoo finance database. Assets which do not support the required historical infor-
mation like Volkswagen AG (DAX) or Netflix, Inc. (NASDAQ) were not taken into
account.

For solving the portfolio optimization problem (55), we used convex risk mea-
sures induced by linear, exponential, indicator, quadratic and logarithmic utility
functions. We applied Algorithm 11 (DR1) for solving the unconstrained problem
in (57), while using formulae for the proximal points of each utility function given
in [15]. The values of the expected returns associated with Ri, i = 1, ...,N ranged
from −0.2690 (Commerzbank AG, DAX) to 1.4156 (priceline.com Incorporated,
NASDAQ).

Computational results for this problem are reported in Table 4 for different values
of µ∗. We terminated the algorithm when subsequent iterates started to stay within
an accuracy level of 1% with respect to the set of constraints and to the optimal
objective value. It shows that the worst-case risk measure, which is obtained by
using the indicator utility, performs poorly on the given dataset, while it seems that
the algorithm is sensitive to the lower bound on the expected return µ∗.

4.6 Clustering

In cluster analysis one aims for grouping a set of points such that points within the
same group are more similar (usually measured via distance functions) to each other
than to points in other groups. Clustering can be formulated as a convex optimiza-
tion problem (see, for instance, [27, 29, 20]). In this example, we are treating the
minimization problem
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Fig. 6 Clustering two in-
terlocking half moons. The
colors (resp. the shapes) show
the correct affiliations.

inf
xi∈Rn, i=1,...,m

{
1
2

m

∑
i=1
‖xi−ui‖2 + γ ∑

i< j
ωi j‖xi− x j‖p

}
, (59)

where γ ∈ R+ is a tuning parameter, p ∈ {1,2} and ωi j ∈ R+ represent weights
on the terms ‖xi− x j‖p, for i, j = 1, . . . ,m, i < j. For each given point ui ∈ Rn,
i = 1, . . . ,m, the variable xi ∈ Rn represents the associated cluster center. In [27],
the authors consider `1, `2, and `∞ norms on the penalty terms xi− x j while in [29]
arbitrary `p norms were taken into account. Since the objective function is strongly
convex, there exists a unique solution to (59).

The tuning parameter γ ∈ R+ plays a central role in the clustering problem.
Taking γ = 0, each cluster center xi will coincide with the associated point ui. As γ

increases, the cluster centers will start to coalesce, where two points ui, u j are said
to belong to the same cluster when xi = x j. One obtains a single cluster containing
all points when γ becomes sufficiently large.

Moreover, the choice of the weights is important, as well, since cluster cen-
ters may coalesce promptly as γ passes certain critical values. For our weights
we used a K-nearest neighbors strategy, as proposed in [20]. Therefore, whenever
i, j = 1, . . . ,m, i < j, we set the weight to ωi j = ιK

i j exp(−φ‖xi− x j‖2
2), where

ι
K
i j =

{
1, if j is among i’s K-nearest neighbors or vice versa,
0, otherwise.

We took the values K = 10 and φ = 0.5, which are the best ones reported in [20] on
a similar dataset.

Due to the nature of the optimization problem under investigation, all primal-
dual splitting methods presented in this paper could be employed in order to solve
it. Independently on the choice of p ∈ {1,2} we took profit in our implementations
from the exact representations of the proximal points of all functions involved in its
formulation.

For our numerical tests we considered the standard dataset consisting of two in-
terlocking half moons inR2, each of them being composed of 100 points (see Figure
6). After determining the unique optimal solution with a state-of-the-art solver over
100000 iterations, our stopping criterion asks the root mean squared error (RMSE)
to be less than or equal to a given bound ε . As tuning parameters we used γ = 4 for
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p = 2, γ = 5.2 p = 1, γ = 4

ε = 10−4 ε = 10−8 ε = 10−4 ε = 10−8

DR1 0.78s (216) 1.68s (460) 0.78s (218) 1.68s (464)
DR2 0.61s (323) 1.20s (644) 0.60s (325) 1.18s (648)
FBF 7.67s (2123) 17.58s (4879) 6.33s (1781) 13.22s (3716)
FBF Acc 5.05s (1384) 10.27s (2801) 4.83s (1334) 9.98s (2765)
FB 2.48s (1353) 5.72s (3090) 2.01s (1092) 4.05s (2226)
FB Acc 2.04s (1102) 4.11s (2205) 1.74s (950) 3.84s (2005)
AMA 13.53s (7209) 31.09s (16630) 11.31s (6185) 23.85s (13056)
AMA Acc 3.10s (1639) 15.91s (8163) 2.51s (1392) 12.95s (7148)
Nesterov 7.85s (3811) 42.69s (21805) 7.46s (3936) > 190s (> 100000)
FISTA 7.55s (4055) 51.01s (27356) 6.55s (3550) 47.81s (26069)

Table 5: Performance evaluation for the clustering problem. The entries refer to the CPU times in
seconds and the number of iterations, respectively, needed in order to attain a root mean squared
error for the iterates below the tolerance ε .

p = 1 and γ = 5.2 for p = 2. Both choices lead to a correct separation of the input
data into the two half moons.

By taking into consideration the results given in Table 5, it shows that the two
Douglas-Rachford type primal-dual methods are superior to all other algorithms
within this comparison. One can also see that the accelerations of the forward-
backward-forward (FBF) and of the forward-backward (FB) type primal-dual meth-
ods have a positive effect on both CPU times and required iterations compared with
the regular methods. The alternating minimization algorithm (AMA, cf. [38]) con-
verges slow in this example. Its Nesterov-type acceleration (cf. [33]), however, per-
forms better. The two accelerated first-order methods FISTA (cf. [3]) and the one
we called Nesterov (cf. [32]), which are both solving the dual problem, perform sur-
prisingly bad in this case. In the numerical experiments example on image denoising
both methods proved to have a good performance.
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8. Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for fnding zeros of
sums of maximally monotone operators. arXiv:1206.5953 [math.OC]. To appear in SIAM J.
Optim. (2012)
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