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We investigate second order dynamical systems of the from ẍ(t) + Γ(ẋ(t)) +

λ(t)B(x(t)) = 0, where Γ : H → H is an elliptic bounded self-adjoint linear

operator defined on a real Hilbert space H, B : H → H is a cocoercive operator
and λ : [0,+∞) → (0,+∞) is a relaxation function depending on time. We

prove via Lyapunov analysis that the generated trajectories weakly converge
to a zero of the operator B. This opens the gate towards approaching through

a second order dynamical system the problem of determining zeros of the sum

of a maximally monotone operator and a cocoercive one, which captures as
particular case the minimization of the sum of a nonsmooth convex function

with a smooth convex one. Finally, when B is the gradient of a smooth convex

function, we prove a rate of O(1/t) for the convergence of the function values
along the ergodic trajectory to its minimum value.
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1. Introduction and preliminaries

LetH a real Hilbert space endowed with inner product 〈·, ·〉 and correspond-

ing norm ‖ · ‖ =
√
〈·, ·〉. The problem of approaching the minimization of

a potential function f : H → R, supposed to be convex and differentiable,

has been considered by several authors see [3, 7, 8, 11]). These investiga-

tions addressed either the convergence of the generated trajectories to a

critical point of f or the convergence of the function along the trajectories

to its global minimum value. We recall in this context the heavy ball with

friction dynamical system

ẍ+ γẋ+∇f(x) = 0, (1)

which is a nonlinear oscillator with constant damping parameter γ > 0.

When H = R2, this system describes the motion of a heavy ball that keeps
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rolling over the graph of the function f under its own inertia until friction

stops it at a critical point of f (see [11]). The time discretization of (1) leads

to so-called inertial-type algorithms, which are numerical schemes sharing

the feature that the current iterate of the generated sequence is defined by

making use of the previous two iterates (see, for instance, [3–5, 17, 19, 21]).

The minimization of f over a nonempty, convex and closed set C ⊆ H
has been approached in the same spirit in [7, 8], by considering the gradient-

projection second order dynamical system

ẍ+ γẋ+ x− PC(x− η∇f(x)) = 0, (2)

where PC : H → C denotes the projection onto the set C and η > 0. These

investigations have been further expanded in [8] to more general systems of

the form

ẍ+ γẋ+ x− Tx = 0, (3)

where T : H → H is a nonexpansive operator. When γ2 > 2 the trajectory

of (3) has been shown to converge weakly to an element in the fixed points

set of T , provided it is nonempty.

The dynamical system which we investigate in this paper reads{
ẍ(t) + Γ(ẋ(t)) + λ(t)B(x(t)) = 0

x(0) = u0, ẋ(0) = v0,
(4)

where u0, v0 ∈ H, Γ : H → H is a bounded self-adjoint linear operator,

which is γ-elliptic, that is, 〈Γu, u〉 ≥ γ‖u‖2 for all u ∈ H (with γ > 0) and

B : H → H is a β-cocoercive operator for β > 0, that is β‖Bx − By‖2 ≤
〈x − y,Bx − By〉 for all x, y ∈ H. This obviously implies that B is 1/β-

Lipschitz continuous, that is ‖Bx−By‖ ≤ 1
β ‖Bx−By‖ for all x, y ∈ H. The

elliptic operator Γ induces an anisotropic damping, a similar construction

being already used in [3] in the context of minimizing a convex and smooth

function.

The assumption which we make on the function λ is

(λ1) λ : [0,+∞) → (0,+∞) is locally absolutely continuous, monotonically

increasing on [0,+∞) with limt→+∞ λ(t) < βγ2.

According to the above assumption, λ̇(t) exists for almost every t ≥ 0

and λ̇ is Lebesgue integrable on each interval [0, b] for 0 < b < +∞. Since

λ is monotonically increasing, as λ is assumed to take only positive values,

(λ1) yields the existence of a lower bound λ and a positive real number θ
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such that for every t ∈ [0,+∞) one has

0 < λ ≤ λ(t) ≤ βγ2

1 + θ
. (5)

Thus, the existence and uniqueness of global solutions in C2([0,+∞);H)

for (4) follows from the global version of the Picard-Lindelöf Theorem.

We begin our investigations by showing that under mild assumptions on

the relaxation function λ the trajectory x(t) converges weakly as t→ +∞
to a zero of the operator B, provided it has a nonempty set of zeros. Fur-

ther, we approach the problem of finding a zero of the sum of a maximally

monotone operator and a cocoercive one via a second order dynamical sys-

tem formulated by making use of the resolvent of the set-valued operator,

see (22). Dynamical systems of implicit type have been already considered

in the literature in [1, 2, 9, 12, 14–16]. We further specialize these inves-

tigations to the minimization of the sum of a nonsmooth convex function

with a smooth convex function one. This allows us to recover and improve

results given in [7, 8] in the context of studying the dynamical system (2).

Whenever B is the gradient of a smooth convex function, we show that the

function values of the latter converge along the ergodic trajectories gener-

ated by (4) to its minimum value with a rate of convergence of O(1/t).

2. Convergence of the trajectories

In this section we address the convergence properties of the trajectories

generated by the dynamical system (4) and use to this end as essential

ingredient the continuous version of the Opial Lemma that we state below

(see, for example, [2, Lemma 5.3], [1, Lemma 1.10]).

Lemma 2.1. Let S ⊆ H be a nonempty set and x : [0,+∞) → H a given

map. Assume that

(i) for every x∗ ∈ S, limt→+∞ ‖x(t)− x∗‖ exists;

(ii) every weak sequential cluster point of the map x belongs to S.

Then there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t →
+∞.

We come now to the main result of this section.

Theorem 2.1. Let B : H → H be a β-cocoercive operator for β > 0 such

that zerB := {u ∈ H : Bu = 0} 6= ∅, Γ : H → H be a γ-elliptic operator,

λ : [0,+∞) → (0,+∞) be a function fulfilling (λ1) and u0, v0 ∈ H. Let
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x ∈ C2([0,+∞);H) be the unique global solution of (4). Then the following

statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, Bx ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞B(x(t) = 0;

(iii) x(t) converges weakly to an element in zerB as t→ +∞.

Proof. (i) Take an arbitrary x∗ ∈ zerB and consider for every t ∈ [0,+∞)

the function h(t) = 1
2‖x(t) − x∗‖2. We have ḣ(t) = 〈x(t) − x∗, ẋ(t)〉 and

ḧ(t) = ‖ẋ(t)‖2+〈x(t)− x∗, ẍ(t)〉 for every t ∈ [0,+∞). Taking into account

(4), we get for every t ∈ [0,+∞)

ḧ(t) + γḣ(t)+

λ(t) 〈x(t)− x∗, B(x(t))〉+ 〈x(t)− x∗,Γ(ẋ(t))− γẋ(t)〉 = ‖ẋ(t)‖2. (6)

Now we introduce the function p : [0,+∞)→ R,

p(t) =
1

2
〈(Γ− γ Id) (x(t)− x∗), x(t)− x∗〉 , (7)

where Id denotes the identity on H. Since 〈(Γ− γ Id)u, u〉 ≥ 0 for all

u ∈ H, it holds

p(t) ≥ 0 for all t ≥ 0. (8)

Moreover, ṗ(t) = 〈(Γ− γ Id) (ẋ(t)), x(t)− x∗〉, which combined with (6),

the cocoercivity of B and the fact that Bx∗ = 0 yields for every t ∈ [0,+∞)

ḧ(t) + γḣ(t) + βλ(t)‖B(x(t))‖2 + ṗ(t) ≤ ‖ẋ(t)‖2.

Taking into account (4) one obtains for every t ∈ [0,+∞)

ḧ(t) + γḣ(t) +
β

λ(t)
‖ẍ(t) + Γ(ẋ(t))‖2 + ṗ(t) ≤ ‖ẋ(t)‖2,

hence

ḧ(t) + γḣ(t)+

β

λ(t)
‖ẍ(t)‖2 +

2β

λ(t)
〈ẍ(t),Γ(ẋ(t))〉+

β

λ(t)
‖Γ(ẋ(t))‖2 + ṗ(t) ≤ ‖ẋ(t)‖2. (9)

We have

γ‖u‖ ≤ ‖Γu‖ for all u ∈ H, (10)

which combined with (9) yields for every t ∈ [0,+∞)

ḧ(t) + γḣ(t) + ṗ(t)+

β

λ(t)

d

dt

(
〈ẋ(t),Γ(ẋ(t))〉

)
+

(
βγ2

λ(t)
− 1

)
||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2 ≤ 0.
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By taking into account that for almost every t ∈ [0,+∞)

1

λ(t)

d

dt

(
〈ẋ(t),Γ(ẋ(t))〉

)
≥ d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+ γ

λ̇(t)

λ2(t)
‖ẋ(t)‖2,

(11)

we obtain for almost every t ∈ [0,+∞)

β
d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+

(
βγ2

λ(t)
+ βγ

λ̇(t)

λ2(t)
− 1

)
||ẋ(t)||2+

ḧ(t) + γḣ(t) + ṗ(t) +
β

λ(t)
||ẍ(t)||2 ≤ 0. (12)

By using now assumption (λ1) and (5) we obtain that the following in-

equality holds for almost every t ∈ [0,+∞)

ḧ(t)+γḣ(t)+ṗ(t)+β
d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+θ||ẋ(t)||2+

1 + θ

γ2
||ẍ(t)||2 ≤ 0.

(13)

This implies that the function t 7→ ḣ(t) + γh(t) + p(t) + β
λ(t) 〈ẋ(t),Γ(ẋ(t))〉

is monotonically decreasing. Hence there exists a real number M such that

for every t ∈ [0,+∞)

ḣ(t) + γh(t) + p(t) +
β

λ(t)
〈ẋ(t),Γ(ẋ(t))〉 ≤M, (14)

which yields, together with (8) and (λ1), that for every t ∈ [0,+∞) ḣ(t) +

γh(t) ≤M. This implies that

h is bounded (15)

and, consequently,

the trajectory x is bounded. (16)

On the other hand, from (14), by taking into account (8), (λ1) and (5),

it follows that for every t ∈ [0,+∞)

ḣ(t) +
1 + θ

γ
‖ẋ(t)‖2 ≤M,

hence 〈x(t)− x∗, ẋ(t)〉 + 1+θ
γ ‖ẋ(t)‖2 ≤ M. This inequality, in combination

with (16), yields

ẋ is bounded, (17)

which further implies that

ḣ is bounded. (18)
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Integrating the inequality (13) we obtain that there exists a real number

N ∈ R such that for every t ∈ [0,+∞)

ḣ(t) + γh(t) + p(t) +
β

λ(t)
〈ẋ(t),Γ(ẋ(t))〉+

θ

∫ t

0

||ẋ(s)||2ds+
1 + θ

γ2

∫ t

0

||ẍ(s)||2ds ≤ N.

From here, via (18) and (8), we conclude that ẋ(·), ẍ(·) ∈ L2([0,+∞);H).

Finally, from (4) and (λ1) we deduce Bx ∈ L2([0,+∞);H) and the proof

of (i) is complete.

(ii) For every t ∈ [0,+∞) it holds

d

dt

(
1

2
‖ẋ(t)‖2

)
= 〈ẋ(t), ẍ(t)〉 ≤ 1

2
‖ẋ(t)‖2 +

1

2
‖ẍ(t)‖2

and [2, Lemma 5.2] together with (i) lead to limt→+∞ ẋ(t) = 0.

Further, for every t ∈ [0,+∞) we have

d

dt

(
1

2
‖B(x(t))‖2

)
=

〈
B(x(t)),

d

dt
(Bx(t))

〉
≤ 1

2
‖B(x(t))‖2 +

1

2β2
‖ẋ(t)‖2.

By using again [2, Lemma 5.2] and (i) we get limt→+∞B(x(t)) = 0, while

the fact that limt→+∞ ẍ(t) = 0 follows from (4), and (λ1).

(iii) As seen in the proof of part (i), the function t 7→ ḣ(t) + γh(t) +

p(t)+ β
λ(t) 〈ẋ(t),Γ(ẋ(t))〉 is monotonically decreasing, thus from (i), (ii), (8),

(Γ) and (λ1) we deduce that limt→+∞(γh(t) + p(t)) exists and it is a real

number.

In the following we consider the scalar product defined by 〈〈x, y〉〉 =
1
γ 〈Γx, y〉 and the corresponding induced norm |||x|||2 = 1

γ 〈Γx, x〉. Taking

into account the definition of p, we have that limt→+∞
1
2 |||x(t)−x∗|||2 exists

and it is a real number.

Let x be a weak sequential cluster point of x, that is, there exists

a sequence tn → +∞ (as n → +∞) such that (x(tn))n∈N converges

weakly to x. Since B is a maximally monotone operator (see for instance

[13, Example 20.28]), its graph is sequentially closed with respect to the

weak-strong topology of the product space H × H. By using also that

limn→+∞B(x(tn)) = 0, we conclude that Bx = 0, hence x ∈ zerB.

The conclusion follows by applying the Opial Lemma in the Hilbert

space (H, (〈〈·, ·〉〉)), by noticing that a sequence (xn)n≥0 converges weakly

to x ∈ H in (H, (〈〈·, ·〉〉)) if and only if (xn)n≥0 converges weakly to x in

(H, (〈·, ·〉)).
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A standard instance of a cocoercive operator defined on a real Hilbert

spaces is the one that can be represented as B = Id−T , where T : H → H
is a nonexpansive operator, that is, a 1-Lipschitz continuous operator. It is

easy to see that in this case B is 1/2-cocoercive. For this particular choice

of the operator B, the dynamical system (4) becomes{
ẍ(t) + Γ(ẋ(t)) + λ(t)

(
x(t)− T (x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(19)

while assumption (λ1) reads

(λ2) λ : [0,+∞) → (0,+∞) is locally absolutely continuous, monotonically

increasing on [0,+∞) with limt→+∞ λ(t) < γ2

2 .

Theorem 2.1 gives rise to the following result.

Corollary 2.1. Let T : H → H be a nonexpansive operator such that

FixT = {u ∈ H : Tu = u} 6= ∅, Γ : H → H be a γ-elliptic operator,

λ : [0,+∞)→ (0,+∞) be a function fulfilling (λ2) and u0, v0 ∈ H. Let x ∈
C2([0,+∞);H) be the unique global solution of (19). Then the following

statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−T )x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−T )(x(t)) = 0;

(iii) x(t) converges weakly to a point in FixT as t→ +∞.

Remark 2.1. Taking Γ = γ Id for γ > 0 and λ(t) = 1 for all t ∈ [0,+∞),

the dynamical system (19) turns out to be{
ẍ(t) + γẋ(t) + x(t)− T (x(t)) = 0

x(0) = u0, ẋ(0) = v0.
(20)

The convergence of the trajectories generated by (20) has been studied in

[8, Theorem 3.2] under the condition γ2 > 2. In this case (λ2) is obviously

fulfilled. However, different to [8], we allow in Corollary 2.1 an anisotropic

damping through the use of the elliptic operator Γ and also a variable

relaxation function λ depending on time.

Finally, we discuss a consequence of the above corollary applied to sec-

ond order dynamical systems governed by averaged operators. The operator

R : H → H is said to be α-averaged for α ∈ (0, 1), if there exists a nonex-

pansive operator T : H → H such that R = (1− α) Id +αT . An important

representative of this class are the firmly nonexpansive operators which are

obtained for α = 1
2 .
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We consider the dynamical system{
ẍ(t) + Γ(ẋ(t)) + λ(t)

(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0
(21)

and make the assumption

(λ3) λ : [0,+∞) → (0,+∞) is locally absolutely continuous, monotonically

increasing on [0,+∞) with limt→+∞ λ(t) < γ2

2α .

Corollary 2.2. Let R : H → H be an α-averaged operator for α ∈
(0, 1) such that FixR 6= ∅, Γ : H → H be a γ-elliptic operator, λ :

[0,+∞) → (0,+∞) be a function fulfilling (λ3) and u0, v0 ∈ H. Let

x ∈ C2([0,+∞);H) be the unique global solution of (21). Then the fol-

lowing statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−R)x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−R)(x(t)) = 0;

(iii) x(t) converges weakly to a point in FixR as t→ +∞.

Proof. Since R is α-averaged, there exists a nonexpansive operator T :

H → H such that R = (1−α) Id +αT . Corollary 2.1 leads to the conclusion,

by taking into account also FixR = FixT .

3. Forward-backward second order dynamical systems

In this section we address the structured monotone inclusion problem

find 0 ∈ A(x) +B(x),

where A : H ⇒ H is a maximally monotone operator and B : H → H
is a β-cocoercive operator for β > 0 via a second-order forward-backward

dynamical system with anisotropic damping and variable relaxation param-

eter.

For readers convenience we recall at the beginning some standard no-

tions and results in monotone operator theory which will be used in the

following (see also [13]). For an arbitrary set-valued operator A : H ⇒ H
we denote by GrA = {(x, u) ∈ H × H : u ∈ Ax} its graph. We use also

the notation zerA = {x ∈ H : 0 ∈ Ax} for the set of zeros of A. We say

that A is monotone, if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A

monotone operator A is said to be maximally monotone, if there exists no

proper monotone extension of the graph of A on H×H. The resolvent of

A, JA : H ⇒ H, is defined by JA = (Id +A)−1. If A is maximally mono-

tone, then JA : H → H is single-valued and maximally monotone (see [13,
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Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have

(see [13, Proposition 23.2]) p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA.

The operator A is said to be uniformly monotone if there exists an

increasing function φA : [0,+∞) → [0,+∞] that vanishes only at 0 and

fulfills 〈x−y, u−v〉 ≥ φA (‖x− y‖) for every (x, u) ∈ GrA and (y, v) ∈ GrA.

A popular class of operators having this property is the one of the strongly

monotone operators. We say that A is γ-strongly monotone for γ > 0, if

〈x− y, u− v〉 ≥ γ‖x− y‖2 for all (x, u), (y, v) ∈ GrA.

For η ∈ (0, 2β), we approach the monotone inclusion problem to solve

via the dynamical system{
ẍ(t) + Γ(ẋ(t)) + λ(t)

[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(22)

and make the following assumption for the relaxation function

(λ4) λ : [0,+∞) → (0,+∞) is locally absolutely continuous, monotonically

increasing on [0,+∞) with limt→+∞ λ(t) < (4β−η)γ2

4β .

Theorem 3.1. Let A : H ⇒ H be a maximally monotone operator and

B : H → H be β-cocoercive operator for β > 0 such that zer(A + B) 6= ∅.
Let η ∈ (0, 2β), Γ : H → H be a γ-elliptic operator, λ : [0,+∞)→ (0,+∞)

be a function fulfilling (λ4), u0, v0 ∈ H and x ∈ C2([0,+∞);H) be the

unique global solution of (22). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−JηA ◦ (Id−ηB)
)
x ∈

L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = 0;

(iii) x(t) converges weakly to a point in zer(A+B) as t→ +∞;

(iv) if x∗ ∈ zer(A + B), then B(x(·)) − Bx∗ ∈ L2([0,+∞);H),

limt→+∞B(x(t)) = Bx∗ and B is constant on zer(A+B);

(v) if A or B is uniformly monotone, then x(t) converges strongly to

the unique point in zer(A+B) as t→ +∞.

Proof. (i)-(iii) It is immediate that the dynamical system (22) can be

written in the form{
ẍ(t) + Γ(ẋ(t)) + λ(t)

(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(23)

where R = JηA ◦ (Id−ηB). According to [13, Corollary 23.8 and Re-

mark 4.24(iii)], JηA is 1/2-cocoercive. Moreover, by [13, Proposition 4.33],

Id−ηB is η/(2β)-averaged. Combining this with [20, Theorem 3(b)], we
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derive that R is 2β
4β−η -averaged. The statements (i)-(iii) follow now from

Corollary 2.2 by noticing that FixR = zer(A + B) (see [13, Proposition

25.1(iv)]).

(iv) The fact that B is constant on zer(A+B) follows from the cocoer-

civity of B and the monotonicity of A.

Take an arbitrary x∗ ∈ zer(A+B). From the definition of the resolvent

we have for every t ∈ [0,+∞)

−B(x(t))− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t)) ∈ A

(
1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)

)
,

(24)

which combined with −Bx∗ ∈ Ax∗ and the monotonicity of A leads to

0 ≤
〈

1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗,−B(x(t)) +Bx∗

〉
+

〈
1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

(25)

After using the cocoercivity of B we obtain for every t ∈ [0,+∞)

β‖B(x(t))−Bx∗‖2 ≤ 1

2β

∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t))

∥∥∥∥2 +
β

2
‖B(x(t))−Bx∗‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

For evaluating the last term of the above inequality we consider the func-

tions h : [0,+∞) → R, h(t) = 1
2‖x(t) − x∗‖2 and p : [0,+∞) → R, p(t) =

1
2 〈(Γ− γ Id) (x(t)− x∗), x(t)− x∗〉, already used in the proof of Theorem

2.1. For every t ∈ [0,+∞) we have 〈x(t)− x∗, ẍ(t)〉 = ḧ(t) − ‖ẋ(t)‖2
and ṗ(t) = 〈x(t)− x∗,Γ(ẋ(t))〉− γ 〈x(t)− x∗, ẋ(t)〉 = 〈x(t)− x∗,Γ(ẋ(t))〉−
γḣ(t), hence 〈

x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
=

− 1

ηλ(t)

(
ḧ(t) + γḣ(t) + ṗ(t)− ‖ẋ(t)‖2

)
. (26)

From here, for every t ∈ [0,+∞) it holds

β

2
‖B(x(t))−Bx∗‖2 ≤ 1

2β

∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t))

∥∥∥∥2
− 1

ηλ(t)

(
ḧ(t) + γḣ(t) + ṗ(t)− ‖ẋ(t)‖2

)
. (27)
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By taking into account (λ4) we obtain a lower bound λ such that for every

t ∈ [0,+∞) one has 0 < λ ≤ λ(t). By multiplying (27) with λ(t) we obtain

for every t ∈ [0,+∞) that

βλ

2
‖B(x(t))−Bx∗‖2 +

1

η

(
ḧ(t) + γḣ(t) + ṗ(t)

)
≤

1

2βλ
‖ẍ(t) + Γ(ẋ(t))‖2 +

1

η
‖ẋ(t)‖2.

After integration we obtain that for every T ∈ [0,+∞)

βλ

2

∫ T

0

‖B(x(t))−Bx∗‖2dt+

1

η

(
ḣ(T )− ḣ(0) + γh(T )− γh(0) + p(T )− p(0)

)
≤∫ T

0

(
1

2βλ
‖ẍ(t) + Γ(ẋ(t))‖2 +

1

η
‖ẋ(t)‖2

)
dt.

As ẋ, ẍ ∈ L2([0,+∞);H), h(T ) ≥ 0, p(T ) ≥ 0 for every T ∈ [0,+∞) and

limT→+∞ ḣ(T ) = 0, it follows that B(x(·))−Bx∗ ∈ L2([0,+∞);H).

Further, we have

d

dt

(
1

2
‖B(x(t))−Bx∗‖2

)
≤ 1

2
‖B(x(t))−Bx∗‖2 +

1

2β2
‖ẋ(t)‖2

hence, in light of [2, Lemma 5.2], it follows that limt→+∞B(x(t)) = Bx∗.

(v) Let x∗ be the unique element of zer(A + B). For the beginning we

suppose that A is uniformly monotone with corresponding function φA :

[0,+∞)→ [0,+∞], which is increasing and vanishes only at 0.

By similar arguments as in the proof of statement (iv), for almost every

t ∈ [0,+∞) we have

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗

∥∥∥∥) ≤〈
1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗,−B(x(t)) +Bx∗

〉
+〈

1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
,
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which combined with the inequality 〈x(t)− x∗, B(x(t))−Bx∗〉 ≥ 0 yields

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗

∥∥∥∥) ≤〈
1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)),−B(x(t)) +Bx∗

〉
+〈

x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

As λ is bounded by positive constants, by using (i)-(iv) it follows that the

right-hand side of the last inequality converges to 0 as t → +∞. Hence

limt→+∞ φA

(∥∥∥ 1
λ(t) ẍ(t) + 1

λ(t)Γ(ẋ(t)) + x(t)− x∗
∥∥∥) = 0 and the properties

of the function φA allow to conclude that 1
λ(t) ẍ(t) + 1

λ(t)Γ(ẋ(t)) + x(t)− x∗
converges strongly to 0 as t → +∞. By using again the boundedness of λ

and (ii) we obtain that x(t) converges strongly to x∗ as t→ +∞.

Finally, suppose that B is uniformly monotone with correspond-

ing function φB : [0,+∞) → [0,+∞], which is increasing and van-

ishes only at 0. The conclusion follows by letting t in the inequality

〈x(t)− x∗, B(x(t))−Bx∗〉 ≥ φB(‖x(t) − x∗‖) ∀t ∈ [0,+∞) converge to

+∞ and by using that x is bounded and limt→+∞(B(x(t)−Bx∗) = 0.

Remark 3.1. The statements in Theorem 3.1 remain valid also for η := 2β.

Under this assumption, the cocoercivity of B implies that Id−ηB is nonex-

pansive, hence R = JηA ◦ (Id−ηB) used in the proof is nonexpansive, too,

and so the statements in (i)-(iii) follow from Corollary 2.1. The statements

(iv) and (v) can be proved in the similar way for η = 2β, too.

We close this section by approaching from the perspective of second

order dynamical systems optimization problems of the form

min
x∈H

f(x) + g(x),

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous

function and g : H → R is a convex and (Fréchet) differentiable function

with 1/β-Lipschitz continuous gradient for β > 0.

For a proper, convex and lower semicontinuous function f : H → R ∪
{+∞}, its (convex) subdifferential at x ∈ H is defined as ∂f(x) = {u ∈ H :

f(y) ≥ f(x) + 〈u, y − x〉 ∀y ∈ H}. When seen as a set-valued mapping, it

is a maximally monotone operator (see [22]) and its resolvent is given by

Jη∂f = proxηf (see [13]), where proxηf : H → H,

proxηf (x) = argmin
y∈H

{
f(y) +

1

2η
‖y − x‖2

}
, (28)
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denotes the proximal point operator of f and η > 0. According to [13,

Definition 10.5], f is said to be uniformly convex with modulus function

φ : [0,+∞) → [0,+∞], if φ is increasing, vanishes only at 0 and fulfills

f(αx + (1 − α)y) + α(1 − α)φ(‖x − y‖) ≤ αf(x) + (1 − α)f(y) for all

α ∈ (0, 1) and x, y ∈ dom f := {x ∈ H : f(x) < +∞}. If this inequality

holds for φ = (ν/2)| · |2 for ν > 0, then f is said to be ν-strongly convex.

The second order dynamical system we consider in order to approach

the minimizers of f + g reads{
ẍ(t) + Γ(ẋ(t)) + λ(t)

[
x(t)− proxηf

(
x(t)− η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(29)

Corollary 3.1. Let f : H → R ∪ {+∞} by a proper, convex and lower

semicontinuous function and g : H → R be a convex and (Fréchet) differ-

entiable function with 1/β-Lipschitz continuous gradient for β > 0 such that

argminx∈H{f(x) + g(x)} 6= ∅. Let η ∈ (0, 2β], Γ : H → H be a γ-elliptic

operator, λ : [0,+∞) → (0,+∞) be a function fulfilling (λ4), u0, v0 ∈ H
and x ∈ C2([0,+∞);H) be the unique global solution of (29). Then the

following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈

L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = 0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;

(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈
L2([0,+∞);H), limt→+∞ ∇g(x(t)) = ∇g(x∗) and ∇g is constant on

argminx∈H{f(x) + g(x)};
(v) if f or g is uniformly convex, then x(t) converges strongly to the

unique minimizer of f + g as t→ +∞.

Proof. The statements are direct consequences of the corresponding ones

from Theorem 3.1 (see also Remark 3.1), by choosing A := ∂f and B := ∇g,

by taking into account that zer(∂f +∇g) = argminx∈H{f(x) + g(x)} and

by making use of the Baillon-Haddad Theorem, which says that ∇g is 1/β-

Lipschitz if and only if ∇g is β-cocoercive (see [13, Corollary 18.16]). For

statement (v) we also use the fact that if f is uniformly convex with modulus

φ, then ∂f is uniformly monotone with modulus 2φ (see [13, Example

22.3(iii)]).

Remark 3.2. Let us consider again the setting in Remark 2.1, namely,

when Γ = γ Id for γ > 0 and λ(t) = 1 for every t ∈ [0,+∞). For C a

nonempty, convex, closed subset of H, let f = δC be the indicator function
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of C, which is defined as being equal to 0 for x ∈ C and to +∞, else. The

dynamical system (29) attached in this setting to the minimization of g

over C becomes{
ẍ(t) + γẋ(t) + x(t)− PC

(
x(t)− η∇g(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(30)

where PC denotes the projection onto the set C.

In [8, Theorem 3.1] it has been shown that whenever γ2 > 2 and

0 < η ≤ 2β the trajectories of (30) asymptotically converge to o a mini-

mizer of g over C, provided this exists. In this setting, (λ4) trivially holds.

Moreover, in order to verify (λ4) when λ(t) = 1 for every t ∈ [0,+∞), one

needs to equivalently assume that γ2 > 4β
4β−η . As 4β

4β−η ≤ 2, this provides

a slight improvement over [8, Theorem 3.1] in what concerns the choice

of γ. We refer the reader also to [7] for an analysis of the convergence

rates of trajectories of the dynamical system (30) when g is endowed with

supplementary properties.

For the two main convergence statements provided in this section it

was essential to choose the step size η in the interval (0, 2β] (see Theorem

3.1, Remark 3.1 and Corollary 3.1). This allowed us to guarantee for the

generated trajectories the existence of the limit limt→+∞ ‖x(t)−x∗‖2, where

x∗ denotes a solution of the problem under investigation. However, when

dealing with convex optimization problems, one can go also beyond this

classical restriction concerning the choice of the step size (see also [1, Section

4.2]). This is proved in the following corollary, which is valid under the

assumption

(λ5) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous, monotonically

increasing on [0,+∞) and there exist a, θ, θ′ > 0 such that for t ≥ 0

1

β

(
θ′ +

a

2
‖Γ− γ Id ‖

)
≤ λ(t) ≤ γ2

ηθ + η
β + η

2a‖Γ− γ Id ‖+ 1
.

Corollary 3.2. Let f : H → R ∪ {+∞} by a proper, convex and lower

semicontinuous function and g : H → R be a convex and (Fréchet) dif-

ferentiable function with 1/β-Lipschitz continuous gradient for β > 0 such

that argminx∈H{f(x) + g(x)} 6= ∅. Let be η > 0, Γ : H → H be a γ-elliptic

operator, λ : [0,+∞) → (0,+∞) be a function fulfilling (λ5), u0, v0 ∈ H
and x ∈ C2([0,+∞);H) be the unique global solution of (29). Then the

following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈

L2([0,+∞);H);
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(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = 0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;

(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈
L2([0,+∞);H), limt→+∞ ∇g(x(t)) = ∇g(x∗) and ∇g is constant on

argminx∈H{f(x) + g(x)};
(v) if f or g is uniformly convex, then x(t) converges strongly to the

unique minimizer of f + g as t→ +∞.

Proof. Consider an arbitrary element x∗ ∈ argminx∈H{f(x) + g(x)} =

zer(∂f + ∇g). Consider the function q : [0,+∞) → R, q(t) = g(x(t)) −
g(x∗)− 〈∇g(x∗), x(t)− x∗〉 . Using similar techniques as in Theorem 3.1 it

follows that the function

t 7→ d

dt

(
1

η
h+ q

)
(t) + γ

(
1

η
h+ q

)
(t) +

1

η
p(t) +

1

η

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
(31)

is monotonically decreasing. Arguing as in the proof of Theorem

2.1, it follows that 1
ηh + q, h, q, x, ẋ, ḣ, q̇ are bounded, ẋ, ẍ and(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H) and limt→+∞ ẋ(t) = 0.

Since d
dt

(
Id−proxηf ◦(Id−η∇g)

)
x ∈ L2([0,+∞);H), we derive from [2,

Lemma 5.2] that limt→+∞
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) = 0. As ẍ(t) =

−Γ(ẋ(t)) − λ(t)
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) for every t ∈ [0,+∞), we

obtain that limt→+∞ ẍ(t) = 0. Since ∇g(x(·))−∇g(x∗) ∈ L2([0,+∞);H),

by applying again [2, Lemma 5.2], it yields limt→+∞∇g(x(t)) = ∇g(x∗).

In this way the statements (i), (ii) and (iv) are shown.

(iii) Since the function in (31) is monotonically decreasing, from (i), (ii)

and (iv) it follows that the limit limt→+∞

(
γ
(

1
ηh+ q

)
(t) + 1

ηp(t)
)

exists

and it is a real number. Consider again the renorming of the space already

used in the proof of Theorem 2.1(iii).

As x∗ has been chosen as an arbitrary minimizer of f + g and taking

into account the definition of p and the new norm, we conclude that for

all x∗ ∈ argminx∈H{f(x) + g(x)} the limit limt→+∞E(t, x∗) ∈ R, exists,

where

E(t, x∗) =
1

2η
|||x(t)− x∗|||2 + g(x(t))− g(x∗)− 〈∇g(x∗), x(t)− x∗〉 .

In what follows we use a similar technique as in [14] (see, also, [1, Section

5.2]). Since x(·) is bounded, it has at least one weak sequential cluster

point.

We prove first that each weak sequential cluster point of x(·) is a

minimizer of f + g. Let x∗ ∈ argminx∈H{f(x) + g(x)} and tn → +∞
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(as n → +∞) be such that (x(tn))n∈N converges weakly to x. Since

(x(tn),∇g(x(tn))) ∈ Gr(∇g), limn→+∞∇g(x(tn)) = ∇g(x∗) and Gr(∇g) is

sequentially closed in the weak-strong topology, we obtain∇g(x) = ∇g(x∗).

From (24) written for t = tn, A = ∂f and B = ∇g, by letting n

converge to +∞ and by using that Gr(∂f) is sequentially closed in the

weak-strong topology, we obtain −∇g(x∗) ∈ ∂f(x). This, combined with

∇g(x) = ∇g(x∗) delivers −∇g(x) ∈ ∂f(x), hence x ∈ zer(∂f + ∇g) =

argminx∈H{f(x) + g(x)}.
Next we show that x(·) has at most one weak sequential cluster point,

which will actually guarantee that it has exactly one weak sequential cluster

point. This will imply the weak convergence of the trajectory to a minimizer

of f + g.

Let x∗1, x
∗
2 be two weak sequential cluster points of x(·). This means

that there exist tn → +∞ (as n → +∞) and t′n → +∞ (as n → +∞)

such that (x(tn))n∈N converges weakly to x∗1 (as n→ +∞) and (x(t′n))n∈N
converges weakly to x∗2 (as n → +∞). Since x∗1, x

∗
2 ∈ argminx∈H{f(x) +

g(x)}, we have limt→+∞E(t, x∗1) ∈ R and limt→+∞E(t, x∗2) ∈ R, hence

∃ limt→+∞(E(t, x∗1)− E(t, x∗2)) ∈ R. We obtain

∃ lim
t→+∞

(
1

η
〈〈x(t), x∗2 − x∗1〉〉+ 〈∇g(x∗2)−∇g(x∗1), x(t)〉

)
∈ R,

which, when expressed by means of the sequences (tn)n∈N and (t′n)n∈N,

leads to 1
η 〈〈x

∗
1, x
∗
2 − x∗1〉〉 + 〈∇g(x∗2)−∇g(x∗1), x∗1〉 = 1

η 〈〈x
∗
2, x
∗
2 − x∗1〉〉 +

〈∇g(x∗2)−∇g(x∗1), x∗2〉 . This is the same with

1

η
|||x∗1 − x∗2|||2 + 〈∇g(x∗2)−∇g(x∗1), x∗2 − x∗1〉 = 0

and by the monotonicity of ∇g we conclude that x∗1 = x∗2.

(v) This follows in analogy to the proof of the corresponding statement

of Theorem 3.1(v) written for A = ∂f and B = ∇g.

Remark 3.3. When Γ = γ Id for γ > 0, in order to verify the left-hand side

of the second statement in assumption (λ5) one can take θ′ := β inft≥0 λ(t).

Thus, the bounds in (λ5) amounts in this case to the existence of θ > 0

such that λ(t) ≤ γ2

ηθ+ η
β+1 . Whenever λ(t) = 1 for every t ∈ [0,+∞), this

is verified if and only if γ2 > η
β + 1. In other words, (λ5) permits a

more relaxed choice for the parameters γ, η and β, beyond the standard

assumptions 0 < η ≤ 2β and γ2 > 2 considered in [8].
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4. Convergence rate for the function values

In this section we furnish a rate for the convergence of a convex and

(Fréchet) differentiable function with Lipschitz continuous gradient g : H →
R along the ergodic trajectory generated by{

ẍ(t) + Γ(ẋ(t)) + λ(t)∇g(x(t)) = 0

x(0) = u0, ẋ(0) = v0
(32)

to the minimum value of g. To this end we make the following assumption

(λ6) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exists

ζ > 0 such that for almost every t ∈ [0,+∞) we have

0 < ζ ≤ γλ(t)− λ̇(t). (33)

The following result is in the spirit of a convergence rate given for the

objective function values on a sequence iteratively generated by an inertial-

type algorithm recently obtained in [18, Theorem 1].

Theorem 4.1. Let g : H → R be a convex and (Fréchet) differen-

tiable function with 1/β-Lipschitz continuous gradient for β > 0 such

that argminx∈H g(x) 6= ∅. Let Γ : H → H be a γ-elliptic operator,

λ : [0,+∞) → (0,+∞) be a function fulfilling (λ6), u0, v0 ∈ H and

x ∈ C2([0,+∞);H) be the unique global solution of (32).

Then for every minimizer x∗ of g and every T > 0 it holds

0 ≤g

(
1

T

∫ T

0

x(t)dt

)
− g(x∗) ≤

1

2ζT

[
‖v0 + γ(u0 − x∗)‖2 +

(
γ‖Γ− γ Id ‖+

λ(0)

β

)
‖u0 − x∗‖2

]
.

Proof. Let be x∗ ∈ argminx∈H g(x) and T > 0. Consider again the func-

tion p : [0,+∞)→ R, p(t) = 1
2 〈(Γ− γ Id) (x(t)− x∗), x(t)− x∗〉 which was

defined in (7). By using (32), the formula for the derivative of p, the pos-

itive semidefinitness of Γ − γ Id, the convexity of g and (λ6) we get for

almost every t ∈ [0,+∞)

d

dt

(
1

2
‖ẋ(t) + γ(x(t)− x∗)‖2 + γp(t) + λ(t)g(x(t))

)
≤− ζ(g(x(t))− g(x∗)) + λ̇(t)g(x∗)
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After integration, by neglecting the nonnegative terms and by using that

g(x(T )) ≥ g(x∗), it yields

ζ

∫ T

0

(g(x(t))−g(x∗))dt ≤ 1

2
‖v0+γ(u0−x∗)‖2+γp(0)+λ(0)(g(u0)−g(x∗)).

The conclusion follows by using p(0) = 1
2 〈(Γ− γ Id)(u0 − x∗), u0 − x∗〉 ≤

1
2‖Γ − γ Id ‖‖u0 − x∗‖2, g(u0) − g(x∗) ≤ 1

2β ‖u0 − x
∗‖2, which is a conse-

quence of the descent lemma and the inequality g
(

1
T

∫ T
0
x(t)dt

)
− g(x∗) ≤

1
T

∫ T
0

(g(x(t))− g(x∗))dt, which holds since g is convex.

Remark 4.1. Under assumption (λ6) on the relaxation function λ, we

obtain in the above theorem (only) the convergence of the function g along

the ergodic trajectory to a global minimum value. If one is interested also

in the (weak) convergence of the trajectory to a minimizer of g, this follows

via Theorem 2.1 when λ is assumed to fulfill (λ1) (if x converges weakly to

a minimizer of g, then from the Cesaro-Stolz Theorem one also obtains the

weak convergence of the ergodic trajectory T 7→ 1
T

∫ T
0
x(t)dt to the same

minimizer). Take a ≥ 0, b > 1
βγ2 and 0 ≤ ρ ≤ γ. Then λ(t) = 1

ae−ρt+b

is an example of a relaxation function which verifies assumption (λ1) and

assumption (λ6) (with 0 < ζ ≤ γb
(a+b)2 ).
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