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Variable metric ADMM for solving variational
inequalities with monotone operators over affine
sets

Radu Ioan Boţ, Ernö Robert Csetnek and Dennis Meier

Abstract We propose an iterative scheme for solving variational inequalities with
monotone operators over affine sets in an infinite dimensional Hilbert space setting.
We show that several primal-dual algorithms in the literature as well as the classical
ADMM algorithm for convex optimization problems, together with some of its vari-
ants, are encompassed by the proposed numerical scheme. Furthermore, we carry
out a convergence analysis of the generated iterates and provide convergence rates
by using suitable dynamical step sizes together with variable metric techniques.
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1.1 Introduction

Many problems in fields like signal and image processing, portfolio optimization,
cluster analysis, location theory, network communication and machine learning as
well as inverse problems can be formulated as a convex optimization problem of the
form
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inf
x∈H ,z∈G

{ f (x)+h(x)+g(z)}, (1.1)

s.t. L1x+L2z = d

where H ,G and Z are real Hilbert spaces, f : H →R :=R∪{±∞} and g : G →R
are proper, convex and lower semicontinuous functions, h : H → R is a convex
and Fréchet differentiable function with Lipschitz continuous gradient, L1 : H →
Z ,L2 : G →Z are linear continuous operators and d ∈Z .

One of the most prominent numerical algorithms one can find in the literature for
solving optimization problems of the form (1.1) is the alternating direction method
of multipliers (ADMM). In the case h = 0, which represents the standard setting
in the literature addressing ADMM methods, the augmented Lagrangian associated
with problem (1.1) is given for a fixed real number c > 0 as

Lc : H ×G ×Z → R,

Lc(x,z,y) = f (x)+g(z)+ 〈y,L1x+L2z−d〉+ c
2
‖L1x+L2z−d‖2.

The ADMM algorithm generates a sequence (xk,zk,yk)k≥0 ∈H ×G ×Z by iter-
ating for every k ≥ 0

xk+1 ∈ argmin
x∈H

Lc(x,zk,yk) = argmin
x∈H

{
f (x)+

c
2
‖L1x+L2zk−d + c−1yk‖2

}
zk+1 ∈ argmin

z∈G
Lc(xk+1,z,yk) = argmin

x∈G

{
g(z)+

c
2
‖L1xk+1 +L2z−d + c−1yk‖2

}
yk+1 = yk + c(L1xk+1 +L2zk+1−d).

Since the function f and the operator L1 are not evaluated independently in the
first line of the algorithm, the minimization with respect to the variable x does not
lead to a proximal step (the same is true for the second minimization). This results
in less attractiveness for implementations than for primal-dual splitting algorithms,
which represent the second class of prominent iterative methods for solving (1.1).
This drawback has been overcome in the literature by introducing a suitable regu-
larizer equipped with a (semi-)metric, see for example [15] for a finite dimensional
approach (in case G = Z , L2 = − Id and d = 0 see also [20], and also [3] for
an extension of the ADMM algorithm by involving also smooth parts in the ob-
jective, by employing variable metrics and by working in an infinite dimensional
Hilbert setting). This so-called alternating direction proximal method of multipliers
(AD-PMM) reveals a bridge which connects the classical ADMM algorithm with
primal-dual methods. This observation served as the starting point for the investiga-
tions made in [6], where a generalization of the AD-PMM algorithm to monotone
inclusions was proposed and investigated from the point of view of its convergence
properties.

In this paper we propose an iterative algorithm for solving variational inequalities
with monotone operators of the type
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find (x,z) ∈H ×G such that 0 ∈ (Ax+Cx)×Bz+NS(x,z),

where A : H ⇒H and B : G ⇒G are maximally monotone operators, C : H →H
is an η-cocoercive operator, for η ≥ 0, S := {(x,z) ∈H ×G : L1x+L2z = d}, and
NS denotes the normal cone operator to the set S. This delivers a unifying framework
for solving monotone inclusions in Hilbert spaces which encompasses in particular
the ADMM algorithm in [6], several primal-dual iterative methods [7, 10, 14, 21] as
well as the classical ADMM algorithm designed to solve problems of type 1.1 (and
its variants from [15, 20], see also [16, 17]). After giving the necessary preliminar-
ies, we formulate the ADMM iterative scheme for variational inequalities and carry
out a convergence analysis. Furthermore, under additional strong monotonicity as-
sumptions, we derive convergence rates for the primal iterates by using a dynamic
step size strategy combined with variable metric techniques.

1.2 Notation and preliminaries

Throughout, H , G and Z denote real Hilbert spaces with scalar products 〈·, ·〉 and
associated norms ‖ · ‖ (since there is no risk of confusion, they are denoted in the
same way). Let M : H ⇒ H be an arbitrary set-valued operator. We denote by
graM := {(x,u) ∈H ×H : u ∈ Mx} its graph, by domM := {x ∈H : Mx 6= /0}
its domain and by M−1 : H ⇒ H its inverse operator, defined by (u,x) ∈ graM−1

if and only if (x,u) ∈ graM. M is said to be monotone, if 〈x− y,u− v〉 ≥ 0 for all
(x,u),(y,v) ∈ graM. A monotone operator M is said to be maximally monotone, if
there exists no proper monotone extension of the graph of M on H ×H . For an
arbitrary γ > 0, the operator M is called γ-strongly monotone, if 〈x− y,u− v〉 ≥
γ‖x− y‖2 for all (x,u),(y,v) ∈ graM.

The resolvent of M is the mapping JM : H ⇒H , JM := (Id+M)−1, where Id de-
notes the identity operator on H . If M is maximally monotone, then JM : H →H
is single-valued and maximally monotone (see [4, Proposition 23.7 and Corol-
lary 23.10]). Furthermore, for an arbitrary γ > 0 we have (see [4, Proposition 23.18])

JγM + γJγ−1M−1 ◦ γ
−1 Id = Id . (1.2)

For a linear continuous operator L : H → G , its adjoint operator L∗ : G →H
is defined by 〈L∗y,x〉= 〈y,Lx〉 for all (x,y) ∈H ×G . The norm of L is defined by
‖L‖ := sup{‖Lx‖ : x ∈H ,‖x‖ ≤ 1}. The linear operator L is said to be skew, if
〈x,Lx〉 = 0 for all x ∈H . A single-valued operator M : H →H is said to be β -
cocoercive, for β ≥ 0, if β 〈x−y,Mx−My〉 ≥ ‖Mx−My‖2 for all (x,y) ∈H ×H .
Moreover, M is β -Lipschitz continuous, if ‖Mx−My‖ ≤ β‖x− y‖ for all (x,y) ∈
H ×H .

We write

S+(H ) := {L : H →H : L is linear, bounded, positive semidefinite and L = L∗}.
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The Loewner partial ordering on S+(H ) is defined by

(∀U ∈S+(H ))(∀V ∈S+(H )) U �V :⇔ (∀x ∈H ) 〈x,Ux〉 ≥ 〈x,V x〉.

Further, for every U ∈S+(H ), we define a semi-scalar product and a semi-norm
by

(∀x ∈H )(∀y ∈H ) 〈x,y〉U := 〈x,Uy〉 and ‖x‖U :=
√
〈x,Ux〉,

respectively. For α > 0 we set

Pα(H ) := {U ∈S+(H ) | U � α Id}.

Since we will also address convex optimization problems, we recall some elements
of convex analysis. For a function f : H → R we denote by dom f := {x ∈H :
f (x)<+∞} its effective domain and say that f is proper, if dom f 6= /0 and f (x) 6=
−∞ for all x ∈H . The (convex) conjugate function f ∗ : H → R of f is defined
by f ∗(u) := supx∈H {〈u,x〉 − f (x)} for all u ∈ H . The (convex) subdifferential
∂ f : H ⇒ H of f is given by

∂ f (x) := {p ∈H : f (y)− f (x)≥ 〈p,y− x〉 ∀y ∈H },

for x∈H with f (x)∈R and ∂ f (x) = /0, otherwise. In case f is a proper, convex and
lower semi-continuous function, ∂ f : H ⇒ H is a maximally monotone operator
[19].

For f ,g : H → R two proper functions, the infimal convolution f�g : H → R
is defined by ( f�g)(x) = infu∈H { f (u)+g(x−u)} for all x ∈H .

For a proper, convex and lower semi-continuous function f : H →R and γ > 0,
for every x ∈H we denote by proxγ f (x) the proximal point of parameter γ of f at
x, which is defined by

proxγ f (x) := argminy∈H

{
f (y)+

1
2γ
‖y− x‖2

}
.

Since Jγ∂ f = (Id+γ∂ f )−1 = proxγ f (see [4, Example 23.3]), this gives a single-
valued operator proxγ f : H →H fulfilling the extended Moreau’s decomposition
formula

proxγ f +γ proxγ−1 f ∗ ◦γ
−1 Id = Id .

Last, for a nonempty convex subset S of H and for x ∈H , the normal cone to S at
x is

NS(x) =
{
{u ∈H | sup〈s− x,u〉 ≤ 0 ∀s ∈ S}, if x ∈ S
/0, if x 6∈ S .
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1.3 A variable metric ADMM for monotone operators

In this section we present the variational inequality problem to solve, formulate the
iterative numerical scheme and prove convergence for the sequence of generated
iterates.

1.3.1 Problem formulation and algorithm

We start by describing the problem under investigation.

Problem 1. Let H , G and Z be real Hilbert spaces, A : H ⇒ H and B : G ⇒ G
be maximally monotone operators and C : H →H an η-cocoercive operator, for
η ≥ 0. Further, let L1 : H →Z and L2 : G →Z be linear continuous operators and
S := {(x,z)∈H ×G : L1x+L2z = d}. The aim is to solve the variational inequality
with monotone operators over the set S

find (x,z) ∈H ×G such that 0 ∈ (Ax+Cx)×Bz+NS(x,z), (1.3)

which can be reformulated as

find (x,z) ∈ S such that ∃(p,q) ∈ −(Ax+Cx)× (−Bz) with the property
〈(p,q),(u,v)− (x,z)〉 ≤ 0 ∀(u,v) ∈ S.

We will propose an algorithm for determining the KKT points associated to the
variational inequality (1.3), namely, those (x,z,y) ∈H ×G ×Z which fulfill

−L∗1y ∈ Ax+Cx, −L∗2y ∈ Bz and L1x+L2z = d. (1.4)

Remark 1. If (x,z,y) ∈H ×G ×Z is a KKT point of (1.3), then, obviously,

(−L∗1y,−L∗2y) ∈ (Ax+Cx)×Bz+NS(x,z),

which means that (x,z) is a solution of (1.3).
On the other hand, if (x,z) ∈ H × G is a solution of (1.3), then there exists

(p,q) ∈ −(Ax+Cx)× (−Bz) such that

L1x+L2z = d and (x,z) ∈ argmin
(u,v)∈S

〈(−p,−q),(u,v)〉.

Using duality theory, we obtain under suitable constraint qualifications the existence
of y ∈Z such that

〈(−p,−q),(x,z)〉= inf
(u,v)∈H ×G

{〈(−p,−q),(u,v)〉+ 〈y,L1u+L2v−d〉}

= inf
u∈H
〈u,−p+L∗1y〉+ inf

v∈G
〈z,−q+L∗2y〉−〈y,d〉.



6 Radu Ioan Boţ, Ernö Robert Csetnek and Dennis Meier

Since the term on the left-hand side is finite, this holds only when p = L∗1y and
q = L∗2y. In other words, (x,z,y) is a KKT point of (1.3).

Next, we relate Problem 1 to a particular convex optimization problem with affine
constraints.

Problem 2. Let H , G and Z be real Hilbert spaces, f : H → R, g : G → R be
proper, convex and lower semicontinuous functions, h : H → R a convex and
Fréchet differentiable function with η-Lipschitz continuous gradient, for η ≥ 0,
L1 : H →Z , L2 : G →Z linear continuous operators and d ∈Z . We consider the
convex optimization problem

inf
x∈H ,z∈G

{ f (x)+h(x)+g(z)}. (1.5)

s.t. L1x+L2z = d

The system of KKT optimality conditions associated to this optimization problem
is given by

−L∗1y ∈ ∂ f (x)+∇h(x), −L∗2y ∈ ∂g(z) and L1x+L2z = d. (1.6)

If (x,z,y) is a solution of (1.6), then (x,z) is an optimal solution of (1.5) and y is an
optimal solution of its dual problem

sup
y∈G
{−( f ∗�h∗)(−L∗1y)−g∗(−L∗2y)−〈d,y〉} , (1.7)

For

A := ∂ f ,B := ∂g and C := ∇h, (1.8)

the system of KKT optimality conditions (1.6) is nothing else than (1.4). Notice
that ∂ f and ∂g are maximally monotone operators, while, by the Baillon-Haddad
Theorem (see [4, Corollary 18.16]), the gradient of h is η-cocoercive.

Remark 2. Consider the optimization problem

inf
y∈Z
{ f (L1y)+g(L2y)}, (1.9)

where f : H → R and g : G → R are proper, convex and lower semicontinuous
functions, and L1 : Z →H and L2 : Z → G are linear continuous operators. The
associated dual problem can be written as

inf
(p,e)∈H ×G

{ f ∗(p)+g∗(q)}, (1.10)

s.t. L∗1 p+L∗2q = 0

while (1.9) is on its turn the dual problem of (1.10). Finding a solution (p,q,y) of
the system of KKT optimality conditions associated to (1.10)
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−L1y ∈ ∂ f ∗(p), −L2y ∈ ∂g∗(y) and L∗1 p+L∗2q = 0

provides an optimal solution y of problem (1.9) and an optimal solution (p,q) of
problem (1.10).

We propose the following iterative scheme for determining the KKT points of
the variational inequality (1.3).

Algorithm 1 Let Mk
1 ∈ S+(H ), Mk

2 ∈ S+(G ) and c > 0 be such that cL∗1L1 +
Mk

1 ∈Pαk(H ) and cL∗2L2 +Mk
2 ∈Pβk

(G ), with αk,βk > 0, for all k ≥ 0. Choose
(x0,z0,y0) ∈H ×G ×Z . For all k ≥ 0 generate the sequence (xk,zk,yk)k≥0 as
follows:

xk+1 := (cL∗1L1 +Mk
1 +A)−1

[
cL∗1(−L2zk +d− c−1yk)+Mk

1xk−Cxk
]

(1.11)

zk+1 := (cL∗2L2 +Mk
2 +B)−1

[
cL∗2(−L1xk+1 +d− c−1yk)+Mk

2zk
]

(1.12)

yk+1 := yk + c(L1xk+1 +L2zk+1−d). (1.13)

Remark 3. For the choice G := Z , L2 :=− Id and d := 0, the variational inequality
to solve simplifies to the following monotone inclusion problem

find x ∈H such that 0 ∈ Ax+Cx+(L∗1 ◦B◦L1)(x),

while Algorithm 1 becomes the iterative scheme proposed in [6] for solving it.
We show in the following that the numerical scheme above encompasses several

other algorithms from the literature. For all k ≥ 0, the equations (1.11) and (1.12)
are equivalent to

−cL∗1(L1xk+1 +L2zk−d + c−1yk)+Mk
1(x

k− xk+1)−Cxk ∈ Axk+1, (1.14)

and, respectively,

−cL∗2(L1xk+1 +L2zk+1−d + c−1yk)+Mk
2(z

k− zk+1) ∈ Bzk+1. (1.15)

In the variational setting of Problem 2, i.e., considering the particular choice (1.8),
the inclusion (1.14) becomes

0 ∈ ∂ f (xk+1)+ cL∗1(L1xk+1 +L2zk−d + c−1yk)+Mk
1(x

k+1− xk)+∇h(xk),

which is equivalent to

xk+1 = argmin
x∈H

{
f (x)+ 〈x− xk,∇h(xk)〉+ c

2
‖L1x+L2zk−d + c−1yk‖2

+
1
2
‖x− xk‖2

Mk
1

}
.

On the other hand, (1.15) becomes
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−cL∗2(L1xk+1 +L2zk+1−d + c−1yk)+Mk
2(z

k− zk+1) ∈ ∂g(zk+1),

which is equivalent to

zk+1 = argmin
x∈G

{
g(z)+

c
2
‖L1xk+1 +L2z−d + c−1yk‖2 +

1
2
‖z− zk‖2

Mk
2

}
.

In conclusion, the iterative scheme (1.11) - (1.13) applied to the variational setting
of problem 2 reads

xk+1 = argmin
x∈H

{
f (x)+ 〈x− xk,∇h(xk)〉+ c

2
‖L1x+L2zk−d + c−1yk‖2

+
1
2
‖x− xk‖2

Mk
1

}
(1.16)

zk+1 = argmin
x∈G

{
g(z)+

c
2
‖L1xk+1 +L2z−d + c−1yk‖2 +

1
2
‖z− zk‖2

Mk
2

}
(1.17)

yk+1 = yk + c(L1xk+1 +L2zk+1−d). (1.18)

The situation when h = 0 and the sequences (Mk
1)k≥0,(Mk

2)k≥0 are constant has
been considered for example in [15]. The case G =Z ,L2 =− Id and d = 0 delivers
the algorithm formulated and investigated by Banert, Boţ and Csetnek in [3]. The
latter is a generalization of the iterative scheme proposed by Shefi and Teboulle
[20], which addresses the case when h = 0 and the sequences (Mk

1)k≥0,(Mk
2)k≥0 are

constant in the setting of finite dimensional Hilbert spaces. Finally, when h = 0 and
Mk

1 = Mk
2 = 0 for all k ≥ 0, the iterative scheme (1.16) - (1.18) collapses into the

classical version of the ADMM algorithm (see for example [16, 17]).
We refer the reader to [6, Remark 5], where it is shown that several primal-dual-

type algorithms from the literature [7, 10, 14, 21] can be embedded in the algorithm
designed for the situation where G = Z ,L2 =− Id and d = 0 and, consequently, in
the general algorithm considered above.

1.3.2 Convergence analysis

An important ingredient for our convergence analysis will be the following version
of the Opial Lemma (see [13, Theorem 3.3]).

Lemma 1. Let C be a nonempty subset of H and (xk)k≥0 be a sequence in H . Let
α > 0 and W k ∈Pα(H ) be such that W k �W k+1 for all k ≥ 0. Assume that:

(i) for all z ∈C and for all k ≥ 0: ‖xk+1− z‖W k+1 ≤ ‖xk− z‖W k .
(ii) every weak sequential cluster point of (xk)k≥0 belongs to C.

Then (xk)k≥0 converges weakly to an element in C.

The following theorem is the main result of this section.
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Theorem 1. In the context of Problem 1, assume that the set of KKT points of the
variational inequality with monotone operators (1.3) is nonempty and that Mk

1 −
η

2 Id∈S+(H ), Mk
1 �Mk+1

1 , Mk
2 ∈S+(G ), Mk

2 �Mk+1
2 , and Mk

2 +cL∗2L2 ∈S+(G )

for all k ≥ 0. Let (xk,zk,yk)k≥0 be the sequence generated by Algorithm 1. Suppose
that one of the following assumptions is fulfilled:
(I) there exist α1,β1 > 0 such that Mk

1−
η

2 Id∈Pα1(H ) and Mk
2 +cL∗2L2 ∈Pβ1(G )

for all k ≥ 0;
(II) there exist α2,β2 > 0 such that L∗1L1 ∈Pα2(H ) and Mk

2 ∈Pβ2(G ) for all
k ≥ 0;
(III) there exist α3,β3 > 0 such that Mk

1−
η

2 Id+cL∗1L1 ∈Pα3(H ), L∗2L2 ∈Pβ3(G )

and 2Mk+1
2 �Mk

2 �Mk+1
2 for all k ≥ 0.

Then (xk,zk,yk)k≥0 converges weakly to a KKT point of the variational inequality
(1.3).

Proof. Let (x∗,z∗,y∗) be a KKT point of the variational inequality with monotone
operators (1.3). Then

−L∗1y∗−Cx∗ ∈ Ax∗, −L∗2y∗ ∈ Bz∗ and L1x∗+L2z∗ = d.

Let k≥ 0 be fixed. By (1.14), (1.15) and the monotonicity of A and B, we obtain the
inequalities

〈−cL∗1(L1xk+1 +L2zk−d + c−1yk)+Mk
1(x

k− xk+1)−Cxk +L∗1y∗+Cx∗,xk+1− x∗〉
≥ 0

and

〈−cL∗2(L1xk+1 +L2zk+1−d + c−1yk)+Mk
2(z

k− zk+1)+L∗2y∗,zk+1− z∗〉 ≥ 0.

Since C is η-cocoercive, we have

η〈Cx∗−Cxk,x∗− xk〉 ≥ ‖Cx∗−Cxk‖2.

We consider first the case when η > 0. Summing up the three inequalities from
above we get

c〈−L1xk+1−L2zk +d,L1xk+1−L1x∗〉+ 〈y∗− yk,L1xk+1−L1x∗〉
+〈Cx∗−Cxk,xk+1− x∗〉+ 〈Mk

1(x
k− xk+1),xk+1− x∗〉

+c〈L∗2(−L1xk+1−L2zk+1 +d),zk+1− z∗〉+ 〈−L∗2yk +L∗2y∗,zk+1− z∗〉
+〈Mk

2(z
k− zk+1),zk+1− z∗〉+ 〈Cx∗−Cxk,x∗− xk〉−η

−1‖Cx∗−Cxk‖2 ≥ 0.

By taking into account (1.13) we also obtain



10 Radu Ioan Boţ, Ernö Robert Csetnek and Dennis Meier

〈y∗− yk,L1xk+1−L1x∗〉+ 〈−L∗2yk +L∗2y∗,zk+1− z∗〉
= 〈y∗− yk,L1xk+1−L1x∗〉+ 〈y∗− yk,L2(zk+1− z∗)〉
= 〈y∗− yk,L1xk+1 +L2zk+1− (L1x∗+L2z∗)︸ ︷︷ ︸

=d

〉

= c−1〈y∗− yk,yk+1− yk〉.

Hence the above inequality reads as

c〈(d−L2zk)−L1xk+1,L1xk+1−L1x∗〉+ c−1〈y∗− yk,yk+1− yk〉
+〈Cx∗−Cxk,xk+1− xk〉+ 〈Mk

1(x
k− xk+1),xk+1− x∗〉

+c〈(d−L1xk+1)−L2zk+1,L2zk+1−L2z∗〉+ 〈Mk
2(z

k− zk+1),zk+1− z∗〉
−η
−1‖Cx∗−Cxk‖2 ≥ 0.

By expressing the inner products through norms the above inequality becomes

c
2

(
‖(d−L2zk)−L1x∗‖2−‖(d−L2zk)−L1xk+1‖2−‖L1xk+1−L1x∗‖2

)
+

c
2

(
‖(d−L1xk+1)−L2z∗‖2−‖(d−L1xk+1)−L2zk+1‖2−‖L2zk+1−L2z∗‖2

)
+

1
2c

(
‖y∗− yk‖2 +‖yk+1− yk‖2−‖yk+1− y∗‖2

)
+

1
2

(
‖xk− x∗‖2

Mk
1
−‖xk− xk+1‖2

Mk
1
−‖xk+1− x∗‖2

Mk
1

)
+

1
2

(
‖zk− z∗‖2

Mk
2
−‖zk− zk+1‖2

Mk
2
−‖zk+1− z∗‖2

Mk
2

)
+〈Cx∗−Cxk,xk+1− xk〉−η

−1‖Cx∗−Cxk‖2 ≥ 0.

By using again that yk+1 = yk + c(L1xk+1 +L2zk+1−d) and by taking into account
that

〈Cx∗−Cxk,xk+1− xk〉−η
−1‖Cx∗−Cxk‖2 =

−η

∥∥∥∥η
−1(Cx∗−Cxk)+

1
2
(xk− xk+1)

∥∥∥∥2

+
η

4
‖xk− xk+1‖2,

we obtain
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1
2
‖xk+1− x∗‖2

Mk
1
+

1
2
‖zk+1− z∗‖2

Mk
2
+

1
2
‖L2zk+1−L2z∗‖2

c Id +
1
2c
‖yk+1− y∗‖2 ≤

1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2
+

1
2
‖(d−L2zk)−L1x∗‖2

c Id +
1
2c
‖y∗− yk‖2

− c
2
‖(d−L2zk)−L1xk+1‖2− 1

2
‖xk− xk+1‖2

Mk
1−

η

2 Id−
1
2
‖zk− zk+1‖2

Mk
2

−η

∥∥∥∥η
−1(Cx∗−Cxk)+

1
2
(xk− xk+1)

∥∥∥∥2

.

Since (d−L2zk)−L1x∗ =−L2zk +L2z∗ and by using the monotonicity assumptions
on (Mk

1)k≥0 and (Mk
2)k≥0 it yields

1
2
‖xk+1− x∗‖2

Mk+1
1

+
1
2
‖zk+1− z∗‖2

Mk+1
2 +cL∗2L2

+
1
2c
‖yk+1− y∗‖2 ≤

1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖y∗− yk‖2

− c
2
‖L1xk+1 +L2zk−d‖2− 1

2
‖xk− xk+1‖2

Mk
1−

η

2 Id−
1
2
‖zk− zk+1‖2

Mk
2

−η
−1
∥∥∥∥η(Cx∗−Cxk)+

1
2
(xk− xk+1)

∥∥∥∥2

. (1.19)

In the case when η = 0, by repeating the above calculations, we obtain

1
2
‖xk+1− x∗‖2

Mk+1
1

+
1
2
‖zk+1− z∗‖2

Mk+1
2 +cL∗2L2

+
1
2c
‖yk+1− y∗‖2 ≤

1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖y∗− yk‖2

− c
2
‖L1xk+1 +L2zk−d‖2− 1

2
‖xk− xk+1‖2

Mk
1
− 1

2
‖zk− zk+1‖2

Mk
2
. (1.20)

By using arguments involving telescoping sums, each of the inequalities (1.19) and
(1.20) yield

∑
k≥0
‖L1xk+1 +L2zk−d‖2 <+∞, ∑

k≥0
‖xk− xk+1‖2

Mk
1−

η

2 Id <+∞,

∑
k≥0
‖zk− zk+1‖2

Mk
2
<+∞. (1.21)

Assume that condition (I) holds. By neglecting the negative terms (notice that Mk
1−

η

2 Id ∈S+(H ) for all k ≥ 0), from each of the inequalities (1.19) and (1.20) it fol-
lows that assumption (i) the Opial Lemma holds, when applied in the product space
H ×G ×Z , for the sequence (xk,zk,yk)k≥0, for W k := (Mk

1 ,M
k
2 +cL∗2L2,c−1 Id) for

k ≥ 0, and for C ⊆H ×G ×Z the set of KKT points of the variational inequality
(1.3).

Since Mk
1−

η

2 Id ∈Pα1(H ) for all k ≥ 0 with α1 > 0, we get from (1.21)



12 Radu Ioan Boţ, Ernö Robert Csetnek and Dennis Meier

xk− xk+1→ 0 (k→+∞) (1.22)

and

L1xk+1 +L2zk−d→ 0 (k→+∞). (1.23)

Therefore

‖zk+1− zk‖L∗2L2 =‖L2zk+1−L2zk‖

≤‖L1xk+2 +L2zk+1−d‖+‖L1xk+1 +L2zk−d‖
+‖L1xk+1−L1xk+2‖,

which means that

‖zk+1− zk‖L∗2L2 → 0 (k→+∞).

Using the third condition in (1.21) and the fact that Mk
2 + cL∗2L2 ∈Pβ1(G ) we con-

clude

zk− zk+1→ 0 (k→+∞). (1.24)

From (1.13) we derive

‖yk− yk+1‖= c‖L1xk+1 +L2zk+1−d‖

≤ c
(
‖L1xk+1 +L2zk−d‖+‖L2zk+1−L2zk‖

)
,

hence, by (1.23) and (1.24)

yk− yk+1→ 0 (k→+∞). (1.25)

Now we are able to verify the second assumption in the Opial Lemma for C taken as
the set of KKT points of (1.3). Let (x̄, z̄, ȳ) ∈H ×G ×Z be such that there exists
(kn)n≥0, kn→ +∞ (as n→ +∞), and (xkn ,zkn ,ykn) converges weakly to (x̄, z̄, ȳ) (as
n→ +∞). From (1.22) and the linearity of L1 we obtain that (L1xkn+1 +L2zkn)n≥0
converges weakly to L1x̄+ L2z̄ (as n→ +∞), which combined with (1.23) yields
L1x̄+L2z̄ = d. For n≥ 0, we use now the following notations
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a∗n := cL∗1(−L1xkn+1−L2zkn +d)+L∗1(y
kn+1− ykn)

+Mkn
1 (xkn − xkn+1)+Cxkn+1−Cxkn

an := xkn+1

b∗n := Mkn
2 (zkn − zkn+1)

bn := zkn+1

c∗n := −L1xkn+1−L2zkn+1 +d

cn := ykn+1.

From (1.14) we have

a∗n ∈ (A+C)an +L∗1cn (1.26)

and by combining (1.15) with (1.13) we obtain

b∗n ∈ Bbn +L∗2cn (1.27)

for all n≥ 0. From (1.22), (1.24) and (1.25) we have that

(an,bn,cn) converges weakly to (x̄, z̄, ȳ) (as n→+∞). (1.28)

Moreover, by (1.22) - (1.25) and the Lipschitz continuity of C we obtain

(a∗n,b
∗
n,c
∗
n) converges strongly to (0,0,0) (as n→+∞). (1.29)

Next we define the maximally monotone operator

T : H ×G ×Z ⇒ H ×G ×Z ,T (x,z,y) := ((A+C)x,Bz,0) ,

and the linear continuous operator

K̃ : H ×G ×Z →H ×G ×Z , K̃(x,z,y) := (L∗1y,L∗2y,−L1x−L2z).

For all (x,z,y) ∈H ×G ×Z we have

〈K̃(x,z,y),(x,z,y)〉= 〈L∗1y,x〉+ 〈L∗2y,z〉+ 〈−L1x−L2z,y〉
= 〈y,L1x〉+ 〈y,L2z〉−〈L1x,y〉−〈L2z,y〉= 0,

hence K̃ is maximally monotone and therefore the shifted operator

K : H ×G ×Z →H ×G ×Z ,K(x,y,z) := K̃(x,y,z)+(0,0,d),

is maximally monotone, as well. Since K has full domain we obtain that

T +K is a maximally monotone operator. (1.30)
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On the other hand, from (1.26) and (1.27) we have that

((an,bn,cn),(a∗n,b
∗
n,c
∗
n)) ∈ gra(T +K) ∀n≥ 0. (1.31)

Since the graph of a maximally monotone operator is sequentially closed with re-
spect to the weak×strong topology (see [4, Proposition 20.33]), from (1.28), (1.29),
(1.30) and (1.31) we derive that

((x̄, z̄, ȳ),(0,0,0)) ∈ gra(T +K),

which is equivalent to

(0,0,0) ∈ ((A+C)x̄+L∗1ȳ,Bz̄+L∗2ȳ,−L1x̄−L2z̄+d).

The latter means nothing else than saying that (x̄, z̄, ȳ) is a KKT point of (1.3), thus
assumption (ii) in the Opial Lemma is verified, too. In conclusion, (xk,zk,yk)k≥0
converges weakly to a KKT point of (1.3).

Consider now the situation in assumption (II). From (1.19) and (1.20) it follows
that (1.23) and (1.24) hold. From (1.13), (1.23) and (1.24) we obtain (1.25). Finally,
by using that L∗1L1 ∈Pα2(H ) for α2 > 0, relation (1.22) holds, too.

On the other hand, (1.19) and (1.20) yield that

∃ lim
k→+∞

(
1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖yk− y∗‖2

)
, (1.32)

hence (yk)k≥0 and (zk)k≥0 are bounded. Combining this with

α2‖xk− x∗‖2 ≤ ‖L1xk−L1x∗‖2

≤ 1
3
‖L1xk +L2zk−d‖2 +

1
3
‖L1x∗+L2z∗−d‖2 +

1
3
‖L2z∗−L2zk‖2,

which holds for all k ≥ 0, and using (1.13), we derive that (xk)k≥0 is bounded, too.
Hence there exists a weakly convergent subsequence of (xk,zk,yk)k≥0. By using the
same arguments as in the second part of the proof of (I) it follows that every weak
sequential cluster point of (xk,zk,yk)k≥0 is a KKT point of (1.3).

Now we show that the set of weak sequential cluster points of (xk,zk,yk)k≥0 is
a singleton. Let (x1,z1,y1), (x2,z2,y2) be two such weak sequential cluster points.
Then there exist (kp)p≥0, (kq)q≥0, kp→+∞ (as p→+∞), kq→+∞ (as q→+∞), a
subsequence (xkp ,zkp ,ykp)p≥0 which converges weakly to (x1,z1,y1) (as p→ +∞),
and a subsequence (xkq ,zkq ,ykq)q≥0 which converges weakly to (x2,z2,y2) (as q→
+∞). As seen above, (x1,z1,y1) and (x2,z2,y2) are KKT points of (1.3). , thus L1xi+
L2zi = d for i ∈ {1,2}. From (1.32), which is true for every KKT point of (1.3), we
derive

∃ lim
k→+∞

(
E(xk,zk,yk;x1,z1,y1)−E(xk,zk,yk;x2,z2,y2)

)
, (1.33)
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where

E(xk,zk,yk;x,z,y) :=
1
2
‖xk− x‖2

Mk
1
+

1
2
‖zk− z‖2

Mk
2+cL∗2L2

+
1
2c
‖yk− y‖2.

We have for all k ≥ 0

1
2
‖xk− x1‖2

Mk
1
− 1

2
‖xk− x2‖2

Mk
1
=

1
2
‖x2− x1‖2

Mk
1
+ 〈xk− x2,Mk

1(x2− x1)〉,

1
2
‖zk− z1‖2

Mk
2+cL∗2L2

− 1
2
‖zk− z2‖2

Mk
2+cL∗2L2

=
1
2
‖z2− z1‖2

Mk
2+cL∗2L2

+ 〈zk− z2,(Mk
2 + cL∗2L2)(z2− z1)〉

and

1
2c
‖yk− y1‖2− 1

2c
‖yk− y2‖2 =

1
2c
‖y2− y1‖2 +

1
c
〈yk− y2,y2− y1〉.

According to [18, Théorème 104.1] there exists M1 ∈S+(H ) such that (Mk
1)k≥0

converges pointwise to M1 in the strong topology (as k→+∞). Similarly, the mono-
tonicity condition imposed on (Mk

2)k≥0 implies that supk≥0 ‖Mk
2 + cL∗2L2‖ < +∞.

Thus, according to [13, Lemma 2.3], there exists α ′ > 0 and M2 ∈Pα ′(G ) such that
(Mk

2 + cL∗2L2)k≥0 converges pointwise to M2 in the strong topology (as k→+∞).
Taking the limit in (1.33) along the subsequences (kp)p≥0 and (kq)q≥0 and using the
last three identities above, we obtain

1
2
‖x1− x2‖2

M1
+ 〈x1− x2,M1(x2− x1)〉+

1
2
‖z1− z2‖2

M2
+ 〈z1− z2,M2(z2− z1)〉

+
1
2c
‖y1− y2‖2 +

1
c
〈y1− y2,y2− y1〉

=
1
2
‖x1− x2‖2

M1
+

1
2
‖z1− z2‖2

M2
+

1
2c
‖y1− y2‖2,

hence

−‖x1− x2‖2
M1
−‖z1− z2‖2

M2
− 1

c
‖y1− y2‖2 = 0,

thus z1 = z2 and y1 = y2. Further, since L1xi +L2zi = d for i ∈ {1,2},

α2‖x1− x2‖2 ≤ ‖L1x1−L1x2‖2

≤ 1
3
‖L1x1 +L2z1−d‖2 +

1
3
‖L1x2 +L2z2−d‖2 +

1
3
‖L2z1−L2z2‖2

= 0,

thus x1 = x2. In conclusion, (xk,zk,yk)k≥0 converges weakly to a KKT point of (1.3).
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Finally, we consider the situation when the hypotheses in assumption (III) hold.
Let k ≥ 1 be fixed. Combining (1.15) with (1.13) gives

−L∗2yk+1 +Mk
2(z

k− zk+1) ∈ Bzk+1.

Considering this monotone inclusion for consecutive iterates and by taking into ac-
count the monotonicity of B, we obtain

〈zk+1− zk,−L∗2(y
k+1− yk)+Mk

2(z
k− zk+1)−Mk−1

2 (zk−1− zk)〉 ≥ 0,

hence

〈zk+1− zk,−L∗2(y
k+1− yk)〉

≥ ‖zk+1− zk‖2
Mk

2
+ 〈zk+1− zk,Mk−1

2 (zk−1− zk)〉

≥ ‖zk+1− zk‖2
Mk

2
− 1

2
‖zk+1− zk‖2

Mk−1
2
− 1

2
‖zk− zk−1‖2

Mk−1
2

.

Using that yk+1− yk = c(L1xk+1 +L2zk+1−d), the last inequality yields

‖zk+1− zk‖2
Mk

2
− 1

2
‖zk+1− zk‖2

Mk−1
2
− 1

2
‖zk− zk−1‖2

Mk−1
2

≤ c〈L2zk+1−L2zk,−L1xk+1−L2zk+1 +d〉

=
c
2

(
‖L1xk+1 +L2zk−d‖2−‖L2zk+1−L2zk‖2−‖L1xk+1 +L2zk+1−d‖2

)
,

which, after adding it with (1.19) and using (1.13), leads to

1
2
‖xk+1− x∗‖2

Mk+1
1

+
1
2
‖zk+1− z∗‖2

Mk+1
2 +cL∗2L2

+
1
2c
‖yk+1− y∗‖2+

1
2
‖zk+1− zk‖2

3Mk
2−Mk−1

2

≤ 1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖y∗− yk‖2 +

1
2
‖zk− zk−1‖2

Mk−1
2
−

1
2
‖xk− xk+1‖2

Mk
1−

η

2 Id−
c
2
‖L2zk+1−L2zk‖2− 1

2c
‖yk+1− yk‖2−

η‖η−1(Cx∗−Cxk)+
1
2
(xk− xk+1)‖2.

Taking into account that according to (III) we have 3Mk
2 −Mk−1

2 � Mk
2 , we can

conclude that for all k ≥ 1 it holds
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1
2
‖xk+1− x∗‖2

Mk+1
1

+
1
2
‖zk+1− z∗‖2

Mk+1
2 +cL∗2L2

+
1
2c
‖yk+1− y∗‖2 +

1
2
‖zk+1− zk‖2

Mk
2

≤ 1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖y∗− yk‖2− 1

2
‖xk− xk+1‖2

Mk
1−

η

2 Id−

1
2
‖zk+1− zk‖2

cL∗2L2
− 1

2c
‖yk+1− yk‖2 +

1
2
‖zk− zk−1‖2

Mk−1
2
−

η
−1‖η(Cx∗−Cxk)+

1
2
(xk− xk+1)‖2, (1.34)

while, by using when η = 0 (1.20) instead of (1.19), it yields

1
2
‖xk+1− x∗‖2

Mk+1
1

+
1
2
‖zk+1− z∗‖2

Mk+1
2 +cL∗2L2

+
1
2c
‖yk+1− y∗‖2 +

1
2
‖zk+1− zk‖2

Mk
2

≤ 1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖y∗− yk‖2 +

1
2
‖zk− zk−1‖2

Mk−1
2
−

1
2
‖xk− xk+1‖2

Mk
1
− 1

2
‖zk+1− zk‖2

cL∗2L2
− 1

2c
‖yk+1− yk‖2. (1.35)

Using telescoping sum arguments, we obtain that ‖xk − xk+1‖2
Mk

1−
η

2 Id
→ 0, yk −

yk+1→ 0 and zk−zk+1→ 0 as k→+∞. Using (1.13), it follows that L1(xk−xk+1)→
0 as k→+∞, which, combined with the hypotheses imposed on Mk

1−
η

2 Id+cL∗1L1,
implies that xk − xk+1 → 0 as k→ +∞. Consequently, L1xk+1 + L2zk − d → 0 as
k→ +∞. Hence the relations (1.22) - (1.25) are fulfilled. On the other hand, from
(1.34) and (1.35) if follows that the limit

lim
k→+∞

(
1
2
‖xk− x∗‖2

Mk
1
+

1
2
‖zk− z∗‖2

Mk
2+cL∗2L2

+
1
2c
‖yk− y∗‖2 +

1
2
‖zk− zk−1‖2

Mk−1
2

)
exists. By using that

‖zk− zk−1‖2
Mk−1

2
≤ ‖zk− zk−1‖2

M0
2
≤ ‖M0

2‖‖zk− zk−1‖2 ∀k ≥ 1,

it follows that limk→+∞ ‖zk−zk−1‖2
Mk−1

2
= 0, which further implies that (1.32) holds.

From here the conclusion follows by arguing as in the second part of the proof
provided in the setting of assumption (II). ut

1.4 Convergence rates in the case when A+C is strongly
monotone

In this section we adress the following modification of the Problem 1.

Problem 3. In the context of Problem 1, we replace the cocoercivity of C by the
assumptions that C is monotone and µ-Lipschitz continuous, for µ ≥ 0. Further, we
assume that the sum A+C is γ-strongly monotone for γ > 0, and that d = 0.
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We have the following characterization for a KKT point of (1.3):

∃(x,z,y) ∈H ×G ×Z :


−L∗1y ∈ Ax+Cx
−L∗2y ∈ Bz
L1x =−L2z

⇔ ∃(x,z,y) ∈H ×G ×Z :


−L∗1y ∈ Ax+Cx

z ∈ B−1 ◦ (−L∗2)y
L1x =−L2z

⇔ ∃(x,y) ∈H ×Z :

{
−L∗1y ∈ Ax+Cx
L1x ∈ (−L2)◦B−1 ◦ (−L∗2)y.

The latter means that (x,y) is a so-called primal-dual solution associated to the
monotone inclusion problem

find x ∈H such that 0 ∈ Ax+Cx+(L∗1 ◦ B̄◦L1)(x),

and its Attouch-Thera dual inclusion problem, where B̄ := [(−L2)◦B−1 ◦ (−L∗2)]
−1.

Algorithm 14 in [6] which is designed to determine these primal-dual solutions in a
setting which is similar to the one in Problem 3, gives rise to the following iterative
scheme.

Algorithm 2 For all k≥ 0, let Mk
2 : Z →Z be a linear, continuous and self-adjoint

operator such that τkL1L∗1 +Mk
2 ∈Pαk(Z ), for αk > 0. Choose (x0,z0,y0) ∈H ×

G ×Z . For all k ≥ 0 generate the sequence (xk,zk,yk)k≥0 as follows:

yk+1 =
(

τkL1L∗1 +Mk
2 +(−L2)◦B−1 ◦ (−L∗2)

)−1
[−τkL1(zk− τ

−1
k xk)+Mk

2yk]

(1.36)

zk+1 =

(
θk

λ
−1
)

L∗1yk+1 +
θk

λ
Cxk

+
θk

λ
(Id+λτ

−1
k+1A−1)−1(−L∗1yk+1 +λτ

−1
k+1xk−Cxk) (1.37)

xk+1 =xk +
τk+1

θk
(−L∗1yk+1− zk+1), (1.38)

where λ ,τk,θk > 0.

In case G = Z and the linear continuous operator L2 : G → G is invertible, we
obtain the following full splitting formulation for Algorithm 2.

Algorithm 3 For all k ≥ 0, let Mk
2 : G → G be a linear, continuous and self-

adjoint operator such that τkL−1
2 L1(L−1

2 L1)
∗+L−1

2 Mk
2(L
∗
2)
−1 ∈Pαk(Z ) for αk > 0.

Choose (x0,z0,y0)∈H ×G ×G . For all k≥ 0 generate the sequence (xk,zk,yk)k≥0
as follows:
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yk+1 = (−L∗2)
−1 ◦

(
τkL−1

2 L1(L−1
2 L1)

∗+L−1
2 Mk

2(L
∗
2)
−1 +B−1

)−1
◦

(−L2)
−1[−τkL1(zk− τ

−1
k xk)+Mk

2yk] (1.39)

zk+1 =

(
θk

λ
−1
)

L∗1yk+1 +
θk

λ
Cxk+

θk

λ
(Id+λτ

−1
k+1A−1)−1(−L∗1yk+1 +λτ

−1
k+1xk−Cxk) (1.40)

xk+1 = xk +
τk+1

θk
(−L∗1yk+1− zk+1), (1.41)

where λ ,τk,θk > 0.

Concerning the parameters involved in Algorithm 2, we assume that

µτ1 < 2γ, λ ≥ µ +1, (1.42)

that there exists σ0 > 0 such that

σ0τ1‖L1‖2 ≤ 1, (1.43)

and that for all k ≥ 0

θk =
1√

1+ τk+1λ−1(2γ−µτk+1)
(1.44)

τk+2 = θkτk+1 (1.45)

σk+1 = θ
−1
k σk (1.46)

τkL1L∗1 +Mk
2 � σ

−1
k Id (1.47)

τk

τk+1
L1L∗1 +

1
τk+1

Mk
2 �

τk+1

τk+2
L1L∗1 +

1
τk+2

Mk+1
2 . (1.48)

The following convergence rate result follows from [6, Theorem 19].

Theorem 2. Consider the setting of Problem 3 in the hypothesis (−L2) ◦ B−1 ◦
(−L∗2) is maximally monotone. Let (x,z,y) be a KKT point of the variational in-
equality (1.3). Let (xk,zk,yk)k≥0 be the sequence generated by Algorithm 2 and as-
sume that the relations (1.42) - (1.48) are fulfilled. Then we have for all n≥ 2

λ‖xn− x‖2

τ2
n+1

+
1−σ0τ1‖L1‖2

σ0τ1
‖yn− y‖2 ≤

λ‖x1− x‖2

τ2
2

+
‖y1− y‖2

τ1L1L∗1+M1
2

τ2
+
‖x1− x0‖2

τ2
1

+
2
τ1
〈L1(x1− x0),y1− y〉.

Moreover, lim
n→+∞

nτn =
λ

γ
, hence one obtains for (xn)n≥0 an order of convergence of

O( 1
n ).



20 Radu Ioan Boţ, Ernö Robert Csetnek and Dennis Meier

Remark 4. Conditions guaranteeing the maximal monotonicity of compositions of
a maximally monotone operator with a linear continuous operator have been inten-
sively studied in the Hilbert space setting; for more insights we refer the reader to
[4] and [5] and to the references therein.
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