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Abstract

We study monotone variational inequalities that
can arise as optimality conditions for constrained
convex optimisation or convex-concave minimax
problems and propose a novel algorithm that uses
only one gradient/operator evaluation and one pro-
jection onto the constraint set per iteration. The
algorithm, which we call fOGDA-VI, achieves
a o(1/k) rate of convergence in terms of the re-
stricted gap function as well as the natural resid-
ual for the last iterate. Moreover, we provide
a convergence guarantee for the sequence of it-
erates to a solution of the variational inequality.
These are the best theoretical convergence results
for numerical methods for (only) monotone vari-
ational inequalities reported in the literature. To
empirically validate our algorithm we investigate
a two-player matrix game with mixed strategies of
the two players. Concluding, we show promising
results regarding the application of fOGDA-VI to
the training of generative adversarial nets.

1. Introduction

Variational inequalities are fundamental models in various
fields such as optimisation, e.g., when determining primal-
dual pairs of optimal solutions of constrained convex optimi-
sation problems (Bauschke & Combettes, 2011), economics,
game theory (Morgenstern & Von Neumann, 1953), or par-
tial differential equations. Recently, they have attracted par-
ticularly significant attention in the area of machine learning
due to the fundamental role they play, for instance, in multi
agent reinforcement learning (Omidshafiei et al., 2017), ro-
bust adversarial learning (Madry et al., 2018) and the train-
ing of generative adversarial networks (GANs) (Goodfellow
et al., 2014; Goodfellow, 2016).
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1.1. Problem Setting

In the following we consider R¢ with its standard inner
product denoted by (-, - ) and induced norm || - ||. Let F" :
R% — R4 be a monotone operator, i.e.,

(F(w) — F(2),w —2) >0 VYw,zecRY,
which is also L-Lipschitz continuous, i.e.,

|F(w) — F(2)| < L|jw—z|| VYw,zeR™%

Furthermore, let C' be a nonempty closed convex subset
of R%. Then the (strong) classical variational inequality
problem consists of finding z* € C such that

(F(z*),z—2")>0 VzeC. (1)

For the following considerations we assume that the so-
lution set of (1) is nonempty, ie., Q = {z* € C |
(F(2*),z—2*) >0 VzeC}#0.

Note that in the case of F' being monotone and continuous,
the above strong formulation is equivalent to the following
problem,

(F(2),z— 2"y >0 VzeC, 2)

which is known as the weak version of the variational in-
equality. Writing No(z) := {w € R? | (v—z,w) <
0 YveC} forze C,and No(z) := 0, forz ¢ C, to
denote the normal cone of C, condition (1) is equivalent
to the following monotone inclusion, where want to find
z* € R% such that

0€ F(z*)+ Ne(z"). 3)

1.2. Contribution

We introduce an accelerated first order method for solving
the constrained variational inequality problem (1) that uses
a single operator evaluation and a single projection in each
iteration. Our proposed algorithm, called fOGDA-VI, ex-
hibits a o(1/k) rate of convergence for the last iterate which
is better than the O(1/k) results for other accelerated algo-
rithms. Moreover, fOGDA-VI exhibits convergence of the
generated sequence to a solution of the variational inequality
under investigation, which is not necessarily the case for
other accelerated methods (Cai et al., 2022a; Cai & Zheng,
2022) that have been proposed for (1).
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1.3. Overview

This paper is structured as follows. In Section 2 we discuss
suitable convergence measures and (accelerated) solution
methods for monotone variational inequalities governed by
a monotone and Lipschitz operator. The algorithm fOGDA-
VI and the accompanying convergence results are presented
in Section 3, which is followed by illustrations of the em-
pirical performance of the proposed method when solving
two-player matrix games and in the training of GANs in
Section 4.

2. Solving Variational Inequalities

In this section we recall appropriate measures of conver-
gence for solution methods for monotone variational in-
equalities and provide an overview on the most important
solution methods from the literature, both nonaccelerated
and accelerated ones, for solving (1).

2.1. Convergence Measures

We start with presenting three suitable measures that are
commonly used to judge the quality of prospective solutions.

Restricted gap function For z* € €,z € R? and
d(z0) :=||z* — 20/, the restricted gap function associated
with the variational inequality (1) is defined as

Gap(z) := sup (F(w),z —w) > 0.

weCNB(2*;6(20))
It is also known as merit function (Nesterov, 2007) and it
measures how much the statement of (2) is violated.

In the above  definition, B(z;0) =
{weR? | |lw— z| <8} denotes the closed ball centred at
z € R with radius 6 > 0. The restriction of the supremum
to a bounded set, particularly the ball B(z*; §(zp)) in our
case, is essential to avoid an infinitely large gap when C'is
unbounded.

Tangent residual Another quantity that can be used to
measure the quality of a solution candidate with respect to
the variational inequality (1) is based on the observation that
the latter it is equivalent to the monotone inclusion (3). The
so-called fangent residual is given by
r(z):= inf F(z)+ ] .
()= fnf | 1F() =+l

In a straightforward way this quantity extends the usual
measure || F(z)] in the unconstrained setting of monotone
equations, where the goal is to find z* € R? such that

F(=*) =0, @)
to variational inequalities by measuring the distance from 0

to F(z) + N¢(z). Note, if z ¢ C we have N (z) = () and
thus r(z) = +o0.

Natural residual Another useful convergence measure
is the natural residual, which in fact is upper bounded by
the tangent residual, see Section B.1. For this we write
Pc(2) to denote the projection of z € R onto the closed
convex set C, which is uniquely defined and given by
Pc(z) = argmin . ||w — z||. Using the characterisation
of the projection via the normal cone (see Proposition 6.46
in (Bauschke & Combettes, 2011)) we observe that

0€ F(z")+ No(z") & 2" =Polz" = F(z")].
This motivates to look at
Res(z) := ||z — Pc [z = F(2)]| ,

which is also known as fixed point residual. Note, in the
unconstrained case (4) the two residuals coincide

r(z) = Res(z) = |F(2)|| VzeR%

2.2. Solution Methods

In this work we are interested exclusively in first order
methods that are fully splitting, i.e., algorithms that only use
direct evaluations of the operator F' and projections onto C'
as main building blocks. As a general Lipschitz continuous
operator is not necessarily cocoercive, the simplest first
order method that is splitting — the Forward-Backward (FB)
algorithm — can not be used to solve (1).

2.2.1. NONACCELERATED SOLUTION METHODS

Extragradient (EG) method Korpelevich (1976) and

Antipin (1976) proposed to take a second forward evalu-

ation of I in each iteration in order to solve (1). This results
in the following scheme for £ > 0

WE — PC [Zk — 'yF(zk)]

EG: 5

{ zi1 = Po [z — vF (wy)] ©)

which converges to a solution of (1) for 0 < v < /L.

It is known that EG converges with a rate of O(/x) in terms
of the restricted gap function for the averaged, or ergodic,

iterates
1K
W = e kg_l Wy

in both the unconstrained (Nemirovski, 2004; Nesterov,
2007; Mokhtari et al., 2020) and the constrained case (Hsieh
et al., 2019), which further seems to be optimal (Ouyang
& Xu, 2021). The best iterate convergence in terms of
the tangent residual, however, is known to yield a rate of
O(1/vK) (Korpelevich, 1976; Facchinei & Pang, 2003), i.e.,

. 1
1£I]1€1<HK7‘(Z]€) =0 (\/E) as K — +o0.
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The more desirable last iterate convergence rate for EG was
derived only recently in the unconstrained case (Gorbunov
et al., 2022) which was then extended to the constrained
case as well (Cai et al., 2022b). In fact,

Gap(z) = O (%) and r(z) = O (;E) ,

as k — +oo. The result for the restricted gap func-
tion (Golowich et al., 2020b) as well as for the residuals is
actually tight, meaning that the convergence rate for the av-
eraged iterates is better than for the last iterate. Nevertheless,
we emphasise that the latter one is more appealing and that
the averaged iterates might still show acceptable behaviour
while the actual trajectory of iterates cycles around the set
of solutions (Mertikopoulos et al., 2018).

Popov’s method In the saddle point setting Popov (1980)
introduced the following algorithm which, when applied
to (3), reads for k > 1

wy, = Pe [z — YF(wi—1)]

2ks1 = Po [z — YF(wy)] ©

Popov: {

which converges to a solution of (1) for 0 < v < 1/2rL.
The update rule of (6) is very similar to (5) but requires F'
to be evaluated only once per iteration. Actually, Popov
differs from EG only in the first block, where F(zy) is
replaced by F'(wg—1). In the unconstrained case, (6) can
be written in one line, yielding a method usually known as
Optimistic Gradient Descent Ascent (OGDA), a name that
was coined by works on GAN training (Daskalakis et al.,
2018; Daskalakis & Panageas, 2018).

Given the close connection between EG and OGDA, it is
not surprising that many convergence rate results hold in a
similar way. In terms of the restricted gap OGDA converges
like O(Y/x) and O(1/vk) for averaged iterates (Mokhtari
et al., 2020) and last iterates (Golowich et al., 2020b), re-
spectively, where the latter one is optimal. The convergence
rate in terms of the residuals is O(/v%) and it can not be
improved in general (Golowich et al., 2020a; Chavdarova
et al., 2021a; Cai et al., 2022b), as seen for EG.

We have seen that both EG and Popov’s method require two
projections in each iteration. One might think that this is
necessary to obtain convergent algorithms for the variational
inequality (3) when the operator F' is merely Lipschitz con-
tinuous and not cocoercive. This is not the case, however,
and in the following we will look at algorithms that need
only one evaluation of the projection operator per iteration.

Forward-Backward-Forward (FBF) method One of
these single-call projection methods is the FBF method. It
was proposed by Tseng (2000) and applied to (3) it iterates

fork >0

| wr = Po[zx — vF (21)]
FBE { Zpy1 = Wi — Y (wi) + 7F () @

which converges to a solution of (1) for 0 < v < 1/L. Notice
that in each iteration this iterative scheme performs two
evaluations of F' along the sequences (2j)x>0 and (wg) x>0,
similar to EG — the first line of FBF and EG is even identical.
In the second line, however, instead of performing another
projection the forward step regarding the intermediate iterate
wy, is corrected by the previous update F'(z;). Moreover,
for the unconstrained problem (4), i.e., in the absence of
projections, FBF and EG are equivalent.

Forward-Reflected-Backward (FRB) method Another
single-call projection method that even requires only one
evaluation of F' like the basic FB algorithm was proposed
by Malitsky and Tam (2020). The FRB algorithm is given
for k > 1 by

FRB: | zi11 = Po 2k — 29F (1) + 7F (z-1)] ()

and converges to a solution of (1) for 0 < v < 1/2r. Note
that FRB can be deducted from FBF by reusing F(wy_1)
instead of F'(zy) in the first line of (7), similarly to how
Popov’s method can be obtained from EG. Hence (8) coin-
cides with (6) and OGDA in the unconstrained case.

Projected Reflected Gradient (RG) method Before in-
vestigating FRB, Malitsky (2015) introduced another similar
method where the order of the reflection and the forward
step is reversed. In particular, a second forward step can be
avoided by evaluating F' at an appropriate linear combina-
tion of the iterates. This gives rise to the following method
fork >1

Wy = 22 — 21

Zer1 = Po [ze — 7F(wy)] ®

RG: |

which converges to a solution of (1) for 0 < v < (V2-1)/L.

Despite the similarities in the construction and iterate con-
vergence, nonasymptotic convergence is less understood in
the case of single-call projection methods. For example
Banert and Bot (2018) derived for Tseng’s method an er-
godic O(1/k) rate in terms of function values in the context
of convex optimisation; see also (Bohm et al., 2022) for
an ergodic O(1/vk) convergence result in terms of the re-
stricted gap function in the stochastic setting. For Malitsky’s
RG algorithm convergence in terms of the gap function and
residuals like O(1/vk) for the last iterate was established
recently (Cai & Zheng, 2022).

2.2.2. ACCELERATED SOLUTION METHODS

Extra Anchored Gradient (EAG) algorithm An accel-
erated algorithm for solving the monotone equation (4) that
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is based on EG, called Extra Anchored Gradient (EAG)
algorithm, was proposed by Yoon and Ryu (2021). It is
designed by using anchoring, a technique that can be traced
back to Halpern’s algorithm (1967). This iterative scheme
exhibits a convergence rate of

1
| (zi)|| = O (k) as k — +oo.

These considerations have been followed by extension of
EAG to the constrained setting (Cai et al., 2022a), where
the authors consider for k& > 0

wy, = Po {zk — vF(z1) + 7275 (20 — Zk)]

EAG: 1
zp+1 = FPo [Zk —vF(wr) + 57 (20 — Zk)}

with 0 < 7 < 1/v/3L. One can notice that the algorithm uses
two operator evaluations and two projection steps, like EG,
and in the unconstrained case it coincides with its projec-
tion free counterpart (Yoon & Ryu, 2021), maintaining the
O(1/k) convergence rate for gap function and residuals.

Accelerated Reflected Gradient (ARG) algorithm Sim-
ilar to the nonaccelerated methods from the previous subsec-
tion, one can also reduce the number of necessary operator
evaluations and projections to one each per iteration. This
was done by investigating an accelerated version (Cai &
Zheng, 2022) of the projected reflected gradient method (9)
with convergence rate O(1/k). The method is given for
k> 1by

wy = 22 — 21 + ﬁ_l(zo — 2k)

ARG: — (20 = 21-1)
zp+1 = FPo [Zk — YF(wy) + g7 (20 = Zlc)}

with 0 < v < /121

It is worth mentioning that for constrained EAG (Cai et al.,
2022a) and ARG (Cai & Zheng, 2022) there are no guar-
antees for the iterates to converge to a solution and that,
in spite of the fast theoretical convergence rate, the effect
of the anchor zy, to which the algorithm returns in every
iteration, on the convergence speed is a slowing one, as we
will see in the numerical experiments.

Further accelerated algorithms Further variants of an-
choring based algorithms have been proposed by Tran-
Dinh (2022) and together with Luo (Tran-Dinh & Luo,
2021), which all exhibit the same convergence rate in terms
of the operator norm as EAG for (4). Monotone inclusions
are also considered in these works, with a more general
operator than the normal cone, but this requires either tak-
ing a backward step or additionally asking for cocoercivity
of F. In the same spirit, an o(!/k) rate of convergence
together with convergence of iterates was shown for an ac-
celerated version of the Krasnosel’skii-Mann algorithm (Bot
& Nguyen, 2022).

Explicit Fast OGDA (fOGDA) algorithm Another ap-
proach which is different from the Halpern-type methods
mentioned above was investigated in (Bot et al., 2022). An
appropriate (explicit) discretisation of a second-order dy-
namical system with vanishing damping term gives rise to an
accelerated algorithm related to OGDA, called fast OGDA
(fOGDA), which will constitute a starting point for our con-
siderations in the following. The fast OGDA algorithm (Bot
et al., 2022) for solving the monotone equation (4) is given
for k > 1 by

w = 2k + Hia (2 — 2-1) — Ve F(wk—1)

fOGDA:
Zhy1 = wy — YIRS (F(wy) — F(wy—1))

and converges to a solution of (4) for 0 < v < 1/4r and
a > 2. It was shown that fOGDA exhibits convergence
rates like

Gap(s) =o (1) and [Pl =o ()

as k — +oo.

3. Main Results

In this section, we will first motivate the changes neces-
sary to extend f{OGDA to solve the variational inequality (1)
and introduce our newly proposed method which we call
JfOGDA-VI. This is followed by formally stating the conver-
gence results of fOGDA-VI — convergence of the iterates to
a solution as well as convergence in terms of the restricted
gap and the residuals like o(1/x) for the last iterate.

3.1. Extending fOGDA to the Constrained Case

It can be seen empirically, that incorporating one (or more)
projections to the unconstrained fOGDA method in a naive
way, similar to FRB or Popov, is not sufficient to obtain a
solution method for (1). Instead, the idea is to introduce
for every k > 1 an appropriate element (;, of the normal
cone N¢(zi). This is done by replacing F'(wy—1) by the
sum F(wg_1) + (. One might think that because of this
the suitable choice would be to take ( € No(wg—1), but
this is not the case which can be motivated as follows. For
the unconstrained case, i.e., when solving the monotone
equation (4), we want to find a sequence (21 )x>1 yielding
|lF'(zx)|| — 0. However, in the constrained case, i.e., when
tackling the monotone inclusion (3), we aim to establish
sequences (2x)k>1, (Ck)k>1 With {x € N¢(2) such that

1F(2k) + G|l = 0.
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Algorithm 1 fOGDA-VI

Input: momentum parameter « > 2; starting values zg, wy € R4, 2 € C, ¢1 € Ne(z1); step size 0 < v < 1/41;

number of iterations K > 1.
for k=1to K do

Compute
Wk = 2k + o (2 — 2—1) _Vk;ia (F(wg—1) + ()
Zp+1 = Po |:wk - (1 + kia) (F(wg) — F(wg—1) — Ck)
Gutr =~y (1= 31) = (Plus) = Pla1) = G
end for

Then instead of fOGDA we have an algorithm which is
given for every k > 1 by

Wi = 2k + o (2k — 2-1) — Vo (F(wi—1) + Ck)
Zhy1 = wi — YRS (F(wy) — F(wi—1) + Cry1 — Gr) -
(10)

At first glance this method seems to be implicit, as both
zk+1 and (41 appear on the same line. However, the sec-
ond line in (10) can be used to formulate a projection step
(see Appendix B.1 for details). Even though from the per-
spective of (13) the appearance of the normal cone element
is a natural consequence of the projection, finding its correct
formulation is a highly non-trivial task. These considera-
tions give rise to Algorithm 1, which we call fOGDA-VI.

The two main differences of our proposed method — intro-
duction of a projection at a specific spot as well as explicit
computation of a particular element in the normal cone —
are deemed to be necessary. Changing (or even neglecting)
either of them results in algorithms that fail to converge in
general.

Remark 3.1. Initialisation of fOGDA-VI, however, is easy
as for general z; € C' it is sufficient to take (; = 0. With
arbitrary 2 € RY, one can also take z; := P (%) and () :=
Z—2 € Nc(z1)

3.2. Convergence Statements

The first main result concerns the convergence of the se-
quence of iterates to an element in €.

Theorem 3.2. Let (z))i>0 be the sequence generated by
Algorithm 1. Then the sequence (zy)i>0 converges to a
solution of (1).

The central idea for the proof is to define an appropriate
family of energy functions (G x)r>0, where A > 0 is a
parameter that depends on o, which dissipate over the course
of the algorithm to obtain convergence or summability of

various helpful quantities. Even though we are not able to
enforce the family of discrete energies (G x)x>0 to have an
actual nonincreasing property, we can at least show that for
every k >0

Gakt1 < (L 4+dar)Gxk — bak, (11)

with some sequences (b i )x>0 and (dy x)r>o. The aim is
to control these two sequences in such a way that we can still
derive some beneficial asymptotic results for (Gx x)r>0. As
the additional terms are not necessarily nonnegative, a novel
Lyapunov analysis is needed. For instance, we show that
there exist 0 < ) (o) < X (a) < (3a=2)/4 such that every
A (@) < A < X(«) provides an energy function (G x)k>0
that is bounded from below and nonnegative sequences
(b)\,k')k:ZO and (d)\A,k)kZO with Zk>0 d)\’k‘ < 400 such that
the inequality (11) holds for & large enough. This allows us
to conclude that limy_, 1 o G 1 € R exists, see Lemma A.2
for more details.

From this we can then verify that the first condition of
Opial’s lemma, see Lemma A.3, is fulfilled, while its second
condition follows from the maximal monotonicity of F' +
N¢, see Proposition A.4.

The asymptotic convergence of the iterates is complemented
by statements about convergence rates in terms of the re-
stricted gap as well as the natural residual for the last iterate.

Theorem 3.3. Let z* €  be a solution of (1) and let
(2k)k>0 be the sequence generated by Algorithm 1. Then,
as k — +oo, we have

Gap(zx) = o @) and Res(z) = o (,1{) .

Remark 3.4. The tangent residual exhibits the same last
iterate convergence rate as the natural residual, i.e.,

e=o(1).
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In fact, we use the observation Res(z) < ||F(z) + (|,
see (14), in the proof of Theorem 3.3 to obtain the con-
vergence rate for the natural residual. As the restricted gap
and the natural residual are mostly used in the literature (and
are probably more intuitive) to quantify the convergence be-
haviour of numerical methods for variational inequalities,
we opted to present Theorem 3.3 in the above manner.

4. Numerical Experiments

In this section we provide two numerical experiments to
complement our theoretical results. For the first one we
treat a two-player zero sum game, which amounts to solv-
ing a bilinear saddle point problem constrained by stan-
dard simplexes. The second one consists of application of
fOGDA-VI to the training of GANSs.

4.1. Two-player Zero Sum Game

~ === O(1/k)

107 S~ - - a=2.1
S~< ~¥- a=5

S~o - a=10

S~Q —%— a=20

10° 4

10-2 4

1074 4

llzk = Pclzi — F(z)1ll

1076 4

10-8 4

10*10 4

T T T T T T T
10° 10! 102 10° 104 10° 10
Evaluations of F

Figure 1. Comparison of different momentum parameters o > 2
in Algorithm 1 in terms of the natural residual.

We aim to solve a two-player zero sum game with mixed
strategies, which means that we need to solve the following
bilinear saddle point problem,

i ) =azTA 12
Join - max (z,y) == " Ay, (12)

where A € R™*" is a given pay-off matrix and A? = {v €
R? | Z?:l v; = 1} denotes the d-dimensional standard
simplex. Recall that a solution of (12) is given by a saddle

point (z*,y*) € A™ x A™ satisfying

D(z*,y) < ®(z*,y*) < D(z,y*) V(z,y) € A™ x A™.

This leads to a monotone inclusion problem (3) with C' =
A™ x A™ and

V. ®(x y)>
F:R™"xR" 5 R™ xR, (¥)— ( =\0HY) )
(y) (Vﬂ)(x, Y)

which gives

ren= ()= (e )

10?4 ~~
10° ~
10*2 4

104

llzx = Pclzi = F(z)1ll

107°1 = o(1/k)
—e— FRB
3 Popov
10°1 _w— fOGDA-VI (@ = 20)
- EG
EAG
- RG

ARG

10-10

Vi

10° 10t 102 103 104 10° 106
Evaluations of F

Figure 2. Comparison of different methods in terms of the natural
residual.

Notice that F' is Lipschitz continuous but not cocoercive,
thus indeed the regular Projected Gradient Descent Ascent
algorithm (PGDA), which is in this case nothing else than
the FB algorithm, cannot be applied.

For our experiments we choose d = n = 50 and A to
have entries drawn from the uniform distribution on the
half-open interval [0,1). As the parameter o > 2 can be
chosen arbitrarily, we do a comparison of different values
in terms of the natural residual in Figure 1 to gain more
insight. Note that there is no upper bound for « that would
be given on the basis of the theoretical considerations. As
it turns out, from a certain point on after a period where all
values of « perform similarly, bigger choices for o seem
to give better results with faster convergence (even though
the convergence rate of o(1/k) is the same for all choices).



A Fast Optimistic Method for Monotone Variational Inequalities

Table 1. Comparison of fOGDA-VI with LA-GDA in terms of Fréchet Inception Distance (FID; lower is better) and Inception Score (IS;
higher is better). We report the best obtained scores, averaged over 5 runs with 500,000 iterations each. For all considered methods
we evaluated the last (non averaged) iterates, the uniform average, the exponential moving average (EMA) and the EMA on the “slow
weights” for the method incorporating “lookahead”. Best scores for each metric are in boldface.

FID IS
Method non avg. uniform avg. EMA EMA-slow non avg.  uniform avg. EMA EMA-slow
fOGDA 1849 £1.09 1738 +1.69 18.51 £ 1.13 - 7.82 £ .07 8.7+£.15 8.1+.15 -
LA-GDA 16.7 £+ .67 16.02 + .84 1684+ .71 1531+127 7.88+.08 876+.19 829+.07 859+.1

When going to “extremely big” choices of oz we could not
only observe further boost in convergence speed, but also in-
creased oscillatory behaviour after a certain point. Whether
fOGDA-VI for a« — 400 amounts to a convergent method
is not obvious; for the unconstrained fOGDA by (Bot et al.,
2022) one can see that this would lead to the unaccelerated
OGDA method.

Concluding, we show a comparison of different methods
that we have encountered in Sections 2.2.1 and 2.2.2 in
Figure 2 where we report results on the natural residual. We
see that fOGDA-VI clearly outperforms all other methods
while only requiring one evaluation of F' and one projection
in each iteration.

4.2. GAN Training

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) form a powerful class of generative models that
can produce for example unseen realistic images. Originally
the problem was posed as a zero sum game between two
adversarial players played by two neural networks, called
generator and discriminator, that try to minimise and max-
imise the same loss function, respectively. The minimax
structure of the underlying optimisation problem generally
leads to cycling behaviour during the training process, mak-
ing GANSs notoriously hard to optimise (Mescheder et al.,
2017; 2018). As it was shown empirically that principled
methods that are used to solve variational inequalities (Gidel
et al., 2019) and monotone inclusions (Bohm et al., 2022)
can prove beneficial in the training process, we will apply
our proposed algorithm fOGDA-VI to train ResNet archi-
tectures on the CIFAR-10 dataset.

For our experiments we use ResNet (He et al., 2016) archi-
tectures, see Appendix C.1, with the hinge version of the
adversarial non-saturating loss (Miyato et al., 2018) trained
on the CIFAR-10 (Krizhevsky, 2009) data set, which con-
sists of 60,000 (32 x 32 x 3)-images in 10 classes, with 6,000
images per class. The metrics used to evaluate the generated
images are the inception score (Salimans et al., 2016) (IS;
higher is better) and the Fréchet inception distance (Heusel
etal., 2017) (FID; lower is better), both computed on 50,000
samples in their original implementations.

Furthermore, in our experiments instead of stochastic gradi-
ents we use the Adam optimiser (Kingma & Ba, 2014) with
parameters 8, = 0 and By = 0.9 that were used in recent
experiments (Chavdarova et al., 2021b) outperforming the
class-dependent BigGAN (Brock et al., 2019) model on
CIFAR-10. Additionally, we keep the batch size and the
ratio of discriminator and generator updates the same as
in (Chavdarova et al., 2021b).

Since we have mini batch updates for the GAN experiments
instead of taking the full gradient we perform significantly
more steps to incorporate the entire gradient information.
Because of this the iterator k£ in Algorithm 1 might grow
too large soon, so we conducted experiments to update the
iterator k only every n-th step with different choices of n.
Furthermore, we also did a hyperparameter search regarding
the learning rate and the momentum parameter o > 2 in
Algorithm 1.

Table 2. Overall best obtained scores in terms of Fréchet Inception
Distance (FID; lower is better) and Inception Score (IS; higher is
better) for the last (non averaged) iterates. Best scores for each
metric are in boldface.

Method FID IS
fOGDA-VI 15.69 8.91
LA-GDA 14.09 9.06

When performing the hyperparameter search for the momen-
tum parameter «, we experienced that, just as in the theoreti-
cally justified setting of Section 4.1, bigger values seemed to
perform better. Regarding the frequency of iterator updates
we also observed better behaviour for bigger values of n in
general. The parameters we used for the fOGDA-VI experi-
ments were o = 100 and n = 1000, and a learning rate of
~ = 0.0001. We compared the results obtained by fOGDA-
VI with the best method from (Chavdarova et al., 2021b), a
variant of Gradient Descent Ascent incorporating averaging
during the training which they call “lookahead”, resulting
in a method we denote by LA-GDA, for the convergence
properties of which no theoretical evidence is available. For
the LA-GDA experiments we kept all hyperparameters as
reported by Chavdarova et al. (2021b). For both methods



A Fast Optimistic Method for Monotone Variational Inequalities

30.0

—¥— LA-GDA
28.5 —o— fOGDA
27.0 A
25.5 4
24.0 4
2225+
T
21.0 4
19.5 4
18.0 4
16.5 4
15.0 T T T T
0 1 2 3 4 5
Iterations x10°

(a) FID.

8.0

7.5 A

7.0 4

IS

6.5+

6.0

5.5 4
—¥— LA-GDA

—o— fOGDA

5.0

0 1 2 3 4 5
Iterations x10°

(b) 1S.

Figure 3. The median and the individual runs are illustrated with ticker solid lines and transparent lines, respectively. We report (a) FID

and (b) IS for the last (non averaged) iterates.

we conducted 5 runs with 500,000 iterations each.

To further reduce the cycling characteristics of GAN training
two commonly used techniques in practice are the (uniform)
averaging and the exponential moving averaging (EMA) of
the network weights. The beneficial effects of uniform and
exponential averaging can also be observed in our experi-
ments (see Table 1), however uniform averaging seems to
have a stronger impact on the scores.

In Table 1 we report a comparison of fOGDA-VI with LA-
GDA in terms of Fréchet Inception Distance (FID; lower is
better) (Heusel et al., 2017) and Inception Score (IS; higher
is better) (Salimans et al., 2016). We report the best obtained
scores, averaged over 5 runs with 500,000 iterations each.
For both methods we evaluated the last (non averaged) iter-
ates, the uniform average, the exponential moving average
(EMA) and the EMA on the “slow weights” for LA-GDA.
One can see that while both considered methods give com-
parable results and show similar behaviour, the best score
for both FID and IS is obtained by LA-GDA. An interesting
observation is that the FID scores obtained by LA-GDA
seem to be significantly worse than those reported in (Chav-
darova et al., 2021b), while it exhibits higher reported IS
values.

The scores reported in Table 2, where we list the overall best
obtained values for both metrics, support the observations
from Table 1. In general, the results for f{OGDA-VI and
LA-GDA are on a similar level with the latter giving the
altogether best scores.

Figure 3 shows all five individual runs and the respective

median for both methods in terms of (a) FID and (b) IS.
It can be observed that LA-GDA achieves better results
than fOGDA-VI during the first 200,000 iterations, while
from then on the both methods achieve similar scores. As
it appears, the medians of fOGDA-VI seem to stay more
consistently on the level of the optimal scores while LA-
GDA worsens again over time.

5. Conclusion

In this work we proposed a novel algorithm, called fOGDA-
VI, to solve monotone variational inequalities that recovers
the explicit fOGDA method from (Bot et al., 2022) in the
unconstrained case. We showed that fOGDA-VI exhibits
a better rate of convergence than other accelerated meth-
ods, giving a rate of convergence like o(1/k) in terms of the
restricted gap function and the tangent and natural residu-
als, while still maintaining convergence of the iterates to
a solution of the variational inequality under investigation.
To validate our method in practice we treated a constrained
bilinear minimax problem for which we obtained superior
behaviour on this theoretically justified task. Moreover,
application of fOGDA-VI to the training of GANs gives
promising results even in practical settings that do not war-
rant the required assumptions.
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A. Auxiliary Results

In the following we present auxiliary results that will be necessary for the convergence analysis in Appendix B.
We start this section with a result which characterises the convergence of sequences.

Lemma A.1 (see Lemma 32 in (Bot et al., 2022)). Leta > 1 and (gi),~, be a bounded sequence in R? such that

k
li = - =peRL
Gm (q;m +o (qr+1 %)) P
Then limy_, 1 oo q1 = P.

The following result is a particular instance of Lemma 5.31 in (Bauschke & Combettes, 2017).

Lemma A.2. Let (ar)r>1, (bk)k>1, (di)k>1 and (di)k>1 be sequences of real numbers. Assume that (ay,)r>1 is bounded
from below, (by,)i>1 and (dy)k>1 are nonnegative sequences such that Zk21 dy < 4o0. If

ak+1 < (L+dg)ag — b Vk>1,

then the following statements are true:

(i) the sequence (by),>1 is summable, i.e., Y~ by < +00;

(ii) the sequence (ay,) k>1 IS convergent.

To show convergence of the sequence of iterates we will use the following result, which is a finite dimensional version of the
so-called Opial Lemma (Opial, 1967).

Lemma A.3. Let S C RY be a nonempty set and (z;,) k>1 C R? a sequence such that the following two conditions hold:

(i) forevery z* € S, limp_ oo |21 — 2*|| exists;

(ii) every cluster point of (z1,)k>1 belongs to S.

Then (zy)i>0 converges to an element in S.
The following result about maximal monotone operators will be crucial in the convergence analysis to verify item (ii) from
Lemma A.3.

Proposition A.4 (see Proposition 20.33 in (Bauschke & Combettes, 2011)). Let A : R? — 2% be maximal monotone,
with gra A denoting the graph of A. Then gra A is closed, i.e., for every sequence (zj,vy)i>1 in gra A and every
(z,v) € R* x RY, if z, — 2 and vy, — v, then (z,v) € gra A.

Lemma A.5. Let a,b,c € R be such that a # 0 and b*> — ac < 0. The following statements are true:

(i) ifa > 0, then
all® +2b (@, y) +cllyl* >0 Va,y € RY

(ii) ifa <0, then
allzl® +2b(x,y) +clly|* <0 Va,y € R%

B. Convergence Analysis

In the following section we will establish the necessary convergence analysis to prove the main theoretical results of this
work Theorem 3.2 and Theorem 3.3.
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B.1. Notation and Preliminary Considerations

We start with proving the fact, that indeed
Res(z) <r(z) VzeR™L

To this end is sufficient to only consider the case when z € C' as otherwise the inequality trivially holds. Let z € C and
¢ € N¢(z), then by the following equivalence (see Proposition 6.45 in (Bauschke & Combettes, 2011))

p=PFPc(v) < 3¢ € N¢c(p)suchthatv —p =, (13)
we obtain that z = Po[z 4 (]. Since the projection onto a nonempty closed convex set is nonexpansive, we then deduce that
Res(z) = ||z = Po [z = F2)ll = [Po [z + ¢] = Po [z = F2)]l| < [[F(2) + <] (14)

Since ¢ € N¢(z) was arbitrary, we conclude that Res(z) < r(z).

The characterisation (13) can be also used to deduce a projection step from the second line of (10). For all £ > 1 we have

2+l = Wk — Y (1 + k—l—ka> (F(wg) — F(wi—1) + Cro1 — Cr)

with (; € N (z), which using (13) is equivalent to

sest = Po {wk —y (1 ; kja) (F(uwx) — Flwg1) — &)

using that for A > 0
(e Nc(Z) & AN e Nc(z)

In the following for every k > 1 we will use the notation

vy, := F(wg—1) + g, (15)
which we plug into Algorithm 1 to obtain
k «
- ) — 16
W, Zk+k+a(2k 2k 1) Tiralt (162)
k
24l = Wk — Y (1 + M) (Uk+1 - 'Uk)- (16b)

Since 0 < 7y < /41 there exists 0 < € < 1 such that

1—¢

= . 17
V=TI a7)

Hence, the definition of v, together with the Lipschitz continuity of F' give us
IGksr + F (1) = vk | = I (zr1) = F ()| < L 21 — wil (18)

1—¢ 1
S AL Jvpgr — vl < lorss = oll < 7 llowss = vell < llokss = oill -
By summing up (16a) and (16b) we find for every k > 1

(k+ @) (zr41 — 28) — k(2 — 2k—1) = —@YVk+1 — 29k (Vg1 — UE) - (19)

13



A Fast Optimistic Method for Monotone Variational Inequalities

Let0 < A < a—1and z* € Q. Following (Bot et al., 2022) we denote for every k > 1
3a—2

Un g = 2A (2 — 2%) + 2k (2 — 26—1) + p— vkvg, (20)
1 2(ax— 2
Exg = 2 gl +2X (@ =1 = A) [z — 2*|1* + %Ayk (21, — 2%, 08) 1)
a—2 , 3a—2 2
k k
tao1? (2(a—1) +a) oll™
2(ax—2
Ok i=Enp — %7/@2 (2 — 2k—1, F (21) — F (wi—1)) (22)

-2
+ %yzk\/% ((1 —e)VE+ a) g — vr_1]?.

B.2. Properties of the Energy Functions

We collect the properties of the energy functions (£xx),~, and (Gx x),~; in the following results. Please note that the
statement of the first lemma can be deduced from eq. (81) in (Bot et al., 2022), taking into account an appropriate formal
correspondence between certain quantities. For better comprehensibility and in order to be able to refer to equations later on,
we provide its proof nevertheless.

Lemma B.1. Let z* € Qand (2),,~ be the sequence generated by Algorithm 1. For 0 < X\ < a — 1, the following identity
holds for every k > 1 a
Exi+1 — Exk
=-4(a = 2) M (241 — 2%, Vit1)
+2(A+1—0a) 2k +a+1) [|lzx1 — 2

2
+ o (4(04— DA+1—a)—ala— 2)>'yk (Zk+1 — 2k, Vkt1)
23)
9 (
+ E(Qa (a—1)(A+1—-a)+a—-2(a— 1)2)7 (Zkt1 — Zks Vkt1)
2(a—2 a—2
= 2O k) (et — 2 — ) — S0k (2K 4 ) o — vl
a—1 a—1
-2
- Z_ 7 (2(Ba -2k +20° +a—2) opsr]l?
Proof. Recall that by the definition in (20), we have for every k > 1
3a—2
Uk = 2A (2 — 2°) + 2k (2 — 21—1) + - vkuy,
Similarly,
* 3a—2
U k1 = 2A (21— 2")+2(k+1) (2k41 — 21) + a1 v (k4 1) vktq. 24)
Thus, after subtraction we deduce from (19) that
UN k+1 — UN K
=2(A+1—0a)(zkt1 — 2k) + 2(k+ @) (zp41 — 21) — 2k (2 — 26—1)
3a—2 3a—2
+ VR 41 + vk (Vg1 — vg) (25)
a—1 a—1
a—2(a—-1)> 2—«
=2A+1— ) (zk41 —2k) + #'ﬂ)ku + ——k (V41 — vk) -
a—1 a—1
For k > 1 we know that
1 2 2\ 1 2
5 luxk+1ll” = lunrll™ ) = (a1, Urk+1 — urk) — 3 lux k41 — unkll”, (26)
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and that for every k£ > 0

22 (= 1= ) (21 =2 = Il = ')

=daN(a—1—= ) (zpp1 — 25 2kt — 20) — 20 (@ — 1 — ) |20t — 21 -
We use the relations (24) and (25) to derive for every k > 1

(U k15 UN k41 — Un ko)
=ANA+1—a)(zk41 — 2%, 2641 — 28)

(a —2(a— 1)2) Ay (Zk41 — 2%, Vkt1)
2(a—2)

- TAVR (Zhr1 — 2% vpp1 — k) 4 A+ 1 =) (k+1) [|zh41 — Zk||2

+ i((30[—2) A+l-a)+a—2(a- 1)2>'y(k+ 1) (zk41 — 2k, Vk+1)

a—1
- 2;&7:12)7 (k+ 1)k (2r41 — 2k kg1 — Uk)
+ (all)z (a -2(a— 1)2> (Ba—2)7 (k +1) [[opss ]
B (a_ll)m_z) (8= 2) 72 (k4 1)k (U1, vt — v)
and
1 , , 2
2 [uxprr = wxell” = =2(A+ 1= )" [lze41 — 2]
B % (a—2(a_ 1)2) (A1 —a) vy (Zrs1 — 2k, Vit1)
2
_ M (a —2(a— 1)2)272 H”kﬂ”z B 2(?;—21))272]{2 lvprt — 'Uk||2
2(06057:12) A+ 1— ) vk (zk41 — 2k, Vg1 — V)
((j__f)Q (a —2(a— 1)2> Y2k (Vg5 V1 — Ok -

After some algebra, we see that

(Ba=2)(+1-a)+a=2(a-1D*) k+1) - A+1-a) (a=2(a-1))
- ((3&—2)(/\+1—a)—|—a—2(a—1)2)k+2a(a—1)()\+1—a)
+a—2(a—-1)
- ((3@—2)()\—1—1—a)+a—2(a—1)2+(a—2))\>k—(a—2))\k
+2a(a—-1)A+1-a)+a—2(a—1)
- (4(@—1)(/\+1—oz)—a(a—?))k—(a—?)/\k
+20(@—1)(A+1—a)+a—2(a—1)°.
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By plugging (28) and (29) into (26), and by taking into consideration the relation (30), we get for every k£ > 1

1
2 (||u>\-,k+1||2 - ||UA,k||2> =4A(A+1—a) (21 — 2", 241 — 25)
2 *
+ P (a —2(a— 1)2) M (zk41 — 2%, Vpg1)
~2(a—2)
a—1

+2(A+1—0a)2k+a+1—=N)|zes1 — 2l

+%(4(a71)()\+1704)fa(ozfQ)f(a—2))\)’yk<zk+1—zk,vk+l>

Mk (zpr1 — 2%, Vpy1 — k)

(€29)
2
+ E(Qa (a—1)(A+1-a)+a—2(a— 1)2>’y (Zkt1 — Zks Vkt1)
2(a—2 a—2)°
- %Vk (k+a—A) (k41 — 21, Vkt1 — Vk) — 2((04_1))27279‘2 Vi1 — vell?
Y S C2) A2 _ 2 _ 2
AT (a—2(a=1)")7* (2B — 2k +20% +a = 2) [lopi]
a—2
— ———7k((Ba— 2) k + 20 (o — 1)) (U1, Vi1 — Vi) -
(a—1)
Furthermore, one can show that for every k£ > 1 we get
(k+1) (zp41 — 2%, vkg1) — k(2 — 2%, v)
= (2k+1 — 2% V1) + K (21 — 2%, vp41) — (26 — 27, vk)
. . 32)
= (2pt1 — 25 Vkg1) + K (21 — 27, Vg1 — Vi)
— k(Zp+1 — 2k, Unt1 — Uk) + k (Zr41 — 2k, Vkg1)
and
(k+1) ((Ba=2) (k+ 1) +2a (@ = 1) fonsal* = k((Ba = 2) k + 20 (a = 1)) o]
= (2(8a —2)k+20% + o — 2) [[vgp1 |
+k(Ba =2k +2a (@ =1)) (Joer)* = loel?) -

= (23 —2)k+20% +a —2) lupia |
+ 2k((3a —2)k+2a(a— 1)) (U1, Vkt1 — k)
- k((3a — )k +2a (o — 1)) okt — vrll?
In addition, direct computations show that
a—2(a—-1°+a—-2=-2(a—1)(a—2)

and
(=27 —(a—2)Ba—2)=-4(a—2)(a—1).

Hence, multiplying (32) by 2X\v(e=2)/(a—1) > 0 and (33) by 7*(¢=2)/2(a—1)? > 0, followed by summing up the resulting
identities with (27) and (31), yields (23) for every k£ > 1. O]

Lemma B.2. Let z* € Q and (z;),~ be the sequence generated by Algorithm 1. For 0 < X\ < o — 1, the following
statements are true: B
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(i) forevery k > kg := max {2, [ﬁ—‘ } the following holds:

(a—1)(ax—2)
e(k+1)°

—4(a—=2) My (zpg1 — 2%, Gog1 + F (2641))

+4 (mok +m) ¥ (Zk+1 — 2k Vky1) + (772k + Ho\/@ llzks1 — Zk||2

Grkt1 —Gak < A zhg1 — z*HQ

2 H ||2
12270 I v
1 k k+1 kIl >

+4 (773/‘3 + "1\@) ¥V Joga | —
where

je = (k+1) (e(k+1)+a2\/k—|—1+(a—4)) ~(a—2),

1

Mo ::m(4(a—1)()\+1—a)—a(a—2))<O,
np:§6%jj@a@—lﬂA+l—®+a—2@—Jﬁ)<Q
n=4A+1-a) <0, (34)
73 ::—ﬁ(oz—Q)(Soz—Z)<O7
Ko ::ﬁ(an)\/a72>0,

1
K1 ::m(a—Z)a>O;

(ii) for every k > 1 one has the following lower bound for the quantity Gy ,

2(3a —2) ?

k
a—1 VEVk

a—2
gA,k > m H4)\ (Zk - Z*) + 2k (Zk - Zk—l) +

3
(a—2)°
1(3a—2)(a—1)

(35)

_|_

4\ .
k2 |2k — ze_1]? 4 2 (@ — 1) A (1 - 3a_2) 2w — 2*|%.

Proof. (i) Let k > 2 be fixed. By the definition of G, j, in (22), we have for every k > 2

Grkt+1 — Ork

2O T+ 1 (g — 5 F () = F (1)

— k(2 — 21, F (z) = F (“’kfl»]
(@=2a ,

=Evkr1 —Enk —
a—1

(36)

+ S [k ) VE o — ol = kVE [0 = 0 ]
a—2)(1-c¢
+ U2 [ 12 o — ol = 82 s = o ]

17
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By using the definition of 79, 71, 72 and 13 in (34), for every & > 1 we deduce from (23) that

Exi+1 — Exi

= ~4(a=2) My (g1 = 2 vngn) + (mek + 20+ 1= ) (@ + 1)) 1241 — 2

2(a—2
+ 4 (nok +m) Y (Zhe1 — 2k, Vka1) — %’yk (k+ ) (211 — 2k, V1 — Vk)
a—2 9 2 a—2 2 2 2
. 1k (2k + a) v* [|ve41 — vill” + (4773k‘ B (20% + a = 2) ) ¥* luppa| (37)

2(a—2)

o1 vk (k + o) (k41 — 2k, Vg1 — Vi)

< -4(a—2) ANy {(zky1 — 2%, Vky1) —

+ (4 (nok + 1) ¥ (Zk1 — 2is V1) + 02k |21 — zi]|? + 4nsky? Hvk+1||2)
a—2

-1

k(2k +0)7” orgr — vl
where the inequality comes from the fact that 0 < A < o — 1 and o > 2. Plugging (37) into (36) yields for every k > 2

Oxk+1 — Gxk
< (0= 2) My (s — 2% va) = S (2K 4 k) 72 ok — el
~2(a—2)
a—1
— k% (zp — 211, F (21) = F (wk,1)>}

020 T 1) VR T o — e l” — RV o — v ]
(a—2)(1—¢)
a—1
+ (4 (nok + 1) ¥ (2ks1 — 2k, V1) + M2k [lzeg1 — 2l + dnsky? ||Uk+1||2>

2(a—2)

- ﬁ’yk (k + @) (Zkt1 — 2k, V41 — Vi) -

7 [+ D? (s = 22, F (o) = F (wi)

(38)

- 72 |+ 1) onn = oll® = K o — o]

Our next aim is to derive upper estimates for the first two terms on the right-hand side of (38), which will eventually simplify
the subsequent three terms. From the Cauchy-Schwarz inequality and (18) we have for every k£ > 1

—4 (o= 2) My (zhg1 — 2% V1) = ~4 (@ = 2) My (zpg1 — 27, Qe + F (wie))
=-4(a—2) M (zhg1 — 2%, Qo1 + F (2r41))
(0= 2) My {orgs — 2%, F (3401) — F ()
< —4(a—2) Ay (zhs1 — 2%, o1 + F (2041))
+4(a=2) My (21 = 27 [HIF (zh41) = F (wi) |
<4 (a—2) My (2rg1 — 275 Geyr + F (2141)) (39)
+2(0—2) M kst — 2 logsr — vyl
(a=1)(a—-2)

A2z — 22
TSR | 2k+1 |

< 4 (a—=2) My (zp1 — 25 Gr + F (2141)) +

a—2
77" (b D) [logr — vl

For (;; € N¢ (z1) and (41 € N¢ (2k+1), the monotonicity of N and F, together with the relation (19) and the fact that
forevery k > 1

Cp + F(Zk) — v = F(zk) — F(’wk,l)7

18
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yield for every k > 1
2(a—2)

Sk () (ke — 2k, Vher — k)
< %vk (k + ) <z;g+1 — 2k, (Ck+1 + F (2p41) — Uk+1> - (Ck +F (z) — U’“)>
= %w (k+a) <Zk+1 = Zk, (F (2ht1) = F(wk)) - (F (2) = F(w’“_l)»
— %7]{: (k+ ) (zks1 — 2x, F (2p41) — F (wr))
2Ok (k4 0) (i — 2 F (1) — F ()
2(a—2) 2 “
== (k4 1) (zpt1 — 2xs F (2141) — F (wi))
B %77{2 (2 = 261, F (21) = F (wp—1))
+ %7((0& —2)k—1) (k41 — 2k, F (2h41) — F (wpp))
+ %0‘7% (Okg1, F (21) = F (wg-1))
+ %’721@2 (kg1 — vi, F (21) — F (wp—1)) -

[e%

By Young’s inequality together with (18) for every k > [%2] we obtain

%W(“ =2k = 1) a1 = 20, F (2101) = F ()

< 222 (Va2 F T ki — el
(= 2k = 1) V@ =2k = 1|IF (z111) = F ()]
< Z:iMszH—%HQ (41)
(o= 2)Va= T4 (k+ ) VEFLIF (2h41) = F ()]
<2 Va= Dk an - al?
+d(a—2)vVa— 17 L2 (k+ 1) VE+ 1 lugpr — vel?
< 22 a2 E e — 2l + (0= 2 e (k4 ) VEF T o — il

o —

where in the second estimate we use the fact that (a« —2)k — 1 < (o — 1) (k + 1), while in the last one we combine
Va—1<aandyL < 1/a < 1.

In addition, for every & > 2 we derive

%Oﬁ% (Ukt1, F (2) = F (wi—1))
< 2220V s + ST a?VEIF () - F ()
<2 : ia’}’Q\/E|\vk+1||2 +2 : ia’ka\/gHvk — vp_q]?
= Z — iavz\/EHkaHQ + gavz (k+ 1) VE+1||vprr — v
- z — ioﬁ (k+DVE+ 1 |vier — vil|? = kVE [|op — vk |?]
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and, by using the Cauchy-Schwarz inequality and (18),

4((17_712)72]“2 (Vg1 — vk, F (21) — F (wp—1))
< % (1 — &) V2 E? |ops1 — vkl lve — ve_1]]
= Z:f (1= &)k (Jlowsn = oxll® + low = ol
= %’YBL]& (Hvk+1 - ’Uk||2 + |lvg — vk_1||2)
- _%WSL ((k * 1)2 k1 = Uk”Q — K oy — vk71H2)
Wi:f)v"’% (k + 1) [[ors1 = x|
- ‘%ﬂ (06 1% owsr = oel* = 2 flog = v )
+ % (1—e)7? (k+ 1) ||kt — vkll®

(42)

where we want to recall that the first equality comes from (17). By plugging (41) and (42) into (40), then combining the

result with (39), we get after rearranging the terms for every k > ko

2(a—2
(o= 2) Xz — 2% o) — 2Ok () G — vk — )
2(a—2
< OB 1 iy — 2, F (o) — F ()

— k% (2 — zj_1, F (2) = F (wp_1))

oa—2

— S2ay? [(k+ DVE+T foees —vil® = kv Jon = vna ]
4(a—2

- %VBL [(k + 1) g1 — oxl® = B ok — Uk—lHﬂ

—4 (a0 —2) My (zi41 — 27, Geg1 + F (241))

a—2
+— ((2k2 +ak) — ) 7 ok — oel?
1
b (= 2) Vo D F e — P+ eV o |
+ 1 (a—1) (a—2) 2| |1
—_— O — o — Zk —Zz 5
(k1) "

where we set

= (22 +ak) —e(k+1)* —(a—Da(k+1)VE+1—a(k+1)VE+1
—2(1—¢)(k+1)°

—ek+1)°+(@-Dk—2-a?(k+1)VE+1
:(k+1)(£(k+1)+a2\/m+a—4)—(a—2).

Finally, summing up (38) and (43), we obtain the desired estimate.

20
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(i1) Observe that

2(a—2) (a—2)Ba—2) 4, 4 9
——— Mk (2 — 25 vp) + ——————k% v
o1 k(e k) 21 ok
a—2 [2(3a—2) Ba—2)7% 5 5. 2
= k —_— * - —
3a—2< a1 Mk Z’Uk>+2(a—1)27k ol
1 1 3a —2 2 )
= -2 =2 —2* —20% |z — 2%7 ] -
3a—2(a )<2H/\(zk z)+a_17kvk Az z||>

By the definition of uy j in (20) and by using the identity

1
2 2 2 2
Il + 1wl = 5 (I + vl + o —y)*) ¥,y € R,

we deduce that for every k£ > 1

2+ 2A(a—1— )z —2°|° +

2(a—2
(afl))\'yk (zk — 2%, vp)

1
Eng = 3 |k o

a—2 2 1 2
k —2)k

+ 222 (5o Ga = Dk+a)

3o — 2

a—1

2

1
=5 HQ)\ (zp — 2") + 2k (21, — 2k—1) + vk

2@ —1)A(1- — 2 ek
+2(a-1) ( 3a—2>”2k “I =gkl
2
a—2 3a— 2
o oA (zp — 2" k
+2(3a2)H (s Z)+a—17w€
o 3a — ?
= 2 -2 2 c - ’
30[—2H>\(2k 2) + 2k (21, — 2 1)+a—17kvk
4\ 2, =2 2
2(a—1 1- —
+2(a )A< 3a2>”zk S gmgor kil
Ly 2 (3a — 2) g
T gy [ (= 2%) + 2k (2 — 2k) + =k
a—2
ook o — 2
Consequently,
2(a—2
Ork =Exk — %1)7]‘72 {2k = 21, F (2) = F (k1))
-2
+ YT kVE ((1 —e)Vk + a) lor. = vr—1|*
a—1
s 2 (30— 2) 2
P nn— Y/ \ —2") +2k — “hk- w1
4(3@—2)H (2 = 27) + 2k (21 — 24-1) + a—1 1T
a—2 2 i ?
12 e — o 2a—1A(1- -2
+3a_2 llze — 21|l +2(a—1) < 3a_2)2k 2|
2(a—2
-2
i Z - 1V2k\/% (47L\/%+a) ||vk — Uk—1||2.
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Now we use relation (18) and apply Lemma A.5 with (a, b, ¢) := (1/2, -2, 27/L> to verify that for every k > 1

1
3 21 — zi— || — 4y (21 — 251, F (21) — F (wg—1)) + 87> L ||vg, — v |?

1 2
> ek — 2ol = 49 (2 — 21, F (20) = F (weo1)) + =L IF () = F )|

> 0.

Combining the last two estimates, for every £ > 1 one can easily conclude that

o —2 2 (30— 2) 2
>
gk’k_él a—1

—_— k
(Ba —2) Tk

H4/\ (zx — 2%) + 2k (2, — 2—1) +

1 1
~9 - N ——k
+(a )<3a—2 4(a—1)> 2k = 21l

4\
+2(a—1))\<1— >||zk—z*2

3a—2
a—2 2 (30— 2) 2
= ———— |4X (2 — 2") + 2k (21 — 25— k
1(3a - 2) H (2 = 27) 2k (o = 20-1) + = 7~ vhwe
(O‘_2)2 2 2 4N w2
k — Zp— 2(—DA(1—- -

which is the desired inequality. O

The following lemma will be helpful in the main proof.

Lemma B.3. The following statements are true:

(i) there exist two parameters
- 3a—2
0<A(a) <A(a) < 0‘4

(44)

such that for every X satisfying A (o) < A < X («) one can find an integer ky > 1 with the property that the following
inequality holds for every k > k

da — 2
Ry =/ —— (’172k + :‘i‘o\/E) ||Zk+1 — Z/YCH2 + 4’7(’170]{5 + 771) <Zk+1 - Zk,Uk+1>
2(Ba—2)

(45)

ba 202 2 (nsh + s V) o | < 0

2(3@_2)7 13 1 k10 < U

(ii) there exists a positive integer k. such that for every k > k. we have
€

i > 5 (k + 1)°. (46)

Proof. (i) For the quadratic expression in R, we calculate

i (mok +m)* — 50&7__22)“772\/% * KO) (773@4_ m)

492 2 (3a
da— 2 da— 2
2 2
<”° 2 (3 — 2)772773) 2(3a —2) T Ro) vk
da — 2
200m1 — = k+ 3.
=+ < o = 5 Ba— z)mom) +m
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Since (7]8 — 2(5?)“7’_22)772773) k? is the dominant term in the above polynomial, it suffices to guarantee that

Sa — 2

2

- <0 47
770 2 (30[ o 2) 213 ( )
holds in order to ensure the existence of some integer k) > 1 such that A;f < 0 for every k > k) and to obtain from here,
due to Lemma A.5 (ii), that Ry < 0 for every k& > k).

It remains to show that there exists a choice of A for which (47) is true. We set £ := A+ 1 — a < 0 and get

770=ﬁ(‘l(a—l)oﬁ'l—@—a(a—m)

1

Zm(‘l(a—l)f—a(a—?)),

772773Z—%(Q—Q)(?)a—%()\—i—l—a):— (a—2)(Ba—2)¢.

a—1

This means that we have to guarantee that there exists a choice for ¢ satisfying

"3_%772773
_4((11_1)2((4(OL—1)5—04(04—2))2—|—4(5Oz—2)(a—1)(a_2)£)
fé a— 2 +2 o — o — o OZQO[? )
= T (8@ +ta-D -2 Ga-2¢+a (@-2°) <0

which is nothing else than
16(a—12+4(a—1)(a—2)Ba—2)¢+a’(a—2)% <0. (48)
A direct computation shows that
A =16 (o — 1)% (a — 2)° ((3a —9)? — 40?) =16(a — 1) (a — 2)* (5a — 2) > 0.

Hence, in order to get (48), we have to choose £ between the two roots of the quadratic function arising in this formula, in
other words

& (a) = 32@1_1) (4@ —1)(0~2)(3a—2) ~ V/A)
=5y @2 (S -2+ Via—2) a2
cE=Atl-a<&(a) ::M(—4(a—1)(a—2)(3a—2)+@)
:-ﬁ(a—z) (3a—2— (a—2)(5a—2)>.
Obviously &1 () < 0 and from Vieta's formula & (@) & () = 22=2 it follows that we must have & () < 0 as well.

Therefore, going back to ), in order to be sure that 72 — %ﬁgng < 0 this must be chosen such that

a—1+& (@) <A<a-1+&&(a).

Next we will show that ) 3
o

0 —1——(a—2)Ba—2 —

<o 8(0471)(& ) (3a )<4

(49)

DN | =
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Indeed, the inequality on the left-hand side follows immediately, since

1
a—l—m(a—Z)(i’)a—Z):

- 8(041— 1) (*+4@=17) >0,

ﬁ (50° — 8 +4)

Using this relation, one can notice that the inequality on the right hand side of (49) can be equivalently written as
502 —8a+4<2(a—1)(Ba—2) < 0<a’—2a=a(a—2),

which is true as o > 2.

From (49) we immediately deduce that

3 1
0<a-1+&(a) and a—1+§1(a)<za—§.

This allows us to choose A < \, where

Al) i=a—1+& (o)

:ﬁa2+%(a—1)_m(a—2) (04—2)(501—2)
A(a) ::min{?—;,a_1+§2(a)}

:min{‘la_;,ma2+;(a—1)+8(;1)(a—2) (a—2)(5a—2)},

since

I ity (-2 /o2 Ba=2 >0.

8(a—1) 2 8(a—1)

Indeed, as (o — 1) va — 1 > (o — 2) /o — 2 and 4v/a — 1 > /5 — 2 we can easily deduce that
2 +4(a—1)°>4(a-1)7> (a—2) (o —2) (5a —2)

and the claim follows.

In conclusion, choosing A to satisfy A (a) < A < A (a), we have

9 dar — 2

S 0
Mo 2 (3@ o 2) 1213 <

and therefore there exists some integer k) > 1 such that R < 0 for every k.

(ii) For every k > 1 we have
Mk—g(k-f—l)Q :g(k—&-1)2+a2(k+1)\/k:+1+(a—4)(k+1)—(a—2),

and the conclusion is obvious.

O

The following proposition plays a key role in proving the convergence rates in Proposition B.5 which will be used to prove

Theorem 3.2.

Proposition B.4. Let z* € Q and (zx) >0, (Wk)r>0, (Ck)r>0 be the sequences generated by Algorithm 1 and let (vy,)k>0

be the sequence defined by (15). Then the following statements are true:
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(i) the following hold:

Z (2 — 2", F'(21) + Gr) < +o00, (50a)
k>1
>k e — oi® < +o0, (50b)
E>1
> kllzrrs — 2kl < oo, (50¢)
k>1
Sk IIF(wi) + G ll” < +o0; (50d)
E>1

(ii) the sequence (2,),,~ is bounded and the following hold as k — +o0c:

o=zl =0 (1) la+ Pl =0 (). o+ Pl =0(3),

(2o — 2", G+ F(2)) =0 <]1> , (z— 2 F(z)=0 (i) ;

(iii) there exist 0 < (o) < X(a) < Ba=2)/s such that for every A (a) < A < X(a) the sequences (Ex),~, and

(gA»k)kZQ converge.

Proof. According to Lemma B.3 there exist A () < X () such that (44) holds. We choose A (@) < A < A («) and get,
according to the same result, an integer k) > 1 such that for every k > k) the inequality (45) holds. In addition, according
to Lemma B.3(ii), we get a positive integer k. such that (46) holds for every k£ > k..

This means that for every k > k1 := max {ko, kx, ke }, where kg is the positive integer provided by Lemma B.2(i), we have

Grkt1 — Ork
(a—1)(a—2)\2

S €(k+1)2 sz?"rl—Z*||2_4(a_2)Afy<Zk:+l_Z*7Ck+1 +F(Zk:+1)>
a—2 2 2 2 5a — 2 )
- k+1 — 1o,/ 2> =2 1 : B
Q(a—l)‘w (k+1)" g1 — vel|” + < 2(3@_2)>n2 +/<Of] |2kt — 2kl
da — 2 )
1—y/—— k k| 4~2 .
- ( 2(3@2))’73 +K1f} v vkl

Since 12,13 < 0 and kg, k1 > 0, we can find some ko > k; large enough such that for every k > ko we get

(a—1)(a—2)\2

Grkt+1 < Gak + l2es1 — 2517 — 4 (a = 2) My (zrg1 — 2%, G + F (2141))

e(k+1)°
a—-2 ) s 1 Sa — 2 )
LRS! - Sl Y T _
2(@_1)8'7 (b + 1) logg1 — vl +2< 2(304—2))772 llzk+1 — 2kl (51)
da — 2 9
1— ) ———— | 2903k .
JF( 2(3a—2)> Y3k [kl

In view of (35), we get that G ;, > 0 for every k > 1 thus the sequence (G x) > is bounded from below. Moreover, by

setting
1 4 N\
CO::%(Q_2)>\<1_304—2> >0,
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we assert that
(a—1)(a—2)\2
e(k+1)°
Co

< ——=G ,
(k I 1)2 A k+1

. C 4\ .
o = 2117 = o 2= ) (1= 225 ) - 21

Under these premises, we deduce from (51) that for every k > ko

C
<1 - O) Grget1 < Gag — 4 (@ = 2) My (2hg1 — 27, Qo1 + F (2k41))

(k+1)°
oa—2 9 9 9
-5 k+1 —
-1 (k+1)" lves1 — vl (52)
1 ba —2 2 Sa — 2 5 5
3\ 17\ 3Eagy )kl - o 22 ) oy ,
+2< z(ga_2>>”2 ok = 2 +< 2(3a_2)> 72k o |

Taking k3 := max {kg, %/C’o - ﬂ } we conclude for every k > k3 that

(-027) -l g
(k+1) (k+1)° — Cy (k+1)°— Cy

Hence, for every k > k3, the inequality (52) leads to

C
Gaks1 < (1 + Mgc()) Gk —4(a—=2) Ay (zpg1 — 2%, Gog1 + F (2641))
o — 2 2 2 2
e 1 _
2oz 1)57 (k+1)" [Jugs1 — vl

1 da — 2 2 S5a — 2 ) )
S 1=\ 5m—g | mekllzee — TP LIt DY S
"2 < 2(3a2)) k|l = 2l + ( 2(302)> v nsk [[veall”
which is nothing else than the inequality (11) with

a—2
2(a—1)

1 S —2 2 S5 — 2 ) )
5 |1 5 ma gy | ke =l = (1 [y | 2 sk
2( 2(304—2))’72 21 = 2 ( 2(3a_2)> v sk [[vk4a

>0

bak =4 (a0 —2) My (zpg1 — 25, Ceg1 + F (21g1)) + ey (k +1)% lugsr — ol

Co

d)\7k = —5>0
(k+1)% = Co
Using Lemma A.2 we obtain (50) as well as convergence of the sequence (Gx x);~ -

Since (Gx k), converges, it is also bounded from above, which, according to (35), implies that the following estimate
holds for every k > ks

a—2
3a— 2

H4/\ (2 — 2%) + 2k (2 — 2x—1) +

(a—2)
1(3a—2)(a—1)

< GOxnk <supGax < +o0o.
k>1

A\
K |2k — 2—1])* + 2 (@ — 1) A (1 — 5 2) lze — 2%
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From here we obtain the boundedness of the sequences
2(Ba—2
AN\ (2 — 2°) + 2k (21 — 2k-1) + (7)'%1% ,
a—1 k>1

(k(zk—zk—1>)k21 and (Zk)kzo-

3a— 2
<(C;:= sup Gy, < 400,
a—2 E>1

2
Ellzk — zk—1]] < Cs = M\/(:}a —2) (o —1)sup Gy i < +00,

In particular, for every k > k3 we have

2(3a — 2)
a—1

H4/\ (zx — 2%) + 2k (2, — 25—1) + ~vkvg,

k>1

llzi — 27| < C5:= 1 1—i 7lsu Gak < +00
k =TS oA 3a—2) SahTM ‘

Using the triangle inequality, we deduce from here that for every k > k3

|og || < 2(33%)716 H4)\ (2 — 2%) + 2k (2 — 25_1) + 2 (204_ 12)7]&11@
a—1 2(—1)A . Cy
+ Ba—2)7 |2k — zk—1 + Ba—2)7k lzx — 2" < T
where
a—1 _
Cy = m (Cl +2C5 + 4\ (a) Cg) > 0.

The statement (50b) yields

lim klogsr — okl =0 = Cs:=sup{k||vg+1 — vkl|} < 400,
k——+oco E>1

which, together with (18) implies that for every k > k3

[Ckt1 + F (it )| < [[Ck+1 + F (241) — Vgl + lvgl
Cs
< Jvkt1 = vkl + vkl < T

where
Ce:=Cs+ C5 > 0.

(53)

(54)

(55)

The remaining assertion follows from the fact that ;, € N¢ (zx) where z, € C by definition, the Cauchy-Schwarz inequality

and the boundedness of (z) k>0 namely, for every k > ks we deduce

C5Cs
k-1

0< (zk — 2" F (21)) < {2k — 2%, G + F(z1)) < llze — 2" [[Gr + F (20)]] <
To complete the proof, we are going to show that in fact

lim &= lim Gy €R.
k— o0 ’ k— o0 ’

Indeed, we already have seen that

li k+1 — = i =
Jim (b 1) o — el = T ol =0,

which, by the Cauchy-Schwarz inequality and (18) yields
0< lim k*[{zx — 251, F (21) — F (w—1))| < Cy kgrfook |F (z) — F (wi—1)]|

k— oo
S 02 lim k& ||U}C — U}C,1|| =0.
k— 400

From here we obtain the desired statement.
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B.3. Proofs of the Main Results

Proof of Theorem 3.2. Let A (o) < A (c) be the parameters provided by Lemma B.3 such that (44) holds and with the
property that for every A (o) < A < A («) there exists an integer ky > 1 such that for every k > k) the inequality (45)

holds.

For every k > 1 we set

1 * *

pr= 5 (0= D) llz = 27 + ko — 2%, 26— 251+ 290), (56)
1 k

@ = 5 [l —z*\|2+2vi§71 (2 — 2", v3) . (7

Then one can see that for every k > 2 we have

* 1 *
Gk — Qo1 = (26— 2%, 2k — 2h1) — = 2k — zea ||° + 29 (2 — 25, 0n)
2

and thus
k 1 ,
(=) qr+ k(g —aqr1) =pr+2(a— 1)y Y (2 — 2% ) — 5 e = ze—all”
i=1
From (21) and (20), direct computation shows that for every k > 1
1 . 3o — 2 2 2
Exk = 3 2X (2 — 27) 4+ 2k (21 — 2p—1) + p— Yhvg|| 42X (a—1=X) ||z — 2

2(a—

2 -2
T ))\'yk<zk—z*,vk>+z 2

—7 k (Z(al— 0 (3a—2)k+a> vl

+

(58)

a—
=2\ (a — 1) ||z — 2*||> + 4Nk (21, — 2%, 2k — 261 + 2y0k) + o 104’ka ok |2
k2 30—-2 P (@—=2)Ba—2) 5, .2
— 1|2 — Zp— —_ .
oL (H (=) + |+ T

Therefore, for every A (o) < A1 < Ag < A () we can conclude

1
Exnak —Eni e =4(N2—\1) (2 (a—=1) ||z — Z*H2 + 2k (2, — 2%, (2k — 2gp—1) + svk>>
=4 (A2 — A1) p.

Hence, according to the previous theorem, the limit limy_, o (Ex,.6 — €, k) € R exists, which implies further that the
limit

kggr_loo pi € R exists. (59)
Further, we observe that for every k£ > 2
k k
D zi—= 2" F(wisa) = F(z)) < Iz — 2| |1F (wi1) = F (24) (60a)
i=2 i=2
1 u 1 * 12 1 & .2 2
<35 Z ) |2 — 2*||" + 522 [ F(wi—1) — F(2)||
i=2 i=2
1&X1 s 11X )
<32 ls =2 5 D P IF(win) = F(0)[P < 400, (60b)
1=2 =2
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where (60a) comes from the Cauchy-Schwarz inequality, the first sum in (60b) is finite due to (53), while the second series is
convergent because of (18) and (50b). This means the series >, ., (2 — 2%, F (wgp—1) — F (z1)) is absolutely convergent,
thus convergent. -

By taking into consideration (50a), it follows from here that the limit

k

i >

i=1

k k
= lim Z(zi—z*,Ciﬁ-F(zi)}—&- lim Z(zi—z*,F(wiq)—F(zi)) eR

k——+o00 4 k—r+o00 “
i=1 =1

exists. In addition, thanks to (50c), we have limy_, 1 o0 & || 241 — 2k ||2 = 0, consequently,

lm (a—1)gr+k(qr — qr—1) € Rexists.
k—-+oco
According to Proposition B.4, we have that (g),~, is bounded due to the boundedness of (z),~, and the fact that

limg s 400 Zf;l (z; — z*,v;) € R exists. Therefore, we can apply Lemma A.1 to guarantee the existence of the limit

1

limg s 1+ o gx € R. By the definition of g, in (57) and the fact that the sequence (Z;:l (z; — 2%, vi>) - converges, we
1

conclude that limy,_, 1 o |2, — 2*| € R exists. The hypothesis (i) in the Opial Lemma (see Lemma A.3) is fulfilled.

Let w be a cluster point of (24), -, which means that there exists a subsequence {2, },,~ such that
2k, — wasn — +0o0.

It follows from Proposition B.4 that
F(z,)+C,, — 0 asn— +oo.

The maximal monotonicity of F' + N¢ implies that 0 € (N¢ + F') (w), meaning that hypothesis (ii) of Lemma A.3 is also
verified. The proof of the convergence of the iterates is therefore completed. O

Before finally proving Theorem 3.3 we show convergence rates of various helpful quantities.

Proposition B.5. Let z* € Q and (z;,)i>0 be the sequence generated by Algorithm 1. Then, as k — +oo, the following
hold:

1 . 1 . 1

o=zl =0 (7)o Fea-) =0 (3 ). (Gt Flaa—=) =)

IKk+f%nJ|=o(;)7 |Qﬁ%F&%ﬂH:0(i>.

Proof. Let A (a)) < A («) be the parameters provided by Lemma B.3 such that (44) holds and with the property that for
every A (a) < A < () there exists an integer kx > 1 such that for every k& > ky the inequality (45) holds. We fix
A(a) < A < A(a) and recall that according to Proposition B.4(iii) the sequence (€, )r>1 converges.

A
h

We set for every k > 1

2
+

3a—2

hy <H2(2k_zk—1)+ pEEERAL

k2

Ay ||vk2> ,

and notice that, in view of (58) and (56), we have

4 (a

2)

1 a2k ||okl|? + hi.

5)\516 =4)\pi + —
o —
Proposition B.4 asserts that

lim k |Jog|* = 0,
k— o0
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which, together with limy_, o €31 € R and limy_, 1o P € R (see also (59)), yields the existence of

lim hg € R.

k——+oco

In addition, (50c) and (50d) in Proposition B.4 guarantee that

Ta —
Z hk<42k||zrzk P+ 4 Ba=2( )72Zk||vk||2<+oo.

k>1 k>1 2(a 1) k>1

Consequently, limy_, 4 o hx = 0, which yields

2 :
7ok = lim kgl = 0.

k—o0

30 —
lim kH2(zk—zk1)+ @
o —

This immediately implies limy_, 1 oo k ||2x — 2k—1]| = 0. The fact that
li =
Jm K G+ F (z)]| = 0
follows from (18), (54) and (55), since
0< lim k|| + F ()] < lim k|log —vg_1]| + lim k|lvgl] = 0.
k—+o00 k—+oc0 k——+oc0

Finally, using the Cauchy-Schwarz inequality and the fact that (2),., is bounded, we obtain that
limgs 400 k(2 — 2%, F (2)) = limg— 100 k (2K — 2%, + F (21)) = 0. O

Now we are able to prove the convergence rates in terms of the restricted gap and the natural gap.

Proof of Theorem 3.3. For every k > 1, using successively the monotonicity of F', the fact that {, € N¢(z), where
2z, € C by its definition, and the Cauchy-Schwarz inequality, we deduce that for every u € C' N B(2*;(20))

(F(u), 2z —u) < (F(z1), 21 — u) < (Cr + F(2k), 26 — u)

= (Ck + F(2k), 26 — 2") + (G + F(2x), 2" —u)
< (Ck + F(zk), 26 — 2%) + (|G + F(2p)| |27 — ]
< (G + F(2k), 2 — 2%) 4+ 6(20) |Gk + F(2x)] -

Therefore, it follows from Proposition B.5 that

Gap(zp) = max — (F(u),2zr —u) < (G + F(z), 26 — 27) +6(20) G + F(z) |
u€CNB(2*;6(z0))

1
O<k‘) as k — +oo.

Concluding, by (14) we obtain

1
Res(zx) < [|Gr + F(zr)|| =0 (k) , ask — +oo,
and the proof is complete. O
C. Implementation Details
In this section we report the details on the implementations for our GAN experiments.

C.1. Architecture

In Table 3 we describe the architectures that were used in the experiments on CIFAR-10. The models were selected
replicating the set-up of (Miyato et al., 2018; Chavdarova et al., 2021b).
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Table 3. ResNet architecture used for the CIFAR-10 experiments.

Generator (G)

Input: z € R*?® ~ N(0, 1)

Linear 128 — 4,096
G-ResBlock
G-ResBlock
G-ResBlock

Batch Normalisation

RelLU
conv. (kernel: 3% 3, 256 — 3, stride: 1, pad: 1)
tanh( )

Discriminator (D)

Input: ¢ € R3*32x32

D-ResBlock
D-ResBlock
D-ResBlock
D-ResBlock
RelLU
Avg. Pool (kernel: 8 x 8) Linear 128 — 1
Spectral Normalisation

C.2. Hyperparameters

In Table 4 we list the hyperparameters that were used for fOGDA-VI to obtain the results on CIFAR-10. The hyperparameters
for LA-GDA were the same as in (Chavdarova et al., 2021b).

Table 4. Hyperparameters used for the GAN experiments on CIFAR-10.

fOGDA-VI

Batch size =128
Iterations =500, 000
Adam (3 =0.0
Adam f2 =0.9
Update ratio D/G =5
Learning rate for discriminator =1 x 107*
Learning rate for generator =1x107*
fOGDA o =100
fOGDA n =1000

C.3. PyTorch Code

In the following we report the code of the wrapper for the fOGDA-VI optimiser written using the PyTorch
(Paszke et al., 2019) framework.

from torch.optim import Optimizer

class fOGDA (Optimizer) :
def __init__ (self, optimizer, alpha=100, increment_iterator_every=1000) :
print (
f"Using fOGDA (alpha={alpha};"

f"increment iterator every {increment_iterator_every} step(s))."

)

self.optimizer = optimizer

self.defaults = self.optimizer.defaults
self.param_groups = self.optimizer.param_groups
self.state = self.optimizer.state
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# fOGDA parameters
self.alpha = alpha

self.increment_iterator_every = increment_iterator_every
self.iteration = 0
self.k = 2

self.params_copy = []
self.old_params_copy = []
self.updates = []

self.old_updates = []
self.old_difference_of_updates = []

step(self, closure=None):

loss = None
if closure is not None:
loss = closure()
no_old_params = len(self.old_params_copy) ==
no_old_updates = len(self.old_updates) ==
no_old_difference_of_updates = len(self.old_difference_of_updates)

# initialise (old) parameters
if len(self.params_copy) > 0:
raise RuntimeError ("Something bad happend here...")
for group in self.param_groups:
for p in group|"params"]:
self.params_copy.append(p.data.clone())
if no_old_params:
self.old_params_copy.append(p.data.clone())

# reverse engineer update from optimizer step
self.optimizer.step()
i=-1
if len(self.updates) > 0:
raise RuntimeError ("Something bad happend here...")
for group in self.param_groups:
for p in group|["params"]:
i+=1
self.updates.append(self.params_copy[i] - p.data)

# initialise old updates and difference of updates
if (not no_old_updates and no_old_difference_of_updates) or (
not no_old_difference_of_updates and no_old_updates
)t
raise RuntimeError ("Something bad happend here...")
if no_old_updates and no_old_difference_of_updates:
for p in self.updates:
self.old_updates.append(p.clone())
self.old_difference_of_updates.append(torch.zeros_like(p))

# compute fOGDA coefficients

theta_p = self.alpha / (self.alpha + self.k + 1)
theta = self.alpha / (self.alpha + self.k)
theta_m = self.alpha / (self.alpha + self.k — 1)

# compute new weights with fOGDA update
i=-1
for group in self.param_groups:
for p in group|["params"]:
i 4+=1
(
self.old_params_copyl[i],
self.old_updates[i],
self.old_difference_of_updates[i],
p.data,
) = (
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self.params_copyl[il],

80 self.updates[i],
self.updates[i] - self.old_updates[i],

82 self.params_copy[i]
+ (1 - theta_p)

84 + (self.params_copy[i] - self.old_params_copyl[i])
— theta_p * self.updates|[i]

86 - (2 - theta)
* (2 - theta_p)

88 * (self.updates[i] - self.old_updates[i])
+ (2 - theta_m) % (1 - theta_p)

90 + self.old_difference_of_updates[i],

)
92
self.iteration += 1
94 if self.iteration % self.increment_iterator_every == 0:
# update iterator k
96 self.k += 1
98 # free parameters
self.params_copy = []
100 self.updates = []
102 return loss
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