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Introduction

The present lecture notes are based on several advanced courses which I
gave at the University of Vienna between 2011 and 2013. In 2015 I gave
a similar course (“Nachdiplom-Vorlesung”) at ETH Ziirich. The purpose of
these lectures was to present and organize the recent progress on portfolio
optimization under proportional transaction costs A > 0. Special emphasis is
given to the asymptotic behaviour when A tends to zero.

The theme of portfolio optimization is a classical topic of Mathemati-
cal Finance, going back to the seminal work of Robert Merton in the early
seventies (considering the frictionless case without transaction costs). Math-
ematically speaking, this question leads to a concave optimization problem
under linear constraints. A technical challenge arises from the fact that —
except for the case of finite probability spaces (2 — the optimization takes
place over infinite-dimensional sets.

There are essentially two ways of attacking such an optimization problem.

The primal method consists in directly addressing the problem at hand.
Following the path initiated by Robert Merton, this leads to a partial dif-
ferential equation of Hamilton—Jacobi—Bellman type. This PDE method can
also be successfully extended to the case of proportional transaction costs.
Important work on this line was done by G. Constantinides [40], B. Dumas
and E. Luciano [75], M. Taksar, M. J. Klass, D. Assaf [234], M. Davis and
A. Norman [57], St. Shreve and M. Soner [224], just to name some of the
early work on this topic.
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An alternative method consists in passing to the dual version of the prob-
lem. This dual method is also sometimes called the martingale method as one
now optimizes over the constraint variables, which in the present context turn
out to be martingales (or their generalizations such as super-martingales).
In the course of the analysis an important role is played by the Legendre
transform or conjugate function V of the utility function U appearing in the
primal version of the problem.

In these notes we focus on the dual method as well as the interplay be-
tween the dual and the primal problem. This approach yields to a cen-
tral concept of our approach, namely the concept of a shadow price process.
Mathematically speaking, this is an infinite-dimensional generalization of the
fundamental concept of a Lagrange multiplier. It has a clear economic inter-
pretation as a price process which — without transaction costs — yields the
same optimal portfolio as the original price process under transaction costs.
This gives a direct link of the present optimization theory under transaction
costs with the more classical frictionless theory.

This brings us to a major open challenge for Mathematical Finance which
constitutes much of the motivation for the present notes and the underlying
research. The question is how to design an economically as well as math-
ematically meaningful framework to deal with financial models which are
based on fractional Brownian motion.

This variant of the basic concept of Brownian motion, was introduced in
1940 by A. Kolmogorov under the name of Wiener spiral. It was strongly
advocated by B. Mandelbrot more than 50 years ago as a more realistic
approach to financial data than models based on classical Brownian motion,
such as the Black-Scholes model.

But there are fundamental problems which until today make it impossible
to reconcile these models with the main stream of Mathematical Finance,
which is based on the paradigmatic assumption of no arbitrage. In fact,
fractional Brownian motion fails to be a semi-martingale. It is wellknown
([64], Theorem 7.2) that processes which fail to be semi-martingales always
allow for arbitrage. Hence it does not make any economic sense to apply
no arbitrage arguments, e.g. in the context of option pricing, if already the
underlying model for the stock price process violates this paradigm.

One way to get out of this deadlock is the consideration of transaction
costs. It was shown in [107] that the consideration of (arbitrarily small) pro-
portional transaction costs A > 0 makes the arbitrage possibilities disappear
for the presently considered models based on fractional Brownian motion.
This allows for a similar duality theory as in the frictionless case. While in
the frictionless theory the dual objects are the martingale measures and their



variants, their role now is taken by the A-consistent price systems. However
many of the classical concepts from the frictionless theory, such as replication
and /or super-replication, do not make any economic sense when considering
these models under transaction costs. Indeed, one can give rigorous mathe-
matical proofs (the “face-lifting theorem” in [106], [168], [227]) that it is not
possible to derive any non-trivial result from super-replication arguments in
the present context of models under transaction costs.

Yet there is still hope to find a proper framework which allows to obtain
non-trivial results for fractional Brownian motion. There is one financial
application which does make perfect sense in the presence of transaction
costs, from an economic as well as from a mathematical perspective, namely
portfolio optimization. This is precisely the theme of the present lecture notes
and we shall develop this theory quite extensively. But before doing so let
us come back to the original motivation. What does portfolio optimization
under transaction costs have to do with the original problem of pricing and
hedging options in financial models involving fractional Brownian motion?
The answer is that we have hope that finally a well-founded theory of portfolio
optimization can shed some light on the original problem of pricing derivative
securities via utility indifference pricing. The key fact is the existence of a
shadow price process S which can serve as a link to the traditional frictionless
theory. In Theorem 8.4 we shall prove the existence of a shadow price process
under general assumptions in the framework of models based on fractional
Brownian motion. This theorem was proved only very recently in [52] and
is the main and final result of the present lecture notes. In a sense, the
lecture notes aim at providing and developing all the material for proving this
theorem. At the same time they try to present a comprehensive introduction
to the general theme of portfolio optimization under transaction costs. They
are structured in the following way.

In the first two chapters we develop the theory of portfolio optimization in
the elementary setting of a finite probability space. Under this assumption all
relevant spaces are finite-dimensional and therefore the involved functional
analysis reduces to linear algebra. These two chapters are analogous to the
summer school course [215] as well as the two introductory chapters in [69]
where a similar presentation was given for the frictionless case.

In chapter 3 we focus rather extensively on the most basic example: the
Black-Scholes model under logarithmic utility U(x) = log(z). A classical
result of R. Merton states that, in the frictionless case, the optimal strategy
consists of holding a constant fraction (depending in an explicit way on the
parameters of the model) of wealth in stock and the rest in bond (the “Merton
line”). If we pass to transaction costs, it is also well known that one has to



keep the proportion of wealth within a certain interval and much is known
on this interval. Our purpose is to ezactly determine all the quantities of
interest, e.g. the width of this corridor, the effect on the indirect utility etc.
The dual method allows us to calculate these quantities either in closed form
as functions of the level A > 0 of transaction costs, or as a power series of
A5, In the latter case we are able to explicitly compute all the coefficients of
the fractional Taylor series. The key concept for this analysis is the notion of
a shadow price process. In the case of the Black-Scholes model this shadow
price process can explicitly be determined. This demonstrates the power
of the dual method. We have hope that the analysis of the Black-Scholes
model can serve as a role model for a similar analysis for other models of
financial markets, e.g. stock price processes based on fractional Brownian
motion. Here is a wide open field for future research.

In chapter 4 we go systematically through the duality theory for financial
markets under transaction costs. As regards the degree of generality we do
not strive for the maximal one, i.e. the consideration of general cadlag price
process S = (St)o<t<r as in [48] and [50]. Rather we confine ourselves to
continuous processes S and — mainly for convenience — we assume that the
underlying filtration is Brownian. We do so as we have fractional Brownian
motion as our final application in the back of our mind. On the other hand,
for this application it is important that we do not assume that the process
S is a semi-martingale. The central result of chapter 4 is Theorem 4.22
which establishes a polar relation between two sets of random variables. On
the primal side this is the set of random variables which are attained from
initial wealth x > 0 by trading in the stock S under transaction costs A
in an admissible way. On the dual side the set consists of the so-called
super-martingale deflators. The polar relation between these two sets is such
that the conditions of the general portfolio optimization theorem in [161] are
satisfied which allows to settle all central issues of portfolio optimization.

Chapter 5 is a kind of side-step and develops a local duality theory. It
shows that several traditional assumptions in the theory of portfolio optimiza-
tion can be replaced by their local versions without loss of generality with
respect to the conclusions. A typical example is the assumption (NFLV R)
of “no free lunch with vanishing risk” from [65]. This well-known concept is
traditionally assumed to hold true in portfolio optimization problems, e.g. in
[161]. It was notably pointed out by I. Karatzas and K. Kardaras [149] that
this assumption may be replaced by its local version which is the condition
(NUPBR) of “no unbounded profit with bounded risk”. We give equivalent
formulations of this latter property in the frictionless setting (Theorem 5.6)
and an analogous theorem in the setting of (arbitrarily small) transaction
costs A > 0 (Theorem 5.11).



After all these preparations we turn to the general theme of portfolio
optimization under proportional transaction costs in chapter 6. The basic
duality Theorem 6.2 is a consequence of these preparations and the results
from [161]. In Theorem 6.5 we show the crucial fact that — under appropriate
assumptions — the dual optimizer, which a priori only is a super-martingale, is
in fact a local martingale. The crucial assumption underlying this theorem
is that the process S satisfies the “two way crossing property”, a notion
introduced recently by C. Bender [14] which generalizes the concept of a
continuous martingale.

In chapter 7 we show that the local martingale property established in
Theorem 6.5 is the key to the existence of a shadow price process (Theorem
7.3). This insight goes back to the work of J. Cvitanic and I. Karatzas [43].

In chapter 8 we finally turn to the case of exponential fractional Brownian
motion. It culminates in Theorem 8.4 where we prove that for this model
there is a shadow price process. The key ingredient is a recent result by
R. Peyre [195] showing that fractional Brownian motion has the “two way
crossing” property.

Many people have participated in the research efforts underlying these
lectures. My sincere thanks go to my co-authors over the past 10 years on
this topic L. Campi, St. Gerhold, P. Guasoni, J. Muhle-Karbe, R. Peyre,
M. Raésonyi, J. Yang. Special thanks go to Ch. Czichowsky. Without his
endurance the six joint papers [47] - [52], which are the basis of the present
research, would never have seen the light of the day. I also thank the partic-
ipants of my lectures at the University of Vienna and ETH Ziirich.
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1 Models on Finite Probability Spaces

In this chapter we consider a stock price process S = (S;)I_, in finite,
discrete time, based on and adapted to a finite filtered probability space
(, F, (F)L,,P), where F = Fr is the sigma-algebra formed by all subsets
of Q. Similarly as in the introductory chapter 2 of [69] we want to develop
the basic ideas of the duality theory in this technically easy setting. The
extra ingredient will be the role of transaction costs. To avoid trivialities we
assume P(w) > 0, for all w € Q.

To keep things simple we assume that there is only one stock. It takes
strictly positive values, i.e., S = (S;)]_, is an R -valued process. In addition,
there is a bond, denoted by B = (B;)_; by choosing B as numéraire we
may assume that B; = 1.

Next we introduce transaction costs A > 0 : that is, the process ((1—\)S;,
S;)i_, models the bid and ask price of the stock S respectively. The agent
may buy stock at price S but, when selling stock, she only obtains a price
(1 = X)S. Of course, we assume \ < 1 for obvious economic reasons.

We have chosen a very simple setting here. For a much more general
framework we refer, e.g., to [129], [134], [141], [135] and [213]. These authors
investigate the setting given by finitely many stocks S!,...,S", where the
prices (7;j)1<ij<n Of exchanging stock j into stock i are general adapted
processes. A good economic interpretation for this situation is the case of n
currencies where the bid and ask prices m; ; and 7;; depend on the pair (7, j)
of currencies.

Here we do not strive for this generality. We do this on the one hand for
didactic reasons to keep things as non-technical as possible. On the other
hand we shall mainly be interested in the asymptotic theory for A — 0, for
which our present simple setting is more natural.

Definition 1.1. For given S = (Sy)[_, and 0 < A\ < 1, we associate the
process of solvency cones

Ky = {(¢}, 1) € L°(Q, F,, P;R?) : ) = max(—p,; Sy, —¢, (1= N)S,} (1)

The interpretation is that an economic agent holding (? units of bond,
and ¢} units of stock is solvent for a given stock price S; if, after liquidat-
ing the position in stocks, the resulting position in bonds is non-negative.
“Liquidating the stock” means selling ¢} stocks (at price (1—X)S;) if ¢} > 0
and buying —¢} stocks (at price S;) if ¢} < 0.



Figure 1: The solvency cone

Definition 1.2. For given S = (Sy)I_, and 0 < X\ < 1, an adapted process
(09, DI | starting at (¢°, ¢ ,) = (0,0) is called self-financing if

(@?_901(&)—17901} _(pt—l) € _Ktv t= 07"'7T‘ (2)

The relation (2) is understood to hold P-a.s., which in the present setting
simply means: for each w € (.

To motivate this definition note that the change at time ¢ of positions in
the portfolio (o) — ©? |, of — ! ;) can be carried out for the bid-ask prices

(1= N)S;, Sy) i (@) — @)1, 0of — i_y) € =K.

For (z', 2%) € R?, we call (¢, o)L | self-financing and starting at (x!, 22)
if (p) — a2t pf —2?)I_| is self-financing and starting at (0,0). We also note
that it is natural in the context of transaction costs to allow for 7" trades
(i.e. exchanges of bonds against stocks) in the T-period model (S;)7_,, which

leads to the initial condition in terms of (¢%,,¢!,).

Definition 1.3. The process S = (S;)L_, admits for arbitrage under transac-
tion costs 0 < A\ < 1 if there is a self-financing trading strategy (o9, o)L,
starting at ©°, = o', =0, and such that

(902’7 (pfll“) = (O, 0), P-a.s.
and
P [(¢7,¢7) > (0,0)] > 0.
We say that S satisfies the no arbitrage condition (N A*) if it does not allow
for an arbitrage under transaction costs 0 < A < 1.
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Let us introduce the following notation. For fixed S and A > 0, denote
by A* the set of R%valued F-measurable random variables (°, '), such
that there exists a self-financing trading strategy (¢?, oi)L | starting at

(%1, ¢11) = (0,0), and such that (¢° ¢') < (¢7, ¢7)-

Proposition 1.4. Suppose that S satisfies (N A*), for fired 0 < X\ < 1. Then
A is a closed polyhedral cone in L* (2, F,P;R?), containing L (92, F,P; R?)
and such that A* n L*(Q, F,P;R%) = {0}.

Proof. Fix 0 < t < T and an atom F € F;. Recall that F' is an atom of
the finite sigma-algebra F; if F € F;, F < F implies that either £ = F or
E = . Define the ask and bid elements ar and by in L*(Q, F,P;R?) as

aF = (_St|F7 1) I]_F, bF = ((]_ — /\)Sﬂp, —1) ]]-F (3)

Note that Sy is a well-defined positive number, as S; is F;-measurable and
F an atom of F;.

The elements ap and by are in A*. They correspond to the trading strat-
egy (i3s 05)s——1 such that (¢, ;) = (0,0), for =1 < s < ¢, and (], ¥;)
equals ap (resp. bp), for t < s < T. The interpretation is that an agent
does nothing until time ¢. Then, conditionally on the event F' € F;, she buys
(resp. sells) one unit of stock and holds it until time 7'

Note that an element (©°, ¢!) in L®(Q, F,P;R?) is in A* iff there are
non-negative numbers pup > 0 and vp > 0, where F' runs through the atoms
of /;, and t =0,...,T, such that

(SDO, 901) < Z(MFCLF + l/FbF).
F
In other words, the elements of the form (3), together with the vectors
(—=1,0)1, and (0, —1)1,,, where w runs through Q, generate the cone A*. Tt
follows that A* is a closed polyhedral cone (see Appendlx A).
The inclusion A* 2 L®(Q, F,P; R?) is obvious, and (N A*) is tantamount

to the assertion A* n L*®(Q2, F,P; R%) = {0}. [
Definition 1.5. An element (©°, ') € A is called maximal if, for ((¢°), (¢')') €
AY satisfying ((¢°), (9')) = (#%,9") a.s., we have ((¥°)', (1)) = (¢°, ¢")

a.s.

Definition 1.6. Fix the process S = (S;)L_, and transaction costs 0 < X < 1.
A consistent price system is a pair (5’ ,Q), such that Q is a probability measure
on Q equivalent to P, and S = (St);rzo is a martingale under Q) taking its
values in the bid-ask spread [(1 — X)S, S|, i.e

(1 — )‘)St < gt < St7 ]P)-CL.S. (4)

We denote by S* the set of consistent price systems.
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Remark 1.7. For A = 0 we have S = S, so that we find the classical notion of
equivalent martingale measures () € M. We shall see in Corollary 1.11 that
the set of real numbers Eq[¢9 + ©hSr], where (S, Q) ranges in S*, yields
precisely the arbitrage-free prices (in terms of bonds) for the contingent claim

(¢7, oF) € L2 (R?).

Theorem 1.8. (Fundamental Theorem of Asset Pricing): Fixing the process
S = (Sy)L, and transaction costs 0 < \ < 1, the following are equivalent:

(i) The no arbitrage condition (N A) is satisfied.
(i1) There is a consistent price system (S, Q) € S*.

(iii) There is an R2 -valued P-martingale (Zy)[_, = (Z), Z})i_, such that
Z0 =1 and
Z}
_Oe[<1_)\>5t78t]7 t:O,,T (5)
Zt
Remark 1.9. The basic idea of the above version of the Fundamental The-
orem of Asset Pricing goes back to the paper [125] of Jouini and Kallal from
1995. The present version dealing with finite probability space €2 is due to
Kabanov and Stricker [139].
In the case A = 0 condition (ii7) allows for the following interpretation:
in this case (5) means that
Z! = 708,. (6)

Interpret Z9 as a probability measure by letting % := Z3. By Bayes’ rule

condition (6) and the P-martingale property of Z! then is tantamount to the
assertion that S is a Q-martingale.

Proof. (i1) = (i) As usual in the context of the Fundamental Theorem of
Asset Pricing, this is the easy implication, allowing for a rather obvious
economic interpretation. Suppose that (S‘, @) is a consistent price system.

Let us first give the intuition: as the process S is a martingale under
Q, it is free of arbitrage (without transaction costs). Trading in S under
transaction costs A only allows for less favorable terms of trade than trading
in S without transaction costs by (4). Hence we find that S under transaction
costs \ satisfies (NA*) a fortiori.

Here is the formalization of this economically obvious reasoning.

Note that, for every self-financing trading strategy (oY, ¢l)L | starting
at (%4, ¢,) = (0,0) we have

@p — 0ty <min (—(¢; — i), —(r —pi_) (1 —A)Sy)
< —(of — @i_1)S,
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by (4), as (¢ — @) 1,01 — @i 1) € K.
Hence

(o) — pp_1)

M=

(7 — %) =

o~
Il

)
|
D~ 7

(‘Ptl - ‘P%—l)gt

Il
o

901}71<‘§t - S*t_l) + 905150 - SOITST

I
1=

-+
Il

1

Taking expectations under @, and using that ¢%, = ¢, = 0, we get

Bole%] + Bl 1] < Eq [z o s>] _o.

Now suppose that ¢ > 0 and ¢} > 0, P-as., ie. ¢%(w) = 0 and

h(w) = 0, for all w in the finite probability space (0.

Using the fact that @ is equivalent to P, i.e. Q(w) > 0 for all w € 2, we
conclude from (7) that ¢%(w) = 0 and @h(w)Sr(w) = 0, for all w € Q. Ob-
serving that Sy is strictly positive by the assumption A < 1, for each w € Q,
we also have ¢L(w) = 0 so that S satisfies (N A™Y).

(i) = (ii7) Now suppose that S satisfies (NA*). By Proposition 1.4 we
know that A* is a closed convex cone in L*(Q, F,P; R?) such that

AN A LP(Q, F,P;R%) = {0}.

Claim: There is an element Z = (Z° Z') € LY(Q, F,P;R?), verifying
Z%w) > 0 and Z'(w) = 0, for all w € 2, and normalized by E[Z°] = 1, such
that

U 01), (Z2°,Z")) = Bple) 2° + 3 Z2'] < 0, for all (¢, 1) € A*. (8)

Indeed, fix w € Q, and consider the element (1,,0) € L®(Q, F,P;R?)
which is not an element of A*.

By Hahn-Banach and the fact that A* is closed and convex (Prop. 1.4), we
may find, for fixed w € Q, an element Z, € L'(Q, F,P;R?) separating .A*
from (1,,0). As A" is a cone, we may find Z,, such that

((1,,0),(Z, Z,)) > 0,

11



° L*(R2)

(L.;, O) ¢
> gpl
Hyperplane separating .A*
from (1,,0)
A)\

closed, convex Cone/

Figure 2: Regarding the proof of Thm 1.10

while
Zw‘A)\ < 0.

The first inequality simply means that the element Z° € L'(Q2, F,P) takes
a strictly positive value on w, i.e.

Z2(w) > 0.

As A* contains the negative orthant L*(Q, F,P; —R? ), the second inequality
implies that
Z°=0, Z.=o.

Doing this construction for each w € 2 and defining

Z =) i,

wef)

where (pu,).eq are strictly positive scalars such that the first coordinate of
7 has P-expectation equal to one, we obtain an element Z € L}(Q, F,P; R?)
such that

Zia <0, (9)

which is tantamount to (8), and
Z2°>0, Z'>0,

proving the claim.
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We associate to Z the R?-valued martingale (Z;)I_, by
Z, = E[Z|F,), t=0,...,T.

We have to show that g—é takes its values in the bid-ask-spread [(1 —

A)St, Sy of S;. Applying (9) 'to the element ap defined in (3), for an atom
I e F;, we obtain

<(Ztoa Ztl)> (_St\Fa 1)]1F> =E [(—St‘FZtO + Ztl)ﬂF] < 0.

In the last line we have used the F;-measurability of S;1r to conclude
that 0 > E[(—Sﬂpi + ZH1F] = E[(—SﬂFZ?‘F + Ztl|F)]1F]. As Syr, ZtO|F, and
Zl

)| are constants, we conclude that

—SyrZip + Zyp <0,

i.e. .
tF
ZT| < St\F'
s
As this inequality holds true for each t = 0,...,7T and each atom F' € F;
we have shown that
1
“Lel-w,8 t=0,...,T.
Zl? ] ) t] ) )
Applying the above argument to the element bg in (3) instead of to ag

we obtain )

Z
Z—tg € [(1 = N)S;, o], t=0,...,T, (10)
t
which yields (5).
Finally we obtain from (10), and the fact that A < 1, that (Z})L, also
takes strictly positive values.

(#7i) = (i7) Defining the measure @) on F by
dQ

79
dP T

we obtain a probability measure equivalent to P.
Define the process S = (S;)L, by

~ 71

St = —t

Zy
By (5) the process S takes its values in the bid-ask-spread of S. To verify
that S is a ()-martingale it suffices to note that this property is equivalent
to SZ° being a P-martingale. As Z! = SZ° this is indeed the case. |
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We denote by B* = LY(Q, F,P; R?) the polar of A* (see Definition A.3 in
the Appendix), i.e.

B i= (A ={Z = (2°,2") : {(¢", "), (2°, 2")) = Be [¢"2" + ' Z'] <0,
for all (%, ') e A*}.

As A* is a closed polyhedral cone in a finite-dimensional space, its po-
lar B* is so too (Proposition A.3). As A* contains the negative orthant
L*(Q, F,P; —R%) = {(¢%, 0F) : % < 0,04 < 0}, we have that B* is con-
tained in the positive orthant L*(Q, F,P;R%).

Corollary 1.10. Suppose that S satisfies (NA*) under transaction costs
0 <A< 1 Let Z = (Z2°27Y) € LY(Q, F,P;R?) and associate to Z the
martingale Z; = Ep[Z|F;], where t =0,...,T.

Then Z € B iff Z = 0 and S, := g—f; e [(1 —\)S;, S| on {Z? # 0} and
Z} =0 on{Z) =0}, for everyt =0,...,T.

Dually, an element (©°, ') € L=(Q, F,P;R?) is in A iff for every con-
sistent price system (S, Q) we have

Eq[e® + ¢S] < 0. (11)

Proof. If Z = (Z°, Z') is in B* we have Z > 0 by the paragraph preceding the
corollary. Repeating the argument in the proof of the Fundamental Theorem
1.8, conditionally on {Z? # 0}, we obtain that S, := % indeed takes values
in the bid-ask interval [(1 — \)Sy, S¢] on {Z? # 0} for t = 0,...,T.

As regards the set {Z = 0} fix an atom F, € F;, with F;, < {Z? = 0}.
Observe again that (—Syp,1)1r € A" as in the preceding proof. As Z €
(AMN° we get

(=S, D1k, (0,2;)) <0,

which readily implies that Z; also vanishes on F;.

Conversely, if Z = (Z°, Z1) satisfies Z > 0 and g—’él, € [(1 —N)S;, S;] (with
the above caveat for the case Z? = (), we have that

9

<:H'Ft(_St7 ]‘)’ (Z07 Zl)> <0
<0,

and Ap (1 =N)S, —1),(2° ZY))

for every atom F; € F;. As the elements on the left hand side generate the
cone A* we conclude that Z € B,

Let us now pass to the dual point of view. By the bipolar theorem (see
Proposition A.1 in the appendix) and the fact that A* is closed and convex
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in L*(Q, F,P;R?), we have (A*)*° = (B*)° = A" Hence (©}, %) € A* =
(AMN)°e iff for every Z = (Z°, Z1) € B* we have

Ee[ 2% + Z' 7] < 0. (12)

This is equivalent to (11) if we have that Z° is strictly positive as in
this case %2 = Z°/Ep[Z°] and S, = Ep[Z'|F]/Ep[Z°|F,] well-defines a
consistent price system.

In the case when Z° may also assume the value zero, a little extra care is
needed to deduce (11) from (12). By assumption (N A*) and the Fundamental
Theorem 1.8 we know that there is Z = (Z°, Z') € B* such that Z° and Z!
are strictly positive. Given an arbitrary Z = (Z°,Z') € B* and p €]0, 1] we
have that the convex combination uZ + (1—u)Z is in B* and strictly positive.
Hence we may deduce the validity of (12) from (11) for uZ+(1—p)Z. Sending
p to zero we conclude that (¢, k) € AN iff (11) is satisfied, for all consistent
price systems (S, Q). |

Corollary 1.11. (Superreplication Theorem): Fiz the process S = (S¢)l_,,
transaction costs 0 < X < 1, and suppose that (NA*) is satisfied. Let
(0, Y € L®(Q, F,P;R?) and (2°,2') € R? be given. The following are
equivalent.

(i) (¥° ¢") = (@1, o1) for some self-financing trading strategy (27, ){—q

starting at (©°,, ') = (2°, 21).

(ii) Egle® + ©'S7] < 2° + 1Sy, for every consistent price system (S, Q) €
SN
Proof. Condition (i) is equivalent to (¢° — 2° ¢! — 2!) being in A*. By
Corollary 1.10 this is equivalent to the inequality

Eq (¢~ %) + (¢ = a)5r| <0,

for every (S, Q) € S* which in turn is tantamount to (). |

We now specialize the above result, considering only the case of trading
strategies (Y, 1)L | starting at some (©°,¢',) = (x,0), i.e. without
initial holdings in stock. Similarly we require that at terminal time 7" the
position in stock is liquidated, i.e., (¢%, ¢}) satisfies ¢k = 0.

We call C* the cone of claims (in units of bonds), attainable from initial
endowment (0,0) :

Cr={p" e L* (U F,P): 3(ph, 7)€ A sit. o = ¢°, o1 = 0}

13
= A 0 LT (Q, F,P;R?). (13)
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In the last line we denote by L¥(Q, F,P; R?) the subspace of L*(£2, F, P; R?)
formed by the elements (¢°, o) with ! = 0. We may and shall identify
Ly (Q, F,P;R?) with L®(Q, F,P).

The present notation C* corresponds, for A = 0, to the notation of [69],
where the cone of contingent claims attainable at prize 0 (without transaction
costs) is denoted by C.

By (13) and Proposition 1.4 we conclude that C* is a closed polyhedral
cone. Using analogous notation as in [161], we denote by D* the polar of C*.
By elementary linear algebra we obtain from (13) the representation

D ={Y e LY, F,P): thereis Z = (Z2°,Z") e B* with Y = 2%}, (14)

which is a polyhedral cone in L! (Q, F,P). We denote by M?* the probability
measures in D*, i.e.

M =D {Y |V, = Ep[Y] = 1}.

The Superreplication Theorem 1.11 now specializes into a very familiar
form, if we start with initial endowment (x,0) consisting only of bonds, and
liquidate all positions in stock at terminal date 7'

Corollary 1.12. (one-dimensional Superreplication Theorem): Fix the pro-
cess S = (Sy)L,, transaction costs 0 < X\ < 1, and suppose that (NAN)
is satisfied. Let ©° € L®(Q, F,P) and z € R be given. The following are
equivalent.

(i) @ —x is in C*.
(i) Egl¢°] < x, for every Q € M*.

Proof. Condition (i) is equivalent to (¢° — x,0) being in A*. This in turn
is equivalent to Eg[¢° — z] < 0, for every @ € M?, which is the same as
(ii). |

Formally, the above corollary is in perfect analogy to the superreplication
theorem in the frictionless case (see, e.g., ([69], Th. 2.4.2)). The reader may
wonder whether — in the context of this corollary — there is any difference at
all between the frictionless and the transaction cost case.

In fact, there is a subtle difference: in the frictionless case the set M =
M? of martingale probability measures ) for the process S has the following
remarkable concatenation property: let @', Q)" € M and associate the density
process Y/ = E[%—%U—}], and Y/ = E[%]Ft] For a stopping time 7 we define
the concatenated process

v Y/, for0<t<rm, 15
b 7’3;—{: forr<t<T (15)



We then have that % = Yr again defines a probability measure under which
S is a martingale, as one easily checks. This concatenation property turns
out to be crucial for several aspects of the frictionless theory.

For A > 0 the sets M? do not have this property any more. But apart
from this drawback the sets M?* share the properties of M of being a closed
polyhedral subset of the simplex of probability measures on (€2, ). Hence
all the results pertaining only to the latter aspect, e.g. much of the duality
theory, carry over from the frictionless to the transaction cost case, at least
in the present setting of finite 2. This applies in particular to the theory of
utility maximization treated in the next chapter.

We end this chapter by illustrating the set M* for two very elementary
examples.

Example 1.13. (One Period Binomial Model; for notation see, e.g., [69][Ex.3.3.1]):
The process S can only move from Sy to uSy or dSy where 0 < d <1 < u. In

the traditional case, without transaction costs, there is a unique equivalent
martingale measure () = (g, qq) determined by the two equations

S1 = uSy
Q
5 } %
dq Ou
S1 = dSy MA
Eg[S1] = So = uSoqu + dSoqa = wSoqu + dSo(1 — qu) (16)
1 =ugq, +d(1 —q,), (17)
which gives the well-known formulas for the riskless probability @ = (qu, qq)-
quzﬁ and qq=1-gq, = %= (18)

Introducing proportional transaction costs, we are looking for a consistent
price system (5, @), where S is a Q-martingale and

(1-X0)8, <S5, <8, te{o1}. (19)
We therefore have:
EQ[SI] = go = Qu51<u) + ngl(d> < quuSo + qqdSo, (20)
>(1-))So
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and therefore g,u + gqd = (1 — X). Using analogue inequalities in the other
direction and the fact that ¢, = 1 — g4 we obtain by elementary calculations
lower and upper bounds for q,:

=2 g 1 _d
max( ;—d ,O) <qu<min(1u)‘_d ,1). (21)

For A — 0, this interval shrinks to the point ¢, = i=¢ which is the unique

frictionless probability (18). e

On the other hand, for A sufficiently close to 1, this interval equals [0, 1],
i.e. M consists of all convex, combinations of the Dirac measures §; and
.. In an intermediate range of ), the set M?* is an interval containing the
measure () = ¢q,0, + qq04 in its interior (see the above sketch).

Example 1.14. (One period trinomial model):

In this example (compare [69, Ex.3.3.4]) we consider three possible values
for Sy: apart from the possibilities S = uSy and S; = dSy, where again
0 <d <1< u, we also allow for an intermediate case S; = mJSy. For
notational simplicity we let m = 1.

S1 = uSy 0
M)\
1 =mSy
S1 = dSy

u 5m

In the frictionless case we have, similar to the binomial model, for any
martingale measure (), that

EQ[Sl] = SO = ’LLSoqu + Soqm + dS()qd (22)

1= ugy + dga + (1 = qu — qa), (23)

which yields one degree of freedom among all probabilities (g, Gm,qa), for
the cases of an up, medium or down movement of Sy. The corresponding set

M of martingale measures for S in the set of convex combinations of the
Dirac measures {dy, 0., d,} therefore is determined by the triples (qu, ¢m, ¢a)

18



of non-negative numbers, where 0 < ¢,, < 1 is arbitrary and where ¢, and ¢q4
are determined via

Gu+qa=1— qgm, (u—1)g, + (d—1)gqa = 0. (24)

This corresponds to the line through 9,, in the above sketch.
We next introduce transaction costs 0 < A < 1, and look for the set of
consistent probability measures. In analogy to (20) we obtain the inequalities:

>(1-))So
. — - . .
Eg[Si] = So = quSi(u) + ¢mSi(m) + qaSi(d) (25)
< [¢uuSo + ¢nSo + qadSo] - (26)

Together with the inequality in the direction this gives us again a lower and

upper bound:

A
Hence M? is given by the shaded area in the above sketch which is confined
by two lines, parallel to the line given by (24).

2 Utility Maximization under Transaction Costs:
the Case of Finite ()

In this chapter we again adopt the simple setting of a finite filtered probability
space (Q, F, (F;)L,,P) as in chapter 1. In addition to the ingredients of the
previous chapter, i.e. the stock price process S = (S;)_, and the level of
transaction costs 0 < A < 1, we also fix a utility function

U:D—R. (28)

The domain D of U will be either D =]0, 0] or D =]— o0, [, and U is
supposed to be a concave, R-valued (hence continuous), increasing function
on D. We also assume that U is strictly concave and differentiable on the
interior of D. This assumption is not very essential but avoids to speak about
subgradients instead of derivatives and allows for the uniqueness of solutions.
More importantly, we assume that U satisfies the Inada conditions

lim U'(z) =0, lim U'(z) =0, 29
Jim U'(x) lim U'(x) (29)

where ¢ € {—o0, 0} denotes the left boundary of D.
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Remark 2.1. Some widely studied examples for utility functions include:
o Ulx) = log(x),

o U(r) = % or, more generally, U(z) = %, for v €]0, 1],

U(xz) = % or, more generally, U(z) = %, for v €] — 0,0,

e U(x) = —exp(—x), or, more generally, U(x) = — exp(—ux), for u > 0.

The first three examples pertain to the domain D =]0, o[, while the
fourth pertains to D =]— o0, o0].

We also fix an initial endowment x € D, denoted in units of bond. The
aim is to find a trading strategy (¢?, o)L, maximizing expected utility of
terminal wealth (measured in units of bond). More formally, we consider the
optimization problem

(P,) E[U(z + ¢5)] — max! (30)
7 e C?

In (P,) the random variables ¢% run through the elements of C?, i.e.
such that there is a self-financing trading strategy (¢?, of)L_,, starting at
90(117 901—1 = <07 0)

The interpretation is that an agent, whose preferences are modeled by the
utility function U, starts with = units of bond (and no holdings in stock). She
then trades at times ¢ = 0,...,7T—1, and at terminal date 7" she liquidates her
position in stock so that ¢l = 0 (this equality constraint clearly is equivalent
to the inequality constraint ¢} > 0 when solving the problem (P,)). She then
evaluates the performance of her trading strategy in terms of the expected
utility of her final holdings ¢% in bond.

Of course, we could formulate the utility maximization problem in greater
generality. For example, we could consider initial endowments (z, y) in bonds
as well as in stocks, instead of restricting to the case y = 0. We also could
replace the requirement % > 0 by introducing a utility function U(x,y)
defined on an appropriate domain D < R? and consider

(Pyy) E[U(£%, or)] — max!

where (%, L) runs through all terminal values of trading strategies (7, )T,

starting at (9%, 01;) = (z,y).
Note that (28) corresponds to the two-dimensional utility function

Uz), ify =0,

—o0, ify<O0. (31)

Ulz,y) ={
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We refer to [60] and [135] for a thorough treatment of such a more general
framework. For the present purposes we prefer, however, to remain in the
realm of problem (30) as this allows for easier and crisper formulations of the
results.

Using (28) and Corollary 1.12, we can reformulate (P,) as a concave
maximization problem under linear constraints:

(Py) E[U(z + ¢5)] — max! 0 e L7(Q, F,P), (32)

Eqler] <0, Qe M (33)

As M?* is a compact polyhedron we can replace the infinitely many con-
straints (33) by finitely many: it is sufficient that (33) holds true for the
extreme points (Q', ..., QM) of M*.

We now are precisely in the well-known situation of utility optimization
as in the frictionless case, which in the present setting reduces to a concave
optimization problem on the finite-dimensional vector space L*(€, F,P) un-
der linear constraints. Proceeding as in ([69, section 3.2]) we obtain the
following basic duality result, where V' denotes the conjugate function (the
Legendre transform up to the choice of signs) of U

V(y) = Sug{U(x) — zy}, y > 0. (34)
xe
Theorem 2.2. (compare [69, Th. 3.2.1]): Fiz 0 < X\ < 1 and suppose that
in the above setting the (N AY) condition is satisfied for some fited 0 < X < 1.
Denote by v and v the value functions

u(z) = sup {E[U(z + ¢2)] : (¢, o) € A, o = 0} (35)
= sup{E[U(z + ¢3)] : o7 € C*}, reD.
v(y) = inf{E[V (y4)] : Q € M*} (36)

= mf{E[V(Z7)] : Zr = (Zp, Z7) € B\ E[Z3] =y}, y > 0.

Then the following statements hold true:

(i) The value functions u(x) and v(y) are mutually conjugate, and the
indirect utility function v : D — R is smooth, concave, increasing, and
satisfies the Inada conditions (29).
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(it) For x € D and y > 0 such that u'(z) = y, the optimizers ¢ =
&% (z) € C* and Q = Q(y) € M* in (35) and (36) exist, are unique, and
satisfy

vt @) =I(yR), yR-U(z+8}), (37)

where I = (U')~1 = =V denotes the “inverse” function. The measure Q is
equivalent to P, i.e. () assigns a strictly positive mass to each w € €.

(1i1) The following formulae for v’ and v' hold true

W (x) = e [U” (2 + @(x))] V() = Bgq [V (v952) ] 39)

v (2) = Be [(z+ (@) U (v + 5(0)], v v/(y) = Ee |y 50" (y522) |.
(39)

Proof. We follow the reasoning of [69, section 3.2]. Denote by {wy,...,wn}
the elements of Q2. We may identify a function ¢° € L*(Q2, F,P) with the
vector (§u)n_; = (goo(wn))gzl eRY.

Denote by Q',...,QM the extremal points of the compact polyhedron
M* and, for 1 <m < M, by (¢™)Y_, = (Q™[w,]))_, the weights of Q™. We

may write the Lagrangian for the problem (32) as

N N
L<£17"'7£N77]17"'77]M):Z 2 <an§n_ >
n=1 =1

mle M
( L ) v S o
1 m= Dn m=1

Here z is the initial endowment in bonds, which will be fixed in the sequel.
The variables &, vary in R, the variables 7, in R;. Our aim is to find the
(hopefully uniquely ex1st1ng) saddle point (51, N, , M) of L which
will give the primal optimizer via x + ¢%(w,) := &, as well as the dual
optimizer via yQ = Zn]‘le Nm@Q@™, where y = Zn]‘le fim 0 that Q € M™.

In order to do so we shall consider max, min, L({,n) as well as min,
maxe L(£,n). Define

D&, ..., ¢N) = mf L(fl,...,GN,m,...,nM)

z ] Ydn
= f n n)— —&n |t
y>Olg€M/\ { p ( 5 g ) yx}
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Again the relation between (11,...,7y) and y > 0 and Q € M?* is given
via y = fo:l N and Q = M 1mQm where we denote by ¢, the weights

m=1 y
n = Q[wn]
Note that ®(&,...,&n) equals the target functional (30) if (&,...,&N)
is admissible, i.e. satisfies (33), and -co otherwise. Identifying the elements
0¥ e L*(Q, F,P) with (&,...,&y) € RY, this may be written as

(") = { E[U(¢°)], if Eql¢’] < x for all Q € M* o)

—o00, otherwise.

Let us now pass from the max min to the min max: identifying (11, ..., 7m)
with (y, Q) as above, define

U(y,Q) = sup L(&,.... &N, Y, Q)

ISERIRIN
N
= sup ) pn <U(€n) - y;i—z&) + Y
IS §N n=1

n=1 n
N

= >V (yf,—:) +y
n=1

=Ee [V (y3)] + 2y

We have used above the definition (30) of the conjugate function V' of U.
Defining

Ply) = inf, ¥y, Q) (41)

we infer from the compactness of M* that, for y > 0, there is a minimizer
Q(y) in (41). From the strict convexity of V (which corresponds to the
differentiability of U as we recall in the appendix) we infer, as in [69], section
3.2, that Q(y) is unique and Q(y)[w] > 0, for each w € €.

Finally, we minimize y — W(y) to obtain the optimizer § = g(x) by
solving

v'(g) = 0. (42)

Denoting by v(y) the dual value function which is obtained from ¥(y) by
dropping the term xy, i.e.

oy) = nf E[V(yg)].
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we obtain from (42) the relation

V(G(r)) = —.

The uniqueness of g(x) follows from the strict convexity of v which, in
turn, is a consequence of the strict convexity of V' (see Proposition B.4 of
the appendix).

Turning back to the Lagrangian L(&;, ..., &N, y, @), the first order condi-
tions

aé'inL(€17 A 7£N7 y7 Q>|él EN7Q7Q = O (43)

for a saddle point yield the following equations for the primal optimizers

SERRRREI\ . )
U'&) = 9.2, (44)

where § = §(z) and Q = Q(j(x)). By the Inada conditions (29), as well
as the smoothness and strict concavity of U, equation (44) admits unique

solutions (£1,...,&x) = (&(x), ..., En(2)).

Summing up, we have found a unique saddle point (él, N, Q) of
the Lagrangian L. Denoting by L = L(x) the value

EZL(&,-..,EN»@Q)

we infer from the concavity of L in &, ..., &y and convexity in y and () that
max min L = min maxL = L. (45)
1 y,Q y,Q 3

It follows from (40) that L is the optimal value of the primal problem
(P,) in (30), i.e.

N
u(@) = Y paU(E) = L. (46)
n=1
The second equality in (45) yields
L=W(g) =v(j) + zj. (47)

Equations (46) and (47), together with the concavity (resp. convexity) of
u (resp. (v)) and v'(y) = —x are tantamount to the fact that the functions
u and v are conjugate.

We thus have shown (i) of Theorem 2.2. The listed qualitative properties
of u are straightforward to verify (compare [69], section 3.2). Item (i) now
follows from the above obtained existence and uniqueness of the saddle point
(&1,...,En.,Q) and (i) again is straightforward to check as in [69]. |
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We remark that in the above proof we did not apply an abstract mini-
max theorem guaranteeing the existence of a saddle point of the Lagrangian.
Rather we directly found the saddle point by using the first order conditions,
very much as we did in high school: differentiate and set the derivative to
zero! The assumptions of the theorem are designed in such a way to make
sure that this method yields a unique solution.

We now adapt the idea of market completion as developed in [151] to the
present setting. Fix the initial endowment x € D, and y = u/(z). Define a
frictionless financial market, denoted by AS, in the following way. For each
fixed w € 2, the Arrow security AS“, paying AS$ = 1, units of bond at
time ¢ = T, is traded (without transaction costs) at time ¢ = 0 at price
ASY := Q(y)[w]. In other words, AS“ pays one unit of bond at time T if w
turns out at time T to be the true state of the world, and zero otherwise.
We define, for each w € €, the price process of AS“ as the Q(y)—martingale

The set C4, where A stands for K. Arrow, of claims attainable at price
zero in this complete, frictionless market equals the half-space of L (2, F,P)

Ch = Hy,y = {07 € LZ(Q, F,P) : By, [07] < 0}. (48)

Indeed, every ¢% € Hpg ) may trivially be written as a linear combination
of Arrow securities

0F = > Prw) Ly

weN

= D, ¢r(w)ASE(w)

wef
which may be purchased at time ¢ = 0 at price
2 P (W) ASH (W) = EQ(y)[SOOT] < 0.
wef

The Arrow securities AS“ are quite different from the original process S =
(S1){o or, more precisely, the process of bid-ask intervals ([(1—))S;, Si]){,.
But we know from the fact that Q(y) € M?* that

A A

In prose: the contingent claims ¢ attainable at price 0 in the market S
under transaction costs A are a subset of the contingent claims Y. attainable
at price zero in the frictionless Arrow market AS.
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The message of the next theorem is the following: although the complete,
frictionless market AS offers better terms of trade than S (under transaction
costs ), the economic agent applying the utility function U (28) will choose
as her terminal wealth the same optimizer % € C*, although she can choose
in the bigger set C4.

Theorem 2.3. Fiz S = (Si)]_,, transaction costs 0 < X < 1 such that
(N AN is satisfied, as well as U : D — R verifying (29) and x € D. Using the
notation of Theorem 2.2, let y = u'(x) and denote by Q(y) e M* the dual
optimizer in (36).

Define the optimization problem

(P E[U(z + ©7)] — max! (50)
Eo) [e7] <0,

where % ranges through all D-valued, Fp-measurable functions.
The optimizer ¢%.(x) of the above problem exists, is unique, and coincides
with the optimizer of problem (P,) defined in (30) and given by (37).

Proof. As Q(y) € M* we have that Q(y)|cx < 0 so that Q(y)],icr < . It
follows from (50) that in (P) we optimize over a larger set than in (P,).
Denote by ¢% = $%(z) the optimizer of (P,) which uniquely exists by
Theorem 2.2. Denote by y = () the corresponding Lagrange multiplier
g = u'(x). We shall now show that Q(g)) induces the marginal utility pricing
functional.
Fix 1 < k < N and consider the variation functional corresponding to wy

N
Uk(h) =E [U(Sé% + h]lwk)] = Z an(én) + pkU(gk + h)7 heR.

n=1
n#k

The function vy is strictly concave and its derivative at h = 0 satisfies by
(44)

~ Ak N
v, (0) = Prl— = Yqp.
Pk

Let ¢ € L*(2, F,P),¢ # 0 be such that Ep[(] = 0. The variation func-
tional v¢

N
ve(h) = E[U(@S + h¢)] = Y pelU(& + héx),  heR,
k=1
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has as derivative

Hence

The function h — v¢(h) is strictly concave and therefore attains its unique
maximum at A = 0.

Hence, for every o € L®(Q, F,P), ¢} # ¢f such that Es[e}] = 2 we
have

E[U(p7)] < E[U(o7)]-

Indeed, it suffices to apply the previous argument to { = p% — @%. Finally, by
the monotonicity of U, the same inequality holds true for all % € L®(Q, F,P)
such that Ep[0F] < z.

The proof of Theorem 2.3 now is complete. ]

In the above formulation of Theorems 2.2 and 2.3 we have obtained the
unique primal optimizer ¢Y only in terms of the final holdings in bonds;
similarly the unique dual optimizer Q is given in terms of a probability mea-
sure which corresponds to a one dimensional density Z° = (fl—%. What are the
“full” versions of these optimizers in terms of (p%, p}) € A*, ie., in terms
of bond and stock, resp. (Z° Z') € B which is an R2-valued martingale?
As regards the former, we mentioned already that it is economically obvious
(and easily checked mathematically) that the unique optimizer (%, ¢}) € A*
corresponding to @9 € C* in (35) simply is (pF, p3) = ($%,0), i.e. the op-
timal holding in stock at terminal date T is zero. As regards the optimizer
(Z°,Z") € B* in (36) corresponding to the optimizer Q € M?* the situa-
tion is slightly more tricky. By the definition (14) of D*, for given Z° € D*
there is Z' € LY (Q,F,P) such that (2°,Z') € B*. But this Z' need not
be unique, even in very regular situations as shown by the S%Jbsequent easy
Zl
7).
unique. The terminology “shadow price” will be explained below, and will
be formally defined in 2.7.

example. Hence the “shadow price process” (S’t)fzo = < need not be
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Example 2.4. In the above setting suppose that (S;)L, is a martingale
under the measure P. Then it is economically obvious (and easily checked)
that it is optimal not to trade at all (even under transaction costs A = 0).
More formally, we obtain u(z) = U(z),v(y) = V(y) and, for x € D, the
unique optimizers in Theorem 2.2 are given by ¢ = (X,0), and Q =

as well as g = U'(x). For the optimal shadow price process S we may take
S = S. But this choice is not unique. In fact, we may take any P-martingale
S = (S, taking values in the bid-ask spread ([(1 — \)S;, S:])7,

In the setting of Theorem 2.2 let (2%, Z1) be an optimizer of (36) and

denote by S the process
s E[ZH|F
E[Z7]F]

which is a martingale under Q(y) We shall now justify why we have called
this process a shadow price process for S under transaction costs A.
Fix r € D and y = /(). To alleviate notation we write S = (S;)L,

~

for S(y) and Q for Q(y). Denote by C5 the cone of random variables ¢
dominated by a contingent claim of the form (H - S)r, i.e.

— {¢% e L®(Q, F,P) : ©% < (H - S)g, for some H € P}.

Here we use standard notation from the frictionless theory. The letter P
denotes the space of predictable R-valued trading strategies (Hy){_,, i.e. H;
is F;_i-measurable, and (H - S)r denotes the stochastic integral

= Y (5~ S 1)

In prose: C% denotes the cone of random variables ©% which can be super-
replicated in the financial market S without transaction costs and with zero
initial endowment.

Lemma 2.5. Using the above notation and assuming that S satisfies (N A*)
we have

crccdcceh (52)

Proof. The first inclusion was already shown in the proof of the Fundamental
Theorem 1.8; it corresponds to the fact that trading without transaction costs
on S yields better terms of trade than trading on S under transaction costs

A
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As regards the second inclusion note that, for (H - S)¢ as in (51), we have

Eql(H - S)r] =0,

whence (H - S) belongs to C* by (4 8). As C* also contains the negative
orthant L*(Q, F,P; —R%) we obtain C° < CA. |

Corollary 2.6. Using the above notation and assuming that S satisfies (N A*),
the optimization problem

(P9) E[U(z + ¢%)] — max! (53)

0 < (H-S)p, for some H e P. (54)

has the same unique optimizer p% as the problem (P,) defined in (30) as well
as the problem (P2) defined in (50).

If the \-self-financing process (@Y, o)L, starting at zero is a mazimizer
for problem (P,) then

defines a maximizer for proble (Pf) and we have
A ~ T A ~ ~
(H - S)r = Z Hy(Sy — S-1) = ¢ (55)
t=1
and more generally,
(H S)t = @7 + & +Si (56)
= @t—1 +90t_15t> t=1,...,T.

Proof. The first part follows form (52) and Theorem 2.3.
As regards the second part, let us verify (56) by induction. Rewrite these
equations as o .
(H-S)e =&y + @115+ a (57)

(Hg)t—(pt +Q0tst+bt (58)

We have to show that the elements a;, b, € L*(Q2, F,P) are all zero.
Obviously ag = 0. As inductive hypothesis assume that 0 = a9 < by =
a; < ... < b1 = a;. We claim that a; < b;. Indeed, (@?,gﬁtl) is obtained
from (¢? ,$; ;) by trading at price Sy or (1 — \)S;, depending on whether
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G — Pl = 0o0r ¢ — @l <0. As S, takes values in [(1 — \)S;, S;] we get
in either case
(‘P ‘Pt 1)St (A 95?—1) <0,
which gives a; < b;.
To complete the inductive step we have to show that b; = a;,1, i.e.

(H - 8)ar — (- 8) = & (81 — 50,

As the left hand side equals H;,1(Si41 — Sy) this follows from the definition
Ht+1 = 95% :

Having completed the inductive step we conclude that by > 0. We have
to show that by = 0. If this were not the case we would have

E [U(x + (H - S‘)T)] =E[U(z + 7 + br)]
>E[U(z+ ¢))],
which contradicts the first part of the corollary, showing (55) and (56). W

Here is the economic interpretation of the above argument: whenever
o — @l | # 0 we must have that S; equals either the bid or the ask price
(1 — \)S;, resp. Sy, depending on the sign of ¢} — @l . More formally

{o1 ol >0} = {8 =5}, (59)

{pl— ¢!, <0} c { =(1—)\)St}, t=0,...,T. (60)

The predictable process (H;)T_, denotes the holdings of stock during the
intervals (]t — 1,¢])Z,. Inclusion (59) indicates that the utility maximizing
agent, trading optimally in the frictionless market S, only increases her in-
vestment in stock when S equals the ask price S. Inclusion (60) indicates
the analogous result for the case of decreasing the investment in stock. The
inclusions pertain to JF;_i-measurable sets, i.e. to investment decisions done
at time ¢ — 1, where ¢t — 1 ranges from 0 to 7. One may check that, defining
Hy = HT+1 = 0, this reasoning also extends to the trading decisions at time
t=0andt=T+1.

The reader may wonder why we index the process H by (H;)’%', while

¢ is indexed by (¢¢) ;. As regards H, this is the usual definition of a
predictable process from the frictionless theory (where Hp,q plays no role).
The reason why we shift the indexation for ¢ by 1 will be discussed in the
more general continuous time setting in chapter 4 again.
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One may also turn the point of view around and start from a process
S (obtained, e.g., from an educated guess) such that the associated (fric-
tionless) optimizer ¢! = Hy,; satisfies (59) and (60), and deduce from the
solution of (P?) the solution of (P,). In fact, this idea will turn out to work
very nicely in the applications (see chapter 3 below).

Here is a formal definition [145].

Definition 2.7. Fiz a process (S;)I_, and 0 < A\ < 1 such that (NA*) is
satisfied, as well as a utility function U and an initial endowment v € D as
above. In addition, suppose that S = (S't)tT:o 1s an adapted process defined on
(Q, F, (F)L,,P), taking its values in the bid-ask spread ([(1 — N\)S;, Si])i,.
We call S a shadow price process for S if there is an optimizer (]flt);f:l for
the frictionless market S, i.e.

Ep [U <a; + (H - g)T)] = sup {E[p [U(x + (H - S’)T)] :He 77} :
such that

{Aﬁ[t > o} < {8, = Si1), t=1,....T (61)

{Aﬁt < 0} c {8 =(1-NS_}, t=1,...T (62)

Theorem 2.8. Suppose that S is a shadow price for S, and let H, U,x, and
0 < A <1 be as in Definition 2.7.

Then we obtain an optimal (in the sense of (30)) trading strategy (2, pt)
in the market S under transaction costs \ via the identification ¢°, = p*
0 and

T

py = Hy, t=1,...T, (63)
927?—1 = _927t1—1§t—1 + (H : g)t—l; t=1,...,T, (64)

as well as ¢y = 0,0% = (H - S)7.

Proof. Again the proof reduces to the economically obvious fact that trading
in the frictionless market S yields better terms of trade than in the market S
under transaction costs A. This is formalized by the first inclusion in Lemma
2.5. Hence (61) and (62) imply that the frictionless trading strategy (H,)%_,
can be transformed into a trading strategy (¢?,$})I__, under transaction
costs via (63) and (64). |

31



Remark 2.9. In the above analysis the notion of the Legendre transform
played a central role.

As a side step — which may be safely skipped without missing any math-
ematical content — let us try to give an economic “interpretation”, or rather
“visualization” of the conjugate function V'

V(y) = Sgp(U (z) — zy), (65)

in the present financial application. Instead of interpreting U as a function
which maps money to happiness, it is more feasible for the present purpose
to interpret U as a production function.

We shall only give a hypothetical mind experiment which is silly form a
realistic point of view: suppose that you own a gold mine. You have the
choice to invest x Euros into the (infrastructure of the) gold mine which
will result in a production of U(x) kilos of gold. You only can make this
investment decision once, then take the resulting kilos of gold, and then the
story is finished. In other words, the gold mine is a machine turning money
x into gold U(x). The monotonicity and concavity of U correspond to the
“law of diminishing returns”.

Now suppose that gold is traded at a price of y~! Euros for one kilo of
gold or, equivalently, y is the price of one Euro in terms of kilos of gold. What
is your optimal investment into the gold mine? Clearly you should invest the
amount of & Euros for which the marginal production U’(%) of kilos of gold
per invested Euro equals the market price y of one Euro in terms of gold, i.e.
Z is determined by U’(2) = y.

Given the price y, we thus may interpret the conjugate function (65) as
the net value V' (y) of your gold mine in terms of kilos of gold: it equals
V(y) = sup,(U(z) —zy) = U(Z) — 2y. Indeed, starting from an initial capital
of 0 Euros it is optimal for you to borrow £ Euros and invest them into the
mine so that it produces U(Z) many kilos of gold. Subsequently you sell zy
many of those kilos of gold to obtain & Euros which you use to pay back the
loan. In this way you end up with a net result of U(z) — 2y kilos of gold.

Summing up, V(y) equals the net value of your gold mine in terms of
kilos of gold, provided that the price of a kilo of gold equals ¥y~ Euros and
that you invest optimally.

Let us next try to interpret the inversion formula
U(x) =inf(V(y) + zy).
y

Suppose that you have given the gold mine to a friend, whom we might
call the “devil”, and he promises to give you in exchange for the mine its net
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value in gold, i.e. V(y) many kilos of gold, if the market price of one kilo of
gold turns out to be y~!. Fix y > 0. If you own — contrary to the situation
considered in the interpretation of V' above — an initial capital of x Euros
and want to transform all your wealth, i.e. the claims to the devil plus the z
Euros, into gold, the total amount of kilos of gold then equals

V(y) + zy.

Fix your initial capital of x Euros. If the devil is able to manipulate the
market, then he might be evil and choose the price y in such a way that your
resulting position in gold is minimized, i.e.

V(y) + xy — min!, y > 0.

Again, the optimal y (i.e. the meanest choice of the devil) is determined
by the first order condition V'(y) = —z. The duality relation

U(z) = irylf(V(y) +ay) =V(j) + 7

thus may interpreted in the following way: if the devil does the choice of y
which is least favourable for you, then you will earn the same amount of gold
as if you would have done by keeping the mine and investing your x Euros
directly into the mine. In both cases the result equals U(x) kilos of gold.

Next we try to visualize the theme of Theorem 2.2: we not only consider
the utility function U, but also the financial market S under transaction costs
A. In this variant of the above story you invest into the goldmine at time 7T’
to transform an investment of £ units of Euros into U(£) many kilos of gold.
At time t = 0 you start with an initial capital of x Euros and you are allowed
to trade in the financial market S under transaction costs A by choosing a
trading strategy ¢. This will result in a random variable of &(w) = z + % (w)
Euros which you can transform into U(z + ¢%(w)) kilos of gold. Passing to
the optimal strategy ¢% you therefore obtain U(z + ¢%(w)) many kilos of
gold if w turns out to be the true state of the world. In average this will
yield u(z) = Ep[U(z + ¢%)] many kilos of gold. We thus may consider the
indirect utility function u(x) as a machine which turns the original wealth of
x Euros at time ¢ = 0 into u(z) many expected kilos of gold at time ¢ = T,
provided you invest optimally into the financial market S and subsequently
into the gold mine also in an optimal way.

We now pass again to the dual problem, i.e., to the devil to whom you
have given your gold mine. Fix your initial wealth = and first regard u(x)
simply as a utility function as in the first part of this remark.
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We may define the conjugate function
u(y) = Sgp(U(f) —&y) (66)

and interpret it as the net value of the gold mine, denoted in expected kilos
of gold, if the price y of Euro versus gold equals y at time ¢ = 0. Indeed the
argument works exactly as in the first part of this remark where again we
interpret u as a machine turning money into gold (measured in expectation
and assuming that you trade optimally). In particular we get for the “dev-
ilish” price g at time ¢ = 0, given by ¢ = u/(x), that the devil gives you at
time ¢ = 0 precisely the amount of v(y) kilos of gold such that v(9) + xy
equals u(z), i.e. the expected kilos of gold which you could obtain by trading
optimally and investing into the gold mine at time T'.

But this time there is an additional feature: the devil will also do some-
thing more subtle. He offers you, alternatively, to pay V(y(w)) many kilos
of gold as recompensation for leaving him the goldmine. The payment now
depends on the prize y(w) of one Euro in terms of gold at time 7" which may
depend on the random element w and which is only revealed at time 7T'. The
function V now is the conjugate function of the original utility function U
as defined in (65).

The main message of Theorem 2.2 can be resumed in prose as follows

(a) there is a choice of “devilish” prices g(w) given by the marginal utility
of the optimal terminal wealth

Jw) =U'(z + ¢Hw)), wel.

(b) There is a probability measure Q on § such that

a0
g(w) = g)%(u}), where ¢ is the optimizer in  (66).
It follows that ) y(w)P(w) = g, i.e., ¥ is the P-average of the prizes

j(w).
(¢) The formula
i i -dQ
v(§) = e[V (5(w) | = Ee |V (555 @) |
now has the interpretation that the devil gives you (in average) the same

amount of gold, namely v(y) many kilos, independently of whether you
do the deal with him at time ¢t =0or ¢t =1T.
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(d) If you choose any strategy ¢ we have the inequality
Eoler] < Eglor] =2
as Q is a A-consistent price system. Hence

B[ (2 + ¢%(w))5(w)] < Ee[ (2 + ¢4 (w))5(w)] (67)

which may be interpreted in the following way: if you accept the devil’s
offer to get the amount of V(y(w)) kilos of gold at time 7', you cannot
improve your expected result by changing from ¢ to some other trading
strategy ¢, while the devil remains his choice of prices g(w) unchanged.

We close this “visualisation” of the duality relations between U,V and
u, v by stressing once more that the fictitious posession of a gold mine has, of
course, no practical economic relevance and was presented for purely didactic
reasons.
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3 The Growth-Optimal Portfolio in the Black-
Scholes Model

In this chapter we follow the lines of our joint work with St. Gerhold and
J. Muhle-Karbe [91] as well as [92] and [90], the latter paper also co-authored
with P. Guasoni and analyze the dual optimizer in a Black-Scholes model un-
der transaction costs A = 0. The task is to maximize the expected return (or
growth) of a portfolio. This is tantamount to consider utility maximization
with respect to logarithmic utility U(z) = log(z) of terminal wealth at time
T

Y

(Py) E [log(Vr)] — max!, Vrex+C, (68)
where C* is defined in (13). Our emphasis will be on the limiting behavior

for T' — 0.
We take as stock price process S = (S;)i=0 the Black-Scholes model

2

Sy = Soexp [aWt + (- %)t] , (69)

where ¢ > 0 and p > 0 are fixed constants.

To keep the notation light, the bond price process will again be assumed
to be B; = 1. We remark that the case B; = exp(rt) can rather trivially be
reduced to the present one, simply by passing to discounted terms.

3.1 The frictionless case

We first recall the situation without transaction costs. This topic is well-
known and goes back to the seminal work of R. Merton [181]. For later use
we formulate the result in a slightly more general setting: we assume that
the volatility ¢ and the drift p are arbitrary predictable processes.

We fix the horizon T" and assume that W = (W})o<i<r is a Brownian
motion based on (2, F, (F;)o<t<t, P) where (F;)o<i<r is the (saturated) fil-
tration generated by W.

Theorem 3.1. (compare [181]): Suppose that the 10, co[-valued stock price
process S = (Sy)o<i<r Satisfies the stochastic differential equation

%:Mtdt+0tth, Ogth,

where (1 )o<t<r and (oy)o<i<r are predictable, real-valued processes such that

T

12
E J—’;dt < 0. (70)
Ot
0
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Define the growth optimal process V= (V})(KKT, starting at Vo = 1, by

dv; ds
= ! = ﬁt . —t, (7].)
Vi St
where T, equals the mean variance ratio
A i
Ty = O_—t2 (72)

Then V is a well-defined 10, co[-valued process satisfying

t t
V; = exp f%dWSJrJ;;QdS . 0<t<T (73)
0 0

We then have

T
2
_ Hi
E |log(Vr)| = f Ugdt (74)

If (m)o<t<r @s any competing strategy in (71), i.e. an R-valued, pre-
dictable process such that

T
E Jwtatdt < o0, andJ|7Ttut|dt<oo a.s., (75)

0

the stochastic differential equation

well-defines a )0, co[-valued process
¢ ¢ ) o
2o
Vi = exp JﬂsanWS + f <7T3,us — 52 S) ds |, (77)
0 0

for which we obtain _
E[log(Vr)] < E [log(VT) ,

and, more generally, for stopping times 0 < o <7< T

E [log(%)} <E [log(‘%): :
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Proof. 1f a strategy (m)o<i<r satisfies (75) we get from Itd’s formula and
(69) that (77) is the solution to (76) with initial value Vy = 1. Passing to 7

defined in (72), the assertion (74) is rather obvious
C T T

E [1og(f/T)] —E Jgth + f%dt
0 0
- T

7
:E Jﬁdt

as (Sé BedW)o<t<r is a martingale bounded in L?(PP) by (70).
If 7 = (m)o<i<r 1S any competing strategy verfying (75), we again obatin

[ T T

E[log(Vy)] = E Jﬂtdtth + J (Wt,ut — Wt;t ) dt
0

0
2 2
(7Tt,ut — 7rt20t ) dt

It is obvious that, for fixed 0 < ¢t < T and w € €2, the function

2 2
T — Ty (w) — - J;(w), meR,

=FE

S

attains its unique maximum at 7;(w) = & Q((Zg so that
g%

E [log(V7)] < E

—E| [ XL =E[log(VT)].

More generally, for stopping times 0 < o < 7 < T, we obtain

T

r 2.2
E {log (%)] =K (Wt,ut — Wt20t> dt

.
—a ©

0
dt

~2 2
< E (ﬁt,ut — 9
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3.2 Passing to transaction costs: some heuristics

Before we pass to a precise formulation of the utility maximization problem
for the log-utility maximizer (see Definition 3.9 below) we want to develop the
heuristics to find the shadow price process (S’t)@o for the utility maximization
problem of optimizing the expected growth of a portfolio. We make two
heroic assumptions. In fact, we are allowed to make all kind of heuristic
assumptions and bold guesses, as we shall finally pass to verification theorems
to justify them.

Assumption 3.2. When the shadow price (S;)i=o ranges in the interior
(1 = X)Sy, S| of the bid-ask interval [(1 — X)St, Si] then the process Sy is a
deterministic function of Sy

gt = gc(St)' (78)

More precisely, we suppose that there is a family of (deterministic, smooth)
functions g.(+), depending on a real parameter c, such that, whenever we have
random times o < T such that Sy €](1 — \)Sy, Sy[, for all t €]o, 7[, then there
is a parameter ¢ (depending on the stopping time o) such that

Si = 9.(S), o<t<T.

The point is that the parameter ¢ does not change while S, ranges in the
interior |(1 — A)S, S| of the bid-ask interval. Only when S; equals (1 — \)S;
or Sy we shall allow the parameter ¢ to vary.

Assumption 3.3. A log-utility agent, who can invest in a frictionless way
(i.e. without paying transaction costs) in the market S does not want to

change her positions in stock and bond as long as S, ranges in the interior
1(1 = X)St, Si| of the bid-ask interval.

Assumption 3.3 is, of course, motivated by the results on the shadow price
process in Chapter 2 (Def. 2.7).

Here are two consequences of the above assumptions. Suppose that S,
satisfies ~
ds N -
—t = [dt + G,dW,, (79)
Sy
where (fi;);=0 and (6;);>0 are predictable processes which we eventually want

to determine. Applying It6 to (78) and dropping the subscript ¢ of g, for the
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moment (and supposing that g is sufficiently smooth), we obtain d(g(5;)) =
g'(S;)dS, + @ d{S, or, equivalently

dS’t 7 (S) q"(Sy)

— = dSy + d¢S
5 sy P ag(sy 1O
Inserting (69) we obtain in (79) above (compare [91])
- 09/(5t>
oy = 80
TEA 0
— g (S)Si+ 59" (S)S
81
Mt = g(St) ( )
and in particular the relation
fi _ 9(S)[ng (S)S: + %5 9"(S)S7] (82)

o 02g'(S;)2S?

On the other hand, the optimal proportion 7 of the investment golg into
stock to total wealth ¢ 4 ¢'S for the log-utility optimizer in the frictionless
market S is given by

'ﬁ't St _ g(St) , (83)
O+l c+g(S)
where o
ci= 2t (84)

i

is the ratio of positions ¢ and ¢} in bond and stock respectively. Assumption
3.3 implies that ¢ and ¢}, and therefore also the parameter ¢, should remain
constant when S ranges in the interior |(1 — A)Sy, S[ of the bid-ask spread.

We have assembled all the ingredients to yield a unifying equation: on
the one hand side, the ratio 7; of the value of the investment in stock and
total wealth (both evaluated by using the shadow price S) is given by formula
(83). On the other hand, by formula (72) in Theorem 3.1 and Assumption
3.3 we must have 7, = g—té and the latter ratio is given by (82). Hence

- g(S)  g(S)lug (S5 + U;g”(st)StQ]‘

T (S 029 (S;)2S2

Rearranging this equation and substituting S; by the variable s € R, , we
arrive at the ODE

g'(s) =

2¢'(s)*  2ug'(s)

2 Y

o) o s> 0. (85)
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Somewhat surprisingly this ODE admits a closed form solution (compare,
however, Section 3.9 below for a good reason why we can find a closed form
solution). Before spelling out this solution let us pass to a (heuristic) discus-
sion of the initial conditions of the ODE (85). Fix t; = 0 and suppose that
we have Sy, = 1 which is just a matter of normalization. More importantly,
suppose also that S, = S, = 1. The economic interpretation is that the
economic agent was just buying stock at time ¢y, which forces the shadow
price S’to to equal the ask price S;,. We also suppose (very heuristically!)
that (S;)i=0 starts a positive excursion at time ty, i.e. Sy > S, for t > ¢,
such that ¢t — ¢ is sufficiently small.
We then are led to the initial conditions for (85)

g)=1, ¢g(1)=1L (86)

The second equation is a “smooth pasting condition” requiring that .S;
and gt = ¢(S¢) match of first order around ¢t = ty;. The necessity of this
condition is intuitively rather clear and will become obvious in subsection
3.7 below.

We write 0 = £ as (85) only depends on this ratio. As Mathematica tells
us, the general form of the solution to (85) satisfying the initial conditions
(86) then is given by

—cs+ (20 — 1+ 2c6)s¥

s—(2—20 —c(20 —1))s* (87)

9(s) = ge(s) =
unless # = 1, which is a special case (see (88) below) that can be treated
analogously. The parameter ¢ defined in (84) is still free in (87).

As regards the given mean-variance ratio ¢ = % > 0, we have to dis-
tinguish the regimes 6 €]0,1[, # = 1, and 6 > 1. Let us start by discussing
the singular case # = 1: in this case (see Theorem 3.1) the optimal solution
in the frictionless market S = (S;)i>o defined in (69) is given by 7, = 1.
Speaking economically, the utility maximizing agent, at time ¢t = 0, invests
all her wealth into stock and keeps this position unchanged until maturity
T. In other words, no dynamic trading takes place in this special case, even
without transaction costs. We therefore expect that this case will play a
special (degenerate) role when we pass to transaction costs A > 0.

The singular case § = 1 divides the regime 6 €]0,1[ from the regime
6 > 1. In the former the log-utility maximizer holds positive investments in
stock as well as in bond, while in the latter case she goes short in bond and
invests more than her total wealth into stock. These well-known facts follow
immediately from Theorem 3.1 in the frictionless case and we shall see in
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Theorem 3.10 below that this basic feature still holds true in the presence of
transaction costs, at least for A > 0 sufficiently small.

The mathematical analysis reveals that the case 6 = % also plays a special
role (apart from the singular case # = 1): in this case the general solution to
the ODE (85) under initial conditions (86) involves logarithmic terms rather
than powers:
c+ 1+ c log(s)

c+1—log(s)

g9(s) = ge(s) = (88)
But this solution is only special from a mathematical point of view while,
from an economic point of view, this case is not special at all and we shall

see that the solution (88) nicely interpolates the solution (87), for § — 1.

We now pass to the elementary, but tedious, discussion of the qualitative
properties of the functions g.(-) in (87) and (88) respectively. As this discus-
sion amounts - at least in principle - to an involved version of a high school
exercise, we only resume the results and refer for proofs to [91, Appendix A].

3.3 Thecase 0 <0 <1

In this case we consider the function g(s) = g.(s) given by (87) and (88)
respectively, on the right hand side of s = 1, i.e. on the domain s € [1, o0[.

Fix the parameter ¢ in ][22, oo for 6 €]0,1] (resp. in |52, 91;?[ for 6 €

15, 1[). Plugging s = 1 into the ODE (85) we observe that the above domains

were chosen in such a way to have g/(1) < 0. Hence for fixed ¢ € 152, oo
(resp. c e 152, ﬁ[ for 6 €)1, 1[) the function g.(-) is strictly concave in a

2
neighbourhood of s = 1 so that from (86) we obtain

ge(8) < s,

for s # 1 sufficiently close to s = 1.
Figure 3 is a picture of the qualitative features of the function g.(-) on
€ [1,5]. The point § > 1 is the pole of g.(-) where the denominator in (87)
(resp. (88)) vanishes.

The function g. is strictly increasing on [1, §[; it is concave in a neighbor-
hood of s = 1, then has a unique inflection point in |1, §[, and eventually is
convex between the inflection point and the pole s.

1-0

We also observe that, for 5= < ¢; < ¢ we have g, (s) > ge,(s), for

€ [1, §[, where § is the pole of the function g., as displayed in Figure 4.
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9c(9)

Figure 3: The function g.(s).

9c(9)

g, (9

0c, (9

1

Figure 4: The functions g., (s) and g.,(s), for ¢; < cs.
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We still have to complement the boundary conditions (86) for the ODE
(85) at the other endpoint, corresponding to the “selling boundary”: we want
to find a point § = 5(c) € |1, 8] and 0 < A < 1 such that

ge(5) = (1= X)s, 9:(5) = (L= A). (89)

Geometrically this task corresponds to drawing the unique line through the
origin which tangentially touches the graph of g.(-). See Figure 5.

1 S

Figure 5: Smooth pasting conditions for the function g.

If we have found this tangent and the touching point s, then (89) holds

true, where (1 — \) is the slope of the tangent.
In fact, for fixed ¢ € [55%, 00[ and 6 €]0,1] (resp. c € ]1%9,91;1[ and

0 €]3,1[) one may explicitly solve the two equations (89) in the two variables
A and § by simply plugging in formula (87) to obtain, for %ﬂ <c< o,

o ¢ 1/(20-1)
s=sl0) = ((29—1+2c9)(2—20—c(29— 1))> ’ (90)
o) = (1—2(c+1)8)5(c)? + c5(c)
A=) 5(c) ((2(c+ 1)8 — ¢ —2)5(c)* + 5(c)) +1 (91)
g(g) - (92)

Cc c

1 260
(2(c +1)0 — 1) ((_ (2(6+1)9—1)(2(c+1)0—c—2)) 120) . (_(2(e+1)9-1)(2(c+1)9_6_2)

1

) 1—20

1

Cc c

1 260 :
(2(c+1)0 —c—2) ((_ (2(c+1)971)(2(c+1)97072)) 129) " <_ (2(c+1)971)(2(c+1)97072)) 1-20
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In the special case 6 = %, where % = 1, we obtain the somewhat simpler

formulae

5 =35(c) = exp (026_1), l<ec<oo, (93)
A= A(c) =1—czexp(1_662), l<ec<oo, (94)
9(3) = g.(3(c)) =%, l<c<oo. (95)

We summarize what we have found so far.

Proposition 3.4. Fiz 6 € ]0,1] and ¢ € |52, 00[ (resp. ¢ € 1558, =4[ of

0 €]3,1[). Then the function g(s) = g.(s) defined in (87) (resp. (
strictly increasing in [1,5], where 5 = 5(c) is defined in (90) (resp. (9
addition, g satisfies the boundary conditions

9e(1) =1, ge(1)
9:(8) = (1 = N3, 9.(3) =

where X is given by (91) (resp. (94)).

L,
—_ /\7

Proof. The energetic reader may verify the above assertions by simply cal-
culating all the above expressions and discussing the function g¢.. Another
possibility is to look up the details in [91]. [

The drawback of the above proposition is that c is the free variable pa-
rameterizing the solution. The transaction costs A = A(c¢) in (91) (resp. (94))
are a function of c. Our original problem, however is stated the other way
round: the level 0 < A < 1 of transaction costs is given and c as well as
5 = §(c) and the function ¢ = g. depend on \. In other words, we have to
invert the formulae (91) and (94). Unfortunately, when we shall do this final
step, we will have to leave the pleasant case of closed form solutions which
we have luckily encountered so far. We shall only be able to determine the
inverse function of (91) (resp. (94)) locally around A = 0 as a fractional
Taylor series in A (see (97) below). As this Taylor series only converges in
some neighborhood of A\ = 0, from now on, every assertion has to be pre-
ceded by the caveat “for A > 0 sufficiently small”. Hence we are interested
in the behavior of the function A = A(c¢) in (91) (resp. (94)) when ¢ is in a
neighborhood of the left limit % of its domain: this corresponds to A being
in a neighborhood of zero.
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In order to keep the calculations simple we focus on the special case # =
The arguments carry over to the case of general 0 < 6 < 1, at the expense
of somewhat longer formulae (compare [91]).

Differentiating A(c) in (94) with respect to ¢ we obtain

N(e) = (e = 1)%exp (152,

CD l\')lH

Y@ = e el )it
)\”/(C) +cC (3 + C( - (_3 + C) C)) exp (% o C>

so that A(1) = N (1) = X’(1) = 0 while \”(1) = 2 # 0. Therefore the Taylor
expansion of the analytic function A(c) around ¢ = 1 starts as

Ae) = 2(c—1° +O(c—1)*.
This implies that the function ¢ — A(c) given in (94) is locally invertible

around ¢ = 1 and that the inverse function A — ¢(A) has a fractional Taylor
expansion in terms of powers of A3 around A = 0, with leading term

c(\) =1+ 38\ L O(\¥?). (96)

As shown in [91] one may algorithmically determine all the coefficients
in the above fractional Taylor expansion (96) of the function A — ¢(\) by
inverting (94). This not only works for the specially simple case 6 = % con-
sidered above, but for all § € |0, 1| and the coefficients are explicit functions
of 6, which turn out to be fractional powers of certain rational functions of #
(see Proposition 3.5 below as well as Proposition 6.1 of [91] for the details).

Once we have expanded the parameter ¢ as a function of A around A = 0
we can, for ¢ = ¢()), also plug this expansion into all the other quantities
depending on ¢, e.g. 5 = 5(c) given in (90) (resp. (93)), to again obtain frac-
tional Taylor expansions in A. We resume our findings in the next proposition
and refer to [91] for details and full proofs as well as a discussion of all the
higher order coefficients of the series (97) and (98) which can be determined
algorithmically.

Proposition 3.5. Fiz 0 €]0,1[. There are fractional Taylor series starting

at
1-60 1-6 6\ s
W= (9(19)) XY
_n\2 2/3
L4 499) (9(16_9)) A2 O(N) (97)

5(\) =1+ (0(1(5_9)>1/3)\1/3 +% (0(16_0)>2/3>\2/3+O(/\) (98)
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such that, for X = 0 sufficiently small, the above series converge. The func-
tion g(s) = gen)(s), defined on the interval [1,5(\)] and given in (87) (resp.
(88) ), then satisfies the ODE (85) as well as the boundary conditions

g(1) =1, g1 =1,
9(5(0) = (1= X500, ¢(5(0) = (1= A).

3.4 Heuristic construction of the shadow price process

Fix 6 € ]0,1[ and A > 0 as in the previous proposition. We shall continue
to do some heuristics in this sub-section to motivate the sub-sequent formal
definition. Define

S; = g(S}), t=0, (99)

where g = gc(n) was defined in (87) and ¢(A) in (97).

Normalize S to satisfy Sy = 1 so that also Sy = g(Sp) = 1, and suppose
(again heuristically!) that S starts a positive excursion at time t = 0, i.e.
that S; > 1 for t > 0 sufficiently small. In sub-section 3.2 the function g has
been designed in such a way that the log-utility optimizer in the frictionless

market S keeps her holdings ¢ and ¢} constant, where the ratio i—? = ‘pf—%o
t t

equals the constant ¢ = ¢(A) (in (97)).

But what happens if S; hits the boundaries 1 or s of the interval [1, §]7
Say, at time ty > 0 we have for the first time after t = 0 that again we have
S, = 1. Consider the Brownian motion W = (W;);>o during the infinitesimal
interval [to, o + dt].

Interpreting, following a good tradition applied in physics, W as a random
walk on an infinitesimal grid, we have (heuristically!) two possibilities for the
increment of W : either dWy, := Wi 1ar — Wy, = dt¥? or dWy, := Wyypar —
Wy, = —dt'/2.

Let us start with the former case: we then have dS;, = Sy, (u dt + o dt'/?)
so that, continuing to define S by (99)

dS;, := g(Siysar) — 9(St) = '(S,)dSs, + 59" (S1,)d{S ),
= Sy (g dt + o dt'?) + gT(l)Santh (100)

7 1
— o dtV? + (u + QT()02> dt.

Note that ¢"(1) = 25 — 260 < 0, as follows from (80).
The case dW,, = —dt'/? is different from the case dW,, = +dt'/?: in

this case we cannot blindly use definition (99) to find §t0+dt, as Syyrar 18
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(infinitesimally) outside the domain of definition [1,5] of g. In this case we
move S identically to S: in Fig. 4 this corresponds geometrically to the fact
that S decreases along the identity line. We then get

dS;, = dSy, = Sy, (u dt — o dt'/?) (101)
— —o dt*? + p dt.
When Sy, thus has moved out of the domain [1,5] of g, the agent also

has to rebalance the portfolio (¢?, ) in order to keep the ratio of wealth in
bond and wealth in stock

0 0
_ SOtO _ (ptotdt (102)
S LS
SOto to  Prot+dtPto+dt

constant. This is achieved by buying an infinitesimal amount (of order dt*/?)
of stock at ask price Sy, = S, = 1. In order for (102) to match with (101)
we must have

1
12, 0 0 1/2
d(pto gpto 1 o dtY do;, = —gotOH—l o dtY (103)
as one easily checks by plugging (103) into (102) (neglecting terms of higher
order than dt'/?). Note in passing that the equality Stﬁdt Sto+ar also corre-
sponds to the last fact that the agent is buying stock during the infinitesimal
interval [tg, o + dt].

We continue the discussion of the case Wy, q:—Wy, = —dt'/? by passing to
the next infinitesimal interval [ty + dt, to + 2dt] : again we have to distinguish
the case Wiy aode — Wigrar = +dt¥? and Wi o4 — Wigtdr = —dt'/?. Let us first
consider the second case: we then continue to move S in an identical way as
S (compare (101)) and to keep buying stock at price Sy, 4 which yields the
same formula as in (103) , neglecting again terms of higher order than dt'/2.

But what do we do if Wy, 104t — Wiy sar = +dt'/?? The intuition is that we
now move again into the no-trade region, where S should depend on S in a
functional way, similarly as in (99). This is indeed the case, but the function
g now has to be rescaled. The domain of definition [1, 5] has to be replaced by
the interval [m;, m;S], where (m;);>¢ denotes the (local) running minimum of
the process (St):=o : in our present infinitesimal reasoning (neglecting terms
of higher order than dt'/?) we have Mig+dt = Stordt = 1—0 de\/?. If (St)tsto+dt
starts a positive excursion at time ty + dt, which heuristically corresponds to
Wio+2dt — Wig+ar = +dt'/2, we define S by

t

S
Sy = my g(mt), t >ty + dt, (104)
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where t > ty + dt is sufficiently small so that (S;)i>y+ar remains above
Mtytdt = Sto+dt =1—o dt'2

We have used the term m; rather than 1 — odt'/? in order to indicate
that the previous formula not only holds true for the infinitesimal reasoning,
but also for finite movements by considering the running minimum process
my = infocuct Su-

. Summing up: during positive excursions of (S;);>0 we expect the process
(S¢)i=0 to be defined by formula (104), while at times ¢ when (S;);>o hits

its running minimum m; = mingc,<; S, we simply let S, = S, and buy
stock similarly as in (103), following the movements of the running minimum
(m¢)e=0-

The behavior of S might remind of a reflected diffusion: by (104), we
always have S, < S, with equality happening when S; equals its running
minimum my. It is well-known that the set {t € R, : S; = m;} is a Cantor-
like subset of R, of Lebesgue measure zero, related to “local time”. There
is, however an important difference between the present situation and, say,
reflected Brownian motion (|W;|);=o: we shall prove below that (S;)e is a
diffusion, i.e. its semi-martingale characteristics are absolutely continuous
with respect to Lebesgue measure. In other words, the process (St)t>0 does
not involve a “local time component”. The reason for this remarkable feature
of S is the smooth pasting condition ¢’(1) = 1 in (86). This condition yielded
in the above heuristic calculations that the leading terms of the differentials
(100) and (101) are - up to the sign - identical, namely o dt'/? and —o dt'/2.
In other words, when m, = S, = S, so that the movement of S is given by
the regime (100) or (101), the effect of order dt'/? on the movement of S; is
given by o dW; as the leading terms in (100) and (101) are symmetric. This
distinguishes the behavior of the process S from, e.g., reflected Brownian
motion where this relation fails to be symmetric when reflection takes place.

A closer look at the differentials (100) and (101) reveals that the terms
of order dt do not coincide any more. However, this will do no harm, as the
set of time instances ¢ where S, = S’t, i.e. S; equals its running minimum
my, only is a set of Lebesgue measure zero. Integrating quantities of order
dt over such a set will have no effect.

The fact that the terms of order dt do not coincide in (100) and (101)
corresponds to the fact that the extended function G : [0, 5] — [0, (1 — \)s]

is once, but not twice differentiable: the second derivative is discontinuous
at the point s = 1 (with finite left and right limits). It is well known that
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such an isolated discontinuity of the second derivate does not restrict the
applicability of It6’s lemma, which is the more formal version of the above
heuristics.

Here is another aspect to be heuristically discussed before we turn to
the mathematically precise formulation (Theorem 3.6 below) of the present
theme. So far we have only dealt with the case when the process S; equals
the ask price S; or makes some (small) excursion away from it. We still have
to discuss the behavior of S when it makes a “large” excursion, so that 5}
hits the bid price (1 — A)S;. In this case an analogous phenomenon happens,
with signs reversed.

To fix ideas, suppose again (heuristically) that the process (S;)i=o starts
a positive excursion at Sy = 1 and hits the level 5§ > 1 at some time ¢; > 0.
We then have, in accordance with (99),

gt = g(St>, 0 <t < tl, (105)

and S;, = g(5) = (1—\)S,,, i.e. S, hits the bid price (1 —\)S; at time t = ;.
What happens now? Again we distinguish the cases dW;, = Wy, 100 — Wy, =
+dt'/2. If dW,;, = —dt'/?, we turn back into the no-trade region: we continue
to define S via (105) also at time t; + dt. If, however dW,, = +dt"/? we define

S’tl-&-dt = (1 - >\)St1+dt>

i.e., the relation between S and S is given by the straight line through the
origin with slope 1 — A (see Figure 5). We then sell stock at the bid price
S, = (1= \)S;, in a similar way as in (103), but now with the signs of d?
and dy; reversed, as well as slightly different constants (compare (119) -
(122) below).

Instead of considering the running minimum process m, we have to moni-
tor from time ¢; on the (local) running mazimum process M which is defined

by

M; = max S,, t>=1.
t1<u<t
We then define, for ¢ > ¢, similarly as in (104),
~ M, 55,
Sy = — — 106
-2 a(5r). (106)

so that S, = (1 = A)S; whenever S; = M;, in which case we sell stock in
infinitesimal portions of order d¢*/2. When S, < M, we have S, > (1—\)S, in
(106) and we do not do any trading. We continue to act according to these
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rules until the next “large” negative excursion happens where we get S; = %

so that S; = Sy in (106). When this happens we again switch to the regime
of buying stock, monitoring (locally) the running minimum process m; etc
etc.

We repeatedly used the word “locally” when speaking about the running
minimum (my);> (resp. running maximum (M;)¢o) of S;. Let us make pre-
cise what we have in mind, thus also starting to translate the above heuris-
tics (e.g., arguing with “immediate” excursions) into proper mathematics.
At time ¢ = 0, we start by defining Sy := S, which corresponds to the fact
that we assume that at time ¢ = 0 the agent buys stock (which holds true
for g > 0 and A sufficient small).

Now define sequences of stopping times (0,)5q, (0n)m_, and processes
(my)i=0 and (My);=o as follows: let g9 = 0 and m the running minimum
process of S, i.e.

my = inf Sy, 0<t<o, (107)

eosust

where the stopping time oy is defined as

o1 = inf{t = gy : 2+ > 5}.

me

Next define M as the running maximum process of S after time oy, i.e.

M, = sup S, o1 <t <o, (108)

o1<u<t

where the stopping time p; is defined as

01 Zinf{t20'1 . St < %}

My
For t > 01, we again define
m; = inf S, 01 <t < 09, (109)
01<u<t
where
oy = inf{t = p; : i—i > 5},
and, for t > o9, we define
M; = sup S,, 0y <t < 09,
oo<u<t
where
0o = inf{t > 0y : J\% <1}
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Continuing in an obvious way we obtain a.s. finite stopping times (0,)%_,
and (0,)%_;, increasing a.s. to infinity, such that m (resp. M) are the rela-

tive running minima (resp. maxima) of S defined on the stochastic intervals
(Ion-1,0u]) %, (resp. ([0, 0a])Z, ). Note that

Smy, = M,, = 55,,, for ne N,

and
SMmg, = M,, = Ss,, for n e N.

We may therefore continuously extend the processes m and M to R, by
letting

e ¢]
M, := smy, for t e U lon, onial, (110)
n=0
0 ¢]
my = Mt for t e U[[Un, on]- (111)
n=1

For t > 0, we then have sm; = M, as well as m; < S; < M,, and hence
my < S; < Smy, for t = 0.

By construction, the processes m and M are of finite variation and only
decrease (respectively increase) on the predictable set {m; = S;} (resp. {M; =
St} = {mt = St/g})

We thus have that the process

Sy 55
Xy =—=— 112
! my Mt ( )
takes values in [1, 5], is reflected at the boundaries and satisfies

when X; € |1, 3.
In other words, ([my, M;])i=0 is an interval-valued process such that %—: =
5, and such that S; always lies in [my, M;]. The interval ([my, M;]);0 only
changes location when S; touches m; or M;, in which case m; is driven down
(resp. M, is driven up) whenever S; hits m; (resp. M;).
The full SDE satisfied by the process X therefore is
dX, = Xy(p dt + o dW,) — % (Lixeety + Slixees)) - (114)

t
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3.5 Formulation of the Theorem
Finally, it is time to formulate a mathematically precise theorem.

Theorem 3.6. Fiz 0 = £ € ]0,1] and Sy = 1 in the Black-Scholes model
(69). Let c(N),s(N), and g() = gen) () be as in Proposition 3.5 where we
suppose that the transaction costs A\ > 0 are sufficiently small.

Define the continuous process S = (S;)i=0 by

5Vt =my g (%) ) L= Oa (115)
t

where the process (my)i=o is defined in (107), (109) and (111).
Then S is an Ité process, starting at So = 1, and satisfying the stochastic
differential equation

S, 1 S,
dSt = g (mt) dSt + % g (#) d<S>t (116)
t

t
Moreover S takes values in the bid-ask spread [(1 — \)S, S].

Proof. We may apply It6’s formula to (115). Using (112), (114) and keeping
in mind that (m;);>o is of finite variation, we obtain

dgt = d(mtg(Xt))
=my d(g(Xt)) + g(Xt) dmy

= m (g/(X0) dX, + L5 d(X)) + g(X,)dmy
=My (9’(Xt) (Xt(ll dt + o dW;) — dmt (H{Xt 1y + 5= s})>
+# Xpo® dt) + g(X,) dm
—g ( )St(u dt + o dWy) + 5g"(55) L S26” di
— (X)) dmy (Il{thl} + S:H_{thg}) + g(Xy) dmy

_g <St> dsS; + gl/gﬂ%})

me

d(S)r,

where in the last line we have used that dm; # 0 only on {X; = 1} U{X; = 5}
and g(s) = s ¢'(s) for s =1 as well as for s = s. |

Corollary 3.7. Under the assumptions of Theorem 3.6, fix a horizon T' > 0
and consider an economic agent with initial endowment x > 0 who can trade
in a frictionless way in the stock (Sy)o<i<r 0 defined in (115).
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The unique process (¢, $1 Jo<i<r of holdings in bond and stock respectively
which optimizes

E [log (a: + (" g)T)] — max! (117)

where o' runs through all predictable, S-integrable, admissible! processes and
0V =+ (o' - S)y — 0} St, is given by the following formulae.

. . 0 - c 1
(Go_, 80—) = (z,0), (¢g, Pe) = (H—lx, — 1x) (118)
and 1
~0 ~0 my el *
th = SOQkfl ( ) on UIIQ]C—I; Uk]]; (119)
mgk—l k=1
(1—X\)s 0
R R m c+(1-X)5
i = s, < : ) on | Jlox, ol (120)
Moy k=1
as well as .
~1 A1 my el *
Pt = Pors ( ) on U[[Qk—l,Uk]], (121)
Moy, k=1
~ ~ i _m ©
90'} - Spflﬂc (m > on U[[Uka Qk]] (122)
7k k=1

The corresponding fraction of wealth invested into stock is given by
. G1S 1

PSP L N , (123)
G+ @S 1+c/g(E)

Proof. By (115), S is an Ito process with locally bounded coefficients. We
may write (116) as

s, (§> s, 1 ,,(&)d@t
o0 \me) mg(E) 2t \mi) g(5)

5202 1( St \2 S.oq St
S, Sl
mi (et g(E)) gl M9l

:‘::]t :Z&t

! Admissibility of ¢! is defined by requiring that the stochastic integral ¢! - S remains
uniformly bounded from below.
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It follows from the ODE (85) that the mean variance ratio process £ is a
bounded process given by

[t 1
L (124)
of  1+c/g()

On the other hand, the adapted process (@Y, ¢} )= defined in (119) -
(122) is predictable. By definition,

QY = emypr, t=0. (125)

For any k € N, It6’s formula, equation (125), and the fact that dm; # 0 only
on {S; = m;} yield

—c/(c+1) ~0
. 5 g my 1 Por_ )
A%+ Siddi = [(m ) c+1 (ﬁ a C(’Oil”“*)] dm; =0,
Ok—1

Ok—1

on [px_1,0%] and likewise on [oy, pr] where we use the fact that dm, # 0
only on {S; = sm;}. Therefore (¢Y, p') is self-financing. Again by (125), the
fraction .
H5
Gy +otS  1+¢/g(ik)
of wealth invested into stocks, when following (¢°, '), coincides with the
Merton proportion computed in (124). Hence (¢°, ¢') is log-optimal and we
are done. ]

In order to discuss the economic message of Corollary 3.7, it is instructive
to — formally — pass to the limiting case A = 0. In this case we have S, =
S; = my = M, as well as ¢ = % and § = 1, so that the exponents in (119)
- (122) equal

1 c
c+1 77 c+1

We thus find after properly passing to the limits in (119) - (122) the well
known formulae due to R. Merton [181]

0—1.

o = (1-0)s], oy = 05,7 (126)

and the fraction of wealth 7; invested into stock equals

7y = — 0. (127)
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Passing again to the present case A > 0, we have ¢ > % and s > 1. We
then find for the exponents in (119), (120)

(1—=X)s
c+1 <9<c+(1—)\)§'

(128)

In fact, as was kindly pointed out to us by Paolo Guasoni ([106, Remark
after Theorem 5.1]) 6 is precisely the arithmetic mean of 1%6 and Cf@fz\g)g,
this fact can be verified by inserting the formulae (87), (88), (90), and (93)
into the identity g(5) = (1 — A)§ (compare [91]).

The economic message of (119) - (122) is that we now have to distinguish
between the intervals [or_1, 0x] and [og, ox]. The former are those periods of
time when (m;)o<i<7 is non-increasing; correspondingly during these inter-
vals the agent only buys stock so that (p?)o<i<7 is decreasing and (p})o<i<r
is increasing. Similarly, the intervals [oy, o] are those periods during which
(my)o<i<r 1s non-decreasing so that the agent only sells stock. The depen-
dence (126) of (¢?)o<i<r and (p})o<t<r ON S, = S, = my via a power of this
process now is replaced by the equations (119) - (122) where the exponents
are somewhat different from 6 and (1 — 6) respectively, and where we have
to distinguish whether we are in the buying or in the selling regime.

As regards the fraction of wealth 7, invested into the stock S, the message
of (123) is that this fraction oscillates between 11— and m as Xy = Z—tt
oscillates between 1 and 5. Looking again at (128) we obtain — thanks to
Paolo Guasoni’s observation — that the Merton proportion 6 lies precisely
in the middle of these two quantities. Economically speaking, this means
that the no-trade region is perfectly symmetric around 6, provided that we
measure it in terms of the fraction 7; of wealth invested into stock where we

value the stock by the shadow price S = g(s).

The most important message of Corollary 3.7 is that the optimal strategy
(Y, p1)o<t<r only moves when (m;);=o moves; the buying of stock takes place
when S, = S, while selling happens only when S, = (1 —X)S;. This property
will be crucial when interpreting S as a shadow price process for the bid-ask
process ([(1 — A)St, St])o<t<r-

Another important feature of the present situation is time homogeneity.
The conclusion of Corollary 3.7 does not depend on the horizon T.

3.6 Formulation of the optimization problem

We now know that Corollary 3.7 is the answer. But we don’t know yet
precisely, what the question is! To prepare for the precise formulation, let us
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start with a formal definition of admissible trading strategies in the presence
of transaction costs A > 0.

Definition 3.8. Fizx a strictly positive stock price process S = (S;)o<i<r With
continuous paths and transaction costs A > 0.

A self-financing trading strategy starting with zero endowment s a pair
of right continuous, adapted finite variation processes (¢?, o} )o<t<r Such that
(1) ¢o- =5 =0

y 0, 0, 1, 1, 01 00 1, 1,
(i) o = ¢i'T — it and o} = o' =yt where o o oy and gyt are
the decompositions of ©° and @' into the difference of increasing processes,
> OvT — O’l« — I’T — 17~L — y y
starting at @y = @y° = @y = @y~ = 0, and satisfying

Aot < (1= N)Sider*,  dpd* = Sider!, 0<t<T. (129)
The trading strategy (p°, ') is called admissible if there is M > 0 such that

Vi@ 0') == 9] + (0)"(1 = NS, = ()~ S = =M, (130)
holds true a.s., for0 <t <T.

For example, the process (@Y — z, ¢} Jo<i<r, where (¢°, $1) was defined in
Corollary 3.7 is an admissible trading strategy with zero endowment. Indeed,
the buying of the stock, i.e. dgp,}’T + 0, only takes place when S, = S, and the
selling, i.e. dp}* # 0, happens only when S, = (1—\)S,. In addition, (¢?)i0
and (¢} )¢=o are of finite variation and as 0 < 6 < 1, we have ¢! > 0, ¢} > 0.

Now we define a convenient version of our optimization problem.

Definition 3.9. Fiz 0 = % € ]0,1[ in the Black-Scholes model (69), suffi-
ciently small transaction costs A > 0, as well as an initial endowment x > 0
and a horizon T.

Let (St)ogtg’]’ be the process defined in Theorem 3.6. The optimization
problem is defined as

(Py) E [log(a: + o+ @%FST)] — max! (131)

where (¢°, ') runs through the admissible trading strategies with transaction
costs \ starting with zero endowment (©8_, b ) = (0,0).

The definition is designed in such a way that the subsequent result holds
true.

Theorem 3.10. Under the hypotheses of Definition 3.9 the unique optimizer
in (131) is (P° — x, p1), where ($°, @) are given by Corollary 3.7.
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Proof. The process (¢°, ¢') is the unique optimizer to the optimization prob-
lem (117) when we optimize over the larger class of admissible trading strate-
gies in the frictionless market S.

As (¢°, p') also is an admissible trading strategy in the sense of Definition
3.8 the assertion of the theorem follows a fortiori. |

Let us have a critical look at the precise features of Definition 3.9. After
all, we are slightly cheating: we use the process S, which is part of the
solution, for the formulation of the problem. Why do we do this trick? We
just have seen that this way of defining the optimization problem allows for
the validity of the elegant Theorem 3.10. We also remark that Theorem 3.10
exhibits the same time homogeneity, i.e. non-dependence on the horizon T,
as Theorem 3.1 and Corollary 3.7.

But the honest formulation of problem (131) would be

(P;)  E[log(z + ¢ + (o7) (1 = N)Sr — (@)~ Sr)] — max! (132)

The economic interpretation of (P,) is that at time 7" the liquidation of
the position ok in stock has to be done at the ask price Sy or the bid price
(1—X)Sr, depending on the sign of 7. On the other hand the problem (P,)
in (131) allows for liquidation at the shadow price S, which is a random
variable taking values in [(1 — A\)Sr, St] .

The problem (P,) does not allow for a mathematically nice treatment as
it lacks time homogeneity (see [91] for a more detailed discussion pertaining
to the economic aspects). But (P,) is a good proxy for (P.): the difference
between Sy as opposed to (1—=X)St and St is of order A and only pertains to
one instance of trading, namely at time 7. On the other hand we have seen
in Proposition 3.5 (compare also Proposition 3.11 below) that the leading
terms of the effects of transaction costs on the dynamic trading activities
during the interval [0, 7| are of order A3, Hence, for fixed horizon T, the
latter effect becomes dominant as A — 0.

The situation becomes even better if we consider the limiting case T" — 0.
After proper normalization (see, e.g., (135) below) the difference between
(P;) and (P.) completely disappears in the limit 7" — co. For example, in
(137) below we find the exact dependence on A > 0 (involving all the powers
of A\'/3) independently of whether we consider the problem (P,) or (P.). For
all these reasons we believe that (P,) is the “good” definition of the problem.

3.7 The Case 0 > 1

The preceding results pertain to the case 0 < § < 1, where we have seen that
the optimal holdings (¢?, ¢}) in bond as well as in stock are strictly positive,
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for allt > 0.

The case 0 = 1 is degenerate. As is well known and immediately deduced
from Theorem 3.1, in the absence of transaction costs the optimal strategy
consists in fully investing the initial endowment z into stock at time zero,
so that ¢ = 0 and ¢} = x, if Sy is normalized to 1. In the presence of
transaction costs A > 0 it is rather obvious, from an economic point of view,
that this strategy still is optimal. In fact, if we define the shadow price
process S simply by S, = S, then the above strategy (&Y, ¢1) = (0,z), for
0 <t < T also is the solution to the problem (P,) in (131) in a formal way.

More challenging is the case # > 1. In this regime the well-known friction-
less optimal strategy involves a short position in bond, i.e. ¢) < 0, and using
this leverage to finance a long position ¢} in stock, so that ¢}S; exceeds the
current wealth of the agent.

This phenomenon also carries over to the situation under (sufficiently
small) transaction costs A > 0. In this situation the agent buys stock when
stock prices are rising and sells stock when stock prices are falling, i.e., she
has the opposite behavior of the case 0 < 6 < 1.

Mathematically speaking, this results in the fact that we again look at the
function g as defined in (87), satisfying the ODE (85), but now the domain
of definition of g is given by an interval |5, 1], where 5 < 1.

S 1

Figure 6: Smooth pasting conditions for the function g, for 6 > 1.

The boundary conditions still are given by (86) and (89), and the formula
for ¢ = ¢(\) and 5 = §(A) still are given by (97) and (98) (applying the
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convention (—z)'/? = —(z'/?), for > 0; see [91, Proposition 6.1] for details).

Hence, also in the case § > 1 we find an analogous situation as for 0 < 6 <
1. The story simply has to be told the other way round: we start again with
the normalizing assumption Sy = 1, as well as the definition Sy = ¢(Sy) = 1,
which corresponds to assuming that the agent buys stock at time ¢ = 0, just
as above.

Now suppose (heuristically) that the stock starts a negative excursion at
time t = 0, i.e. S, < 1, for t > 0 small enough. We then define S by

S’Vt :g(St)a t>oa

up to time £y > 0 when S; hits again 1, or when S; hits for the first time §
(which now is less than 1).

Passing to the general (and generic) case, i.e. dropping the assumption
about the negative excursion starting at ¢ = 0, we define the running maxi-
mum process (M;);>o locally by

My = sup Sy, O<t<o

O<u<t
where p; is the first time when S;/M; < 5. We define

~ Sy
Se=Myg | — |, for 0 <t <.
¢ tg < Mt) r 01
During the stochastic interval [0, o] the agent buys stock whenever (M;)o<t<o,
moves up, following a similar logic as in (119) - (122) above.
After time p; the agent monitors locally the running minimum process

(mt)tzgl

m; = min S, 01 <t<o;
o1 <u<t
where oy is the first time when 2t > 1. We define S, := Ztg(%%) for
m 3 3 me

01 <t < o0y. During the stochastic interval [o1,01], the agent sells stock
when m; moves down.

The reasoning is perfectly analogous to section 3.4 above. We refer to [91]
for details and only mention that, for # > 1, the parameter ¢ in Proposition
3.4 now has to vary in |52, 0[.

There is still one slightly delicate issue in the case # > 1 which we have not
yet discussed: the admissibility of the optimal strategies (¢?, 4} )i=o which,
also in the case 6 > 1, are given by formulas (118) - (122). Now the holdings
(4})=0 in bond are negative so that we have to check more carefully whether
the agent is solvent at all times ¢ > 0. As ¢} = 0, the natural condition is

P+ @ Si(1 =) =0, t>0. (133)
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We know that .
QY+ 4rS, = 0, (134)

a.s., for each t = 0. Indeed (Y, @} )i=0 is the log-optimal portfolio for the fric-
tionless market (§t>t>0; it is well-known form the frictionless theory (Theorem
3.1) and rather obvious that (134) has to hold true.

To show that even (133) is satisfied, fix to > 0 and (¢, §1, S;,) such that
Sie € J(1 = A)Sy, Sp[. Conditionally on (9, ¢L,S,,) define the stopping
times o and o.

0 = mf{t >ty gt = St},
o =inf{t > t5: S, = (1 —\)S,}.

Clearly we have, conditionally on (¢, 41, S,,), that Plo < g] > 0. As
(09, D1 )tg<t<ono Temains constant and using S, < Sy, on {o < g} we deduce
from 3

Po + 939,20, on{o <o}

that
@2 + @},(1 —A)S, =0 on {0 < g}

so that
Pry + D1y (1= X) Sy = 90 + ¢o (1 = N)S, = 0.

This proves (133).

3.8 The Optimal Growth Rate

We now want to compute the optimal growth rate

T ~2

0 := lim sup lE [log(l + Py + gﬂb%)] = lim sup l]E lf %dt} , (135)
Tow T Toow T 0 20}

where the initial endowment z is normalized by z = 1, and (¢°, ¢') denotes

the log-optimal portfolio for the shadow price S from Corollary 3.7. The

second equality follows from Theorem 3.1 and Theorem 3.10 (compare [151,

Example 6.4]).

By the construction in (112) the process X = S/m is a geometric Brow-
nian motion with drift which is reflected on the boundaries of the interval
[1,5] (resp. on [8, 1] for the case § > 1). Therefore, an ergodic theorem for
positively recurrent one-dimensional diffusions (cf. e.g. [23, Sections I1.36 and
I1.37]) and elementary integration yield the following result.
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Proposition 3.11. Suppose the conditions of Theorem 3.6 hold true. Then
the process X = S/m has the stationary distribution

-1 ,,
15 nals)ds for 6 (0,1)\{z},
1
v(ds) = < o (3) s 5(s)ds for 0 = 3,
20 — 1
(1 — 529—1529_21[571](3)% for 6 e (1,0).

Moreover, the optimal growth rate for the frictionless market with price pro-
cess S as well as for the market with bid-ask process [(1 — X)S,S] is given

by

5= ”1 fi*(s) v(ds)

252 (s)
(20 — 1)0?s .
0e (0 =1
AT+ (2—ct20(r o) Jorfe 0N 1,
_ h 1 (136)
g =1
21+ ¢)(1 + ¢ — log 3) Jort =5,
where ¢ and 5 denote the constants from Proposition 3.5.
As A — 0, the optimal growth rate has the asymptotics
2 3 2/3
M 30° o 2 2/3 4/3
=— — 0°(1 -0 A AT, 1
1= (Fra-op) s o (137)

Proof. The calculation of the invariant distribution v of the process X is an
elementary exercise. The remaining calculations are tedious, but elementary
too (see [91, Proposition 5.4 and 6.3]). |

3.9 Primal versus Dual Approach

In the preceding arguments we have developed the solution to the problem
of finding the growth-optimal portfolio under transaction costs by using the
“dual” approach, which also sometimes is called the “martingale method”
(compare the pioneering paper [43] by Cvitanic and Karatzas). Starting
from the Black-Scholes model (69), we have considered the “shadow price

process” S = (gt)t;(_) which in the notation of (36) corresponds to
-
=5 (138)
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A

In the present context the density process (Z7)io is given by Girsanov’s

formula
~0 ! /]s ! /]3
Z; = exp (—L 5_de5 - L Tigds) : (139)

It is the unique P-martingale with respect to the filtration generated by W
and starting at Z0 = 1, such that the process Z} := Z°5, is a P-martingale
too. As we have seen in chapter 2, this solution of the dual problem can
be translated into the solution of the primal problem via the first order
conditions (37).

It is worthwhile to spell out explicitly the formulation of the dual problem
corresponding to (36). The conjugate function V(y) associated to U(z) =
log(x) by (34) is

V(y) = —log(y) — 1, y > 0.

Under the assumptions of Corollary 3.7 we define for fixed T" > 0, in
analogy to (36) and using (139),

T Ia?
=—log(y) —1+E [ —tdt]

~2
0 20}

=V(y)+El T’%dt].

0 20f

Hence we find as in Theorem 2.3 that v(y) is the conjugate function to
the indirect utility function associated to the shadow price process S

u(x) = E[U(2V7)]

T ﬂ T ﬂ2
= log(z) + E {U <exp ( f ZLdw, + %dt))]
0o Ot 0 203

T [L2
= E|| —Ldt
o) +E ||| Fre|

where - S
Vi = exp ( f Bt aw, + ’%dt)
0o Ot 0 20
denotes the optimal terminal wealth for the frictionless market S. .
The above considerations pertain to the frictionless complete market S
they carry over verbatim to the bid as process [(1—\)S, S] if we use definition
(131) for the formulation of the portfolio optimization problem.
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Another approach to finding the growth optimal portfolio is to directly at-
tack the primal problem which leads to a Hamilton-Jacobi-Bellman equation
for the walue function associated to the primal problem; in economic ter-
minology this value function (see (141) below) is called the “indirect utility
function”.

This strain of literature has a longer history than the “dual approach”
[43]. In [234] Taksar, Klass and Assaf give a solution to the present problem
of finding the growth optimal portfolio, and in [75] Dumas and Luciano solve
the same problem for power utility U(x) = %,O < v < 1, rather than for
U(z) = log(z). Let us also mention the work of Davis and Norman [57]
and Shreve and Soner [224] on optimal consumption which proceeds by the
primal method too. We refer to [124] for an account on the ample literature
persuing this “primal” method.

We shall present here the approach of [234] and [75]. Our aim is to
relate the “primal” and the “dual” approach, thus gaining additional insight
into the problem. While in the preceding subsections the mathematics were
finally done in a rigorous way, we now content ourselves to more informal
and heuristic considerations. We can afford to do so as we have established
things rigorously already above.

Fixing the level A > 0 of (sufficiently small) transactions costs, the horizon
T, and an initial endowment (¢°, ') € R in bond? and stock, we define

u(e®, @', s, T) = sup{E[log(¢} + ¢1.57)|S0 = s} (140)

where (%, o) runs through all pairs of positive Fr-measurable random
variables (modeling the holdings in units of bond and stock at time 7") which
can be obtained by admissible trading (and paying transaction costs ) as in
(129), starting from initial positions (¢3_, p_) = (¢°, ') in bond and stock.

The term (p% + ¢5S7) in (140) above corresponds to the modeling as-
sumption that the position @1 in stock can be liquidated at time 7' at price
S7. One might also define (140) by using (% + @3(1—X)Sr). As observed at
the end of sub-section 3.6, this difference will play no role when we eventually
pass to the (properly scaled) limit 7" — oo, hence we may as well use (140)
as is done in [75].

Turning back to a fixed horizon T > 0, define, for 0 < ¢t < T, the value
function

u(e®, o', 5,¢,T) = sup{E[log (¢ + 01.57)|S; = s}, (141)

%in [234] and [75] no short-selling is allowed so that ¢©° > 0, ¢! > 0. Hence we assume,
as in these papers, that 6 = £; € 0, 1[.
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where now (¢%, L) range in the random variables which can be obtained,
similarly as above, by admissible trading during the period [¢, T'], and starting
at time ¢_ with holdings (©? , i ) = (©°, ¢1).

The idea is to pass, for fixed ¢ > 0, to the limit 7" — o0 in (141) in order
to obtain an indirect utility function u(°, o', s,t) not depending on the
horizon T. But, of course, by blindly passing to this limit we shall typically
find u(p°, ', s,t) = oo which yields no information.

The authors of [234] and [75] therefore assume that there is a constant
§ > 0 such that, by discounting the value of the portfolio % + ¢Sy with
the factor €T, we get a finite limit below.

u(e®, @'y s,t) - = Jim sup{E[log(e™" (&7 + ¢rSr))|S = 5]} (142)

Jim sup{E[log(¢7 + ¢1.97)|S, = s]} — o7

According to our calculations we already know that the above d > 0 must
be the optimal growth rate which we have found in (136). But in the primal
approach of [234] and [75], the number § > 0 is a free parameter which
eventually has to be determined by analyzing the boundary conditions of the
differential equations related to the indirect utility function u(p?, o', s,t).

To analyze the indirect utility function u, we start by making some sim-
plifications. From definition (142) we deduce that

u(goo,gpl, s) 1= u(gpo, o, s,0) = u(<p0, gol,s,t) + dt, fort >0 (143)

where the left hand side does not depend on ¢ anymore. We also use the
scaling property of the logarithm

u(eg®, cpt, s) = u(e”, @', s) + log(c),

to reduce to the case where we may normalize ¢° to be one. To eventually
reduce the two remaining variables ¢! and s to simply one dimension, make
the economically obvious observation that the variables ¢! and s only enter
into the function u via the product ¢'s. Introducing the new variable y = 5"1—05,
which describes the ratio of the value of the stock investment to the bond
investment, we therefore may write u in (142) as

1
ot ont) = o) 4 1 (£7) ot (144
= log(¢°) + h(y) — ot

for some function h : R, — R to be determined.
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Let us find the Hamilton-Jacobi-Bellman equation satisfied by u. Ac-
cording to the basic principle of stochastic optimization [196], we must have
that, for any self-financing R%-valued trading strategy (47, ¥} )i=0, the pro-
cess (u(@?, ¢, Si,t))i=0 is a super-martingale, which becomes a true (local)
martingale if we plug in the optimal strategy (4%, @').

First consider the possible control of keeping (¢?, 1) = (©°, ¢') simply
constant: this yields via (69), (142) and (144)

uSS

du(@?a 907}7 Sta t) = usdst + 5 d<S>t — odt
! / 12 ” 5202
= P () (SiodWi + Sopdt) + EE ) ( - dt) s,
Pt (90t>

hence, by taking expectations and using the formal identity E[dWV;] = 0,
Sio® (¢y)?
2 (g
The term in the bracket has to be non-positive. We know already that,
within the no-trade region, it is indeed optimal to keep ¢! and ¢} constant.

1
]E[dU((pg, 90}7 St7 t)] = St,u%h/(yt> + h”(yt) — (5] dt.
t

Hence, by replacing y; = % by the real variable y > 0, we expect that the
t
function A will satisfy the ODE
2 2
W ()~ + W )y =6 = 0, (145)
where y = 5‘:—05 ranges in the no-trade region, which should be a compact
interval [/, 7] contained in |0, oo[, which we still have to determine.
Equation (145) is an elementary ODE which, by passing to logarithmic
coordinates z = log(y), can be reduced to a linear ODE. In particular, it has

a closed form solution. For § = 4 € R,\{1}, the general solution is given

by

5
h(y) = —— log(y) + Cry™ ™" + Gy, (146)

2
while for the case 0 = % = % we obtain

5
hy) = — log(y)* + C log(y) + Cy, (147)

where the constants C, Cs still are free.
Plugging (146) into the utility function (144) with ¢ = 0 we obtain

u(e’, ', s) = log(¢°) + h(y) (148)

log(y) + Chy®—1, (149)

= log(¢") +

_a
2
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for € R;\{3}, and a similar expression is obtained for § = 1. We have
set Cy = 0 above, as an additive constant does not matter for the indirect
utility. The parameters C; and ¢ are still free.

In [234] and [75] the idea is to analyze the above function and to determine
the free boundaries [, r, such that y € [[, 7] is the no-trade region, where the
indirect utility function is given by (149) above. We therefore have to deal
with 4 free parameters and to find boundary conditions, involving again
smooth pasting arguments, to determine them.

We refer to [234] and [75] for the further analysis of this delicate free
boundary problem. Eventually these authors achieve numerical solutions of
the free boundary problem, but do not try to obtain analytical results, e.g.,
to develop the quantities in fractional Taylor series in A3 as we have done
above.

Our concern of interest is the relation of the primal approach, in particular
the ODE (145), with the dual approach, in particular with the shadow price
process S.

This link is given by the economic idea of the marginal rate of substitution.
Fix ¢t and suppose that the triple (©°, ¢!, s) is such that y = leOS lies in the
no-trade region. The indirect utility then is given by (144). Changing the
position ¢° of holdings in bond from ¢° to ¢° + dy°, for some small dy?,
the indirect utility changes (of first order) by the quantity u,de®, where
uyn denotes the partial derivative of u(¢”, ¢!, S) with respect to ¢°. By
differentiating (144) and using (146) we obtain

1 0 1y—C 20-2Y

- 1
W u—Z Yy "

W0 =

Similarly, changing the position of ¢! units of stock to ¢! + dp! units for
some small dp', this change of first order equals dg' u,1, where

) 1&

The natural economic question is the following: what is the price § =
5(¢%, ', s) for which an economic agent is — of first order — indifferent
of buying/selling stock against bond? The obvious answer is that the ratio

dye®

5§ = 2o must satisfy the equality u odp” = u, 1dp'. In other words, § is given
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by the “marginal rate of substitution”

_ug (@’ 9l s)
G ¢ 2 (150)
UWO(LP y P 75)
[ -+ Cly2671
_ ('00 #7% (151)
ST (1_ 62>_C«1y29—1'
)

This formula for § looks already reminiscent of the function S = g(s) in (87).
To make this relation more explicit, recall that we have made the following
normalizations in subsection 3.2 above: the variable s ranges in the interval
[1, 5] and the ratio Z—? of holdings in bond and stock equals the parameter ¢
in formula (104), if we have the normalization m; = 1, so that S; = g(S;).
Hence y = ‘P@—l(f = 2 5o that in (151) we get

0(1—2 102205201
~ p="g
s=0G(s):= , 152
(s) (1-— 602 ) — Cycl=20520-1 (152)
=

Using the relation

(20 — 1)0?5(c)

PTG (2 et 200+ )

obtained in (136) above, we conclude that the function G(-) defined in (152)
above indeed equals the function g in (87) if we choose the free parameter
Cy properly. As the variable s ranges in the interval [1, 5], we find that
the no trade interval [I,7] for the variable y equals [1, 2] and we can use
the Taylor expansions in powers of A\/? to explicitly determine the values of
these boundaries. We thus can provide explicit formulae for all the quantities
involved in the solution of the primal problem where the PDE approach only

gave numerical solutions.

We now understand better why we found a closed form solution for the
ODE (85). As regards the function h solving the ODE (145), there is, of
course, the closed form solution (146), as this ODE is linear (after passing
to logarithmic coordinates). Therefore the indirect utility w in (144) again
is given by an explicit formula. Hence the function G = g, which is deduced
from the “marginal rate of substitution relation” (150), has to be so too. In
conclusion, the ODE (85) must have a closed from solution.

68



3.10 Rogers’ qualitative argument

We finish this chapter by recalling a lovely “back of an envelope calculation”
due to Ch. Rogers [206]. It shows that the leading term for the size §(A)—1 of
the no trade region is of the order A3 (compare (98)) and that the difference

of the growth rate d(\) obtained in (137) to the frictionless growth rate %

is of the order A\3. In fact, these relations were already obtained in the early
work of G. Constantinides [40].

The starting point is the rather intuitive heuristic assumption that, given
transaction costs A > 0, the log optimal investor will keep the ratio of stock
to the total wealth investment in an interval of width w around the Merton
proportion ¢ = 4.

Taking the frictionless market as benchmark, what are the (negative) ef-
fects of transaction costs A when choosing the width w? There are two causes.
On the one hand side one has to pay transaction costs T'RC'. From scaling it
is rather obvious, at least asymptotically, that these costs are proportional
to the size of transaction costs A and indirectly proportional to the width w,
i.e. TRC ~ c; \w™! for some constant c;. Indeed, the local time spent at the
boundary of the no trade region, where trading takes place, is of the order
w L

The second negative influence is the cost of misplacement: in comparison
to the ideal ratio of the Merton proportion one typically is of the order w away
from it. As the utility function attains its optimum at the Merton proportion
(and assuming sufficient smoothness), the effect of the misplacement on the
performance should be proportional to the square of the misplacement. This
is, at least heuristically, rather obvious. Actually, the fact that a function
decreases like the square of the misplacement when it is close to its maximum
was already observed as early as in 1613 by Johannes Kepler in the context of
the volume of wine barrels. Hence the misplacement cost M PC' caused by the
width w of the no trade region should asymptotically satisfy M PC ~ cow?,
for some constant cs.

The total cost T'C' of these two causes therefore has an asymptotic ba-
havior of the form

TC = TRC + MPC ~ c; w™" + cow?.

We have to minimize this expression as a function of w. Setting the derivative
of this function equal to zero gives for the optimal width w the asymptotic
relation @ ~ cAY3, where ¢ = (2%)1/3.

As regards the effect of the transaction costs A on the asymptotic growth

rate, we conclude from the above argument that this is the order of the square
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of the typical misplacement w which in tur121 is of the order A\/3. Therefore the
difference of the frictionless growth rate 2= to the rate involving transaction
costs is of the oder A?/3 (compare (137)).

3.11 Almost sure optimal growth rate and a numerical
example

Very recently the preprint [80] has been brought to my attention. It is shown
there that the optimality of the above defined strategy with respect to long-
term growth rate not only holds true in expectation (as proved above), but
also in an almost sure sense ([80], Th. 4.1).

In addition, M. Feodoria and J. Kallsen spell out in [80] a nice and illus-
trative numerical example. Consider a stock with yearly volatility o = 20 %
and excess drift rate g = 2%. The corresponding (discounted) stock price
process S starting at Sy = 1 equals

2

Sy =exp oW, + (1 — %)t] (153)
= exp [%Wt] (154)

For these (quite realistic) values of p and o we therefore find that the
long-term growth rate

1
lim T log St

T—o0

of the “buy and hold” strategy of always keeping one stock yields a long-
term growth rate equals zero. This holds true in expectation as well as
almost surely.

This strategy is, of course, not optimal. In the frictionless setting (The-
orem 3.1) it is optimal to hold the fraction 7 = 4 =  of the current wealth
in stock, and the other half in bond. This yields a long-term excess growth

rate equal to %—22 = 0.5%. This rate seems surprisingly low as compared to

the fact that the expectation of the stock, E[exp(cW; + (1 — %Q)t] = exp|ut]
grows at an excess rate of 2 %.

If we consider transaction costs of A = 1% we obtain the approximate nu-
merical values [0.42, 0.58] for the no-trade interval. According to the asymp-
totic formula (137) this lowers the optimal excess growth rate to 0.47. In

1

other words, even in the unfavorable case § = 5 (compare (137)) the effect of

transaction costs on the optimal long-term growth rate seems rather small.
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4 General Duality Theory

In this chapter we continue the line of research of chapter 2 where we have
refrained ourselves to the case of finite €.

We now consider a stock price process S = (S;)o<i<r in continuous time
with a fixed horizon T". The process is assumed to be based on a filtered prob-
ability space (2, F, (Ft)o<i<T, P), satisfying the usual conditions of complete-
ness and right continuity. We assume that S is adapted and has continuous,
strictly positive trajectories, i.e. the function ¢ — S;(w) is continuous, for
almost each w € ). The extension to the case of cadlag (right continuous,
left limits) processes is more technical and we refer the reader to [48] for a
thorough treatment.

To make life easier, we even assume that the filtration (F;)o<i<r is gener-
ated by a d-dimensional Brownian motion (W;)o<;<r. This convenient (but
not really necessary, see [51]) assumption eases the presentation as it has the
following pleasant consequence: if (St)ogth is a local martingale under some
measure Q ~ P, then S has P-a.s. continuous paths.

Definition 4.1. Fiz A > 0. A process S = (S;)o<t<r a$ above satisfies the
condition (C'PS*) of having a consistent price system under transaction costs
X > 0, if there is a process S = (Si)o<t<r, adapted to (Q, F, (F)o<t<r, P) such
that

(1-XNS, <8, <58, 0<t<T,

as well as a probability measure QQ on F, equivalent to P, such that (St)ogtg’f
is a local martingale under Q.

We say that S admits consistent price systems for arbitrarily small trans-
action costs if (C'PS?) is satisfied, for all X > 0.

As in chapter 1 we observe that a A-consistent price system can also be
written as a pair Z = (Z, Z})o<t<r, where now Z° is a P-martingale and
Z1 a local P-martingale. The identification again is given by the formulas
Z9 = z—% and S = g—;

In [107] we related the condition of admitting consistent price systems
for arbitrarily small transaction costs to a no arbitrage condition under ar-
bitrarily small transaction costs, thus proving a version of the Fundamental
Theorem of Asset Pricing under (small) transaction costs.

It is important to note that we do not assume that S is a semi-martingale
as one is forced to do in the frictionless theory [64, Theorem 7.2]. However,
the process S appearing in Definition 4.1 always is a semi-martingale, as it
becomes a local martingale after passing to an equivalent measure Q).
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The notion of self-financing trading strategies (0%, o} )o<i<r, Starting at
(8,05 ) = (0,0) as well as the notion of admissibility have been given in
Definition 3.8. For the convenience of the reader we recall it.

Definition 4.2. Fix a stock price process S = (Si)o<i<r With continuous
paths, as well as transaction costs A > 0.

A self-financing trading strategy starting with zero endowment is a pair
of right continuous, adapted finite variation processes (¢?, o} )o<t<r Such that

(1) W) =i =0.

(i1) Denoting by p? = gp?’T —gp?’l and @} = gpi’T —gptl’i, the canonical decom-
positions of ¢ and ' into the difference of two increasing processes,
y 07T — 071« . 17T __ 17~L — y
starting at @y = @y = @y = @y~ = 0, these processes satisfy

dot < (1= NSy, eyt > Sudey", 0<t<T.  (155)

The trading strategy ¢ = (goq, ©') is called admissible if there is M > 0 such
that the liquidation value V™ satisfies

V(0 o) = 00 + (1) (1 = NS — ()7 S, = —M, (156)
a.s., for0 <t <T.

Remark 4.3. (1) We have chosen to define the trading strategies by explic-
itly specifying both accounts, the holdings in bond ¢° as well as the holdings
in stock . It would be sufficient to only specify one of the holdings, e.g. the
number of stocks p!'. Given a (right continuous, adapted) finite variation
process o' = (¢} )o<t<r starting at ¢} = 0, which we canonically decompose
as the difference ! = 5" — b we may define the process ¢° by

de) = (1 = \)Sydp* — Sydpr "

The resulting pair (¢°, ') obviously satisfies (155) with equality holding
true rather than inequality. However, it is convenient in (155) to consider
trading strategies (¢, ') which allow for an inequality, i.e. for “throwing
away money”’. But it is clear from the preceding argument that we may
always pass to a dominating pair (¢°, p!) where equality holds true in (155).

We still note that we also might start from a (right continuous, adapted)
process (¢V)o<ier = ()1 — i )o<i<r and define ! via

dol = dep*  dgp!
! S, (1-=N)S,
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(2) Now suppose that, in assumption (i) above, the processes ©*1, %!,
ol and @' are right continuous, adapted, and starting at zero, but not
necessarily the canonical decompositions of ¢ = %1 —% (resp. ot = 1T —
™). In other words suppose that ¢®" and % (resp. ob" and @!t) may
“move simultaneously”. If the four processes satisfy the inequalities (155),
then these inequalities are also satisfied for the canonical decompositions as
one easily checks (and as is economically obvious). Summing up: in (i) above
the requirement that ¢%1, ©%¢ T and o are the canonical decompositions
could be dropped.

(3) We allow the finite variation process (¢?, ¢} )o<t< to have jumps
which we define to be of right continuous (i.e. cadlag) type (note that a
finite variation process automatically has left and right limits at every point
t € [0,T]). Unfortunately, we have a little problem? at ¢t = 0. In fact, we
have already encountered this problem in the discrete time setting in chapter
1 above. In order to model a possible (right continuous) jump at ¢t = 0, we
have to enlarge the time index set [0,7'] by adding the point 0_ which now
takes the role of the point ¢ = —1 in the discrete time setting of chapter
1. Hence whenever we write (%, o})o<i<r We mean, strictly speaking, the
process (7, ¢4 )eefo_o[0.7]-

We could avoid the problem at t = 0 by passing to the left continuous
modification (¢? , ¢} Joci<r Where (¢? ,¢f ) = lim, ~(¢2, pL) denotes the
left limits, for 0 < ¢t < 7. In fact, this would be quite natural, as the adapted,
caglad (i.e. left continuous, right limits) process (¢ , ! )o<i<r is predictable,
while the cadlag process (¢Y, ¢} )o<i<r may in general fail to be predictable
(it only is optional). In the general stochastic integration theory predictable
processes are the natural class of integrands for general semi-martingales.
However, this passage to the caglad version shifts the “jump” problem at
t = 0 to a similar problem at the end-point ¢t = T, where we would be forced
to add a point 7% to [0,77].

We have therefore decided to choose the cadlag version (¢?, thl)te{o_}u[O,T]
in the above definition for the following reasons:

(i) As long as we restrict ourself to the case of continuous processes S =
(St)o<t<T, it does not make a difference whether we consider the integral

SOT ©tdS; or Sg ot dS;.
(i1) Most of the preceding literature uses the cadlag versions (¢, ¢} ).

(#7) The addition of a point T} to [0,7"] seems even more awkward than

3P. A. Meyer once observed that 0_ “plays the role of the devil” in stochastic integration
theory.
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the addition of a point 0_. We refer to [48] for a thorough discussion
of these issues in the case of a general cadlag process S.

(4) Finally, we observe for later use that in the definition of admissibility
it does not matter whether we require (156), for all deterministic times 0 <
t < T, or for all [0, T]-valued stopping times 7.

Similarly as in (3) the simple strategies are particularly easy cases.

Proposition 4.4. Fiz the continuous process S and 1 > X > 0. For a
right continuous, adapted, finite variation process (9, pt)o<i<r Starting at
(05,90 ) = (0,0) we again denote by gpg’T,gpg’l,cptl’T,cptl’l its canonical de-
composition into differences of increasing processes.

The following assertions are equivalent (in an almost sure sense):
(1) The process (¢, ¢} )o<i<r is self-financing, i.e.

dp? < (1= N)Sidp* — Sydppt,  as. for 0 <t <T. (157)

(#7) For each pair of reals 0 < a < b < T, as well as for a = 0_,b = 0,

b b
oy — el < f (L= NSudpyt, ot =t > J Sudp,’. (158)

a a

(i77) For each pair of rationals 0 < a < b < T, as well as fora =0_and b =0
oy —en < (gt = @p) (1= \) max (5.},

ept — 2 = (T — i) min {S,}.

a<u<b

(159)

Proof. (i) < (i) : Inequality (157) states that the process

t
(] 0= nsudets - suapht - agt))

0 0<t<T

is non-decreasing; this statement is merely reformulated in (158). Note that
the integrals in (158) make sense in a pointwise manner as Riemann-Stieltjes
integrals.

(11) < (i1i) : We only have to proof (iii) = (ii). Suppose that (i7) fails
to be true, say,

b
A= > [ (1 NSudel + 50 - a)

a
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for some real numbers 0 < a < b < T and § > 0 holds true with probability
bigger than £ > 0. Then we can approximate a and b by rationals «, 8 such
that the above inequality still holds true. Using the continuity of S we can
break the integral Si into a sum of finitely many integrals Sg *, with rational
endpoints «;, §;, such that the oscillation of S on each [«;, Bi]lis smaller than
/2 on a set of probability bigger than 1 — $. Then (159) fails to hold true

almost surely, for some pair (o, 3;). |
Proposition 4.5. Fiz S = (S;)o<i<r and X > 0 as above. Let (¢°, ') =
(9, o o<t be a self-financing, admissible trading strategy, and (S, Q) be a
A-consistent price system.
The process
Vi = ¢} + 915, 0<t<T, (160)

15 a local Q-super-martingale which is uniformly bounded from below, and
therefore a Q-super-martingale.

Proof. As (p})o<t<r is of bounded variation and S is continuous, the product
rule applied to (160) yields

AV, = d? + Sidp} + o1 dS,. (161)

As S takes values in [(1—\)S, S], we conclude from (157) that the process
(§,(d + S,dpl))o<i<r is non-increasing. The second term in (161) defines
the local (Q-martingale (Sé ©LdS,ocier = (¢! - S)o<t<r. By (156) and the
admissibility assumption, the process V is uniformly bounded from below.
It therefore is a super-martingale under Q. |

Remark 4.6. The interpretation of the process V is the value of the portfolio
process (¢”, ¢') if we evaluate the position ¢' in stock at price S. Note that
V = V% swhere V! is defined in (156).

Definition 4.7. Let S = (Si)o<i<r and 1 > X > 0 be fized as above.

We denote by A the set of random variables (¢%, k) in LO(Q, F,P;R?)
such that there is an admissible, self-financing, process (¢2, o1 )o<i<T, GS in
Definition 4.2 starting at (3 , 5 ) = (0,0), and ending at (%, o}).

We denote by C the set of random variables

C = {pye L%, F,P): (¢%,0) e A}
= {V¥(o}, 1) : (97, 01) € A}

We denote by AM, resp. CM the corresponding subsets of M-admissible
elements, i.e. for which there is a process (¢Y, ¢} Jo<i<r satisfying (156), for

fixed M > 0.
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Definition 4.8. Fiz S and A > 0 as above, let 7 : Q — [0,T] u {0} be
a stopping time, and let f., g, be F,.-measurable R -valued functions. We
define the corresponding ask and bid processes as the R*-valued processes

ay = (_ST7 1) f‘r H[[T,Tﬂ(t)>

0 T, (162)
by = ((1—=X)S;,—1) g Iprm(t), 0 T

(163)

//\ //\
//\ //\

We call a process (02, o} )o<i<r a simple, self-financing process, if it is a
finite sum of ask and bid processes as above. Admissibility is defined as in
Definition 4.2.

The interpretation of a, is the following: an investor does nothing until
time 7 and then decides to buy f, many stocks and to hold them until time
T. The resulting holdings in bond and stock are ¢} = —S; f-1j,77(t) and
oy = f-1mp(t). The case of b, is analogous.

In the above definition we also allow for 7 = 0 in the above definition:
this case models the trading between time ¢ = 0_ and time ¢ = 0 at bid
ask prices {(1 — X)Sp,So}. In this case we interpret the function Ijo 7 as
]]-[[O,T]] (O_) = 0, while :ﬂ_[[og“}] (t) = 17 for 0 <t <T.

We denote by A* the set of R%:-valued random variables (¢°, ') such
that there is a simple (see Definition 4.8), admissible, self-financing, process

(97, ot Jo<e<r satisfying (¢°, o) < (6%, o).

Lemma 4.9. Fiz the continuous process S and X\ > 0 as above. The set A°
is a convex cone in L°(Q, F,P;R?) which is dense in A with respect to the
topology of convergence in measure.

More precisely, let M > 0 and (¢°, ') = (Y, o} )o<t<r be a self-financing
process as in Definition 4.7, starting at (¢5 , b ) = (0,0) which is M-
admissible, 1.e.

Vi(@% ") = @ + ()T (1= NS, — (p1) ™Sy = —M,  0<t<T.

Then there is a sequence (%", ™))% | of simple, self-financing, M-
admissible processes starting at (", py™) = (0,0), such that (3" Ap%, 05" A
k) converges to (¢%, k) almost surely.

Proof. The idea of the approximation is simple: the strategy (¢%", ¢>") does
the same buying and selling operations as (©°, o!), but always waits until
(St)o<t<r has moved by some § > 0; then the (¢%", p!")-strategy does the
same buying/selling in one lump sum, which the strategy (¢°, ¢') has done
during the preceding time interval. In this way the approximation (%", ")
still is adapted to the filtration (F;)o<i<r as it only uses past information;
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the terms of trade for the strategies (¢°, ¢!) and (%", ") are close to each
other, as the continuous process S has only moved by at most § during the
preceding (stochastic) time interval.

Here are the more formal details: fix the self-financing, M-admissible
strategy (¢%, ') and 1 > & > 0. As (¢° ') is of finite variation we may
find a constant V. > 1 such that the probability of (¢Y)o<i<r having total
variation Varp(°) bigger than V., has probability less than e > 0.

Let o be the stopping time

o =inf{te [0,T]: Var,(p°) = V.}, (164)

so that Plo < o] < &, and let § = min(via, %) Define a sequence of stopping
times (7%)5—, by 70 = 0 and, for k > 0,
: St
Tk+1 = inf {t €, 1] : 5 = (1+0) or (1— (5)} A o, (165)
Tk
where, as in (164), the inf over the empty set is infinity.

As the trajectories of S = (S;)o<i<r are continuous and strictly positive,
the sequence (73)72, increases to infinity a.s. on {o = }. Fix K € N such
that P[rx < o] < 2e. Now construct inductively the approximating simple
process (¢%", p1™), where n € N will correspond to some &,, > 0 and §,, < ‘%;
to be specified below.

At time t = 0 we observe that (¢)), ¢f)Lp,ry(t) is the sum of the terms
(162) and (163),i.e.

(¢0: o) Lo,y (t) = @ + b}
= ((_S()? 1)f7'0 + ((1 - /\)SO’ _1) gTo) IL[[(LT]](t)?
where fr, = (o5 — ¢5_)" = ()" and g, = (05— 5_)~ = (@)™
At time 7, we want to adjust our holdings in bond and stock to have

@™ = @l le. that the holding in stock at time 7 are the same, for the
strategy (¢°, p') and (%", ™). This can be done by defining

a%+bt1 = [(_Sﬁ’ 1).f71 + ((1 - )\)57'17 _1)97'1] ]l[[Tl,T]](t)7 0<t< T> (166)

where f;, = (¢} — L)t and g;, = (¢l — ¢r )", where 75 = 0 so that
@1 = ¢y (as opposed to ¢j_). We add this process to af + bY, i.e. we define

(™ ™) = (@) + b)) + (a +b),  0<t<T.
We then have that the process (¢%™!, ¢1™!) jumps at times 0 and 7; only,
and satisfies
Lnd _ 1
Spnn - Spn‘
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As regards the holdings ¢2™' in bond at time 71, we cannot assert that
2l = ¢ but we are not far off the mark: speaking economically, the
strategy (¢°, ¢') has changed the position in bond during the interval [y, 71]
from ¢f to ¢ by buying (o1, — 1 )+, resp. selling (¢r — @1 ), numbers of
stock. These are figures accumulated over the interval [y, 71]. As the stock
price Sy is in the interval [(1 —6)So, (1 + 0)So] for ¢ €)7o, 7] and & < 3, we
may estimate by (157)

0,n,1

(5 —om™h) = (95 —5) = o™ = h = =30 |7, — | (167)

()OTl (pT[)

Now continue in an analogous way on the intervals |7_1, 7], for & =
1,..., K, to find a¥ + bf as in (166)

CL? + bf = [( Tk )ka (( - )‘)Sﬂw _1>ng] :H_[[Tk:7TI|(t)7 0<t< T7 (168)

so that the process
k
(™", 0™ ) = Y (el + b)),  O0<t<T,
7=0

satisfies goi]”k = ‘P%» for j =0,...,k, and

k
P — o0 2 =36 ) 160 — 2. (169)
j=1

Finally define the process (%", plm) := (@OmE plnK),

We have not yet made precise what we do, when, for the first time k& =
1,..., K, we have 7, = o0. In this case we interpret (168) by letting 7 := T
rather than 7, = o0, i.e. as a final trade at time 7', to make sure that gol ok
ok on {1, = 0}

Hence the process (%", p1™) is such that, on the set {7x = o0}, we have
" = ph so that

Ploy™ = o] > 1 — 2e. (170)

By (169) we may also estimate on {7x < o0} < {0 < 0}
P — e = =36 ) 1% — 0|
j=1
-39 [V + 26],
so that
P2 = ¢ — 4e] = 1 — 2¢. (171)
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As regards the admissibility of (%", p'™) : this process is not yet M-
admissible, but it is straightforward to check that it is M + 30(VL + 20)-

admissible. Hence by multiplying (%", ) by the factor ¢ := m

we obtain an M-admissible process (cgp " cpb™) such that (coy” A ph, cor™)
is close to (¢Y, p%) in probability.

Finally, we have to specify € = ¢,, : it now is clear that it will be sufficient
to choose €, = 27" in the above construction to obtain the a.s. convergence

of (63" A ©%, 3™) to (9%, k). |

The following lemma was proved by L. Campi and the author [32] in the
more general framework of Kabanov’s modeling of d-dimensional currency
markets. Here we spell out the proof for a single risky asset model. In
Definition 4.2 we postulated as a qualitative — a priori — assumption that
the strategies (¢°, ') have finite variation. The next lemma provides an —
a posteriori — quantitative control on the size of the finite variation.

Lemma 4.10. Let S and A > 0 be as above, and suppose that (CPS™)
is satisfied, for some 0 < N < ), i.e., there is a consistent price system
for transaction costs N'. Fix M > 0. Then the total variation of the process
(09, 01 o<t<r Temains bounded in L°(Q, F,P), when (©°, p') runs through all
M -admissible, \-self-financing strategies.

More explicitly: for M > 0 and e > 0, there is C' > 0 such that, for all M-
admissible, self-financing strategies (©°, '), starting at (3,05 ) = (0,0),
and all partitions 0_ =ty <t1 < ... <txg =T we have

P —pp | = <g, (172)

—¢n | =2C| <e (173)

[ K
Z%pt
;
Z@t

Proof. Fix 0 < X < X as above. By the hypothesis (CPSY) there is a
probability measure () ~ P, and a local ()-martingale (St)osth such that
S, e [(1=X\)S,, Sy

Fix M > 0 and a self-financing (with respect to transaction costs A),
M-admissible process (¢?, ¢} )i=0, starting at (o) , @5 ) = (0,0). Write ¢° =
O — 0% and ! = bt — b as the canonical differences of increasing
processes, as in Definition 4.2. We shall show that

Eo [#4'] < A]?X. (174)
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Define the process ((¢°), (o)) by

, A= N
(@)t (")) = (90? + T wi) : 0<t<T.

This is a self-financing process under transaction costs \': indeed, whenever
de? > 0 so that dp? = d(,p,?’T, the agent sells stock and receives d(,p,?’T =
(1 — N)Sido* (vesp. (1 — X)Sydpp = %d@?’T) under transaction costs A
(resp. ). The difference between these two terms is 3=3 AN 72T this is the
amount by which the M-agent does better than the A-agent. It is also clear
that ((¢°)’, (¢')") under transaction costs X still is M —admissible

By Proposition 4.5 the process ((¢°); + ¢} Sy)o<ier = (got + 2 ,got

0y St)0<t<T is a @-super-martingale. Hence Eq[¢% + pbSy] + 2 IE oleX'] <
0. As ¢9 + @Sy = —M we have shown (174).

To obtain a control on go % too, we may assume w.l.g. in the above reason-
ing that the strategy (¢©°, ¢!) is such that ¢} = 0, i.e. the position in stock is
liquidated at time 7. We then must have % > —M so that gogll < cp%T + M.
Therefore we obtain the following estimate for the total variation QO%T + cp?p’l
of °

2
Eq oy + ¥t <M (A —+ 1) . (175)

The passage from the L'(Q)-estimate (175) to the L°(P)-estimate (172) is
standard: for € > 0 thereis 6 > 0 such that for a subset a € F with Q[A] < ¢
we have P[A] < e. Letting C' = 2 (-2 + 1) and applying Tschebyschoff to
(175) we get

]P’[go +g00l>0]<5

which implies (172).
As regards (173) we note that, by the continuity and strict positivity
assumption on S, for € > 0, we may find 6 > 0 such that

IP[ inf St<(5] < =
o<st<T

Hence we may control golT’T by using the second inequality in (159); then
we can control go%ﬂl by a similar reasoning as above so that we obtain (173)
for a suitably adapted constant C. |

Remark 4.11. In the above proof we have shown that the elements goT , goT ,
ng ,ng remain bounded in L°(Q2, F,P), when (©°, ©!) runs through the M-
admissible self-financing process and ¢ = 0T — % and ! = VT — b
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denote the canonical decompositions. For later use we remark that the proof
shows, in fact, that also the convex combinations of these functions cp%T
etc. remain bounded in LY(Q, F, IP) Indeed the estimate (174) shows that
the convex hull of the functlons gp is bounded in L'(Q) and (175) yields
the same for ¢ 04, For go " and gp ' the argument is similar.

In order to prove the subsequent Theorem 4.13 we still need one more
preparation (compare [211]).

Proposition 4.12. Fiz S and 1 > X\ > 0 as above, and suppose that S
satisfies (CPSY), for each X' > 0.

Let (pr)o<t<r = (02, 01 )o<t<r be a self-financing and admissible process
under transaction costs A, and suppose that there is M > 0 s.t. for the
terminal value V9 we have

V2o, ") = % + (e1) " (1= A St — (1) 81 = —M. (176)
Then we also have

V@), 0h) = @) + (e (1= NS — (9}) 7S, = =M, (177)
a.s., for every stopping time 0 < 7 < T, i.e. ¢ is M-admissible.

Proof. We start with the observation, that by liquidating the stock position
at time 7', we may assume in (176) w.l.g. that ¢} = 0, so that ¢% > —M.

Supposing that (177) fails, we may find % > «a > 0, a stopping time
0 < 7 < T, such that either A = A, or A = A_ satisfies P[A] > 0, where

>0, ¢ + pH=s, < ), (178)
<0, ¢+ pl(1— )8, < —M}. (179)

Choose 0 < ' < a and a \N-consistent price system (S Q). As S takes
values in [(1 — X)S, S], we have that (1 —a)S as well as S take values in

[(1—=X)S,S] so that ((1 — a)S, Q) as well as (ﬁg, Q) are consistent price

systems under transaction costs A. By Proposition 4.5 we obtain that

(¢ +et0-a)8) . and (¢ + o} =25 ocrer
0<t<T
are (Q-supermartingales. Arguing with the second process and using that
S < S we obtain from (178) the inequality

1—

11—\
EQ[QOT+90T1

A .
ST|A+] < Eq [902 + ‘PimSTVh < —M.
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Arguing with the first process and using that S > (1-X)S = (1—a)S (which

implies that p1(1 — a)S, < p!(1 — a)%S, on A_) we obtain from (179) the
inequality

Eq ¢4 + b1 - a)5rlA_ | <Eq @0 + 011 - a)§ /4| < -1

Either A, or A_ has strictly positive probability; hence we arrive at a con-
tradiction, as ¢k = 0 and ¢% > —M. |

The assumption CPS, for each N > 0, cannot be dropped in Proposition
4.12 as shown by an explicit example in [211].

We now can state the central result from [32] in the present framework.
Recall Definition 4.7 of the sets AM and CM. Proposition 4.12 has the fol-
lowing important consequence concerning these definitions. We may equiv-
alently define AM as the set of random variables (©%, ¢}) in A such that
Ve (9, o) = —M. The point is that the requirement ¢ = (%, ph) € A
only implies that ¢ is the terminal value of an M-admissible strategy, for
some M > 0 which — a priori — has nothing to do with M. But Proposition
4.12 tells us that V% (%, pt) > —M already implies that we may replace
the a priori constant M by the constant M. In other words, if the liquidation
value of an admissible ¢ is above the threshold —M at the terminal time T,

it also is so at all previous times 0 <t < 7.

Theorem 4.13. Fiz S = (S;)o<i<r and X > 0 as above, and suppose that
(CPSY) is satisfied, for each 0 < X' < \. For M > 0, the conver set AM <

LO(Q2, F,P;R?) as well as the convex set CM < LO(Q, F,P) are closed with
respect to the topology of convergence in measure.

For the proof we use the following well-known variant of Komlos’ theo-
rem. This result ([64, Lemma A 1.1]) turned out to be very useful in the
applications to Mathematical Finance.

For the convenience of the reader we reproduce the proof.

Lemma 4.14. Let (f,)7, be a sequence of R, -valued, measurable functions
on (Q, F,P).

There is a sequence g, € conv(fn, fui1,...) of convexr combinations which
converges a.s. to some [0, c0]-valued function go.

If (fn)¥_, is such that the convex hull conv(fi, fa,...) is bounded in the
space L°(Q, F,P), the function gy takes a.s. finite values.

Proof. Choose g, € conv (f,,, fut1,--.) such that

7’}i—I>rolo Elexp(—g,)] = lim inf E[exp(—g)]. (180)

n—0 geconv(fn,fn+1,-)
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For fixed 1 > ¢ > 0 we claim that

lim P[(A, v An) N Bum] =0, (181)

n,m—00

where

An={g. [0, 2]}

is strictly convex on [0,% + £] so that, for

Indeed, the function x — e~ 5
given € > 0, there is 0 > 0 such that, for x, y € [0, %4— 5| satisfying (z —y) > §

we have

xT

x+ y) - exp(—z) +exp(—y) N
2 2
For w e (A, u Ap) N By, we therefore have

exp <—

In(W) + gm(w) exp(—gn(w)) + exp(—gm(w))
exp (— 5 ) < 5 — 0.

Using the convexity of z — e™* on [0, co[ (this time without strictness)
we get

E [exp (——9” ; 9’”)] <E [exP(_g") hi eXp(_gm)] —SP[(A, U A A Byl

2
The negation of (181) reads as

limsupP[(A, U A,,) N By ] = a > 0.

7,Mm—00
This would imply that

)]

5 < lim inf Elexp(—g)] — «d,

n—a gECOnV(fn,fn+1,.‘.)

liminf £ [exp (—

n,m—00

in contradiction to (180), which shows (181).
By passing to a subsequence, still denoted by (g,)_,, we may suppose
that, for fixed 1 > ¢ > 0,

0
D I P[(Ay U Apyr) 0 Bopaa] < 0, (182)
n=1

and, by passing to a diagonal sequence, that this holds true for each 1 >
¢ > 0. Taking a subsequence once more and applying Borel-Cantelli we get
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that, for almost each w € 2, either g,(w) — o or (g,(w))"_; is a Cauchy
sequence in R, .

As regards the second assertion, the condition on the L°-boundedness
states that, for n > 0, we may find M > 0 such that P[g > M| < n, for each
g € conv (fn, fus1,--.). This L%-boundedness condition prevents (g,)%_, from
converging to +oo0 with positive probability. ]

Convex combinations work very much like subsequences. For example,
one may form sequences of convex combinations of sequences of convex com-
binations: if g, € conv(fy, fut1,...) and h, € conv(g,, gnt1,-..), then h,
is a sequence of convex combinations of the original sequence (f,)>*_;, i.e.
hyn € conv(fp, fat1,--.). Similarly, the concept of a diagonal subsequence car-
ries over in an obvious way. This will repeatedly used in the subsequent
proof.

Proof of Theorem 4.13. Fix M > 0 and let (o), = (2", o3™)2, be a
sequence in AM. We may find self-financing, M-admissible strategies

()", pr™oier, starting at (o)™, ¢o™) = (0,0), with given terminal Val—
ues (goTn, golT") As above, decompose canonically these processes as gpt =

e — Q0 tand o = gog el o™l By Lemma 4.10 and the subsequent

remark we know that (@)% 1,(@5}7”)71 L (X and (@h™mY)2 ) as
well as their convex combinations are bounded in L°(€Q, F,P) too, so that
by Lemma 4.14 we may find convex combinations converging a.s. to some
elements %", o9 ob! and ot e LO(Q, F,P). To alleviate notation we de-
note the sequences of convex combinations still by the original sequences.
We claim that (%, ob) = (@9 — @2, oh! — i) is in AM which will readily
show the closedness of AM with respect to the topology of convergence in
measure.

By inductively passing to convex combinations, still denoted by the orig-
inal sequences, we may, for each rational number r € [0, T, assume that
(@O 1 (gognl)n L (b Cand (™))% converge a.s. to some ele-
ments @01, @24, gL and gt in LY(Q, F,P). By passing to a diagonal sub-
sequence, we may suppose that this convergence holds true for all rationals
re[0,T].

Clearly the four processes @Bg(@m[O,T[ etc, indexed by the rationals r in
[0, T, still are increasing and define an M-admissible process, indexed by
[0,T[nQ, in the sense of (156). They also satisfy (159), where we define
@0 =0 and @T = 0" (ete. for the other three cases).

We still have to pass to a right continuous version and to extend the
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processes to all real numbers ¢ € [0, T']. This is done by letting

el = lim el 0<t<T, (183)
reQ

and gpg’j = 0. Note that the terminal value go%T is still given by the first step
of the construction. The three other cases, %, "1, and ¢t are, of course,
defined in an analogous way. These continuous time processes again satisfy
the self-financing conditions (159).

Finally, define the process (¢¥, o1 )ocier as (@21 — ot bt — of M) ocier
From Proposition 4.4 (iii) we obtain that this defines a self-financing trad-
ing strategy in the sense of Definition 4.2 with the desired terminal value
(0%, o). The M-admissibility follows from Proposition 4.12.

We thus have shown that AM is closed. The closedness of CM is an
immediate consequence. |

In fact we have not only proved a closedness of AM with respect to the
topology of convergence in measure. Rather we have shown a convexr com-
pactness property (compare [156], [245]). Indeed, we have shown that, for
any sequence (%), € AM  we can find a sequence of convex combinations
which converges a.s., and therefore in measure, to an element ¢ € AM.

4.1 Passage from L' to appropriate Banach spaces

The message of Theorem 4.13 is stated in terms of the topological vector
space L°(R?) and with respect to convergence in measure. We now translate
it into the setting of appropriately defined Banach spaces. This needs some
preparation. For a fixed, positive number S > 0 we define the norm | - |s on
R? by
[(2%,2")|s = max{|z® + 2' S|, |2 + 2 (1 — \)S|}. (184)
[ts unit ball is the convex hull of the four points {(1,0), (-1, 0), (%, —%),
(=57 5%):
To motivate this definition we consider for a fixed number S > 0, similarly

as in (1), the solvency cone Kg = {(z°, z') : 2" > max(—z'S, —2'(1 - \)9)}.
For £ € R, let Kg(€) be the shifted solvency cone Kg(§) = Kg—¢& = {(2°,21) :
(2°+&, 2') € Kg)}. With this notation, the unit ball of (R?, |-|s) is the biggest
set which is symmetric around 0 and contained in Kg(1).

The dual norm | - |% is given, for (Z° Z1) € R?, by

(2%, Z%) |5 = max{|Z°[, |}522° — 521}, (185)
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as one readily verifies by looking at the extreme points of the unit ball of
(R?,] - |s). The unit ball of (R?,|-]%) is the convex hull of the four points
{(1’ S)v (_1’ _S)7 (1v (1 - /\)5)7 (_17 _(1 - )‘)S)}

These norms on R? are tailor-made to define Banach spaces L and L¥
in isometric duality where S will depend on w € Q. Let S = (S;)o<t<r nOW
denote an R -valued process. We define the Banach space L} as

LL = LL(Q, F,P;R?) = (186)
{20 = (2, 2}) € 1@, F B | Z 1y, = B[22, ZD)I5, ] < )
Its dual LZ then is given by
LY = LE(Q, F,P;R?) = (187)
{or = (V7. 97) € LYQ, F,B;R?) : o[z = esssup [|(¢F, o7)sp] < 0} .

These spaces are designed in such a way that An LZ is “Fatou dense” in
A. We do not elaborate in detail on the notion of “Fatou closedness” which
was introduced in [218] but only present the idea which is relevant in the
present context.

For o1 = (%, ph) € AM we have (156)

Vit = 0% + (03) " (1= N Sr — (o) Sp = —M, (188)
which may be written as
min { (¢} + ¢3(1 — N)Sr), (97 + opSr)} = —M (189)

or
max {— (¢ + p}(1 — A)Sr), — (¢ + ¢1.57)} < M. (190)

In order to obtain |(¢%, p1)|s, < M we still need the inequality
max {(¢7 + ¢r(1 = X)Sr), (¢F + ¢rSr)} < M. (191)

In general, there is little reason why (191) should be satisfied, for an
element o7 = (o), o) € AM. Indeed, the agent may have become “very
rich” which may cause (191) to fail to hold true. But there is an easy remedy:
just “get rid of the superfluous assets”

More formally: fix M > 0, and o7 = (0%, ph) € AM | as well as a number
C > M. We shall define the C-truncation ©$% of o7 in a pointwise way: if
lor(W)|sp(w) < C we simply let

o7 (w) = pr(w).
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If |or(w)]sp@w) > C we define

o7 = u(er(w), or(w)) + (1 — p)(=M,0) (192)

which is a convex combination of ¢r(w) and the lower left corner (—M,0)
of the M— ball of (R?,| - |g,()); for € [0,1] above we choose the biggest
number in [0, 1] such that [¢% (w)|sy() < C. Note that, for C' = C = M we
have pf (W) — PG (w) € Kgyp(w), i.e. we can obtain ¢ from ¢ (as well as
from ¢r) by a self-financing trade at time 7.

By construction ¢ lies in the Banach space LE, its norm being bounded
by C. Sending C' to infinity the random variables go%c increase (with respect
to the order induced by the cone Kr) a.s. to 5.

Summing up: the intersection A n LY is dense in A in the sense that, for
o7 € A there is an increasing sequence (%)= in AN LE converging a.s. to
7. This is what we mean by “Fatou-dense”.

Following a well-known line of argument (compare [64]), Theorem 4.13
thus translates into the following result.

Theorem 4.15. Fiz S and A > 0, and suppose that (CPS) is satisfied, for
each 0 < X < \. The convex cone A LE < LE(Q, F,P;R?), as well as the
convex cone C n L* < L*(Q, F,P) are closed with respect to the weak-star
topology induced by LY (resp. L').

Proof. By the Krein-Smulian theorem [220] the cone A n LY is o*-closed iff
its intersection with the unit ball of Lg is o*-closed. Hence it suffices to
show that A n (ball (L%)) is o*-compact. By a result of A. Grothendieck
([97], see also the version [69, Prop.5.2.4] which easily extends to the present
2-dimensional setting), the o*-compactness of a bounded, convex subset of
L™ is equivalent to the following property: for every sequence (%)%, € A N
(ball (LE)) converging a.s. to ¢r, we have that the limit again is in A N ball
(LE). By the definition of the norm of L¥ and using Proposition 4.12 we
have that ¢ € A', for each n, so that Theorem 4.13 implies that the limit
o7 again is in A'. As the inequalities (190) and (191) clearly remain valid
by passing from (¢%})>_; to the limit ¢ we obtain that ¢ € A N (ball LY).
This shows the o*-closedness of AN LY.

The o*-closedness of C follows from the o*-closedness of A and the fact
that L™ is a o*-closed subset of Lg. [

Theorem 4.15 allows us to apply the duality theory to the dual pairs
(L, LE) and (L', L*) respectively. Denoting as above by (A n L) (resp.
(C n L*)°) the polar of A n L in L} (resp. of C n L* in L'), the bipolar
theorem ([220]; see also Proposition A.1 in the appendix) as well as Theorem
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4.15 imply that (An LE)*° = An LE and (Cn L*)*° =Cn L*. In fact, we
shall be able to characterize the polars (A n LZ)° and (C n LE)° in terms of
consistent price systems.

We remark that the distinction between A and A n LE (resp. C and
C n L™) is rather a formality; the passage to these intersections only serves
to put us into the well-established framework of the duality theory of Banach
spaces. For example, we shall consider the polar set

(CAL®)° ={Z)e L' : (o}, 72 = E[p} 23] <0, for every ¢} € C n L}

(193)
and an analogous definition for (A n L¥)° < Lg. We note that we could
equivalently define

C°={Z)e L' :{p}, 70 =E[p7.Z2] <0 for every ) € C}

Indeed, as each ¢ € C is uniformly bounded from below, the expectation
appearing above is well-defined (possibly assuming the value infinity) and it
follows from monotone convergence that

E[¢}27] <0 iff E[(} An)Z}] <0,

for every n > 0. A similar remark applies to (An LE)°. To alleviate notation
we shall therefore write C° and A° instead of (C n L*)° and (A n LE)°.

4.2 The dual variables

To characterize the polars of A and C, let (S’ , Q) be a consistent price system
(Def. 4.1) for the process S under transaction costs A. As usual, we denote by
(Z))o<t<r the density process Z} = E[%L|F,] and by (Z})o<i<r the process
(ZPS})o<t<r, so that Z° (resp. Z') is a martingale (resp. a local martingale)
under P.

Definition 4.16. Given S and A > 0 as above, we denote by B(1) the convez,
bounded set of non-negative random variables {Zy = (Z%, Z3)} such that Zr
is the terminal value of a consistent price process as above. Denote by B(1)
the norm closure of B(1) in Lk, and by B the cone generated by B(1), i.e.

B =|JB).
y=0
where B(y) = yB(1).
We denote by D(1) the projection of B(1) onto L*(R) (via the canonical
projection of Ly onto its first coordinate), and by D(1) and D its norm closure
and the cone generated by D(1), respectively.
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Proposition 4.17. Let S and A > 0 be as in Theorem 4.13, and suppose
again that (CPSN) holds true, for all 0 < X < \.

Then B (resp. D) is a closed set in Ly (resp. L') and B (resp. D) equals
the polar cone A° of A (resp. C° of C) in Lk (resp. in L').

Proof. To obtain the inclusion B < A°, we shall show that
(7. er), (27, Z1)) = ElorZy + 01Z7] < 0, (194)

for all or = (p%, k) € A and for all Zy = (Z9, Z}) € B(1).
Indeed, associate to ¢ an admissible trading strategy (¢1)o<i<t = (07, 1 Jo<t<T

and to Zp a consistent price system (S, Q) = ((g_é)ogtgj’, Z9). By Proposition
t

4.5 the process

is a (Q-supermartingale, starting at Vo =0, so that

Ee[09Z9 + o1 Z7] = B} + 01Sr] < 0.

This shows (194) which, by continuity and positive homogeneity, also holds
true, for all Zr = (Z3, Z}) € B. We therefore have shown that B is contained
in the polar A° of A.

As regards the reverse inclusion A° < B, we have to show that, for pr =
(©%, k) € LE, such that (194) is satisfied, for all Zr = (Z%, Z1) € B(1), we
have that ¢ € A.

Fix o7 = (@3, pr) ¢ A. By Theorem 4.15 and the Hahn-Banach theorem
we may find an element Zp = (Z2, Z+) € LY such that (194) holds true, for
Zr and all ¢ € A while

(@&}, @r), (23, Z1)) > 0. (195)

As A contains the non-positive functions, we have that (Z%, Z}) takes values
a.s. in R2. In fact, we may suppose that 79 and Z} are a.s. strictly positive.
Indeed, by the assumption C'PS* there is a A-consistent price system 7 =
(Z°,Z"). For ¢ > 0, the convex combination (1 — &)Zy + eZr still satisfies
(194), for each ok € A. For ¢ > 0 sufficiently small, (195) is satisfied too.
Hence, by choosing € > 0 sufficiently small, we may assume that Z% and Z}
are strictly positive. )

We also may assume that E[Z9] = 1 so that %2 := Z9 defines a proba-
bility measure @) which is equivalent to P. We now have to work towards a
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contradiction.

To focus on the essence of the argument, let us assume for a moment that
S = (St)Ogt_gT is uniformly bounded. We then may define the R? -valued
martingale Z = (Z°, Z') by

Zy = (20, Z}) = E[(Z}, Z1) | R, 0<t<T. (196)

Indeed by (185) and (186), we have Z} < CZJ < C*|Zr|%, almost surely,
for some constants C, C*, depending on the uniform bound of S. Hence Zr
is integrable so that Z; in (196) is well-defined. We shall verify that Z =
(Zt)Ogth indeed defines a consistent price system. To do so, we have to show
that, for 0 <t < T,

Zl
St = Z—% € [(1 — )\)St, St] s a.s. (197)
t

Negating (197) we may find some 0 < u < T such that one of the following
two sets has strictly positive measure

Z, 7!
A+:{Z_3>Su}a A:{Z—S<(1—)\>Su}

In the former case, define the process ¢! = (¢, ©!) as in (162) by
@2 01) = (—=Su, Da, Lpury(t), O0<t<T.

Using the boundedness of S, we conclude that (%, oF) = (¢%, L) = (=S, 1)1,
is an element of A for which we get

EerZy +¢rZr| =E[E[¢uZr + 0uZ7|Fu]]
=E [0 Zy + 0uZ,]
_E [Zg (—Su 4 ﬁ—é) 1A+] =0,
a contradiction to (194).
If P[A_] > 0 we apply a similar argument to (163).
Summing up: we have arrived at the desired contradiction proving the

inclusion A° < B, under the additional assumption that S is uniformly
bounded.

Now we drop the boundedness assumption on S. By the continuity of S we
may find a localizing sequence (7,,)%_; of [0, 7] U {co}-valued stopping times,
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increasing a.s. to o0, such that each stopped processes S™ = (Sir-, Jo<t<r 18
bounded. Indeed, it suffices to take 7, = inf{t : S; > n}.

Denote by A,, = An LE(Q, F,,,P) the subset of A LE formed by the
elements 7 = (¢%, p¥) which are F, -measurable. We then have that A,,
is the cone corresponding to the stopped process S™ via Definition 4.7. By
stopping, we also have that | J7_, A, n LE(Q,F,P;R?) is weak-star dense
in An LE(Q, F,P;R?).

Denote by Z,, the restriction of the functional Zp = (Z%, Z}) to LE(F,,)
which we may identify with a pair (Zgn, Z;n) of F,, -measurable functions.

By taking conditional expectations as in (196), we may associate to the
random variables (ZEH, ZTln) the corresponding martingales, denoted by Z" =
(20", 2™ Vostrun-

Of course, this sequence of processes is consistent, i.e., for n < m, the
process Z™, stopped at 7,, equals the process Z". As regards the first co-
ordinate, it is clear that (Z2 ;)% converges in the norm of L*(P) to Z2,
which is the density of the probability measure Q). The associated density
process is Z0 = E[Z2|F;]. The slightly delicate issue is the second coordinate
of Z. The sequence (Z! ;) only converges a.s. to Z, but not necessarily

Tn

with respect to the norm of L'(PP). In other words, by pasting together the

1 .
processes (Z; " )o<t<r, ar, and letting

Z} = lim Z}"™,
n—0o0
the limit holding true a.s., for each 0 < t < T, we well-define a local P-
martingale (Z})o<i<r. This process may fail to be a true P-martingale. But
this does not really do harm: the process (Z°, Z})o<i<r still is a consistent
price system under transaction costs A in the sense of Definition 4.1. Indeed,
by the first part of the proof we have that, for ¢t € [0,7] and n € N,

71
Z_% € [(1 = N)Sy, St a.s. on {t < 7,}.

t
As U {t < 7} = Q as,, for each fixed 0 < ¢ < T, we have obtained (197).
We note in passing that Definition 4.1 was designed in a way that we allow
for local martingales in the second coordinate (Ztl)ogth.

Summing up: we have found a consistent price system Z = (Z°, Z})o<i<r
in the sense of Definition 4.1 such that the terminal value (Z2, Z}) satisfies
(195). This contradiction shows that the cones A and B are in polar duality
and finishes the proof of the first assertion of the theorem.

The corresponding assertion for the cones C n L* and D now follows. For
©% € C we have, by definition, that (p%,0) € A so that {(¢%,0),(Z% ZL)) =

91



(o5, Z8y < 0, for each consistent price system Z = (Z° Z'). This yields
the inclusion D < (C n L*)°. Conversely, if (¢%,0) ¢ A we may find by the
above argument a consistent price system Z such that {(¢%,0), (Z%, Z+)) > 0,
which yields the inclusion (C n L*)° < D.

The proof of Proposition 4.17 now is complete. |

We now are in a position to state and prove the central result of this
chapter, the super-replication theorem (compare Corollary 1.11).

Theorem 4.18. Suppose that the continuous, adapted process S = (S;)o<t<t
satisfies (CPSY), for each 0 < N < 1, and fir 0 < X < 1.
Suppose that the R*-valued random variable o = (p%, k) satisfies

V(o o) = 0% + (o) T (1 = XSt — (¢1)” Sr = —M. (198)

For a constant 2° € R the following assertions then are equivalent:

(1) o = (p%, L) is the terminal value of some self-financing, admissible
trading strategy (©¢)o<i<r = (¢, 01 o<t<r under transaction costs \, starting

at (5, o ) = (2°,0).
(i1) Eg[@% + ©hS7] < 22, for every A-consistent price system (S, Q).

Proof. First suppose that o7 = (p%, k) € LE. Then (i) is tantamount to
(¢% — 2°, k) being an element of A N LY. By Proposition 4.17, Theorem
4.15, and the Bipolar Theorem (Proposition A.1 in the Appendix), this is
equivalent to

Eq[) — 2° + ¢1:.57] <0,

holding true for all A-consistent price systems (S, Q) which amounts to ().

Dropping the assumption ¢p € LE, we consider, for C' > M, the C-
truncations ¢% defined after (192) which are well-defined in view of (198).
Recall that ¢$ € LE and (p%)csn increases to ¢r, as C — o0. We may
apply the first part of the argument to each % and then send C' to infinity:
assume that (i) (and therefore, equivalently, (i7)) holds true, for each %,
where C is sufficiently large. Then (ii) also holds true for ¢ by monotone
convergence, and () also holds true for ¢ by Theorem 4.13. |

Corollary 4.19. Under the assumptions of Theorem 4.18, let o5 € L°(Q, F,P)
be a random variable bounded from below, i.e.

O =M, a.s.
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for some real number M. For a real constant z° the following are equivalent.

(1) o1 = (p%,0) is the terminal value of some self-financing, admissible
trading strategy (o¢)o<t<t = (¢Y, 0t )o<t<r under transaction costs \, starting

at (g6, @9 ) = (2,0).

(i1) Eq[ph] < 2°, for every A-consistent price system (S, Q).
Proof. Apply Theorem 4.18 to (¢, 0). |

4.3 Non-negative Claims

We shall need the following generalisation of the notion of A-consistent price
systems (compare Def. 5.1 below).

Definition 4.20. Fix the continuous, adapted, strictly positive process S =
(St)o<t<r, and X > 0. The A-consistent equivalent super-martingale defla-
tors are defined as the set Z¢ = Z°(1) of strictly positive processes Z =
(Z, ZNo<i<r, starting at Z§ = 1, such that, for every x-admissible, \-self-
financing process o = (pY, o} o<i<r, Starting at (p) , o5 ) = (0,0), we have
that the process

(z+ @) 2 + i Z4, 0<t<T,

1S a non-negative supermartingale.

If, in addition, Z s a local martingale, we call Z a local martingale de-
flator and denote the corresponding set by Z'ee.

By dropping the super-script e we define the sets Z (resp Z'¢) of M-
consistent super-martingale deflators (resp. local martingale deflators), where
we only impose the non-negativity of the elements Z.

We note that Proposition 4.5 implies that Zloee contains the A-consistent
price systems, where we identify (S, Q) with the process (Z7, Z})o<i<r given
by Z) = E[%2|F,] and Z] = S,Z}.

For the applications in the next chapter, which concerns utility maxi-
mization, we shall deal with positive elements ¢ only. For this setting we
now develop a similar duality theory as in Theorem 4.18 and Corollary 4.19.
We start with a definition relating the cones A, B,C and D defined in 4.7 and
Definition 4.16 above to bounded subsets of L°(R?) and LY (R), respectively.
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Definition 4.21. For x > 0, we define

AU(w) = {(er,97) + 07 + (01) " (1 = \)Sr — (97) " S1 = 0,
and (()08’ -, 90%’) € "4}7
C(z) = {p7 2 0: 97—z € C} = {p7 : (¢7,0) € A(x)}.
Fory > 0, we define
B(y) = {(Z%, Z}) : there is Z € Z(y) with terminal value (Z3, Z+)},

D(y) = {ZY: there is Z € Z(y) with a terminal value (23, Z}),
for some Z1.}.
We denote by B(y) and D"°(y) the corresponding sets when the su-

permartingale deflator Z € Z(y) is required to be a local martingale, i.e.
7 € Zlc(y).

Theorem 4.22. Suppose that the continuous, strictly positive process S =
(Sy)o<i<r satisfies condition (CPS), for each 0 < X < 1. Fiz 0 < X < 1.

(i) The sets A(x),€(x), B(y), D(y) defined in Definition 4.21 are convex,
closed (w.r to convergence in measure) subsets of L°(R?) and LY (R) respec-
tively. The sets A(z), €(z) and D(y) are also solid.

() Fiz x> 0,y > 0 and ¢ € LY (R). We have Y. € €(x) iff
{op, Zp) < wy, (199)
for all Z% € D(y) and iff, for all \-consistent price systems (S, Q) we have

Eolol] < 2. (200)

(ii") We have Z% € D(y) iff
{pp, Zy) < wy (201)
for all ©% € €(x).

(ii1) The sets A(1) and €(1) are bounded in L°(R?) and L°(R) respectively
and contain the constant functions (1,0) (resp. 1).

Proof. (i) The convexity of the four sets is obvious. As regards the solidity
recall that a set C' < L% (R) is solid if 0 < ¢ < ¢ € C implies that ¢ € C.
As regards €(x), this property clearly holds true as one is allowed to “throw
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away bonds” at terminal time 7. As regards the solidity of ©(y): if there is
Z = (22, Z ) o<t<r € Z(y), and Y7 satisfies 0 < Y2 < Z9, we may define an
element Y = (Y2, Y )o<i<r € Z(y) by letting

70 71, 0<t<T,
(Y;E()?Y;tl) = { EYtO Ztl)YIQ> t=T
T T?TT ) )
which shows the solidity of D(y).
The L°-closedness of 2((z) and €(z), follows from Theorem 4.13. Indeed
x > 0 corresponds to the admissibility constant M > 0 in Theorem 4.13
and the operations of shifting these sets by the constant vector (z1,0) and

intersecting them with the positive orthant preserves the L°-closedness.

Let us now pass to the closedness of B(y) and D(y). Fix a Cauchy
sequence Zt = (Z3", Zy") in B(y) and associate to it the supermartingales
7" = (2", Z™)o<yer as in Def 4.21. Applying Lemma 4.14 and passing to
convex combinations similarly in the proof of Theorem 4.13 we may pass to
a limiting cadlag process Z = (Z2, Z})o<i<r in the following way (the “Fatou
Limit” construction from [50]).

First pass to pointwise limits of convex combinations of (22", Z™")*
where 7 ranges in the rational numbers in [0, 7] and then pass to the cadlag
versions, which exist as the limiting process (Z?, Z}),ejor1~q IS & super-
martingale (we suppose w.l.g. that T is rational). The fact that, for every
l-admissible A-self-financing ¢ = (¢, ¢} )o<t<7 the process

Vi=(+@)Z) +¢iZ, 0<t<T,

is a super-martingale, now follows from Fatou’s lemma. The argument for
D(y) is similar.
We thus have proved assertion (i).

(i) Let ¢ = (¢, ¢} )o<t<T be an admissible, self-financing process starting
at po_ = (7,0) and ending at (¢%,0). Let Z = (Z?, Z}!)o<t<T be a super-
martingale deflator starting at Zy = (y, Z3), for some Z; € [(1 — \)ySo, yS0]-
By definition

OV 7Y + o1 7}, 0<t<T,

is a super-martingale starting at xy so that inequality (199) holds true.
Conversely, assertion (200) follows from Theorem 4.18 and Corollary 4.19.

(ii') If Z2 € D(y) and p% € €(x), we have already shown the inequality
(199). As regards the “only if” assertion, condition (199) may be rephrased
abstractly as the assertion that ©(1) = i@(y) equals the polar set of €(1) =
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2¢(x) as defined in (202) below. On the other hand it follows from Proposi-
tion 4.17 and Corollary 4.19 that the polar of the set

D(1) ={Zye LY : % = 79 for a consistent price system (S, Q)}

equals €(1). Hence by the subsequent version of the bipolar theorem we have
that, if Z2 satisfies (201), it is an element of the closed, convex, and solid hull
of D(1). As D(1) € D(1) we conclude from (i) that this implies Z% € D(1).

(i17) By hypothesis (CPS*) there is a A-consistent price system (S, Q).
We denote by Z = (Z?, Z!)o<i<r the corresponding density process in Z¢.
For each € > 0 there is 6 > 0 such that, for a subset A € F with P[A] > ¢ we
have E[14Z%] = § and E[14Z2}] = 4. This shows that /(1) is bounded in L°.
The L°-boundedness of €(1) follows and the final assertion is obvious. W

We have used in the proof of (ii") above the subsequent version of the
bipolar theorem pertaining to subsets of the positive orthant LY. of L°.

Proposition 4.23. (/30], compare also [245]) For a subset D < LY (Q2, F,P)
we define its polar in LY. as

D° ={ge L} :E[gh] <1, for all h e D}. (202)

Then the bipolar D°° equals the closed (with respect to convergence in mea-
sure), convez, solid hull of D.
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5 The local duality theory

In this chapter we extend the duality theory to the setting where the cor-
responding concepts such as no arbitrage in its many variants, existence of
consistent price systems etc. only hold true locally. For example, this sit-
uation arises naturally in the stochastic portfolio theory as promoted by
R. Fernholz and 1. Karatzas. We refer to the paper [149] by I. Karatzas and
K. Kardaras (compare also [154] and [235]) where the local duality theory is
developed in the classical frictionless setting.

Recall that a property (P) of a stochastic process S = (S;)o<t<r holds true
locally if there is a sequence of stopping times (7,,)%_; increasing to infinity
such that each of the stopped processes S™ = (S¢ar, Jo<t<r has property (P).

We say that (P) is a local property if the fact that S has property (P)
locally implies that S has property (P).

The frictionless case

In the subsequent definition we formulate the notion of a super-martingale
deflator in the frictionless setting. The tilde super-scripts indicate that we
are in the semi-martingale setting.

Definition 5.1. (see [149] and [235]) Let S = (Sy)o<i<r be a semi-martingale
based on and adapted to (2, F,(Fi)o<i<r,P). The set of equivalent super-
martingale deflators Z¢ is defined as the 10, c0[-valued processes (Z)o<i<r
starting at Zy = 1, such that, for every S-integrable predictable process H =
(Hi)osi<r verifying

1+ (H-8), >0, 0<t<T, (203)

the process ) o
Z,(1+ (H-9),), 0<t<T, (204)

s a super-martingale under P. Dropping the super-script e we obtain the
corresponding class Z of [0, co[-valued super-martingale deflators.

We call Z € Z a local martingale deflator if, in addition, Z is a local
martingale. We denote by Z'¢ (resp. Z9'°°) the set of local (resp. equivalent
local) martingale deflators.

We say that S satisfies the property (ESD) (resp. (ELD)) of existence
of an equivalent super-martingale (resp. local martingale) deflator if Ze+
(resp. Z91° # ().
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_ We remark that, for a probability measure () equivalent to P under which
S is a local martingale, we have that the density process Z;, = E[%2|F;] de-
fines an equivalent local martingale deflator.

We first give an easy example of a process S, for which (NFLVR) fails
while there does exist a local-martingale deflator (see [149, Ex. 4.6] for a more
sophisticated example, involving the three-dimensional Bessel process). In
fact, we formulate this example in such a way that it also highlights the
persistence of this phenomenon under transaction costs.

Proposition 5.2. There is a continuous semi-martingale S = (S;)o<i<1,
based on a Brownian filtration (Fi)o<i<1, such that there is an equivalent
local-martingale deflator (Z;)o<i<1 for S. On the other hand, for 0 < A < 1,

there does mot exist a A\-consistent price system (S, Q) associated to S.

Proof. Let W = (W})i=0 be an (F;);so-Brownian motion, where (F;);>o is
the natural (right-continuous, saturated) filtration generated by W.
Define the martingale Z = £(—W)

Zy = eXp<_Wt - %)a =0,
and let N = Z71 ie.
Ny :eXp(Wt_{'%)v t>o7

so that NV satisfies the SDE

dNy
N, AW, + dt.

Define the stopping time 7 as
T=inf{t: Z, =4} =inf{t: N, =2},

and note that 7 is a.s. finite. Define the stock price process S as the time-
changed restriction of N to the stochastic interval [0, 7], i.e.

Sy =N, (Ze)ar 0<t<l

tan

By Girsanov there is only one candidate for the density process of an

equivalent martingale measure, namely (Ztan(ﬁ
2

On)ocrey” But the example

is cooked up in such a way that (Ztan(ﬂt)m> only is a local martingale.
2 o<t<1

Of course, (Z (= is an equivalent local martingale deflator.

tan §t>/\7>0<t§1
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As regards the final assertion, fix 0 < A < %, and suppose that there
is a A-consistent price system (S,Q). As S € [(1 — \)S, S] we have Sy < 1
and S; > 2(1 — \) > 1, almost surely. On the other hand, assuming that
S is a Q-super-martingale implies that Eq[S)] < Eg[So], and we arrive at a
contradiction. [

Remark 5.3. For later use we note that S, = N, is the so-called

tan(%t) AT

numéraire portfolio (see, e.g. [149]), i.e., the unique process of the form 1 +
H - S verifying 1 + (H - S) = 0, and maximizing the logarithmic utility

u(1) = sup{E[log(1 + (H - 5)1)]},

where H runs through the 1-admissible predictable strategies. Indeed, this
assertion follows from Theorem 3.1.

The value function u above is finite, namely u(1) = log(2), and, more
generally, u(z) = log(2) + log(z), although the process S does not admit
an equivalent martingale measure. In other words, log-utility optimization
does make sense although the process S obviously allows for an arbitrage as
So = 1 while Sl = 2.

We next resume two notions from [161]. The tilde indicates again that
we are in the frictionless setting.

Definition 5.4. Let S = (S’t)ogtg’f be a semi-martingale.
Forx > 0,y > 0, define the sets

Cla) = {Xr:0< Xp <a+ (H-S)r}

of non-negative claims attainable at price x, where H runs through the pre-
dictable, S-integrable processes such that (H - S); = —x, for all0 <t < T.
Dually let

D(y) = {yZr)
where Zr now runs through the terminal values of super-martingale deflators
(Zt)ost<r € 2.

Let us comment on the issue of non-negativity versus strict positivity in
the definition of D(y). This corresponds to the difference between equiva-
lent local martingale measures () for the process S versus local martingale
measures which only are absolutely continuous with respect to P. It is well-
known in this more classical context that the norm closure of the set M¢(S)
of equivalent local martingale measures () equals the set of absolutely contin-

uous martingale measures. Similarly, to obtain the norm closedness of 15(1)
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in L'(PP) in the above theorem we have to allow for non-negative processes
(Zi)o<t<T € Z rather than strictly positive processes (Z;)o<i<r € Z°€.

It was shown in [161], Proposition 3.1 that the condition (EMM) of
existence of an equivalent local martingale measure is sufficient to imply the
crucial polarity relations between C(z) and D(y) similarly as in Theorem
4.22 above (compare 5.8 below.) At the time of the writing of [161] the
condition (EM M) seemed to be the natural assumption in this context.
But, as mentioned at the beginning of this chapter, it was observed notably
by I. Karatzas and C. Kardaras that the polarity between C(z) and D(y)
still holds true if one only imposes the local version of the condition (EM M)
which is the condition (NUPBR) defined below.

Definition 5.5. [149, Def. 4.1] Let S = (S))o<i<r be a semi-martingale.
We say that S allows for an unbounded profit with bounded risk if there is
a > 0 such that, for every C' > 0, there is a predictable, g—mtegmble process
H such that

(H-8) = -1, 0<t<T,

while

P[(FI-S)T>C]>a.

If S does not allow for such profits, we say that S satisfies the condition
(NUPBR) of no unbounded profit with bounded risk.

While the name (NUPBR) was only introduced in 2007 in the above
quoted paper [149], the concept appears already much earlier in the literature.
In [67] the equivalent condition stated in Theorem 5.6 (i”) below and its
relation to no arbitrage was extensively studied. It also appears in [132]
under the name of “no asymptotic arbitrage of first kind” in the more general
setting of large financial markets.

We now turn to a result form the paper [149] of I. Karatzas and C. Kar-
daras (Theorem 5.6). While these authors deal with the more complicated
case of general semi-martingales (even allowing for convex constraints) we
only deal with the case of continuous semi-martingales S. This simplifies
things considerably as the problem boils down to a careful inspection of Gir-
sanov’s formula.

Fix the continuous semi-martingale S. By the Bichteler-Dellacherie the-
orem (see, e.g., [199] or [12]), S uniquely decomposes into

S=M+A (205)
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where M is a local martingale starting at My = Sp, and A is predictable
and of bounded variation starting at Ay = 0. These processes M and A are
continuous too and the quadratic variation process (M), is well-defined and
a.s. finite. The so-called “structure condition” introduced by M. Schweizer
[222] states that dA, is a.s. absolutely continuous with respect to d{M),. If S
fails to have this property, it is well-known and easy to prove that S allows
for arbitrage (in a very strong sense made precise, e.g., in [149, Def. 3.8]).
The underlying idea goes as follows: if dA, fails to be absolutely continuous
with respect to d<]\~4 >t then one can well-define a predictable trading strategy
H = (H;)o<t<r which equals +1 where dA; > 0 and d<M >t = 0 while it
equals —1 where dA;, < 0 and d(M), = 0. The strategy H clearly yields an
arbitrage.

As S is strictly positive we may therefore write, by slight abuse of notion,

dSt

t

where M is a local martingale and p; a predictable process. The reader
who is not so comfortable with the formalities of general continuous semi-
martingales may very well think of the example of an SDE

dSt

t

= O'tth + Qt(O't dt) (207)

where W is a Brownian motion and o, ¢ are predictable processes, without
missing anything essential in the subsequent arguments.
Assuming in (206) the integrability condition

T
f AV, < 0, as. (208)

0

we may well-define the Girsanov density process
N t t
Zy = exp{ J 0udM, — —f Qud<M>u} 0<t<T. (209)

By It6 this is a strictly positive local martingale, such that ZS is a local mar-
tingale too. In particular (209) yields an equivalent local-martingale deflator.
The reciprocal N = Z~1 is called the numéraire portfolio, i.e.

t t
N, = exp {f 0udM, + %J Qid<M>u} . (210)
0 0
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By Itd’s formula N is a stochastic integral on S, given by % N, _ Qtdsst,

and enjoys the property of being the optimal portfolio for the log—utlhty
maximizer (compare Theorem 3.1). For much more on this issue we refer,
e.g., to [11] and [149].

Our aim is to characterize condition (208) in terms of the condition
(NUPBR) of Definition 5.5. Essentially (208) can fail in two different ways.
We shall illustrate this with two prototypical examples (compare [65]) of
processes S , starting at Sy = 1. First consider

dSt

t

—dW, + (1 — ) 2dt, 0<t<l, (211)

so that Sé_e o?dt < oo, for all € > 0, while Sé o?dt = oo almost surely. In
this case it is straightforward to check directly that the sequence (Nl 1 )OO

n=1’

where N is defined in (210), yields an unbounded profit with bounded risk,
as N > 0 and lim;_,q Nt = o0, a.s.
The second example is

dSt

t

— AW, + t 2 dt, 0<t<l, (212)

so that §; ofdt = oo, for all & > 0. This case is trickier as now the singularity
is at the beginning of the interval [0, 1], and not at the end. This leads to
the concept of immediate arbitrage as anlayzed in [65]. Using the law of the
iterated logarithm, it is shown there (Example 3.4) that in this case, one
may find an S-integrand H such that H - S > 0 and P[(H - S); > 0] = 1, for
each t > 0. For the explicit construction of H we refer to [65]. As one may
multiply H with an arbitrary constant C' > 0 this again yields an unbounded
profit with bounded risk.

Summing up, in both of the examples (211) and (212) we obtain an un-
bounded profit with bounded risk. These two examples essentially cover the
general case.

We have thus motivated the following local version of the Fundamental
Theorem of Asset Pricing (see [149, Th. 4.12] for a more general result).

Theorem 5.6. Let S = (gt)ogth be a continuous semi-martingale of the
form

dS
— — dM, + dA,,

t
where (My)o<i<r @5 a local martingale and (Ay)o<i<r @ predictable process of
finite variation. The following assertions are equivalent.
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(1) The condition (NUPBR) of no unbounded profit with bounded risk
holds true (Def. 5.5).

(i) Locally, S satisfies the condition (NFLVR) of no free lunch with
vanishing risk.

(i") The set C(1) is bounded in L°(Q, F,P).

(1) We have dA; = p;d{M); and the process g satisfies SOT 0?d{M); < 0,
a.s.
(i) We have dA, = 0,d{ M), and the Girsanov density process Z

¢ ¢
0 0

is a well-defined strictly positive local martingale.
(i1") We have dA; = 9,d{M), and the numéraire portfolio N = Z~!

¢ ¢
N; = exp {J oudM,, + %f QZd<M>u} : 0<t<T, (213)
0 0

is a well-defined process (and therefore a.s. finite).

(iii) The set of equivalent super-martingale deflators Z¢ is non-empty
(ESD).

(13i") The set of equivalent local martingale deflators in Zeloe s non-
empty (ELD).

(14i") Locally, the set of equivalent martingale measures for the process S
18 non-empty.
Proof. (i1) < (it") < (ii') = (i17") < (i17") = (4i7) is obvious, and (i) < (1)
holds true by Definition 5.5.

(i17) = (i") : By definition, C(1) fails to be bounded in LY if there is a > 0
such that, for each M > 0, there is X; = 1 + (H - S)y € C(1) such that

P[X; > M] > a. (214)
Fix Z € Z¢. The strict positivity of Zr, implies that

B := inf{E[Zr14] : P[A] = o}

is strictly positive. Letting M > % in (214) we arrive at a contradiction to

the super-martingale assumption

1 =E[ZXo] = E[ZrX1] = BM > 1.
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(1) = (27) This is the non-trivial implication. It is straightforward to
deduce from (7) that there is a predictable process g satisfying (206) (compare
[222] and the discussion preceding Theorem 5.6). We have to show that (208)
is satisfied. The reader might keep the examples (211) and (212) in mind.
Define the stopping time

t
7 = inf {t €[0,T]: f 2d{ M), = oo} :
0
Condition (i7) states that P[r < o] = 0. Assuming the contrary, the set
{r < oo} then splits into the two F,-measurable sets

¢
A = {1 <0} n {}gnf o2d{ M), = oo},

0

t
At = {1 <0} n {limf 2d{ M), < oo} ,
t,/T 0
where ¢ refers to “continuous” and d to “discontinuous”.

If P[A¢] > 0 it suffices to define the stopping times

t
T, = inf {t : J 2d{ M)y, = 2"} .
0
For each n € N, the numéraire portfolio N, at time 7, is well-defined and
given by

N, = exp {J 0udM, + 1 J gid<M>u} :

0 0

It is straightforward to check that NTn tends to +o0 a.s. on A, which gives
a contradiction to (7).

We still have to deal with the case P[A¢] = 0 so that we have P[A¢] > 0.
This is the situation of the “Immediate Arbitrage Theorem”. We refer to [65,
Th. 3.7 for a proof that in this case we may find an S-integrable, predictable
process H such that (H-S); > 0, for all 7 < ¢t < T almost surely on A%. This
contradicts assumption (7). )

(17") = (i') : Suppose that the Girsanov density process Z is well-defined
and strictly positive. We may define, for € > 0, the stopping time

Tszinf{tE[O,T]i Zyze b or §t>€_1},

so that 7. increases to infinity. The stopped process S7 then admits an
equivalent martingale measure, namely % =Z,..

(7') = (1) obvious as (NUPBR) is a local property. [
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Remark 5.7. Kostas Kardaras kindly pointed out that there is a more direct
way of showing the implication (i) = (ii) above (see [154]). While our above
argument, i.e. reducing to the case of the examples (211) and (212), allows for
some additional insight, there is an easier proof of the implication (i) = (i7)
available.

Assuming (i) and using the above notion, define, similarly as in (213), for
n € N, the process

t t
N = exp U o\MdM, + %J gg”>d<M>u} ,  0<t<T, (215)
0 0
where
an) = 0t1{j)<n}- (216)

Clearly (N} ”)0<t<T is a well-defined local martingale. Suppose that (i)
fails, i.e. that §. 0?d(M), = o on a set A € Fr with P[A] > 0. Then it again
is straightforward to check that the sequence of random variables (N})*_;
tends to infinity, almost surely on the set A. In other words, the sequence
of processes (INV]")o<t<r defines an unbounded profit with bounded risk, a
contradiction to ().

We now can show the polarity between the sets C(x) and D(y) as defined
in Definition 5.4 similarly as in Theorem 4.22 above.

Theorem 5.8. Let the strictly positive, continuous semi-martingale S sat-
isfy one of the equivalent conditions listed in Theorem 5.6 and let x,y > 0.

(i) C(x) and D(y) are convez, closed (w.r. to convergence in measure),
solid subsets of L% (R).
() For g,h € LY (R) we have
geCz) iff Elghl<azy, foral heD(y), and
heD(y) iff E[lgh] <wzy, forall geC(x).
(i17) The constant function z1 is in C(x).
Proof. Let (7k)72; be a localizing sequence such that each stopped process
Sk .= S™ admits an equivalent martingale measure Q*. We also let z = y = 1

to simplify notation and write C*k and D* for the sets corresponding to the
process S*.
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(1) We have to show the closedness of C and D. As regards C let (¢")*_,
be a sequence in C, converging a.s. to g € L%. For each k € N the sequence
(0" Lirp—oo} )y s in C* and converges a.s. to gl —.; which also is in ck
by the closedness of C* established in [63]. Let H* be a predictable, S*-

integrable, admissible integrand such that

z+ (H* - S*)p = glin oy

By [64] and passing to a sequence of convex combinations of the (H™)®*_;

we may suppose that, for each k, the sequence of integrands (H™ Lo r, a77]) s
converges to a limit, which we temporarily denote by H*. For k; < ky we
have that the restriction of H* to [0, 7, A T] equals H* if we have done
the construction of (H™)*_, in a “diagonal” way. Hence we may well-define
the limit H of the sequence (H*){> | by pasting things together. This limit is
a predictable, admissible, S—in:cegrable process H such that z + (H - S ) = g.

This shows the closedness of C.

The closedness of D follows by the same argument of a “Fatou-limit” as
in the proof of Theorem 4.22. The remaining properties of the sets C and D
are obvious.

(ii) Let g € LY (R) and denote by ¢g* the random variable g* = g1, o).
For h e LY (R), we have E[gh] <1 iff E[g*h] <1, for all k. Also by (i) we
have that g € C iff ¢* € C, for all k. This shows the first line of (ii) and
the second line follows by the same token.

(#4i) is obvious. |

Remark 5.9. The above polarity between C(z) and D(y) is sufficient to
prove the basic duality Theorem 2.2 of [161]. Indeed, the abstract version of
this theorem, which is Theorem 3.2 in [161] was precisely formulated in terms
involving only the validity of the polarity relations as listed in Theorem 5.8.

The case of proportional transaction costs

We now give a similar local version of the Fundamental Theorem of Asset
Pricing in the context of transaction costs. We shall use the subsequent
variants of the concept of no arbitrage. The first notion of the subsequent
definition is from [107] with an additional boundedness condition in the case
(b) below. We need this additional condition here as we now use a different
notion of admissibility than in [107].

Definition 5.10. Let S = (S;)o<t<r be a strictly positive, continuous process.
We say that S allows for an obvious arbitrage if there are a > 0 and [0,T] U
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{oo}-valued stopping times o < T with Plo < o] = P[t < w] > 0 such that
either

(a) S; = (1 + a)S,, a.s. on {o < oo},
or
(b) Sr < 1125, a.s. on {o < w}.

In the case of (b) we also impose that (S;)s<i<r s uniformly bounded.
We say that S allows for an obvious immediate arbitrage if, in addition,
we have

(a) Sy = S5, fort € [o,7],a.s. on {oc < w0},

or
(b) Sy < Sy, forte[o,7],as. on{oc < w}.

We say that S satisfies the condition (NOA) (resp. (NOIA)) of no obvi-
ous arbitrage (resp. no obvious immediate arbitrage) if no such opportunity
exists.

It is indeed rather obvious how to make an arbitrage if (NOA) fails,
provided the transaction costs 0 < A < 1 are sufficiently small (compare
[107]). Assuming e.g. condition (a), one goes long in the asset S at time o
and closes the position at time 7. In case of an obvious immediate arbitrage
one is in addition assured that during such an operation the stock price will
never fall under the initial value S,.

In the case of condition (b) one does a similar operation by going short
in the asset S. The boundedness condition in the case (b) of (NOA) makes
sure that such a strategy is admissible.

Next we formulate an analogue of Theorem 5.6 in the setting of transac-
tion costs.

Theorem 5.11. Let S = (Sy)o<i<r be a strictly positive, continuous process.
The following assertions are equivalent.

(i) Locally, for each 0 < X\ < 1, there is no obvious immediate arbitrage
(NOIA).
(i) Locally, for each 0 < X\ < 1, there is no obvious arbitrage (NOA).

(¢") Locally, for each 0 < A < 1, the process S does not allow for an
arbitrage under transaction costs A, i.e.

CFn LY = {0}, (217)

107



for each k, where C* is the cone given by Definition 4.7 for the stopped
processes S™, and (Ty)7, is a suitable localizing sequence.

(¢") Locally, for each 0 < A < 1, the process S does not allow for a free
lunch with vanishing risk under transaction costs A, i.e.

Ckn L* n LT = {0}, (218)

for each k, where the bar denotes the closure with respect to the norm topol-
oqy of L®.

(¢") Locally, for each 0 < X\ < 1, the process S does not allow for a free
lunch under transaction costs A\, i.e.

Ckn L* n LT = {0}, (219)

for each k, where now the bar denotes the closure with respect to the weak
star topology of L.

(ii) Locally, for each 0 < \ < 1, the condition (CPS?*) of existence of a
A-consistent price system holds true.

(ii')  For each 0 < X\ < 1 the set Z'°“¢ of \-consistent equivalent local
martingale deflators is non-empty.

Proof. (i") = (i) = (i") = (i') = (i) is straight-forward, as well as (ii) <
(id").
(i) = (ii): As assumption (i¢) is a local property we may assume that S
satisfies (NOIA).

To prove (ii) we do a similar construction as in ([107], Proposition 2.1):
we suppose in the sequel that the reader is familiar with the proof of [107],
Proposition 2.1 and define the — preliminary — stopping time g; by

@1:inf{t>03§—é>1+>\or§—é<1%\}'

In fact, in [107] we wrote  instead of A which does not matter as both

quantities are arbitrarily small.
Define the sets A, A7, and AY as

Al ={01 < 0,55 = (14 \)So}, (220)
AI = {@1 < OO,S@I = HL)\SO}a (221)
AV = {5, = 0}. (222)
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It was observed in [107] that assumption (NOA) rules out the cases

P[A{] = 1 and P[A;] = 1. But under the present weaker assumption
(NOIA) we cannot a priori exclude the possibilities P[A]] = 1 and P[A]] =
1. To refine the argument from [107] in order to apply to the present setting,
we distinguish two cases. Either we have P[A{] < 1 and P[A]] < 1; in this
case we let p; = 01 and proceed exactly as in the proof of ([107], Proposition
2.1) to complete the first inductive step.

The second case is that one of the probabilities P[A]] or P[A;] equals
one. We assume w.l.g. P[A]] = 1, the other case being similar.

Define the real number § < 1 as the essential infimum of the random
variable ming<;<g, g—; We must have § < 1, otherwise the pair (0, g;) would
define an immediate obvious arbitrage. We also have the obvious inequality

1
B =1
We define, for 1 > v > (3 the stopping time

@Yzinf{t>0 : g—é)l—k)\org—;év}.

Defining A7" = {Sp = (1 + X)So} and A7 = {S; = So} we find an

a.s. partition of A into the sets AY7" and A)7. Clearly P[A]™] > 0, for

1 >~ > 4. We claim that li{% P[A]™] = 0. Indeed, supposing that this limit,
v

were positive, we again could find an obvious immediate arbilrage as in this
case we have that P[A}"] > 0. Hence the pair of stopping times

0 = 0 Ui y=pso) + OLis 4=(14x)50)
o] 27
and
T = él-ﬂ{séfzﬁso} + OOﬂ{ng:(HA)SD}

would define an obvious immediate arbitrage.
We thus may find 1 > v > § such that P[A]""] < 3. After having found
this value of v we can define the stopping time p; in its final form as

01 := 0.
Next we define, similarly as in (220) and (221) the sets
AT ={01 < 20,5, = (1+ \)So}
Al_ = {Ql < OO,SQl = PVSO}

to obtain a partition of 2 into two sets of positive measure.
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As in [107] we define a probability measure 1 on F, by letting dQl
be constant on these two sets, Where the constants are chosen such that
Q1[AT] = 1+A 5 and Q1[AT] = e 5. We then may define the 1-martingale

(St) 0<t<er DY R
St:EQ1[591i‘E]7 0<t< 01,

to obtain a process remaining in the interval [y.Sg, (1 + X)So].
The above weights for (); were chosen in such a way to obtain

go = ]EQI [SQI] = Sp.

This completes the first inductive step similarly as in [107]. Summing
up, we obtained p,Q; and (5})0<t<m precisely as in the proof of ([107],
Proposition 2.1) with the following additional possibility it may happen
that 0, does not stop when S; first hits (1 + A).Sy or 1+_/\7 but rather when
Sy first hits (1 + \)Sy or xSy, for some 1%\ < x < 1. In this case we have
P[AY] = 0 and we made sure that P[A]] < 3, i.e., we have a control on the

probability of {S,, = £So}.

We now proceed as in [107] with the inductive construction of g,, @,
and (S))o<i<,,. The new ingredient is that again we have to take care (con-
ditionally on F,, ,) of the additional possibility P[Af] = 1 or P[A,] = 1.
Supposing again w.lg. that we have the first case, we deal with this possibility
precisely as for n = 1 above, but now we make sure that P[A ] < 27"

This completes the inductive step and we obtain, for each n € N, an
equivalent probability measure @, on F,, and a @),-martingale (5})0<t<gn
taking values in the bid ask spread ([1+/\St7 (1 + A)Si])o<t<o,- We note in
passing that there is no loss of generality in having chosen this normalization
of the bid ask spread instead of the usual normalization [(1 — X)S’,S’] by
passing from S to S’ = (1 —4)S and from A to X' = 3

There is one more thing to check to complete the proof of (ii) : we have to
show that the stopping times (o,);; increase almost surely to infinity. This
is verified in the following way: suppose that (g,)_, remains bounded on a

set of positive probability. On this set we must have that % equals (1+ )

or 1%\, except for possibly finitely many n’s. Indeed, the above requirement
P[A; ] < 27™ makes sure that a.s. the novel possibility of moving by a value
different from (1+ \) or 1%\ can only happen finitely many times. Therefore
we may, as in [107], conclude from the continuity and strict positivity of the
trajectories of S that o, increases a.s. to infinity which completes the proof

of (i1).

(17) = (i") As (it) as well as (i”) are local properties holding true for
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each 0 < X < 1, it will suffice to show that (C'PS*) implies (219), for fixed
0< A<l
Let (S’ , Q) be a \-consistent price system and define the half-space H of
L*(Q, F,P)
H = {¢p € L* : Eqlgr] < 0},

which is o*-closed and satisfies H n LY = {0}. It follows from Proposition
4.5 that, for all self-financing, admissible trading strategies (¢?, o} )o<i<r We
have that (¢9Z + v} Z})o<i<r is a super-martingale under P, which implies
that C n L® n LT = {0}. Hence (219) holds true. [

Recall Theorem 4.22 from the previous chapter. It states the polarity
between the sets €(z) and D(y) in LY which is required in Proposition 3.1
of [161]. This result which will turn out to be the basis of the duality theory
of portfolio optimization in the next.

The crucial hypothesis in Theorem 4.22 is the assumption of (CPS*), for
each 0 < X < 1. In fact, it is sufficient to impose this hypothesis only locally
i.e. under one of the conditions listed in Theorem 5.11. For a more general

version of the subsequent result which also pertains to cadlag processes we
refer to [48] and [51].

Theorem 5.12. Suppose that the continuous, strictly positive process S =
(Sy)o<i<r satisfies condition (CPSN) locally, for each 0 < N < 1, and let
x,y>0. Fixr 0 < A <1, as well as x > 0,y > 0.

(i) The sets €(z), D (y) defined in Definition 4.21 are convez, closed (w.r to
convergence in measure), solid subsets of L% (R). Fiz z > 0,y > 0 and
o1 € LL(R).

(1) For ¢ € LY (R), we have ¢ € €(z) iff

{7, Zpy < wy, (223)

for all Z% € D(y), and iff this holds true, for all Z% € D'(y), i.e., which are
the terminal values of a local martingale deflator Z = (Z?, Z})o<i<r.

(¢i") For Z9 € LY.(R) we have Z3. € D(y) iff
(o7, Z) < ay (224)

for all ©9% € €(x).

(¢ii) The set €(x) is bounded in LY (R) and contains the constant function
1.
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Proof. (i) As in the proof of Theorem 5.8 let (73)72; be a localizing sequence
such that each stopped process S¥ = S™ admits a \'-consistent price system,
for each ' > 0. Again we let + = y = 1 and write ¢€* and ©* for the sets
corresponding to S*. Also fix 0 < A < 1.

To show that € is closed with respect to the topology of convergence in
measure, fix a sequence (¢4)X_; € € which converges a.s. to some o1 € LI (R).
As in the proof of Theorem 5.8, consider, for fixed £ > 1, the random variables
@717, —0y Which are elements of ¢*. The limit orl{z,—y then is in ¢* too.
Using Lemma 4.10 and and repeating the proof of Theorem 4.13 we can
conclude that pr € € by letting k tend to infinity.

As regards the closedness of D let (Z%7, Z1™)* | be a sequence of super-
martingale deflators for S in the sense of Definition 4.20 such that (Z™)%_,
converges a.s. to some Z9. € L% (R). Repeating once more the construction
of a Fatou-limit as in the proof of Theorem 4.22 we conclude that Z% is the
terminal value of a super-martingale deflator (Z7, Z})o<i<7-

The remaining assertions of (i) are rather obvious.

(4¢) By (i) and Theorem 4.22 we have that ¢ € € iff @)1, oy is in
¢* for each k € N. This is the case iff, for each k € N, and each A-consistent
price system Z* = (Zto’k7 Ztl’k)ogtsT for the process S*, we have

E[Z3 051 oy | < 1 (225)

We claim that (225) holds true, for each Z%* € ©F iff it holds true for each
Z9 € ® and iff it holds true, for every Z% which is the terminal value of the
first coordinate of a local martingale deflator (Z7, Z})o<i<r. This is a slightly
delicate point as, in the case of transaction costs A, the consistent price
systems do not enjoy the concatenation property which one usually applies
for density processes of equivalent martingale measures in the frictionless
setting (compare the discussion after Corollary 1.12).

Here is the way to overcome this difficulty. Suppose that there is some &
and Z_Op’k € D" such that (225) fails. We have to construct a A-consistent local
martingale deflator Z such that (225) also fails for Z% in place of Z%k. By
Theorem 4.22 we may suppose that Z%k is, in fact, the terminal value of the
first coordinate of a A-consistent price system Z* = (Z k Z1 ’k)ogth. In fact,
we may suppose that Z is a A-consistent price system, for some A > 0 which

A

is strictly smaller than A. Indeed, by hypothesis, there is some 5-consistent

price system Z% = (Z>F, ZM¥)o<i<r for the process S¥. We have
E[Z7" ¢ Lin=0)] € [0, 0]

If (225) fails for Z%% then it also fails for a convex combination (1 —
w)Z* + pZ%, for some p > 0 small enough. This convex combination then is
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a A-consistent price system of S*, for some 0 < A < A\. Summing up, we may
and do assume that the random variable Z%’“, for which (225) fails, pertains
to a A- consistent price system Z*, for some 0 < A < .

After this preparation we have some room to manouvre in the construc-
tion of a concatenation. For € > 0 to be specified below, find an e-consistent
local martingale deflator (Zf)o<;<7 for the process S. Define

o Zf’k, for 0<t<T AT,
47 = 0.k 22
t Zk e for T <t<T,
. 1—e)Ztk for 0<t<m AT,
Z, = 51k Z0€
¢ (1-e)zf T, for 7 <t<T.

One checks that Z = (Z0, Z})o<i<r is a local martingale such that, for
1

€ > 0 sufficiently small, the quotient % remains in [(1—X)S;, Sy, for 0 < ¢ <
T. In other words, we constructed a A-consistent local martingale deflator Z.

As Z coincides with Z* on {7, = o0} we obtain
B[220 o] > 1.

This contradiction finishes the proof of (7).

(¢4') Fix Z9 € LY (R) such that (224) holds true, for all ¢ € €. By
Theorem 4.22 we have that Z%Il{fk:oo} is in ©F, for each k. Therefore there is
a A-consistent price system Z%F = (Z k. Z} ’k)ogth for the process S* such
that

Zp* > 231 ey,

By the argument in the proof of (ii) above we may find a A-consistent
local martingale deflator Z% = (2%, Z"*)o<i<r for S such that we still have

Z%k = (1 — k_l)Z%]l{Tk=oo}.

By repeating once more the construction in the proof of Theorem 4.22
we may pass to a Fatou limit Z of the sequence (Z*){" . Hence Z is a \-
consistent super-martingale deflator verifying Z2 > Z%. We thus have shown
that (224) implies Z% € ©. The reverse implication follows from the definition
of a super-martingale deflator.

(#ii) is obvious. |
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6 Portfolio Optimization under Proportional
Transaction Costs

As in Chapter 2 we fix a strictly concave, differentiable utility function
U: 10,00 — R, satisfying the Inada conditions (29). As usual we have
to impose the following additional regularity condition in order to obtain
satisfactory duality results.

Definition 6.1. ([161]): The asymptotic elasticity of the utility function
U: 10,00 — R is defined as

AE(U) = limsup xg(g)

(226)

We say that U has reasonable asymptotic elasticity if AE(U) < 1.

For example, for U(z) = %, where v € | — o0, 1[\{0}, we have AE(U) =
v < 1. We note that, for an increasing concave function U we always have
AE(U) < 1. A typical example of a function U for which AE(U) = 1 is
Uz) = @, for  sufficiently large, as one verifies by calculating (226).
We again denote by V' the conjugate function
V(y) = sup{U(x) —xy : © > 0}, y > 0,

and refer to [161, Corollary 6.1] for equivalent reformulations of the asymp-
totic elasticity condition (226) in terms of V.

We adopt the setting of Chapter 5 where we considered a continuous price
process (S;)o<i<r Which locally satisfies condition (C'PS?) of existence of \-
consistent price systems, for all 0 < A < 1. We again assume throughout this
chapter that the underlying filtered probability space (2, F, (Ft)o<t<t, P) is
Brownian so that every (F;)o<i<7-martingale is continuous.

We have established in Theorem 5.12 that the sets €(1) and D(1) satisfy
the requirements of Proposition 3.1 in [161]. We therefore are verbatim in
the setting of ([161], Th 2.2 and 3.2). For the convenience of the reader
we restate the aspects of these theorems which are relevant in the present
setting.

Theorem 6.2. Suppose that the continuous, strictly positive process S =
(Sy)o<i<r satisfies condition (CPS™) locally, for each 0 < X < 1. Fiz X\ > 0,
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and define the primal and dual value function as

lw) = s BV (227)
o) = jnf EIV(ZR)] (228)

Suppose that the utility function U has reasonable asymptotic elasticity
(226) and that u(z) < oo, for some x > 0. The following assertions hold
true.

(1) The functions u(x) and v(y) are finitely valued, for all x > 0,y > 0,
and mutually conjugate
v(y) = suplu(x) — xy], u(z) = inf[v(y) + zy].
x>0 y>0

The functions u and v are continuously differentiable and strictly concave
(resp. convex) and satisfy

u'(0) = —0'(0) = oo, u'(00) = v'(o0) = 0.

(ii) The optimizers $%(x) in (227) (resp. Z3(y) in (228)) exist, are
unique, and take their values a.s. in 10,00[. If x > 0 andy > 0 are related by
u'(z) =y (or, equivalently, x = —v'(y)), then ¢%(x) and Z%(y) are related
by

Zp(y) = U'(@p(2),  ép(z) = =V'(Z1(y)).

(1ii) For x > 0 and y > 0 such that u'(z) = y we have

ry = E[7(2) Z3(y)].

Hence, for every pair (@, 2) of primal and dual optimizers, i.e. an admis-
sible, self-financing © and a supermartingale deflator Z with terminal values
P and Zy, the process (Z)¢] + Zf@%)KtéT = (Z0(8}) + &1S))ose<r is a
uniformly integrable martingale, where S = g—;

In order to find a candidate for the shadow price process as in chapter 2
above we also need the following result which again is taken from previous
work of D. Kramkov and the present author [161].

Proposition 6.3. Under the assumptions of Theorem 6.2 the subset D'¢(1)
of D(1) (see Definition 4.21 and 4.20) for the notion of a local martingale
deflator) satisfies

sup  E[gZp] = sup E[gZz], (229)
Z9.eDloc(1) Z9.e9(1)
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for each g € €(1), and is closed under countable convex combinations. Hence

— inf E[V(y2? > 0.
v(y) . [V (yZz)], y

We thus may find a sequence (2%, = (Z", Z}™)o<r<r), of local
martingale deflators such that
o(y) = Tim B[V(y73")]. (230)
n—ao

Proof. The equality (229) was shown in Theorem 5.12 and the remaining
assertion follows from Proposition 3.2 in [161]. |

In order to formulate the main result of this chapter (Theorem 6.5 below)
in proper generality we still need the following notion which was introduced
by C. Bender [14]. Note that this property is satisfied for continuous processes
which are a local martingale with respect to a measure () equivalent to P.
We shall see in chapter 8 below that also fractional Brownian motion enjoys
this property. This is remarkable as fractional Brownian motion is far from
being a martingale.

Definition 6.4. Let X = (X})i=0 be a real-valued continuous stochastic pro-
cess and o a finite stopping time. Set o = inf{t > o | X; — X, > 0} and
o_ =inf{t > o | X; — X, < 0}. Then we say that X satisfies the condition
(TWC) of “two way crossing”, if o, = o_ P-a.s.

We can now formulate a theorem which, jointly with Theorem 7.3 and
Theorem 8.4, is a central result of the present lectures.

Theorem 6.5. As in Theorem 6.2 suppose that the continuous, strictly pos-
itive process S satisfies condition (CPS™) locally, for each 0 < X < 1.
Suppose in addition that S satisfies the two way crossing property (TWC).

Consider again transaction costs 0 < A < 1, as well as a utility function U
having reasonable asymptotic elasticity, and suppose that the value function
u(z) in (227) is finite, for some x > 0. Fiz x > 0 and let y = u/(z).

Then the optimizer Z%(y) € D(y) in (228) is the terminal value of the
first coordinate of a local martingale deflator (Z°(y), Z}(y))o<i<r-

In fact, we could have dropped the condition (CPSY) locally, for all
X > 0, as it follows already from the assumption (TW('). Indeed, the two
way crossing property clearly implies the no obvious immediate arbitrage
condition (NOIA) locally (Def. 5.10). We have seen in Theorem 5.11 that
the latter condition is equivalent to the condition (C'PS*") locally, for each
0< XN <1
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We shall split the message of Theorem 6.5 into the two subsequent results
6.6 and 6.7 which serve to clarify the role of the assumption (TW ). Clearly
the two subsequent results imply Theorem 6.5.

Theorem 6.6. Under the assumptions of Theorem 6.2 suppose in addition

that the liquidation value process V% associated to an optimizer ¢ of (227),
defined as

VI() = @)+ (1 =N () S = (9) 7S, 0<t<T, (231)

is almost surely strictly positive, i.e. infoc,cp VI9(P;) > 0, a.s.

Then the assertion of Theorem 6.5 holds true, i.e. the dual optimizer
Z0(y) € D(y) is the terminal value of the first coordinate of a local martingale
deflator (Z2(y), Z(y))o<i<r € Zlo0°.

Proposition 6.7. Under the assumptions of Theorem 6.5, i.e. assuming
(TWC), the liquidation value process VU9(3;)o<i<r in (231) is strictly posi-
tive.

We need some preparation for the proof of these two results. We let y = 1
and drop it in the sequel. Applying Proposition 6.3 we associate to the unique
dual optimizer Z9 of (228) an approximating sequence ((Z")o<i<r)>_, of local
martingale deflators satisfying (230). As in the proof of Theorem 4.22 we
may suppose that this sequence Fatou-converges to a cadlag supermartingale
(Zt)0<t<T Its terminal value Z0 is the unique dual optimizer in (228).

Our aim is to show that the process Z is a local martingale. We define
its Doob-Meyer decomposition

dZ0 = dM? — dAY, (232)
dZ} = dmM} — dA}L, (233)

where M is a local martingale and the predictable processes A% and A! are
non-decreasing. To prove the conclusion of Theorem 6.6 we have to show
that they vanish. We start by showing that A% and A! are aligned in a way
described by (235).

Lemma 6.8. Under the assumption of Theorem 6.2, lete >0 and o < 7 be
[0, T'|-valued stopping times such that 1 —e < 2= < 1+ ¢. Then

(1—2)(1 - NS,E [212 - Agm] <E [,211 - A},yfg] (234)
< (1+2)S,E| A0 - 427, |,

117



Hence
(1-\)SdAY < dA} < S,dA? (235)

which s the symbolic differential notation for the integral inequality

T . T .
1pdA} < f Sy 1pdA? (236)

0

T
f (1 —A)S1pdAY gj
0 0

which we require to hold true for every optional subset D < Q x [0,T].
Hence we have for the process ¢ in (231) that

T T
| erads el = | vineoad (237)
0 0

Proof. Before abording the proof we observe that (235) may intuitively be
interpreted as the assertion that the ratio % takes values in the bid ask
spread [(1 — X\)Sy, St].

To show (234) we may and do assume that the stopping times o and 7
are such that we have

Z,=P—1lim Z" and Z, = P—lim Z", (238)
n—0oo n—0oo

the limits taken in probability.

Indeed (234) holds true iff it holds true for 0" = (o0 + h) A (T'— h) and
" = (7 4+ h) A (T — h) instead of o and 7, for h > 0 arbitrarily close to zero.
This follows from the right-continuity and the uniform integrability of the
process A.

For all but at most countably many h > 0 we must have that the process

7 is a.s. continuous at time o® and 7". This implies that the Fatou-limit Z
of (Z™)¥_, then satisfies

Zgn =P — lim 77, and Zpn =P~ lim 77, (239)
In [50] and [51] the interested reader can find much more on this topic.
Summing up, there is no loss of generality in assuming (238). By passing
to a subsequence of (Z")X_, we may assume that the convergence in (238)
takes place almost surely. By stopping there is also no loss of generality in
assuming that all stopped local martingales (Z™)™ are actually true martin-
gales. We therefore obtain a.s.

lim (207 — Z0m) = 20 — 20 = (Mg - Mg) - (Ag - Ag) . (240)

n—ao0
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lim (Zn — ZM) = 22— 7} = (M; - M;) - (fg - A},) . (241)

n—00
We then have that
lim lim E [(va” — 701 {Zg,nizg,nzc}\fg] —E [AE - Agm] ,(242)

o
C'—00 n—0

holds true a.s., and similarly

lim lim E [(ZTL” —Z') 1 {Zi,n_zé,n%ﬂfg] —E [Ai - A},|fg] . (243)

C'—00 n—00

Indeed, we have
0=E[2" - Z|F.)
=E [(Zg’n —Z,") ]1{22’”—22’"20}”:0] +E [(Zg’n —Z,") ]1{22*”—22’"<c}|]:0} '

o

Note that

lim lim E [(ZE’” = Z3") Ligon_g0m .yl T U]

C'—00 n—00

—E|20- 20F,| - -E|40 - 497, ],

where the last equality follows from (240). We thus have shown (242) and
(243) follows analogously.
We even obtain from (242) and (243) that

lim lim E [ZS’”]l {Zg,n>c}|fg] —E [AS - Agm] (244)
and ) )
lim lim E [ZTL"IL {Z;,n20}|]-"0] ~E [Ai - A},|]-"U] (245)

C'—00 n—0

Indeed, the sequence (Z2")2_, converges a.s. to Z2 so that by Egoroff’s
theorem it converges uniformly on sets of measure bigger than 1—¢. Therefore
the terms involving Z2™ in (242) (resp. Z}™ in (243)) disappear in the limit
C — .

Finally, observe that

Zi e [(1= NS, 8] < [(1 = 2)(1 = NS, (1 +)5,].
Conditioning again on JF, this implies on the one hand

im Tim B | 211 s o)\ Fs | = E [ AL = A}, |

|
C'—00 n—0 T
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and on the other hand
E[ALl - AL|F,] B[22 pen )| Fo]

= lim lim

E[AY — AY|F,]  Comn= B[22 00 0| Fo]

e[(1=e)(1 = A)Ss, (1 +¢)5,],

which is assertion (234).
As regards (236) it is routine to deduce it from (234) by approximation.
Finally, inequality (237) follows from (236) and the definition of the lig-
uidation value

t
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Turning back to the proofs of Theorem 6.6 and Proposition 6.7, we shall
use the fact established in Theorem 6.2 (ii7) that the process

X = (SO?ZO (p%Z )0<t<T (246)

is a uniformly integrable P-martingale satisfying X, > 0 almost surely. Ap-
plying It6 and keeping in mind that ¢ has finite variation we obtain

dX, = 2°d3° + 7} dgot + %2 + pldz} (247)

29 (A + ng@ + (PLAM} + Gy ) — (BAA} + BdAY). (248)
t
The second term is the increment of a local martingale.
The first and the third term are the increments of non increasing pro-
cesses, hence both have to vanish. This allows for two interesting conclusions.
Let us start with the first term. As the process Z 0 is strictly positive we
conclude that d@) + S,d@} vanishes a.s. for all 0 < t < T, where S = g—;
This amounts precnsely to the relation
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{dpl >0V = {S, = S} and {d@! <0} ={S, = (1—A)S,}.  (249)

Anticipating that S will be interpreted as a shadow price process this
relation states that the optimizing agent only buys stock (i.e. d@; > 0) when
S, = S, and only sells stock (i.e. dp} < 0) when S; = (1 — \)S;. Compare
Proposition 7.2 below.

The fact that the third term of (248) must vanish amounts to the subse-
quent proof of Theorem 6.6.

Proof of Theorem 6.6. 1t follows from the above discussion and (237) that

T
J Vi3, )dAY = 0, a.s.

0

If V%(() is a.s. strictly positive this implies that the process A® vanishes
and therefore by (235) also the process A' vanishes.
This amounts to the assertion that Z is a local martingale. |

Proof of Proposition 6.7. To show that the liquidation value (231) remains
almost surely positive, we argue by contradiction. Define

o, = inf{t e [0,T] | V(p,) <n™'}, (250)

and

o= lim o,.
n—ao0

Suppose that P[o < 0] > 0 and let us work towards a contradiction.
First observe that V'(3,) = 0 on {o < w}. Indeed, applying the product
rule to (231) and noting that ¢ has finite variation we obtain

AVI9(B) = ((BLH(1=A) = (B1)7)dS, + (d30 + (1 - N Sd(@L)* — S,d(h)).

(251)
The first term is the increment of a continuous process while the second term
is, by the self-financing condition under transaction costs, the increment of
a non-increasing right continuous process. Hence V'%4(%,) = 0 on the set
{o < 0}.

So suppose that Plo < ] > 0. We may and do assume that S “moves
immediately after 07, i.e. 0 = inf{t > o | S; # S,}. Indeed, we may replace
o on the set {o < 0} by the stopping time o, = o_ defined in Def. 6.4.
Note that o, < T on {0 < o} as V! (@r) > 0, almost surely.
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We shall again use the fact that the process

X = (B20 +512Y) (252)

0<t<T
is a uniformly integrable P-martingale satisfying Xr > 0 almost surely.

Firstly, this implies that @) # 0 a.s. on {o < o0}. Indeed, otherwise
we have ¢, = (0,0) with positive probability. As X is a uniformly inte-
grable martingale with strictly positive terminal value X, > 0 we arrive at
a contradiction.

Hence we have $ # 0. Let us first suppose that ¢. > 0 on a subset of
positive measure of {o < oo} which we assume w.l.g. to equal {0 < o0}. We
then cannot have S, := % = (1 — X\)S, with strictly positive probability.
Indeed, this would imply that V% (3,) = X, = 0 on this set which yields a
contradiction as in the previous paragraph.

Hence we have that S, > (1 — \)S, on {¢ < oo}. This implies by (249)
that the utility-optimizing agent applying the strategy ¢ cannot sell stock at
time o as well as for some time after o by the continuity of S and S.

Note, however, that — a priori — the optimizing agent may very well buy
stock during this period. But we shall see that this is not to her advantage.

Define the stopping time p, as the first time ¢ after ¢ when one of the
following events happens

(1) ming<y<e{S.} — (1 = NS, < (S, — (1 —=\)S,)/2 or
(i) Sy < S, —1 |
(iil) miny<u<:{Su} = (1 — N) max,<u<i{Su}

By the hypothesis of (TWC') of “two way crossing”, we conclude that, a.s. on
{o < oo}, we have that p, decreases to o and that we have S, = S, — %,
for n large enough. Choose n large enough such that S, = S, — % on a
subset of {o < o0} of positive measure. Then V'((, ) is strictly negative
on this set which will give the desired contradiction. Indeed, the assumption
@L > 0 implies that the agent suffers a strict loss from her holdings in stock
because S,, < S,. Condition (i) makes sure that the agent cannot have sold
stock between ¢ and p,,. The agent may have bought additional stock during
the interval [o, g,]. However, this cannot result in a positive effect either as
condition (iii) makes sure that the last term below is non positive

On

VEI(B) < V(@) + §L(1 = \)(S,, — S,) — f (Su — (1= N)S,,)dgM <0,

o

almost surely on {S,, = S, — +}. This yields the desired contradiction.
As regards the remaining case that . < 0 on {o < o0} the argument
goes, with signs reversed, in an analogous way. |

122



Remark 6.9. Finally let us discuss the uniqueness of the process 20 =
(Z9)o<i<r (to be distinguished from the uniqueness of the terminal value
Z% which is guaranteed by Theorem 6.2). It turns out that this issue is
quite subtle. I thank Lingqi Gu, Yiqing Lin and Junjian Yang for pertinent
discussions on this topic which were crucial to clarify the question.

Under the assumptions of Theorem 6.2 and assuming that 20 happens to
be a true martingale, the uniqueness of the process (Z 9o<i<r is an immediate
consequence of the uniqueness of its terminal value Z 0

In general, however, even under the assumptions of Theorem 6.5, the local
martingale (Z )o<t<T, 1.€. the first coordinate of an optimal local martingale
deflator Z is not unique although its starting value ZO = 1 as well as its
terminal value Z% are unique.

We sketch a counter-example. The construction will be somewhat indi-
rect. We start by first defining a shadow price process S (which will eventu-
ally turn out to be non-unique) while the stock price process S will only be
defined later.

We place ourselves into the setting of Proposition 5.2 and fix transaction

costs 0 < A < 3, initial endowment 2 = 1, and logarithmic utility U(z) =

log(z). With the notation of Proposition 5.2 we define 7 as
inf{t : Z, ! }
=inf{t: Z, = ——}.
F2(1-))
and
St Ntan( AT O0<t<l

Considering S as a frictionless financial market it follows from Prop. 5.2
that the optimal strategy consists in constantly holding one unit of stock. To
be precise: the optimal strategy consists of buying one stock at time ¢ = 0
at price Sy = 1, and selling it at time ¢ = 1 at price S5} = 2(1 — \).

Turning to the definition of the stock price process S under transaction
costs A make the following observation: If S = (S;)o<i<1 iS any continuous,
adapted process, starting at Sy = 1 and ending at S; = 2, and such that
S remains in the bid-ask spread [(1 — \)S,S], this trading strategy is still
optimal for the process S under transaction costs A. Indeed, it is obvious
that the above assumptions on S guarantee that there is no better strategy.
Otherwise we would obtain a contradiction to the optimality of the above
strategy in the frictionless market S,

We write Z° = (Z°)g<<1 for the process Z° = (S)~! which is a local
P-martingale. For any S satisfying the above properties, we then have that
the process 7 = (Z?, 1)o<t<1 defines a local martingale deflator inducing the
dual optimizer (228) under transaction costs A.
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Next we define a perturbation of the process S which will be denoted by
S. To do so we shall define a perturbation of Z° = (S)~'. First decompose
this local martingale into a true martingale M plus a potential P, so that
Z% = M + P, by

M, = E[Z}|F), P, =72} — M, O<t<L

The process Pisa non-negative local martingale starting at By = 21(1_—_2:\\)

and ending at P, = 0. Let o be the first moment WhenAP hits the level 1.
Note that Plo < o] = 21(1_—_2;\) as the stopped process P? is a martingale.
For 6 > 0 choose an arbitrary F,-measurable function f taking values in

[1 —6,1+ d] such that
1—2A

E[f1{o<cc}] = 0=

and such that f is not identically equal to 1 on {o < oo}
Define the potential P by

p . ]E[fﬂ{cr<oo} ’J t/\a]7 0
AR A
fP, o

The process P again is a local martingale starting at Py =

07
- (253)

1—2)\
20—\

ending at P, = 0. Note that the ratio % remains in [1 — §,1 + J], a.s. for
0<t<l. / ]
Define Z° := M + P and S := (Z°)~'. The ratio % also remains in

t
[1 — 0,1+ d] and therefore the ratio g—z remains in [(1 +6)71, (1 — )7, As
before, consider S as a frictionless price process. It again has the property
that the log-optimal strategy (without transaction costs) consists in buying
one stock at time ¢ = 0 and selling it at time ¢ = 1. This follows from
the well-known fact that S equals the numéraire portfolio of the frictionless
market defined by S (compare Proposition 5.2).

Again, for any continuous, adapted stock price process S (considered
under transaction costs \), starting at Sy = 1, ending at S; = 2, and such
that S remains in the bid-ask spread [(1—\)S, S], this strategy is still optimal
and (Z,)o<i<1 = (Z°,1)o<i<1 induces a dual optimizer in (228).

Finally, we look for such a stock price S for which S as well as S are
shadow prices: we can find plenty of continuous, adapted processes S with
Sy = 1,5, = 2 and such that S as well as S remain in the bid-ask spread
[(1 —A)S,S]. For example, define

my = max(S;,S,), M, = (1—X\)""min(S,, S)).

and
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If 0 satisfies (1—X)(1+9) < (1—0), we have a.s. that m; < M,, for 0<t < 1.
Define S by

The process S'is continuous, adapted, starts at Sy = 1 and ends at S = 2.
It takes values in [S, (1 —A)~15] as well as [S, (1 — A)~'S] so that S satisfies
the above properties. For such a process S we therefore have found two
different local martingale deflators, namely Z and Z , such that the terminal
values Z9 and Z9 both induce the dual optimizer in (228).

We finish this remark with two easy observations concerning the non-
uniqueness of the other optimal processes appearing in Theorem 6.2.

The non-uniqueness of the second coordinate Z1A of an optimal super-
martingale deflator Z is an easy observation. It may already occur in the
setting of finite {2 as was observed in Example 2.4.

As regards the non-uniqueness of the portfolio process @ = (%, ¢} )o<t<r
this is a cheap shot too. While its starting value @o— = (z,0) and its terminal
value @; = (¢%,0) are unique by Theorem 6.2 the process @ is non-unique
for rather silly reasons. For example let S = (S;)o<i<r be the Black-Scholes
model considered in chapter 3 where we choose the parameters such that,
under fixed transactions costs A > 0, the optimal trading strategy (©;)o<t<r
(which is unique in this setting) is such that the agent buys or sells stock at
time t = 0, i.e. oy + @y = 0. Of course, this is the generic case when we
choose the parameters.

Now shift the process by one unit of time: define (S;)o<i<r+1 by S; = So,
for0<t<landS, = S,_q, for1 <t<T+ 1. We also have to shift the
corresponding filtration F by one unit of time, i.e., F, = F—1yvo. Clearly
the optimal trading strategy ¢ now also simply has to be shifted by 1, with
one small difference. The trade which had to be done for the original process
S at time t = 0, can now be done for S at time t = 0, or t = 1, or at any
time inbetween.
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7 The Shadow Price Process

In this chapter we analyse in more detail the notion of a shadow price process.
In the setting of finite 2 this concept was introduced in Definition 2.7. There
the existence of a shadow price process resulted from the solution of the dual
problem and was rather straightforward to prove. The assumption on the
stock price process S = (5;)_, which we had to impose in chapter 2 was just
the no arbitrage condition (N A*).

We now want to identify sufficient conditions for a continuous price pro-
cess S = (S;)o<t<r Which guarantee the existence of a shadow price process.
We shall find in Theorem 7.3 below conditions which are sufficiently weak to
apply to models based on fractional Brownian motion which we shall consider
in the next chapter.

We start by shaping the definition of a shadow price process which is
appropriate for the present setting. Fix again the continuous, strictly positive
process S, transaction costs A > 0 and the utility function U as in Theorem
6.2. Again we consider the portfolio optimization problem

E[U(%)] — max! (254)

where ¢ ranges in €(z) as in Definition 4.21. To recapitulate: we optimize
over the set of contingent claims % which are attainable from initial wealth
(x,0) and subsequent trading in .S under transaction costs A in an admissible
way.

Passing temporarily to the frictionless setting, fix a continuous, strictly
positive semi-martingale S = (S;)o<i<r and consider the analogous friction-
less optimization problem

E[U(x + (H - S)7)] — max! (255)

where H runs through the set of predictable, S—integrable, admissible trading
strategies.

We shall consider the situation when S; takes values in the bid-ask spread
[(1 — X)S, St]. Similarly as in chapter 2 it is straightforward to check the
economically obvious fact that the value of the frictionless problem (255)
is at least as big as the value of the problem (254) under transaction costs
(Proposition 7.2 below). The relevant question is: can we find a process S
taking values in [(1 — A)S, S] such that (254) and (255) are equal?

Definition 7.1. Fiz the continuous, strictly positive process S, the continu-
ous semi-martingale S taking values in the bid-ask spread [(1 — X)S,S], as
well as a utility function U satisfying the reasonable asymptotic elasticity
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condition of Definition 6.1. Also fit X > 0, initial wealth x > 0, and the
horizon T. Suppose that S satisfies the assumptions of Theorem 6.2 and that
the value of the problem (254) is finite, for some x > 0.

We then say that S is a shadow price process if the values of the problems
(254) and (255) coincide.

Proposition 7.2. Under the assumptions of Theorem 6.2 as well as those
of the above definition, suppose that S is a shadow price process. Let Q=
(8Y, PDo<t< be an optimizer for (254) and define Hy := @} and the process

Vii=x+(H-S), for 0<t<T.

Then H is a well-defined optimizer for the frictionless problem (255) and
we have almost surely

{dpt >0V = {S, = S;} and {dp! <0} = {S; = (1 —N)S,}. (256)

A small technical remark seems in order. The above defined process H is
S-integrable (it is of finite variation), admissible (we have V; > V¥4(30, 1) >
0 as we shall presently see) and predictable. Indeed, the cadlag process ¢ is
optional and therefore predictable as we have assumed the filtration (F;)o<i<r
to be Brownian. But the Brownian assumption is not really relevant here.
By the continuity of S we can simply pass from the cadlag finite variation
process H to its caglad version without changing the stochastic integral H-S.
Also note that the special values py_ = (z,0) and $7 = ($%,0) do not matter

when defining the process H and the resulting stochastic integral.

Proof of Proposition 7.2. By Theorem 6.2 we find an optimizer ¢ = (&Y, ¢} )o<t<r

for the problem (254). For the process (32 + ¢1S;) we obtain from Ito
d(@) + §15)) = §1dS; + (dF) + S,dE})

so that
T

B a (B S+ [ (a2 + Sz (257)
0

Hence $% < =+ (ﬁ .87 and equality holds true a.s. iff the above integral
vanishes a.s. Our hypothesis of the equality between (254) and (255) implies
that this indeed must be the case. Hence H is an optimizer for the frictionless
problem (255) and we also obtain the inclusions (256). |

The analysm of chapter 2 told us that the obvious candidate for a shadow
price process S is the quotient 4 = _ of the dual optimizer 7 = (Zt , Z )o<t<T Of
problem (254). Cvitani¢ and Karatzas have shown in [43] that this candldate
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is indeed a shadow price process, provided that the a dual optimizer Z in
Theorem 6.2 is induced by a local martingale. The subsequent — amazingly
short — proof of this remarkable result is one more demonstration of the power
of the duality methods in the context of portfolio optimization.

Theorem 7.3. Under the assumptions of Theorem 6.2 fix x > 0 and y =
u'(x) and suppose that there is an equivalent local martingale deflator Z(y) =
(Z°(y), Z ' (y)) € Zlce(y) such that ZO(y) is the dual optimizer in (228).
Then the process S defined by

is a shadow price process in the sense of Definition 7.1 and the optimizers
0% of (254) and x + (H - S)r of (255) coincide.

We remark that, by the assumption that the filtration (F;)o<;<r is Brow-
nian, we are sure that Z and therefore S are continuous so that we are in the
setting of Definition 7.1. But again this continuity of S is merely for con-
venience. In ([48], Proposition 3.7) a more general version of the theorem,
pertaining also to discontinuous processes S and S, was proved.

Proof. For expository reasons suppose first that Z (y) is a true martingale so

that % = @ defines an equivalent martingale measure for the process S.

Considering the portfolio optimization problem (255) for the price process
S we are precisely in the situation of Theorem 3.2 of [161]. Indeed, S is a
semi-martingale admitting an equivalent martingale measure, namely Q, and
such that the dual problem, and therefore also the primal problem, has a
finite value.

We have that Z9(y) must be the dual optimizer for this frictionless prob-
lem. Indeed, in the dual problem of (255) we optimize E[V(y%)] over all
equivalent martingale measures () for the fixed process S. This is a subset
of the set D (y) considered on (228) where we consider all processes S taking
values in the bid-ask spread [(1 — ), S]. Hence, a fortiori, Z9(y) must also
be the dual optimizer for the frictionless problem (255).

It follows that also the primal optimizer $%(z) of (254) and z+ (H -S)7 of
(255) must coincide. Indeed, by the first order condition (Theorem 6.2 (i7))
both random variables must a.s. equal —V’(Z%(y)). In particular S satisfies
the requirements of Definition 7.1 and therefore is a shadow price.

Finally we drop the assumption that Zis a martingale and only assume
that it is a local martingale. We then are in the setting of Theorem 5.8 above.
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Applying again Theorem 3.2 of [161] we may conclude exactly as in the first
part of the proof. |

Finally we may combine Theorem 7.3 with Theorem 6.5 to obtain the
central result of this chapter.

Theorem 7.4. Fiz U satisfying (226), the horizon T, and transaction costs
A > 0.

Suppose that the strictly positive continuous process S = (Si)o<i<r Satis-
fies the “two way crossing property” (TWC) (Def. 6.4) and that the value
function u(x) in (227) is finite, for some x > 0.

Then there is a shadow price process S = (gt)()gth as defined in Def.
7.1.

Proof. As mentioned after Theorem 6.5 it is not necessary to explicitly as-
sume the local property (CPS™), for all 0 < X' < \, as this property follows
from the assumption (TWC'). Theorem 6.5 and Theorem 7.3 therefore ap-
ply. |

129



8 A case study: Fractional Brownian Motion

We resume here the theme of (exponential) fractional Brownian motion which
was briefly discussed in the introduction. In fact, the challenge posed by this
example was an important motivation for the present research.

Fractional Brownian motion has been proposed by B. Mandelbrot [178]
as a model for stock price processes more than 50 years ago. It is defined as a
stationary centered Gaussian process (Bi)¢=o such that Var(B;) = t*# where
the Hurst parameter H is in |0, 1[. Until today this idea poses a number of
open problems. From a mathematical point of view a major difficulty arises
from the fact that fractional Brownian motion fails to be a semimartingale
(except for the classical Brownian case H = %) Tools from stochastic calcu-
lus are therefore hard to apply and it is difficult to reconcile this model with
the usual no arbitrage theory of mathematical finance. Indeed, it was shown
in ([64], Theorem 7.2) that a stochastic process which fails to be a semi-
martingale automatically allows for arbitrage (in a sense which was made
precise there). In the special case of fractional Brownian motion this was
also shown directly in a very convincing way by C. Rogers [205] (compare
also [33]).

One way to avoid this deadlock arising from the violation of the no-
arbitrage paradigm is the consideration of proportional transaction costs.
The introduction of proportional transaction costs A, for arbitrarily small
A > 0, makes the arbitrage opportunities disappear. As we shall see, Theorem
7.4 applies perfectly to the case of fractional Brownian motion, for any Hurst
index H € (0,1). As utility we may take any function U : R, — R having
the reasonable asymptotic elasticity condition (Def. 6.1).

Let us define the setting more formally. As driver of our model S we fix a
standard Brownian motion (W;)_o <<, indexed by the entire real line and
normalized by Wy ==, in its natural (right continuous, saturated) filtration
(Ft)—co<t<co- We let the Brownian motion W run from —oo on in order to
apply the elegant integral representation below (258) due to Mandelbrot and
van Ness; see [189)].

We note for later use that the Brownian motion (W;)o<i<7, now indexed
by [0,T], has the integral representation property with respect to the fil-
tration (F;)o<i<r- The only difference to the more classical setting, where
we consider the filtration (G;)o<i<r generated by (Wy)o<i<r is that Fy is not
trivial anymore. But this causes little trouble. We simply have to do all the
arguments conditionally on .

Fix a Hurst parameter H € ]0, 1[\{3}. We may define the fractional Brow-
nian motion (By)i=0 = (B )i=¢ as
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1

B, = C(H) foo ((t _ ) Hh <13|H*%1(_oo,0))> dW,, t=0,  (258)

where C(H) is a normalizing constant which is not relevant in the sequel
(see [189], section 1.1 or [205], formula (1.1)). For H = 1 we simply have
B, =W,, for t > 0.

We may further define a non-negative stock price process S = (S;)o<t<r
by letting

Sy = exp(By), 0<t<T, (259)
or, slightly more generally,
Sy = exp(o By + ut), 0<t<T, (260)

for some o > 0 and p € R. For the sake of concreteness we stick to (259) but
the subsequent results also hold true for (260).

We want to apply Theorem 7.4 to this model of a stock price. To do
so, we have to show two properties: the condition (TW(C') as well as the
finiteness of the value function u(x) for some z > 0.

The first issue was recently settled in a positive — and highly impressive
— way by Rémi Peyre [195].

Theorem 8.1 (R. Peyre). For each H €10, 1[ fractional Brownian motion
(By)i=0 has the “two way crossing property” (TWC).

The proof of this theorem is demanding and goes beyond the scope of the
present lecture notes.

As regards the finiteness of u(x) in Theorem 7.4 this is a consequence of
the subsequent Proposition 8.2 obtained in [52]. We need some notation. Fix
6 > 0 and define inductively the stopping times (7;);2, by 70 = 0 and

7 = inf{t > 7;4||B, — B-,_,| = 6}.
We define the number of d-fluctuations up to time T as the random variable
F}‘;) :=sup{j = 0|r; < T}
We then have the following estimate.

Proposition 8.2. [52] With the notation above, there exist finite positive
constants C = C(H),C" = C'(H) only depending on H such that

IP’[F}(S) > n] < exp(_C«—l(SZT—QHnl-&-(QHA1))’ for neN. (261)
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The proof of the above estimate is substantially easier than the proof of
Theorem 8.1 but still too technical to reproduce it here. The message is
that, for each H €]0, 1[, the probability of the sets {F}(s) > n} is decaying in
a super-exponential way as n tends to infinity. From this fact it is easy to
obtain bounds on the tail behaviour of ¢ € €(1).

Lemma 8.3. Fiz H €]0, 1], the model (259), as well as A > 0,7 > 0 and
§ > 0 such that (1 — \)e® < 1.

There exists a constant K, depending only on & and X\, such that, for each
0% € €(1) we have

90% < K" on {F}d) < n}. (262)

In particular {E[U(¥%)] : ¢©% € €(1)} remains bounded from above, for
each concave function U : Ry — R u {—0}.

Proof. As regards the final sentence it follows from (262) and (261) that
{E[p}] : ¢% € €(1)} remains bounded. This implies the final assertion as
any concave function U is dominated by an affine function.

It remains to show (262). Fix an admissible trading strategy ¢ starting
at po_ = (1,0) and ending at o7 = (¢%,0). Define the “optimistic value”
process (V¥ (¢r))o<i<r by

Vo (0) = o2 + (1) S, — (¢1) (1 — NSy

The difference to the liquidation value V' as defined in (156) is that we
interchanged the roles of S and (1 — \)S. Clearly Vot > Vi,

Fix a trajectory (B:(w))o<i<r of (258) as well as j € N such that 7;(w) <
T. We claim that there is a constant K = K(\,J) such that, for every
Ti(w) <t <7 (w) AT,

VP (pr(w)) < KV (ipr, (w). (263)

To prove this claim we have to do some rough estimates. Fix ¢t as above.
Note that S is in the interval [e 7S, (w), €’ S, (w)] as 7j(w) <t < Tj41(w) A
T. To fix ideas suppose that Sy(w) = €°S; (w). We try to determine the
trajectory (gou)Tj(wKugt which maximises the value on the left hand side for
given V := V(. (w)) on the right hand side. As we are only interested
in an upper bound we may suppose that the agent is clairvoyant and knows
the entire trajectory (S, (w))o<u<r

In the present case where S;(w) is assumed to be at the upper end of the
interval [e™° S, (w), €’ S, (w)] the agent who is trying to maximize V(¢ (w))
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wants to exploit this up-movement by investing into the stock S as much as
possible. But she cannot make ¢! € R, arbitrarily large as she is restricted by
the admissibility condition V™ > 0 which implies that ¢ + ¢! (1—))S, (w) =
0, for all 7;(w) < u < ¢. As for these u we have S, (w) < €°S;, (w) this implies
the inequality

)+ oL (1 - )\)e‘SSTj (w) 20, 7j(w)<u<t. (264)

As regards the starting condition V" (¢, (w)) we may assume w.l.o.g. that
¢r,(w) = (V,0) for some number V' > 0. Indeed, any other value of ¢, (w) =
(2. (W), o1, (W) with V¥ (¢, (w)) = V may be reached from (V,0) by either
buying stock at time 7;(w) at price S, (w) or selling it at price (1 —X)S,, (w).
Hence we face the elementary deterministic optimization problem of finding
the trajectory (49, ¢.)r w)<u<t starting at ¢, (w) = (V,0) and respecting
the self-financing condition (155) as well as inequality (264), such that it
maximizes V" (p,). Keeping in mind that (1 —\) < €72, a moment’s reflec-
tion reveals that the best (clairvoyant) strategy is to wait until the moment
7i(w) <t <t when Si(w) is minimal in the interval [7;(w), t], then to buy
at time ¢ as much stock as is allowed by the inequality (264), and then
keeping the positions in bond and stock constant until time t. Assuming
the most favourable (limiting) case Si(w) = e™°S, (w), simple algebra gives
= (V,0), for 7j(w) < u <t and

where

Using Sy(w) = €°S;,(w) we therefore may estimate in (263)

VP (enw) < V[<1 1o 1— /\)625> 1z (162—(S A)e%]' (265)

Due to the hypothesis (1 — A\)e? < 1 the term in the bracket is a finite
constant K, depending only on A\ and §.

We have assumed a maximal up-movement Sy(w) = €°Sy,(w). The case
of a maximal down-movement S;(w) = e*‘sST]. (w) as well as any intermediate
case follow by the same token yielding again the estimate (263) with the same
constant given by (265). Observing that Vot > V4 and V' (5r) = % we
obtain inductively (262) thus finishing the proof. ]
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We thus have assembled all the ingredients to formulate the main result
of these lectures.

Theorem 8.4. Fix U satisfying (226), the horizon T, and transaction costs
A > 0. Let H €]0,1] and S = (Si)o<t<r exponential fractional Brownian
motion as in (259).

Then there is a shadow price process S = (S)o<i<r as defined in Defini-
tion 7.1.

Proof. The above discussion has shown that the assumptions of Theorem 7.4
are satisfied. [}

We now can formulate a consequence of the above results on portfolio
optimization which seems remarkable, independently of the above financial
applications. It is a general result on the pathwise behaviour of fractional
Brownian motion: they may touch It0 processes in a non-trivial way with-
out involving local time or related concepts pertaining to the reflection of a
Brownian motion.

Theorem 8.5. Let (Bi)o<i<r be fractional Brownian motion (258) with
Hurst index H €0,1[, and o > 0 (which corresponds to o = —log(1 — ) in
Theorem 8.4 above).

There is an Ito process (Xy)o<i<r Such that

B, —a <X, < By, 0<t<T, (266)

holds true almost surely.

For e > 0, we may choose a > 0 sufficiently small so that the trajectory
(X¢)o<t<r touches the trajectories (By)o<i<r as well as the trajectories (By —
)<< With probability bigger than 1 — €, i.e.

0<t<T 0<t<T

P | min (X; — B;) = —«, max (X; — B;) = 0] >1—e (267)

Proof. The theorem is a consequence of Theorem 8.4 where we simply take

X =log(S).

We only have to show the last assertion. We follow the argument of
Lemma 5.2 in [49]. Fix a (strictly increasing) bounded utility function U :
R, — R asin Def. 6.1, e.g. U(z) = %, for some v < 0.

We claim that, for A = 1 —e~® small enough, the optimal strategy p(1) in
Theorem 8.4 is non-trivial with probability bigger than 1 — e¢. By the trivial
strategy we mean that no trading takes place. In other words we claim that

P[(&t)ost<r # (1,0)] > 1 —€. (268)
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It follows from [205] (or the proof of Theorem 7.2 in [64]) that we may
find, for ¢ > 0 and M > 0, a simple predictable process ¥ of the form

N-—1
ﬁt = Z gi:ﬂ‘ﬂTi,Ti+1H (t)
=0

where g; € L*(Q, F,,,P)and 0 = 10 < 7y < --- < 7y = T are stopping times
such that, S™ is bounded and

N

(79 * S)T = Zgi<sﬂ‘+1 - STZ) (269)

=0

satisfies ¥ « S > —e almost surely and P[(J + S)p = M| > 1 —e¢.

For 0 < XA < 1, we may interpret ¢ also in the setting of transaction costs.
More formally: associate to ¥ a A-self-financing process ¢ = (¢° ') as
above starting at (¢f), ¢g) = (0,0), such that ' = 91 1) and ¢° is defined
by having equality in (155). Choosing A > 0 sufficiently small we obtain
% = —2¢ almost surely as well as P[> M — 1] > 1 — 2e.

It follows that the value u(1) of (227) increases to U(0) = lim, ~,, U(x) <
o as A goes to zero. This implies that @) ' oo in probability as A goes to
zero which yields (268).

Fix a trajectory such that (©:(1))o<t<r # 0. Then there must be some
buying as well as some selling of the stock. Indeed @ starts at (1,0) and ends
at (p%(1),0). In view of (256) we obtain (267). |

Let us comment on the interpretation of the above theorem. Define o
and 7 to be the stopping times

g = lnf{t € [O,T] : Xt = Bt — Oé}, T = lnf{t € [O,T] : Xt = Bt}

Note that {¢ < w0} = {7 < o0} by the preceding argument. For sufficiently
small &« > 0, we have Ploc < w] = P[7 < ®] > 1 — . We may suppose
w.lo.g. that 7 < o (the case ¢ < 7 is analogous). Consider the difference
process

Dt - Bt - Xt7 O < t < T, (270)

which, is non-negative and vanishes for ¢ = 7. We formulate a consequence
of the above considerations.

Corollary 8.6. On the set {T < o} we have that o < T almost surely, and

that the process (Dy)r<i<o Starts at zero, remains non-negative and ends at
D, = .
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This statement should be compared to the well-known fact, that there
are no stopping times 7 < o such that P[r < T] = Plo < T] > 0 and
such that B, — B, > «, almost surely on {r < T}. Indeed, this follows
from the stickiness property of fractional Brownian motion as proved by
P. Guasoni ([102]; compare also [107]). Adding to B the It6 process X
somewhat miraculously changes this behaviour of B drastically as formulated
in the above corollary.
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A Appendix

In chapter 1 we have used a number of elementary results from linear algebra.
In particular, this includes the following facts:

e The bipolar set of a closed, convex set in R? containing the origin is
the set itself.

e A set containing the origin is polyhedral iff its polar is polyhedral.
e The projection of a polyhedral cone is again a polyhedral cone.

For the convenience of the reader we provide proofs and present the under-
lying theory in a rather self-contained way in this appendix.

Let E be a vector space over the real numbers with finite dimension d
and E' its dual. The space E then is isomorphic to R? and we will use this
fact in some of the discussion below, in which case we will denote the origin
by 0 € R? and the canonical basis by {ey, ..., eq}.

A.1 Polar sets

We start with some basic definitions following [243] and [88]; shorter intro-
ductions to the geometry of convex sets can be found in [86] and [93]. For
any set A € FE, the smallest closed convex set containing A is called the
closed convex hull of A, i.e. conv(A) is the intersection of all closed convex
sets containing A. A closed convex set C' € F is called a closed convex cone
if Aa € C' for every a in C' and A\ = 0. The closed convex cone generated by a
set W < FE' is the closure of the convex cone

cone(W) := {Z wiw; - w; € W,y = O} ,
el

where [ is finite. It is the smallest closed convex cone containing W. We
define cone(J) := {0}. The following properties of cones can be checked
easily:

e Every closed convex cone contains the origin.

e The intersection of two closed convex cones is again a closed convex
cone.

For a set A € E we define the polar A° of E as

A®:={ye E :{z,y) <1, forall z € A}.
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If A is a cone, we may equivalently define A° as
A°={ye E : {x,y) <0, forall x € A}.
If A is a linear space, we even may equivalently define A° as the annihilator
A°={ye E' : {x,y)y =0, for all z € A}.
The Minkowski sum of two sets A, B € E is defined as the set
A+ B:={a+b, ac A, be B}.

It is easy to verify that, for any two sets A € B < F, we have A° 2 B°. If
C1,Cy € E are cones, then (C; + C2)° = C7 n C5. Note that the polar of a
cone is a closed convex cone.

The following theorem is a version of the celebrated Hahn-Banach the-
orem. The proof presented here can be found in [220]; for a more general
discussion see for example [202].

Proposition A.1 (Bipolar Theorem). For a set A < E the bipolar A =
(A°)° equals the closed convex hull of A U {0}.

Proof. Let B = conv(A u {0}). Since B 2 A we have B° < A°.
On the other hand, let y € A° and M € N and pick \; € [0,1], for
1 <4< M, such that 3, \; = 1. Then we have, for any a; € A U {0}:

1= Z Ay, aiy = ) Cy, gy = <Z Aidtiy Y.

=1 i=1

Every x € B can be written as x = Zf\il Aia;. It follows that B° 2 A° and
hence A° = B°.

We will now prove that B°® = B which finishes the proof. Let z € B.
For any y € B° we have (x,y) < 1 by definition and continuity, from which
it follows that x € B°° and therefore B < B°°. Conversely, assume x;, ¢ B.
Then there exists an y € E’ and a constant ¢ such that (x,y) < ¢, for x € B,
and (x1,y) > c (this follows from the Hahn-Banach theorem in its version as
separating hyperplanes theorem, see for example [220]).

Because 0 € B we have ¢ > 0. We can even assume ¢ > 0. It follows that
(x,y/c) < 1, for x € B, and thus y/c € B°. But from {(x1,y/c) > 1 we see
that z; ¢ B°°. |

Corollary A.2. If C < FE s a closed convex cone then C°° = C.
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A.2 Polyhedral sets

We will now introduce the concept of polyhedral sets, which can be defined
in two distinct ways. The first definition builds a polyhedron “from inside”:
Let V and W be two finite sets in £. The Minkowski sum of conv(V') and
the cone generated by W

P = conv(V') + cone(WV)

is called a V-polyhedron, where the name comes from the fact that such a
polyhedron is defined using its vertices. Note that P is closed.

Polyhedral sets can also be built “from outside”. A set P < FE is called
an H-polyhedron, if it can be expressed as the finite intersection of closed
halfspaces, that is

N
P = ﬂ{x € E:{x,y) < ¢},
i=1

for some elements y; € E’, and some constants ¢;, i € {1,... N}. As a subset
of R? such a polyhedron can be written as

P=PAz):={zeR: Az <z} for some Ae RV*? 2 e RY,

Note that an H-polyhedron with all ¢; = 0, i.e. of the form P(A,0), is in fact
a closed convex cone: we shall encounter such polyhedral cones quite often.
These two distinct characterizations for polyhedral sets are useful for
calculations and will play an important part in the following discussion. As
we will verify below, the notions of V- and H-polyhedral sets are equivalent.
Our first Lemma deals with the projection of H-cones. The proof and a
more thorough discussion can be found in [243].

Proposition A.3. A projection of an H-cone along any coordinate directions
ex, 1 < k < d, is again an H-cone. More specifically, if C' is an H-cone in
Re, then so is its elimination cone elimy(C) := {x + pey : v € C, p € R} and
its projection cone proj,(C) := elim,(C) n {z € RY: (x,e,) = 0}.

Proof. Note that it suffices to show that the set elimg(C) is an H-cone, for

any k, because the projection cone is the intersection of the elimination cone

with the two halfspaces {x € R?: (z,¢;,) < 0} and {zx € R?: {z, —e;) < 0}.
Suppose that C' = P(A,0) and ay,as,...,ay are the row vectors of A.

We will construct a new matrix A* such that elim;(C) = P(A*,0).

Claim: A" = {a; : ai, = 0} U {aira; — ajra; : az > 0,a;, < 0}

If x € C then Az < 0. But then we also have A*x < 0, because A* consists

of nonnegative linear combinations of rows of A. Therefore C = P(A* 0). As
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the k' component of A* is zero by construction, we even have elim,(C) <
P(A*)0).

On the other hand, let z € P(A* 0). We want to show that there is a
i € R such that © — pe, € C, i.e. A(x — peg) < 0. Writing these equations
out, we obtain the inequalities a;x — a;pp < 0, or

S)

7L

, if Qi > O,
s if Ak < 0.

Q
P

’.
J
ajk.

VAN\%
S

i

I

Such a p exists, because if a;; > 0 and aj; < 0, then (a;,a; — ajra;)r < 0,
since ¥ € P(A*,0), which can be written as

a;T ;T

It follows that P(A*,0) < elim(C), finishing the proof. |
Proposition A.4. Every V-polyhedron is an H-polyhedron and vice versa.

We split the proposition into two claims for the two directions, which we
prove independently.
Claim: Every V-polyhedron is an H-polyhedron.

Remark A.5. Proving the claim directly turns out to be rather tedious,
due to the difficulty of manipulating the necessary sets. There is, however,
an elegant proof using homogenization: Every polyhedron in d-dimensional
space can be regarded as a polyhedral cone in dimension d + 1. The equiva-
lence between V-cones and H-cones is easier to show. The direct proof uses
Fourier-Motzkin elimination to calculate the sets explicitly. It can be found,
together with the indirect proof given here, in [243].

Proof. By mapping a point x € R? to (1) € Rl we associate with every
polyhedral set P in R? a cone in R%*! in the following way: If P = P(A, 2)
is a H-polyhedral set, define

C(P):=P((Z1).(5)

Conversely, if C'€ R is an arbitrary H-cone, then {z e R?: (1) e C} is a
(possibly empty) H-polyhedral set.

On the other hand, if P = conv(V') + cone(W) is a V-polyhedral set for
some finite sets V and W, we define

C(P) :=cone (L),
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that is, we add a zeroth coordinate to the vectors in V' and W before gen-
erating the cone, namely 1 and 0, respectively. As before, a straightforward
calculation shows that if C' is a V-cone in R**! then {x e R?: (1) e C}isa
V-polyhedral set in R

If we can now show that every V-cone is an H-cone we are done, since
every V-polyhedral set in R? can be identified with a V-cone in R%*! and
the H-cone then translated back to the H-polyhedral set. Consider thus a
V-cone, which can be written as

C = {xeRd:HAZ-}O::U:Z/\iwi, wiGW},
or equivalently as
C = {(x,)\)eRd+”:)\i>O,x=Z)\iwi, wieW},

the latter set being an H-cone in R**". By successsively projecting the cone
onto the hyperplanes for which the k' coordinate equals zero, for d < k <
d +n, we obtain a cone in R? since we already showed that such a projection
of an H-cone is again an H-cone. This finishes the proof of the claim. |

The second part of the equivalence can also be shown directly or via
homogenization, but we will give a third proof, which makes use of an elegant
induction argument. For a thorough discussion of these concepts (and the
proof of the following claim) see also [88].

Claim: Every H-polyhedron is a V-polyhedron.

Proof. Let P be an intersection of finitely many closed halfspaces in R?. We
may assume w.l.g. that the dimension of P is d and will prove the claim by
induction on d. If d = 1, then P is a halfline or a closed interval and the claim
is clear. For d > 2 we will show that every point in P can be represented as
the convex combination a = (1 —A)b+ A¢, 0 < A <1, where b and ¢ belong
to two distinct facets F' and G of P respectively, i.e.

F = conv(Vg) + cone(Wr) and G = conv(Vg) + cone(Wg),

for some finite sets Vi, Wg, Vg, W, This suffices to prove the claim since

the Minkowski sum of two V-polyhedral sets is again a V-polyhedral set.
Since every facet has dimension d — 1, we know that the boundaries

of P are polyhedral sets. Let a be any point in the interior of P. Then
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there is some line [ through a that intersects two facets of P, which is not
parallel to any of the generating hyperplanes and intersects them in distinct
points. Since a must lie between two such intersection points it is the linear
combination of finitely many elements of V-polyhedral sets and because a
was an arbitrary point in the interior of P, it follows that P itself is V-
polyhedral. ]

The next proof can also be found in [88], along with other constructive
results regarding polyhedra.

Proposition A.6. Let A < E be a polyhedral set. Then its polar A° also is
a polyhedral set.

Proof. We show that the polar of a V-polyhedron is an H-polyhedron, which
we calculate explicitly. Let therefore A be of the form

A = conv(V) + cone(W) = conv({vy,...,vn}) + cone({wy, ..., wk}),

for some finite sets V' and W. By definition, we have

N K
AO:{yEE’; ZAZUI+ZM]w]7y><]‘7AZ>0Hu]2072)\121}
i=1 j=1

= {ye E' Y Aviy) + D iiwy, gy < 1L, A = 0,405 > 0, A = 1}.
i J
We therefore find that
N K
A =(VyeE iy <1pn[){yeE (w,y) <0},
i=1 j=1

which is an H-polyhedron. |

Corollary A.7. A convex, closed set containing the origin is polyhedral iff
its polar 1s so too.

Proof. This follows immediately from the previous proposition and the bipo-
lar theorem, since then A° is polyhedral and A = A®°. |

A.3 The Legendre Transformation

Definition A.8. Let u: R — Ru{—w} be a concave upper semi-continuous
function and D = int{u > —oo} + & its domain, which we assume to be
non-empty. The conjugate v of u s the function

v(y) := sup{u(x) — zy, x € R}.
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The function v is the Legendre transform of —u(—z) and is therefore
convex rather than concave.* Given the conjugate function v, the original
function u can be recovered via the transformation

u(z) ;= inf{v(y) + zy, y € R}.

From these definitions it is immediately clear that for every (z,y) € R?
we have Fenchel’s inequality:

u(z) —v(y) < zy. (271)

Note that equality holds when the supremum (respectively the infimum) in
the above definitions is attained for the corresponding values of x and y.

Definition A.9. The subdifferential dv(yg) of a convex function v at yq is
the set of x € R such that

v(y) = v(y) +z- (y—yo), forallyeR.

For a concave function u we define the superdifferential du(xg) of at zo equiv-
alently as the set of y € R satisfying

u(x) <u(zo) +y- (r—x0), forallzelR.

If du(xg) consists of one single element y, then u is differentiable at xy and
Vu(xg) = y. Equivalently if dv(yo) consists of one single element x, then v
is differentiable at yo and Vo(yo) = .

Our first duality result links the super- and subdifferential of the conju-
gate functions u and v:

Proposition A.10. The superdifferential du(xo) contains yo iff —xo € Ov(yo).
Proof. Let yo be in du(xy). Then we have, for every z,
u(z) < u(zg) + yolx — xp)
uw(x) — yor < u(zo) — YoTo-

Since this also holds for the supremum and using Fenchel’s inequality on the
right hand side, we obtain for every y in R

v(yo) < ulzo) — Toyo < v(Y) + Ty — ToYo

v(yo) < v(y) + 2o(y — ¥o),

which is exactly the requirement for —zy to be in the subdifferential dv(yp).
The other direction can be proved analogously. |

“In fact, the classical duality theory considers the (convex) function —u(—z) to obtain
a perfectly symmetric setting.
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There is an important duality regarding the smoothness and the strict
concavity of the dual functions v and v. The following proof can be found
in [117].

Proposition A.11. The following are equivalent:
1. u: D — R s strictly concave.
2. v is differentiable on the interior of its domain.

Proof. (i) = (1i). Suppose that (i7) fails, i.e. there is some y such that dv(y)
contains two distinct points, and call them —z; and —x,. We may suppose
that z1 < xo. This is equivalent to the requirement that y € du(z1) N du(xs).
For ¢+ = 1,2 we have

u(z;) —v(y) = vy

and using Fenchel’s inequality, we get (for 0 < A < 1):

Au(zy) + (1= Nu(zg) —v(y) =y - (Axy + (1 — N)ao) (272)
> u(Azy + (1 — Naxg) — v(y). (273)

But this implies that u is affine on [z, 23], a contradiction since u is strictly
concave. Therefore dv(y) must be single-valued for all y € int dom (v), i.e.
v is continuously differentiable.

(17) = (i). Suppose that there are two distinct points x; and x5 such that
u is affine on the line segment [z, z5]. If we set z := L(z; + x2), there is an
y such that Vu(y) = z, i.e. y € du(x). We can write

1 2

0=u(x)—v(y) —ay = 52 [u(z;) —v(y) — yo],

i=1

which implies (using Fenchel’s inequality), that each of the terms in the
bracket on the right hand side must vanish. We therefore have y € du(z1) N
ou(zs), i.e. Ov(y) contains more than one point, which contradicts the as-
sumption that v is differentiable. |
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