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Abstract

We give an introduction to the theory of Mathematical Finance with
special emphasis on the applications of Banach space theory.

The introductary section presents on an informal and intuitive level
some of the basic ideas of Mathematical Finance, in particular the no-
tions of “No Arbitrage” and “equivalent martingale measures”. In sec-
tion two we formalize these ideas in a mathematically rigorous way and
then develop in the subsequent four sections some of the basic themes.

Of course, in this short handbook-contribution we are not able to
give a comprehensive overview of the whole field of Mathematical Fi-
nance; we only concentrate on those issues where Banach space theory
plays an important role.
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1 Introduction

The field of Mathematical Finance has undergone a remarkable development
since the seminal papers by F. Black and M. Scholes [BS73] and R. Merton
[M73], in which the famous “Black-Scholes Option Pricing Formula” was de-
rived. In 1997 the Nobel prize in Economics was awarded to R. Merton and
M. Scholes for this achievement, thus also honoring the late F. Black.

The idea of developing a “formula” for the price of an option actually
goes back as far as 1900, when L. Bachelier [B00] wrote a thesis under the
supervision of H. Poincaré with the title “Théorie de la spéculation”. His aim
was precisely to obtain such a formula to be used on the stock market in Paris,
which was also booming at the previous fin de siècle.

Bachelier’s contribution was remarkable in several respects: firstly he had
the innovative idea of using a stochastic process as a model for the price
evolution of a stock. He had an almost mystic belief in the “law of probability”:

Si, á l’égard de plusieurs questions traitées dans cette étude, j’ai
comparé les résultats de l’observation à ceux de la théorie, ce
n’était pas pour vérif ier des formules établies par les méthodes
mathématiques, mais pour montrer seulement que le marché, à son
insu, obéit à une loi qui le domine: la loi de la probabilité.

For a stochastic process (St)0≤t≤T he made a natural and far-reaching choice
being the first to give a mathematical definition of Brownian motion: he re-
quired that, for 0 ≤ t ≤ u ≤ T , the random variable Su − St is normally dis-
tributed with mean zero and variance σ2(u−t), where σ2 > 0 is a fixed param-
eter, and, that for 0 ≤ t0 ≤ · · · ≤ tn ≤ T the random variables (Sti − Sti−1

)ni=1

are independent. If we also fix the real number S0 we have well defined a
stochastic process, namely Brownian motion, which in the present context is
interpreted as follows: S0 is today’s (known) price of a stock (say a share of
company XYZ to fix ideas) while for the time t > 0 the price St is a normally
distributed random variable.

Bachelier’s use of Brownian motion in the context of finance was thus prior
to the use of this process in the context of physics by A. Einstein [E05] and,
independently, by M. Smoluchowski [Sm16] some five years later.

Having fixed the model, Bachelier now turned to the question of pricing an
option (to be precise: a European call option); such an option is the right to
buy one unit of the underlying stock at a fixed time T (the expiration time)
and at a fixed price K (the strike price). This determines the value CT of the
option at time T as a function of the (unknown) value ST of the stock at time
T , namely

CT = (ST −K)+. (1)

Indeed, a moment’s reflection reveals that the option is worthless (at time
T ) if ST ≤ K, and is worth the difference between ST and K if ST > K: in
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the latter case the holder of the option will exercise the option to buy one unit
of stock at a price K and can immediately resell it at the present market price
ST to make a profit ST −K. (In practice, a cash settlement is often made.)

Hence we know, conditionally on the random variable ST , what the option
will be worth at time t = T . But what we really want to know is what the
option is worth today, i.e., at time t = 0. To determine this quantity Bachelier
simply took the expected value, i.e.,

C0 := E [CT ] = E [(ST −K)+] (2)

which leads to a simple explicit formula for C0 involving the normal distribution
function. The approach of formula (2) has been used in actuarial mathematics
for centuries and is based on a belief in the law of large numbers: if the
stochastic model (St)0≤t≤T describes reality properly and an economic agent
“frequently” buys an option at the price given in (2) then in average she will
neither gain nor lose money.

After this brief sketch of Bachelier’s work at the previous turn of the century
several questions must be addressed, e.g.:

1. Is Brownian motion a “good model” for the price evolution of stocks?

2. Is the argument based on the law of large numbers really an economically
sound basis for applying (2)?

Apart from these two basic questions there are plenty of other ones, e.g.,
the (minor) question of introducing some interest rate — or some drift of the
process S — into the model (which Bachelier safely ignored as he only was
interested in short run options and also at the time interest rate was very low).

Bachelier’s work was not appreciated by the contemporary economic lit-
erature and also in the mathematical literature it did not have the impact it
should have deserved (it was, however, not forgotten by mathematicians: for
example, it is quoted in Kolmogoroff’s book [K33]).

Only in 1965 did the renowned economist and Nobel prize winner,
P.R. Samuelson [S65] take up again the theme of designing an appropriate
model for a stock price process: He proposed geometric Brownian motion with
parameters µ ∈ R and σ2 > 0 obeying the stochastic differential equation

dSt = µStdt+ σStdBt (3)

where (Bt)0≤t≤T is a standard Brownian motion starting at B0 = 0. Using Itô’s
formula one quickly verifies that the solution to (3) is given by the process

St = S0 exp

((
µ− σ2

2

)
t+ σBt

)
, (4)

which is called geometric Brownian motion. If returns are defined through
the logarithm, then the price process St gives returns that are stationary and
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are independent when taken over disjoint time periods. It is a well known
result that the only Lévy processes with this property and continuous paths
are Brownian motions with drift. This immediately leads to (3) or (4).

The rationale of (3) is that the drift as well as the noise term driving
the process St is proportional to St; in other words, the difference between
Brownian motion with drift, i.e., St = S0 + at + bBt and geometric Brownian
motion with drift as defined in (4) is similar to the difference between the
methodology of calculating linear or compound interest. Clearly, in the short
run there is little difference between the linear and the exponential point of
view (in the deterministic as well as in the stochastic case) while, in the long
run, the difference is very noticeable; it also is obvious, that the exponential
point of view is economically more meaningful.

The model (4) of geometric Brownian motion today became the standard
reference model to describe the price evolution of a stock; although promoted
by Samuelson, it now is often called the Black-Scholes model or even the Black-
Scholes world.

It has many very appealing properties but its match to reality is not very
good in many aspects (as is very well-known to practitioners): there are several
key properties observed in real financial data (e.g., heavy tails, volatility clus-
tering etc.) which are not captured by this model. Many alternative models
have been proposed (e.g., in the early work of B. Mandelbrot [M66]). Hence,
turning back to question 1. raised above - whether Brownian motion is the
good model - it is generally agreed that geometric Brownian motion with drift
is economically more reasonable than Bachelier’s original choice (note, how-
ever, that in the short run there is little difference), but the question whether
(geometric) Brownian motion is a “good model”, cannot be answered with a
simple yes or no: it depends on the context and purpose of the modeling.

We now turn to question 2 pertaining to the economic soundness of the
pricing argument based on the law of large numbers: it was the merit of
Black, Scholes [BS73] and Merton [M73] to have replaced this argument by a
“no arbitrage” argument, which is of central importance to the entire theory.
The basic principle underlying this idea is nicely explained in the subsequent
little story quoted from a paper of B. Dupire [D93]:

Imagine you are offered a strange bet. A coin is tossed; you win
$60 if it comes up heads and lose $40 for tails. Would you accept
the bet?

It looks attractive: the expectation is (0.50×60)+(0.50×−40) = 10,
a healthy bias. A more thorough examination may lead to second
thoughts, however. Perhaps the pain of losing $40 would overweight
the pleasure of making $60. What if it were $60,000 and $40.000?
What if the coin were unbalanced, or tossed by a manipulator who
can get tails three times out of four?
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In other words, your decision would depend on both preferences
(risk aversion) and expectations, and it may well be wiser to refuse
this apparently attractive proposition.

Let us now set the stage for a very similar situation. You are in
a casino, at a simplified roulette table. There are only two possible
outcomes: red or black. There is no zero and it is possible to play
with the casino on a 1:1 basis. The proposed bet is: win $60 if red
comes up and lose $40 for black. Would you accept?

At first sight, this seems equivalent to the previous bet, so you would
decline the invitation. But the fact that it is possible to play with
the casino makes a real difference. You can hedge the bet and build
up a certain gain, regardless of the outcome - an arbitrage, in other
words. Just accept the bet and, at the same time, put a stake of
$50 on black with the casino.

If red does come up, you make $60 through the bet and lose $50
with the casino. If black wins, you lose $40 through the bet and
make $50 with the casino.

In either case, you are better off by $10: the expected, potential
gain has been converted into a certain one. Most important, this
is true regardless of the real probabilities of red versus black, which
could very well be 10:90.

Summing up: an arbitrage - which is the concept crystallized in the second
part of the above story - is a riskless way of making a profit with zero net
investment. This intuitive notion will be mathematically formalized in section
2 below.

An economically very reasonable assumption on a financial market consists
of requiring that there are no arbitrage opportunities. (To convince yourself
that this assumption is indeed reasonable, just think for a moment, what would
happen in a liquid financial market offering arbitrage opportunities.) The
remarkable fact is that this simple and primitive “principle of no arbitrage”
allows already to determine a unique option price in the Black-Scholes model:
to be slightly more formal, we assume that in our financial market there are two
traded assets, the stock S = (St)0≤t≤T whose price process is given by (4) above
and a riskless bond B whose price process (Bt)0≤t≤T evolves deterministically
with a constant interest rate r, i.e., Bt = B0e

rt. For (mainly notational)
simplicity we assume r = 0.

We denote by (Ft)0≤t≤T the (right continuous, saturated) filtration gener-
ated by the process S (which is defined on some stochastic base (Ω,F ,P)). We
then have that every FT -measurable random variable f (satisfying an appro-
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priate integrability condition) can uniquely be written as

f = c+

∫ T

0

HudSu (5)

= c+ (H ·S)T

for some constant c and a predictable process (Ht)0≤t≤T (also satisfying an
appropriate regularity condition). The interpretation of (5) applied to the
FT -measurable random variable f goes as follows: f represents a “derivative
security” which pays f(ω) at time T if the “state of the world” ω ∈ Ω is revealed
at time T ; a typical example is the European call option f(ω) = (ST (ω)−K)+

encountered above. Formula (5) states that you can replicate the derivative f
at an initial cost given by the constant c and subsequently trading in the stock
S as prescribed by the predictable trading strategy H. Equation (5) combined
with the principle of no arbitrage therefore implies that the only reasonable
price of the derivative security f must be equal to c. Indeed, if the present
market price of the derivative security f differs from the constant c above one
can make an arbitrage very similarly to the above casino example. We have
thus derived - under the assumptions of the Black-Scholes model - a unique
price for options by only using the no-arbitrage principle.

What is behind the integral representation formula (5)? To understand
this formula assume first that µ = 0 in (4) above so that the process S is a
martingale. In this case formula (5) follows from the martingale representation
theorem for the Brownian filtration (see, e.g. [RY91]).

In its simplest form this theorem states that any function f ∈ L2(Ω,FT ,P)
with E[f ] = 0, where (Ft)0≤t≤T is the filtration generated by a standard
Brownian motion (Bt)0≤t≤T , can uniquely be written as a stochastic inte-

gral f =
∫ T

0
H̃udBu where H̃ is a predictable process such that the process

((H̃ ·B)t)0≤t≤T = (
∫ t

0
H̃udBu)0≤t≤T is an L2-bounded martingale. It is trivial,

using (3) and letting Ht = H̃t
σSt

, to rewrite this as an integral on S (remember
that µ = 0):

f =

∫ T

0

H̃udBu =

∫ T

0

H̃u
dSu
σSu

=

∫ T

0

HudSu. (6)

Hence, admitting the above cited martingale representation theorem, we
get the representation (5) for an arbitrary f ∈ L2(Ω,F ,P) where c = E [f ].

Hence we essentially find the same methodology as used by Bachelier and
by actuaries: calculate prices by taking expectations. The reasoning behind
this procedure however is now completely different; the argument involving
the strong law of large numbers has been replaced by the (economically much
more compelling) no arbitrage argument.

What happens in the case µ 6= 0? Here the crucial trick is to pass from
the original measure P to an equivalent measure Q such that under Q the
process S becomes a martingale. The determination of the Radon-Nikodym
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density of the measure Q with respect to the original measure P is the theme
of the Cameron-Martin-Girsanov theorem (see, e.g. [RY91]): under the above
assumptions the measure Q� P under which S is a martingale is unique, and
its density is given by

dQ

dP
= exp

(
−µ
σ
BT −

µ2

σ2
T

)
. (7)

Note that dQ
dP
> 0 P-a.s. so that the measures Q and P are equivalent, i.e.,

have the same nullset.
Now apply the above reasoning to the process S defined on

(Ω,F , (Ft)0≤t≤T ,Q); to find, for f ∈ L2(Ω,FT ,Q), again the representation
(5) for a suitable trading strategy H. We now have

c = EQ[f ] (8)

where EQ[ . ] denotes expectation taken with respect to Q. Using again the
principle of no arbitrage we find that c is the only possible price for f not
allowing arbitrage opportunities (in the mathematical formalization of the no
arbitrage principle given below we shall see that this principle remains un-
changed under an equivalent change of measure; the only thing that matters
are the sets of measure zero).

For a European call option f = (ST − K)+ the constant c in (8) can
be explicitly calculated yielding the celebrated Black-Scholes option pricing
formula.

Summing up the above methodology: we have passed from the original
measure P to a so-called risk-neutral measure Q, which in the Black-Scholes
model turned out to be unique, and then have used this measure to calculate
the price of a derivative f via (8); we have claimed that this is the unique
arbitrage-free price for f .

The above presentation was deliberately informal and should only motivate
the questions which are dealt with in full mathematical rigor in the subsequent
sections. For example: What happens for more general stochastic processes
(St)0≤t≤T ? What is the exact relation between the passage to the risk-neutral
measure and the no arbitrage considerations?

The latter question is the theme of the so-called Fundamental Theorem of
Asset Pricing which—roughly speaking—states that a process S = (St)0≤t≤T
does not allow arbitrage opportunities if and only if there is an equivalent
measure Q under which S is a martingale.

The history of the fundamental theorem of asset pricing goes back to the
seminal papers of Harrison, Kreps and Pliska written in the late seventies
([HK79], [HP81] ,[K81]): In these papers the methodology originally devel-
oped in a somewhat ad hoc way for the Black-Scholes model was put in a
general framework. It turned out that the theory of stochastic integration, as

7



developed notably in Strasbourg in the sixties and seventies (see, e.g., [DM80]),
was taylor-made for the treatment of stochastic processes arising in finance.

After the pioneering work of Harrison, Kreps and Pliska many authors made
contributions to gradually improve the understanding about this fundamental
theorem, e.g., Duffie-Huang [DH86], Stricker [S90], Dalang-Morton-Willinger
[DMW90] etc.

It turns out that, for general stock price processes S, it is quite hard to
state and prove sharp and mathematically sound versions of the fundamental
theorem and that a good amount of Banach space theory is needed for the
proof and for its motivation. This program was accomplished in [DS94] and
[DS98].

We shall deal with this issue in section 3 below after having formalized
the notions of arbitrage and trading strategies in section 2. In section 4 we
investigate the case of continuous processes (St)0≤t≤T which allows for some
sharper results than the general case dealt with in sections 2 and 3.

In section 5 we analyze how the no-arbitrage-considerations are effected
by changes of numéraire (e.g., measuring the value of assets in Euros or in
US $) which naturally leads to the definition of a Banach space of stochastic
integrals. Finally in section 6 we analyze the question of finding necessary
and sufficient conditions for the closedness of an appropriately defined space
of stochastic integrals in L2(Ω,F ,P); this closedness is obviously crucial if one
wants to use orthogonal projections in L2. It turns out that these questions
are intimately related to martingale theory in H1 and BMO, weighted norm
inequalities and reverse Hölder inequalities.

We have selected these topics of the field of Mathematical Finance because
of their intimate relationship with Banach space theory. Although the Fun-
damental Theorem of Asset Pricing crucial for the foundation of the theory -
as the name rightly indicates - it only is the door-opener to a wide range of
questions. For a more comprehensive presentation of this fast growing field
we refer to the recent text-book literature (e.g. [LL96], [MR97], [B98], [KS98],
[S99] and the references given there).

2 Strategies and Arbitrage Possibilities

As stated in the introduction the main ingredient in arbitrage theory is stochas-
tic integration. In this section we will give a mathematical formulation of the
objects referred to in the introduction. All processes are defined on a stochastic
basis

(
Ω, (Ft)t≥0 ,P

)
where Ft describes an increasing family of σ-algebras on

Ω. The probability measure P is defined on the σ-algebra F∞ =
∨
t≥0Ft. The

σ-algebra Ft can be seen as the mathematical description of the information
available at time t. As common in stochastics, we will also assume that the fil-
tration F satisfies the usual hypotheses, i.e., the filtration is right continuous,
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meaning that Ft = ∩s>tFs, and the σ-algebra F0 contains all the null sets of
F∞. To avoid trivialities at time t = 0 we assume that F0 only consists of the
null sets and their complements. By taking R+ as the time set we aim for the
most general situation. It is obvious that models with finite time horizon can
be imbedded in a model where the time set is R+.

The time an agent wants to buy or sell a financial instrument can be a
random variable, but it may only depend on past information and hence it
must be a stopping time.

Definition 2.1 A stopping time T is a random variable T : Ω→ R+ ∪ {+∞}
such that for each t ≥ 0, we have that {T ≤ t} ∈ Ft. If T1 ≤ T2 are two
stopping times then the stochastic interval [[T1, T2]] is the set

[[T1, T2]] = {(t, ω) | t ∈ R+;T1(ω) ≤ t ≤ T2(ω)}. (9)

Other intervals ]]T1, T2]], [[T1, T2[[, ]]T1, T2[[ are defined in an analogous way. The
smallest σ-algebra on R+ × Ω containing the stochastic intervals of the form
]]T1, T2]] (T1 and T2 are stopping times) is called the predictable σ-algebra P.
A process H : R+×Ω→ R

d is called predictable if it is measurable with respect
to the predictable σ-algebra.

Mathematically a process S, modeling the price evolution of d stocks, is
best described by a d-dimensional semi-martingale S : R+ × Ω→ R

d. The set
R+ is the set of times where trading can take place. As in the introduction
we also suppose that there is a riskless bond (Bt)0≤t traded in the market. By
expressing the prices of the stocks in terms of the bond (see section 4 below)
we may assume without loss of generality that Bt ≡ 1, for all t.

We will see, that in the case where S is locally bounded, the semi-martingale
condition is needed to obtain a sound model and therefore does not restrict
the generality of the setting.

We recall from the general theory (e.g., [DM80]) that a process S = (St)t≥0

is locally bounded if there is a sequence of stopping times (Tn)n≥1 such that
Tn ≤ Tn+1, limn→∞ Tn = +∞ almost surely, and S is bounded on the intervals
[[0, Tn]] , i.e., there are kn ∈ R such that for all t, 0 ≤ t ≤ Tn(ω): |St(ω)| ≤ kn.

A stochastic process S which is càdlàg (i.e., right continuous with left
limits) is a semi-martingale if we can build a stochastic integration theory with
it. To give a precise definition requires some extra notations and definitions.

Definition 2.2 A process H : R+ × Ω → R
d is called simple predictable if

there is a finite sequence of stopping times 0 = T0 ≤ T1 ≤ . . . ≤ Tn+1 < ∞,
R
d-valued functions f0, . . . fn such that each fj is FTj -measurable and H =∑n
j=1 fj11]]Tj ,Tj+1]].

It is easily seen that such a simple process is indeed measurable for the
predictable σ-algebra. Let us denote by S∞ the space of all bounded simple
predictable process. On S∞ we define the norm ‖H‖∞ = supt,ω |Ht(ω)|.
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If S is a d-dimensional càdlàg process then we can define the stochastic
integral in an elementary way:

(H ·S)∞ =

∫
[0,∞]

Hu dSu (10)

=
d∑
i=1

n∑
j=1

f ij

(
SiTj+1

− SiTj
)

(11)

The indefinite integral defines a càdlàg process.

(H ·S)t =

∫
[0,t]

Hu dSu (12)

=
d∑
i=1

n∑
j=1

f ij

(
SiTj+1∧t − S

i
Tj∧t

)
(13)

The notion of stochastic integral has an immediate financial interpretation. If
at times (Tj)0≤j≤n the trader decides to hold the position (fj) during the time
period ]]Tj, Tj+1]] then the value of the portfolio is easily seen to be described
by the process (H ·S). The final value of the process (H ·S)∞ is then given
by (H ·S)∞ = limt→∞(H ·S)t = (H ·S)Tn+1 . Stochastic integration is a natural
tool in financial modeling. Predictable processes serve as strategies.

Definition 2.3 A càdlàg adapted process S : R+ × Ω → R
d is a semi-

martingale if for every T < ∞ the mapping S∞ → L0(Ω,F∞,P); H →
(H · S)T is continuous for the sup-norm topology on S∞. This means that
if supt,ω |Hn

t (ω)| → 0 then (Hn ·S)T → 0 in probability.

If S is a semi-martingale then the notion of stochastic integral (H ·S) can
be extended to all bounded predictable integrals H. This is the subject of the
general stochastic integration theory, see e.g. [DM80], [J79], [P90].

Exactly as in the deterministic, one-dimensional case, the notion of integral
can be extended to some unbounded integrands H. See [J79], [P90], [RW87]
for details. If (H · S) can be defined, then we say that H is S-integrable.
Integrands that are S-integrable can be seen as general strategies. If the limit
(H ·S)∞ = limt→∞(H ·S)t exists, then we can say that (H ·S)∞ is the final
outcome of the strategy H.

As observed in [HK79] not all S-integrable processes H can be accepted as
reasonable strategies (from the financial point of view). Indeed we should avoid
so-called doubling strategies. The most classical example of such a doubling
strategy can be constructed using Rademacher functions.

Example 2.4 of a doubling strategy (discrete time) On (Ω,F∞,P) we
take (εn)n≥1 to be a sequence of independent variables, so that P[εn = ±1] = 1

2

10



which we may think of as the gain or loss of a risky investment revealed at
time n. As filtration we take (Fn)n≥0 where Fn = σ(ε1, · · · , εn). Sn is defined
as ε1 + · · ·+ εn. The reader can easily change the definition in such a way that
(Ft)0≤t is defined and such that the usual hypotheses hold. If a gambler buys
a units of the risky investment modeled by Sn at time n then his/her gain at
time n is given by aεn. Let now T = inf{n|εn = +1}. Clearly T < ∞ a.s..
The doubling strategy is described by H0 = 1, Hk = 2k if k < T . So f0 = 1
and fn = 2n if ε1 = · · · = εn−1 = −1. The final gain is easily calculated to
be 2n − (1 + · · · + 2n−1) = 1 if T = n. So we get (H ·S)∞ = 1 almost surely
and we obtain a sure profit (in the almost sure sense, common in probability
theory). But, as everybody knows, this strategy does not work in practice to
make a sure profit, i.e., an arbitrage. The problem is that we may have to
wait quite long before we get our first hit (i.e., before εn = +1 for the first
time). With probability 2−n we have to wait until time n. In this case the
gain accumulated up to time n− 1 was given by −(2n− 1) which can be more
negative than our budget allows.

Example 2.5 of a doubling strategy (continuous time) In this example
we take S = W a Wiener process, i.e., Brownian motion, with its standard
filtration (Ft)0≤t. The process Lt = exp(Wt − 1

2
t) is easily seen to be the

unique solution of the stochastic differential equation dLt = LtdWt, with initial
condition L0 = 1. Hence we find that

1− Lt =

∫
]0,t]

(−Lu)dWu = (H ·W )t

We have that Lt → 0 a.s. as t → ∞, and therefore again (H ·W )∞ = 1
(while, of course, (H ·W )0 = 0).

In both the discrete and the continuous example, we get that (H · S) is
a martingale but not a uniformly integrable martingale. To exclude the phe-
nomenon described by the above examples (where in both cases it was crucial
that the process (H · S)t was not uniformly bounded from below) one may
adopt the following concept:

Definition 2.6 ([HP81] and [DS94]) An S-integrable predictable process H :
R+ × Ω→ R

d is called a-admissible for some a ≥ 0 if,

(i) (H ·S) ≥ −a i.e., the process always remains above the (“bud-
get”) level −a,

(ii) limt→∞(H ·S)t = (H ·S)∞ exists.

We call H admissible if it is admissible for some a ≥ 0.
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It is clear that the set of a-admissible integrands forms a cone but not
necessarily a vector space.
We define:

K = {(H ·S)∞ |H admissible} (14)

C = {k − h | k ∈ K, h ∈ L+
0 } ∩ L∞ =

(
K − L+

0

)
∩ L∞ (15)

The set K has an easy interpretation, it is simply the cone of all outcomes of
admissible strategies (starting with an initial wealth zero). The set C has a
similar interpretation. It is a philanthropic version of K in the sense that after
having obtained (H · S)∞ the investor can give away a nonnegative amount
of money thus making the gain uniformly bounded. Before continuing, let us
point out that in the case of non-locally bounded processes it may happen that
K is reduced to {0}. Indeed, for an easy example take St = 0 for t < 1 and
St = X for t ≥ 1 where X is a standard normal variable. The filtration (Ft)0≤t
is the filtration generated by S. For a predictable integrand H we have that
H1 = constant. It follows that (H ·S)∞ = (H ·S)1 is of the form λX where
λ ∈ R and H is only admissible if H1 = 0 which yields (H ·S)∞ = 0. In this
example we obtain that C = −L+

∞.
We now have enough material to define the No Arbitrage properties.

Roughly speaking these properties say that it is impossible to make money
out of nothing (no money pump, no arbitrage, no free lunch...). Because of
doubling strategies we have to restrict to admissible integrands.

Definition 2.7 ([DS94]) The semi-martingale S satisfies the No Arbitrage
(NA) property if K ∩ L+

0 = {0} or, equivalently, C ∩ L+
0 = {0}.

The idea of this notion is that, by using admissible strategies, the investor
can only make money if he/she is willing to face the possibility of also losing
money. A standard and very intuitive example of (NA) is given by:

Proposition 2.8 If there is a probability measure Q ∼ P under which S is a
martingale, then S satisfies (NA).

Proof Let H be admissible and Q a probability measure, Q ∼ P; then (H·S) is
a Q-local martingale by Emery’s theorem (see [E80]). Since (H ·S) is bounded
below it is a Q-super martingale and hence E Q[(H ·S)∞] ≤ 0. It follows from
the assumption Q ∼ P that P[(H ·S)∞ < 0] > 0 as soon as P[(H ·S)∞ > 0] > 0
i.e., (NA).

The fundamental theorem of asset pricing is the appropriate converse of
proposition 2.8. It is easily seen that in the case of a finite set Ω, the cone
K is a vector space and an easy separation argument yields the existence of
a risk neutral probability Q such that S becomes a martingale (compare the
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more general arguments below). However in the general case, it is not clear
that the sets K or C are closed (in an appropriate topology). Also in a general
context it can be shown that it is impossible to obtain a martingale measure
Q for a process S. This is of course related to the integrability properties
of the process S. The generalizations we need are described in the following
definition.

Definition 2.9 If (Ω, (Ft)0≤t,P) is a filtered probability space, then a process
S : R+×Ω→ R (or Rd) is called a local martingale if there is a non-decreasing
sequence of stopping times 0 ≤ T0 ≤ T1 ≤ T2 ≤ . . . such that Tn → ∞
and for each n we have that the stopped process STn is a uniformly integrable
martingale. We recall that ST is defined as the process STt = St∧T .

In case the time interval is finite, e.g. [0, 1], we require that limP[Tn =
1] = 1.

A standard example of a uniformly integrable (!) process S that is a local
martingale and not a martingale is given by the inverse of a Bessel process in
3 dimensions (see, e.g., [RY91]). The process is defined as follows. We start
with a 3-dimensional Brownian motion X : [0, 1] × Ω → R

3. The filtration is
the standard filtration generated by X. We suppose that X0 = (1, 0, 0). The
Bessel process R is defined as R = ‖X‖ where ‖ ‖ is the Euclidean norm on R3.
By the well known property of Brownian motion in 3 dimensions we have that
R 6= 0 and S = 1

R
is therefore well defined. It can be checked that S is a local

martingale (roughly speaking because 1
‖R‖ is harmonic on R3\{(0, 0, 0)}), that

(St)0≤t≤1 is a uniformly integrable set (in fact bounded in any Lp space with
p < 3) and that E [St] < 1. The latter shows that S cannot be a martingale.
If we replace the filtration by the smaller filtration generated by S, then it can
be shown that P is the only probability that turns S into a local martingale.
The reader can check that proposition 2.8 also holds for local martingales and
hence we get that S satisfies (NA) (see [RY91] for details on Bessel process).

For non continuous processes the concept of local martingale is not yet
sufficient as is shown in [DS98]. We need the even more general concept
of sigma-martingale. These processes were introduced by Chou and Emery
(see [E80]).

Definition 2.10 ([DS98]) A process S : R+ × Ω → R defined on the filtered
probability space (Ω, (Ft)0≤t,P) is called a sigma-martingale if there is a strictly
positive predictable process ϕ : R+×Ω→ R+\{0} such that ϕ·S is a uniformly
integrable martingale.

It is easily seen that a local martingale is a sigma-martingale. Conversely if
in the above definition the function ϕ can in addition be chosen to be decreasing
then the sigma-martingale is already a local martingale. For continuous (or,
more generally, for locally bounded) processes the two concepts coincide.

13



In the usual models of mathematical finance it does not matter if we work
with the process S or with a process ϕ · S where ϕ is non-zero. Indeed our
main concern goes to stochastic integrals and it is obvious that for predictable
processes H : R+ × Ω→ R

d we have that H is (ϕ ·S) integrable if and only if
(Hϕ) is S integrable. As a result we see that the sets C and K defined by S
or by ϕ ·S are the same.

3 The Fundamental Theorem of Asset Pricing

We start this section with a generalization of the concept of No Arbitrage,
which can be seen as a topological version of (NA).

Definition 3.1 With the notation of section 2 we say that the semi-martingale
S : R+ × Ω → R

d satisfies the No Free Lunch with Vanishing Risk (NFLVR)
property if C ∩L+

∞ = {0} where C is the closure of C in L∞ with respect to the
norm ‖ ‖∞.

There are different topological versions of (NA) pertaining to weaker
topologies than the sup-norm (and therefore yielding stronger assumptions).
We refer the reader to [DS94] for a discussion of the different concepts.

Theorem 3.2 A semi-martingale S satisfies (NFLVR) if and only if S satis-
fies the following two properties

(a) S satisfies (NA)
(b) If εn > 0 is a sequence of positive numbers tending to zero, if

(Hn)n≥1 is a sequence of εn-admissible strategies (i.e., Hn ·S ≥
−εn) then (Hn ·S)∞ → 0 in probability.

One may give examples showing that (a) does not imply (b) and (b) does
not imply (a). For the former we defer the discussion to section 4 below. For
the latter we may take the Bessel process R in three dimensions (see [DS95]).
We drop the details. The reader can now see why the property is called No
Free Lunch with Vanishing Risk.

The No Free Lunch with Vanishing Risk property is also equivalent to a
boundedness property. In fact we have:

Theorem 3.3 A semi-martingale S satisfies (NFLVR) if and only if S satis-
fies the following two properties

(a) S satisfies (NA)
(b) The set K = {(H ·S)∞|H is 1-admissible} is bounded in prob-

ability.
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The boundedness property also has an immediate economic interpretation.
If strategies are chosen so that the losses are bounded uniformly (i.e., in L∞),
then the gains are bounded in probability (i.e., in L0). This can also be seen
as some continuity property. Of course, the relation between items (b) of the
two preceding theorems is immediately noticeable.

The fundamental theorem of asset pricing in its most general form can now
be stated (see [DS94] and [DS98]).

Theorem 3.4 For a semi-martingale S : R+ × Ω → R
d the following two

properties are equivalent

(a) S satisfies the (NFLVR) property
(b) There is an equivalent probability measure Q ∼ P such that

under Q the process S is a sigma-martingale.

If we assume that the semi-martingale S is locally bounded (resp. bounded)
the term “sigma-martingale” in (b) may be replaced by the term “local martin-
gale” (resp. “martingale”).

In case the (NFLVR) property is satisfied we denote by Me the set of all
equivalent sigma-martingale measures. The set M is the set of all absolutely
continuous semi-martingale measures. In case S is locally bounded M = M

e,
where the closure is taken with respect to the norm of L1(P), but with general
case M & M

e.
The proof of this theorem is lengthy and we cannot repeat it here. But

we will give a sketch of the different points that relate the theorem to func-
tional analysis. The first and most delicate step consists in proving that under
the assumption of (NFLVR) the set C is already weak*-closed. Yan’s theo-
rem [Yan80] (whose proof consists of a combination of a Hahn-Banach and an
exhaustion argument) (see, e.g., [S94]) then yields the existence of an equiva-
lent probability measure Q such that, for all f ∈ C, E Q[f ] ≤ 0. Interpreting
Q as a linear functional on L∞, it separates C from the positive cone L+

∞. In
the case where S is locally bounded this already implies that S is a local mar-
tingale for the measure Q. In the general case one has to make an additional
(nontrivial) step that consists in showing that, for ε > 0, there is a measure
Q0 such that Q0 is equivalent to P, that ‖Q−Q0‖ ≤ ε and that under Q0 the
process S is a sigma-martingale. See [DS98] for details and for an example
that shows that one cannot do better than a sigma-martingale.

As indicated above, the central point of the proof is the fact that C is
weak*-closed. This is done using the Banach-Diendonné or - what amounts
essentially to the same - the Krein-Smulian theorem. This theorem says that
a convex set C in the dual X∗ of a Banach space X is σ(X∗, X) (i.e., weak*-
closed) if and only if C ∩ (nBX∗) is σ(X∗, X) closed for each n ≥ 1. If X = L1

and X∗ = L∞ we can, using the characterization of relatively weakly compact
sets in L1 as uniformly integrable subsets of L1, make this even more precise.

15



A convex set C ⊂ L∞ is weak*-closed if and only if, for each sequence (fn)n≥1

in C that is uniformly bounded and converges in probability to a function f ,
we have that f ∈ C. Since in our context the set C is a cone we have to show
the following fact.

Claim 3.5 Let (Hn)n≥1 be a sequence of 1-admissible integrands, let (fn)n≥1

be a sequence in L0(Ω,F ,P) such that −1 ≤ fn ≤ (Hn ·S)∞, which tends to f
in probability; then under the assumption of (NFLVR) there is a 1-admissible
integrand H such that f ≤ (H ·S)∞.

To prove this claim we have to replace the integrands by a better choice.
Let us define the following concept:

Definition 3.6 An element f ∈ C1 is called maximal if g ∈ C and g ≥ f a.s.
implies g = f . Here C1 denotes the set C1 = {h|h ∈ C0 h ≥ −1} and the
bar refers to the closure in the space L0 (i.e., with respect to convergence in
probability).

Our assumptions on (NFLVR) show that C1 is bounded in L0 and hence
C1 has sufficiently many maximal elements. In fact every g ∈ C1 is dominated
by such a maximal element. To prove the claim we reduce it to the following:

Claim 3.7 The maximal elements of C1 are already in C1.

So let us fix a sequence (Hn)n≥1 such that Hn is 1-admissible and such
that (Hn ·S)∞ → f in probability, where f is a maximal element in C1. The
first trick is to replace the probability P by an equivalent probability (still
denoted by P) such that the function supn≥1 supt |(Hn ·S)t| is in L2(P). That
this is possible follows from an upcrossing type lemma and the maximality of
f . After an additional technical reduction, which we skip, the Doob-Meyer
decomposition theorem now allows to decompose S into a martingale M and
a predictable process of finite variation A, i.e., S = M + A. The Doob-Meyer
decompositions of (Hn ·S) are then given by (Hn ·M) and (Hn ·A). In order
to control the jumps of M and A we use the following generalization of an
inequality of Stein.

Proposition 3.8 Let (Fn)n=0,...,N be a discrete time filtration on the proba-
bility space (Ω,F ,P), let (fn)n=1,...,N be adapted to (Fn)n=0,...,N , let gn be the
predictable projection, i.e., gn = E [fn|Fn−1] then we have

E

[(∑
|gn|q

) p
q

] 1
p

≤ 2E

[(∑
|fn|q

) p
q

] 1
p

whenever 1 ≤ p ≤ q ≤ ∞. In other words the mapping

Lp(lNq ) −→ Lp(lNq ) (16)

(fn)n≥1 7−→ (E [fn|Fn−1])n≥1 (17)
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has norm less than or equal to 2.

The next step is to show that the convex hull of ((Hn ·M)∞)n≥1 and of
((Hn ·A)∞)n≥1 are both bounded (in a good sense). Since ((Hn ·S)∞)n≥1 is
bounded in L2(P) both sets are at the same time bounded or unbounded. But
if they are unbounded we are faced with the fact that (Hn ·A)t increases in
a “linear” way whereas (Hn ·M)t, due to the orthogonality of its increments,
grows only in a way related to the square root. This leads to a contradiction.
Once the boundedness is proved, it is a straightforward track to find convex
combinations Kn of (Hn)n≥1 that converge to a predictable process K such
that (K ·S)∞ = f . The latter technique is a combination of a Hahn-Banach
type argument together with the techniques of Memin (see [M80]).

The separation argument in the proof of the fundamental theorem can be
exploited further. It yields to the following duality result (see [EQ95], [D92]).

Theorem 3.9 Assume that S is a locally bounded semi-martingale such that
M

e is not empty. Then for f ≥ 0 we get

sup
Q∈Me

E Q[f ] = inf{α | ∃g ∈ K with α + g ≥ f} =: α0 (18)

Furthermore, if the quantities are finite, the infimum is a minimum and there
is a maximal element g ∈ Kmax with α0 + g ≥ f .

4 The continuous case

When the process S is continuous or, more generally, locally bounded, the
assumption on S to be a semi-martingale turns out to be a necessary condition
for the conclusion of the fundamental theorem of asset pricing to hold true. In
fact we can prove the following result (see [DS94]), stated under a finite time
horizon, say [0, 1].

Theorem 4.1 If the locally bounded process S = (St)0≤t≤1 is not a semi-
martingale then there is a function f ≥ 0, P[f > 0] > 0, and a sequence of

simple strategies Hn such that (Hn ·S) ≥ −εn, εn → 0, (Hn ·S)1
P→ f .

We recall that a strategy H is simple, if there is a finite sequence of stopping
times 0 ≤ T0 ≤ T1 ≤ . . . ≤ Tn < ∞ as well as functions (gk)k≥0, gk being FTk
measurable and H =

∑n−1
k=0 gk11]]Tk,Tk+1]]. These strategies are most elementary

and the definition of their stochastic integral (H · S) does not involve any
calculus.

The theorem is not true for processes with unbounded jumps, since in this
case the boundedness condition on (H ·S) might imply that H ≡ 0.

Theorem 4.1 has some nice consequences for continuous processes. In par-
ticular fractional Brownian motion fails to be a semi-martingale (with the
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exception of Brownian motion, of course) and therefore allows, by theorem
4.1, this kind of arbitrage. This implies that these models are useless in the
context of pricing and hedging derivative securities by no-arbitrage arguments.
This fact was known since a long time, but even after publication of the above
theorem, people still continued to ask about fractional Brownian motion. Chris
Rogers [R97] decided to settle the problem by giving a fairly explicit strategy
H such that (H ·S)1 ≥ 0 and P[(H ·S)1 > 0] > 0, (H ·S) ≥ −1.

The strategy is not simple (one can show that for simple strategies (NA) is
satisfied), but it is “semi”-simple in the sense that restricted to each interval
[0, t] with t < 1, it is simple. Fractional Brownian motion, however, has some
nice long range dependencies, observed in financial data. In forthcoming work
of Cheridito [Ch00] the reader can find a way out to this dilemma.

For continuous processes the concept of (NA) can be analyzed further. So
let us assume that S is a continuous semi-martingale with respect to a filtered
space (Ω, (Ft)0≤t≤1,P); again for simplicity we assume that the horizon is finite,
say [0, 1]. The Doob-Meyer theorem permits to write S = M + A where M is
a continuous local martingale, A is a process of finite variation with A0 = 0. If
S satisfies (NA) then it is immediately seen that the measure dA is absolutely
continuous with respect to the measure d〈M,M〉 (see the argument some lines
below).

The process 〈M,M〉 is the quadratic variation of M (and hence also of S).
In this case we can define 〈M,M〉 as M2 − 2M ·M . Recall that in stochastic
calculus the derivative of M2 is not equal to 2M dM , it involves a second order
term (Itô’s lemma). This term is precisely d〈M,M〉.

The fact that dA is of the form h d〈M,M〉 for some predictable process
h is then a consequence of the Radon-Nikodym theorem. In the stochastic
case the standard proofs need some changes, the theory was developed by
C. Doléans-Dade, see [DS95]. If dA were not absolutely continuous with
respect to d〈M,M〉 then it follows from Hahn’s decomposition theorem that
there is a strategy H such that H = 0, d〈M,M〉 a.s. and H dA is strictly
positive. If follows that H ·M = 0 and that H · S = H ·A is an increasing
process. This implies arbitrage. The strategy H is roughly speaking so that
only trades when the random “risky” component M of S does not move. In
this way the agent takes advantage of the predictable finite variation part.

In arbitrage considerations we therefore may suppose that a continuous
semi-martingale S satisfies dS = dM+hd〈M,M〉 where M is the local martin-
gale part in the Doob-Meyer decomposition and h is a predictable process. The
existence of an equivalent local martingale measure for S is intimately related
to the process exp(−

∫ t
0
hudMu − 1

2

∫ t
0
h2
ud〈M,M〉u), the so called Doléans-Dade

or stochastic exponential of (−h ·M), also written as E(−h ·M). Of course
the existence depends on the finiteness of the integral

∫ t
0
h2
ud〈M,M〉u. If the

integral is not almost surely finite then there are essentially two possibilities.
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To distinguish them we introduce the stopping time

T = inf

{
t|
∫ t

0

h2
ud〈M,M〉u = ∞

}
. (19)

On the set T ≤ 1 we then have either
∫ T

0
h2
ud〈M,M〉u =∞ or we have, ∀ε > 0,∫ T+ε

T
h2
ud〈M,M〉u =∞.

Technically the latter case is more difficult but it has a simple solution:
there is a very special kind of arbitrage, namely there is H supported by ]]T, 1]]
and such that

(H ·S) ≥ 0 i.e., the outcome at every time is nonnegative, and
P[(H ·S)T+ε > 0] > 0 for all ε > 0.

An example of this nature is given by dSt = dt√
t

+ dWt where W is Brownian
motion defined in its natural filtered space. A strategy of the form above is
given by Kt = 1√

t log(t−1)
and then we stop the process (K · S) either when

it reaches a level 1 or when it hits 0 for the first time after 0. The iterated
logarithm theorem implies that, immediately after 0 the process (K · S) is
strictly positive!

The next result is closely related to these arguments. It was shown in
[DS95] and, independently and under slightly stronger hypothesis, in [LS95].

Theorem 4.2 If the continuous martingale S satisfies (NA) then there is a
measure Q absolutely continuous with respect to P and such that S is a local
martingale under Q. The support of the measure Q can be chosen to be equal
to {L1 > 0} where Lt = exp(−

∫ t
0
hudMu − 1

2

∫ t
0
h2
ud〈M,M〉u) stopped when∫ t

0
h2
ud〈M,M〉u hits ∞, or what is the same: when L hits 0.

Even when S satisfies (NA) and
∫ 1

0
h2
ud〈M,M〉u < ∞ a.s., the process L

need not be a martingale, i.e., it can happen that E[L1] < 1. This means that
the measure Q is not necessarily given by dS = L1dP. See [S93] and [DS98a].

We also have the following:

Proposition 4.3 If S is a continuous semi-martingale decomposed as dS =
dM +hd〈M,M〉 then the set K1 = {(H ·S)∞|H is 1-admissible} is bounded in

L0(P) if and only if
∫ 1

0
h2
ud〈M,M〉u <∞ a.s.

The 3-dimensional Bessel process shows that this does not rule out arbitrage
(compare [DS95a])!

5 Changes of Numéraire and a related Banach

space

Throughout this section we suppose that the process S modeling the price of
d stocks is a d-dimensional semi-martingale that is locally bounded. We also
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suppose that the process S admits a local martingale measure. We repeat
that the set of equivalent local martingale measures is denoted by Me, the
notationM being reserved for the closed convex set (in fact the closure ofMe) of
absolutely continuous local martingale measures for S. Ka will denote the cone
of outcomes of (a-)admissible strategies, K =

⋃
aKa. As seen before, maximal

elements play an important role in the proof of the fundamental theorem.
However, more can be said. If V = 1 + (H ·S) is a strictly positive process
satisfying V∞ > 0 a.s., then we might use V as a new money unit (say $ instead
of CHF or Euro). The market is now described by the (d + 1)-dimensional
process X = ( 1

V
, S
V

). Economic interpretation leads us to conjecture that S
satisfies (NA) if and only if X satisfies(NA): It does not matter whether you do
the bookkeeping in $, CHF or in Euro! However since the admissible strategies
may change, we have to be more careful.

Theorem 5.1 If S satisfies (NFLVR) then the following assertions are equiv-
alent for a process V = 1 + (H ·S), where H is admissible and V∞ > 0 a.s.:

(1) X = ( 1
V
, S
V

) satisfies (NA),
(2) there is an equivalent local martingale Q measure for the process

S, such that V is a uniformly integrable Q-martingale, i.e.,
E Q[V∞] = 1 or equivalently E Q[(H ·S)∞] = 0,

(3)(H ·S)∞ is maximal in K1 (and hence also in K).

It is not true that in this case V is a uniformly integrable martingale for
each element R in the set of equivalent local martingale measures Me, see [S93]
or [DS98a] for this surprising fact. The above theorem also yields another proof
of the theorems of Jacka [J92] and Ansel-Stricker [AS94].

Theorem 5.2 If S satisfies (NFLVR) and f is a positive random variable,
then the following conditions are equivalent:

(a) f = α + (H ·S)∞ with (H ·S)∞ maximal in K
(b) there is Q ∈Me such that E Q[f ] = sup{E R[f ]|R ∈M} <∞

The Bishop-Phelps theorem now immediately implies

Theorem 5.3 If S satisfies (NFLVR) and all absolutely continuous local mar-
tingale measures are already equivalent, then M is reduced to a singleton.

Proof As the set of absolutely continuous local martingale mea-
sures M is a bounded, closed and convex subset of L1, the set
{f |f attains its supremum on M} is a norm dense subset of L∞. The set of
all elements of the form α + (H ·S)∞, where the process (H ·S) is bounded
is therefore dense in L∞ and because it is closed (this follows essentially from
claim 3.5) we have that it equals L∞. This implies that all elements of L∞ are
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constant on M, hence M can only be a one-point-set.

Another application of Banach space theory is given by James’ theorem on
weakly compact sets. We state the result in its negative form, see [D92] for
details.

Theorem 5.4 Suppose S is continuous, satisfies (NFLVR) and suppose that
all martingales with respect to (Ft)0≤t are continuous (i.e., all stopping times
are predictable). Then we have

(a) either M is a singleton
(b) or M is so big that it has no extreme points.

It turns out that (a) occurs if and only if M is weakly compact and the
proof uses James’ theorem.

In the case when S is only assumed to be locally bounded (and not neces-
sarily continuous), the above theorem is false and the implications of M being
weakly compact are not yet fully understood.

Turning back to the theme of theorem 5.1 above, we find that the maximal
elements generate, in a natural way, a Banach space.

Theorem 5.5 The set Kmax of maximal elements forms a cone in L1(P).

This is not obvious. Indeed if g, f ∈ K, E Q[f ] = 0 and E R[g] = 0 for
Q, R ∈ Me then how can we find an element Q′ ∈ Me with E Q′ [f + g] = 0?
The proof uses the numeraire theorem 5.1 above.

With the convex cone Kmax we may construct the vector space G = Kmax−
Kmax. On G there is natural norm, if g = f − h where f, h ∈ Kmax then we
put

‖g‖ = inf {a | g = f − h, f, h ∈ Kmax
a } . (20)

Surprisingly (G, ‖ ‖) is complete and

2‖g‖ = sup{‖g‖L1(Q)|Q ∈Me}. (21)

Although the constructions of Kmax and of G make sense economically, the
implications of this result in mathematical finance are not yet clear. Examples
in [DS97] show that the space G can have different natures, it can be an L1

space but it can also contain a complemented L∞ space. Also the space G is
different from the space of functions f so that sup{‖f‖L1(Q)|Q ∈ Me} < ∞.
Indeed take f ∈ K1 \Kmax (such elements exist) then f /∈ G (this requires a
proof!) and sup

Q∈Me ‖f‖L1(Q) ≤ 1.
A side result of the theory is the following
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Theorem 5.6 If f ∈ Kmax then

{Q|Q ∈M, E Q[f ] = 0} (22)

is a dense Gδ-set in M. Hence {Q|Q ∈ Me, E Q[f ] = 0} is a dense Gδ-set in
M

e.

6 Weighted Norm Inequalities and Closedness

of a Space of Stochastic Integrals

In this section we investigate a topic initiated by the work of Föllmer-
Sondermann [FS86] and Föllmer-Schweizer [FSch91], to deal with the prob-
lem of hedging in incomplete markets, i.e., when there is no uniqueness of the
equivalent martingale measure.

To motivate the idea, first suppose for simplicity that S is an R-valued
martingale under the original measure P which we also assume to be bounded
in L2(Ω,F ,P). We denote by G the subspace of L2(Ω,F ,P) consisting of the
functions of the form

f =

∫ T

0

HudSu (23)

= (H ·S)T (24)

where H is a predictable process such that the stochastic integral makes sense
in L2, i.e., such that ((H · S)t)t≤T is a martingale bounded in L2(Ω,F ,P).
In this setting it is an easy consequence of the very definition of a stochastic
integral that G is a closed subspace of L2(Ω,F ,P): indeed, we have the Kunita-
Wabanabe isometry∥∥∥∥∫ T

0

HudSu

∥∥∥∥
L2(Ω,F ,P)

= ‖H‖L2(Ω×[0,T ],P,dPd〈S〉) (25)

=

[∫
Ω

∫ T

0

H2
t (ω)d〈S〉t(ω)dP

] 1
2

. (26)

Here P denotes the sigma-algebra of predictable subsets of Ω × [0, T ] and
dPd〈S〉 denotes the finite measure on P induced by the quadratic variation
process of S. As the space L2(Ω× [0, T ],P , dPd〈S〉) is obviously complete and
can be identified via the above isometry with the subspace G of L2(Ω,F ,P)
we find that G is closed in L2(Ω,F ,P).

We denote by G̃ the space spanned by G and the constant functions which
clearly again is closed in L2. Note in passing that in the case when (St)0≤t≤T is

Brownian motion defined on its natural filtration (Ft)0≤t≤T then G̃ equals the
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entire space L2(Ω,F ,P); this corresponds to the L2-version of the martingale
representation theorem for Brownian motion mentioned in the introduction.

As G̃ is closed, we may define the orthogonal projection πG̃ : L2(Ω,F ,P) 7→
G̃. Given a contingent claim f ∈ L2(Ω,F ,P) we now may, following Föllmer-
Sondermann [FS86], decompose f into

f = c+ g + h (27)

where c is a constant, g may be written as g = (H ·S)T while h is orthogonal to

G̃. We may associate to g and h the martingales E [g|Ft]0≤t≤T = ((H ·S)t)0≤t≤T
and (E [h|Ft])0≤t≤T , the latter martingale being strongly orthogonal to the
martingale (St)0≤t≤T

The interpretation in Finance goes as follows: a general contingent claim f
may be decomposed into the “hedgeable” part c+ g which may be replicated
at an initial price c; the remaining part is given by the “purely non-hedgeable”
risk h.

So far we have used the simplifying assumption that the price process
S = (St)0≤t≤T is already a martingale. We now turn to the case when S is only
an Rd-valued semi-martingale; following Föllmer-Schweizer [FSch91] our aim
is to decompose a general contingent claim f ∈ L2(Ω,F ,P) into a hedgeable
and an orthogonal part. The crucial issue is to establish the closedness of a
properly defined space of stochastic integrals playing the role of G̃ above.

We concentrate on the case of a continuous process S but we do not assume
that S is L2-bounded. We then may uniquely decompose S into its local
martingale and into its finite variation part

S = S0 +M + A. (28)

We have seen in section 4that under the condition of (NFLVR) the Rd-
valued measure dA is absolutely continuous with respect to d〈M〉 (taking val-
ues in the non-negative definite operators on Rd) and we may find an Rd-valued
predictable process λ = (λt)0≤t≤T such that

dAt = d〈M〉tλt P-a.s. for 0 ≤ t ≤ T. (29)

A formal application of the Girsanov-theorem indicates that the probability
measure Qmin defined via the density process

Lt := E(−λ ·M)t, (30)

and
dQmin

dP
:= LT = E(−λ ·M)T , (31)

where E denotes the Doléans-Dade exponential of a local martingale, is a can-
didate for an equivalent local martingale measure for the process S (provided
all the involved limiting procedures make good sense and LT really defines a
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density of an equivalent measure). Föllmer-Schweizer have called this measure
the “minimal” martingale measure Qmin (if it exists).

Another natural choice from the set Me(S) of equivalent local martingale
measures for S is Qopt, the “variance-optimal” measure, which minimizes the
L2(Ω,F ,P)-norm among all elements of Me(S) (again, provided it exists). In
many cases, e.g., when S has independent increments, Qmin and Qopt coincide,
but in general they are different.

We now turn again to the theme of closedness of a (properly defined) space
of stochastic integrals.

To introduce the notion of predictable trading strategies appropriate in the
present context, we call a predictable Rd-valued process L2-admissible if H ·M
as well as H ·A make sense in L2, i.e., if H ·M is an L2(Ω,F ,P)-bounded

martingale and E

[(∫ T
0
|HudAu|

)2
]
< ∞. The definition is chosen in such

a way that we may define the stochastic integral H ·S = H ·M + H ·A and
that (H ·S)T is in L2(Ω,F ,P). Denote again by G the subspace of L2(Ω,F ,P)
formed by the functions (H · S)T , where H runs through the L2-admissible
trading strategies.

To formulate the theorem we recall that a measure Q ∼ P with density
process Lt = E

[
dQ
dP
|Ft
]
, satisfies the reverse Hölder condition Rp, for 1 < p ≤

∞, if there is a constant C such that

E

[(
dQ

dP

)p
|Ft
]
≤ CE

[
dQ

dP
|Ft
]p
, for 1 ≤ t ≤ T. (32)

The name stems from the fact that by Hölder’s inequality the reverse in-
equality is always satisfied with C = 1. The reverse Hölder condition is dual
to the Muckenhaupt condition (see [DDM79]).

We now can formulate the central result of [DMSSS97]:

Theorem 6.1 Let S = (St)0≤t≤T be a continuous semi-martingale and sup-
pose that there exists an equivalent probability measure Q with dQ

dP
∈ L2(Ω,F ,P)

under which S is a local martingale.
The space G is closed in L2(Ω,F ,P) if and only if there is an equivalent

local martingale measure Q for S which satisfies the reverse Hölder condition
R2. In this case the so-called “variance-optimal” measure Qopt, which has
minimal L2(Ω,F ,P)-norm among all equivalent local martingale measures, is
welldefined and satisfies the reverse Hölder condition R2.

There are some variants of the above theorem in terms of the process λ·M .
A necessary condition for theorem 6.1 to hold true (under the assumptions
given there) is that the process λ ·M is in BMO but this condition is not
sufficient. In fact λ ·M is in BMO is equivalent to the completeness of G with
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respect to the stronger norm defined via the maximal function

‖(H ·S)‖ :=

∥∥∥∥sup
t

(H ·M)t

∥∥∥∥
L2(Ω,F ,P)

. (33)

On the other hand the condition that the minimal measure Qmin defined
via dQmin

dP
= E(−λ ·M) exists and satisfies the reverse Hölder condition R2 is

sufficient but not necessary for the theorem to hold true. In fact, this stronger
condition is equivalent to the fact that G is closed and, in addition, that
the (in general not orthonormal) projection π from L2(Ω,F ,P) onto G̃ with
ker(π) = M⊥ is well defined and continuous. Here M⊥ denotes the subspace
of L2 orthogonal to the space M generated by the constants and the stochastic
integrals on the local martingale part M of the process S. If π is welldefined
and bounded then π induces the Föllmer-Schweizer decomposition as it splits
a general contingent claim f ∈ L2(Ω,F ,P) into the hedgeable part π(f) which

may be written as π(f) = const +
∫ T

0
HudSu for an L2-admissible trading

strategy H and the non-hedgeable part f − π(f) which induces a martingale
strongly orthogonal to the local martingale part M of S.

We refer to [DMSSS97] for a detailed presentation of these topics for the
above discussed closedness of G in Lp for p = 2 and the case of Rd-valued
continuous semi-martingales S. Extensions to the case 1 < p < ∞ as well as
to the case of general Rd-valued semi-martingales were obtained in [GK98],
[CKS97] and [CKS98].
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ture Notes in Math. 714. Springer, Berlin Heidelberg New York.

[KS98] Karatzas, I., Shreve, S. Methods of Mathematical Finance. Springer
(1997).

[K33] Kolmogoroff, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung.
Erg. Math 2, 1933, Springer

[K81] Kreps, D. (1981) Arbitrage and equilibrium in economies with in-
finitely many commodities. J. Math. Econom. 8, 15–35.

[LL96] Lamberton, D., Lapeyre, B. Introduction to Stochastic Calculus Ap-
plied to Finance. Chapman & Hall (1996).

[LS95] Levental, S., Skorohod, A.S. A necessary and sufficient condition
for absence of arbitrage with tame portfolios. Ann. Appl. Probab. 5,
(1995), pp. 906–925.

[M66] Mandelbrot, B.B. Forecasts of Future Prces, Unbiased Markets and
“Martingale” Models. Journal of Business, 39, pp. 242-255, 1966

[M80] J. Memin Espaces de semi-martingales et changement de probabilité.
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