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Abstract

In this introductory course we review some of the basic concepts of Math-
ematical Finance. We start with an account on the thesis of L. Bachelier,
which was defended as “Théorie de la Spéculation” in Paris in 1900. We hope
that this historic approach gives a good motivation for a critical appreciation
of the modern theory.

In section 2 we then present the basic framework of the modern no-
arbitrage theory in the simple setting of finite probability spaces €.

The celebrated Black-Scholes model, based on geometric Brownian motion,
is presented in section 3. It is compared to Bachelier’s model, which is based
on (arithmetic) Brownian motion.

The first three sections are kept on a relatively low level of technical so-
phistication. In section 4 we pass to a higher level of technicality and review
the general theory of semi-martingale models of financial markets. We discuss
in some detail the “fundamental theorem of asset pricing”, which establishes
the relation between the no-arbitrage theory on the one hand, and martingale
theory on the other.

Finally, in section 5 we briefly discuss some of the applications of the
fundamental theorem.
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1 Introduction: Bachelier’s Thesis from 1900

The fact that this course is given in the year 2000 at the école d’été in Saint Flour
makes it particularly appealing to start this course with a review of the seminal thesis
of Louis Bachelier: “Théorie de la Spéculation” [B00]. This historical account will
provide a good motivation for the general theory. We note, however, that readers
only interested in a presentation of the theory in modern terms, can immediately
pass to section 2.

Bachelier’s thesis was defended in Paris on March 29, 1900, and H. Poincaré was
a member of the thesis committee. He wrote a very positive and insight-full report
on this thesis (this opinion as well as many other value judgements below only reflect
my personal point of view). One may consult this report in Courtault et al. [CK 00],
where one can also find a copy of the handwritten manuscript of Poincaré’s report.
We also refer to the interview of M. Taqqu with B. Bru [T 00] for an account on
the personal life of Bachelier, who — in spite of his brilliant and original work, and
the fame and support of his thesis adviser — remained an outsider to the French
mathematical establishment during all of his life.

L. Bachelier was born in 1870 and became an orphan at the age of 19. In order
to make a living, he had to work at the Bourse de Paris where he was exposed on a
daily basis with the erratic movement of prices of financial securities.

In these days there was massive trade at the Bourse de Paris in the so-called
“rentes”, which were perpetual bonds paying an annual interest rate, typically 3 %
(paid in 4 quarterly coupons of 75 centimes per 100 francs par value). The rea-
son why these instruments had such importance in France goes back to the French
revolution, when many wealthy aristocrats left the country and lost their property.
When they returned after the restauration, they wanted their property back, but
this turned out to be impossible after 25 years. The solution adopted by the gov-
ernment in order to recompensate them, was to issue “rentes”, and to distribute an
appropriate amount of them among the expropriated noble-men. While the quaterly
coupons would provide them with an adequate income, the capital was never paid.
These rentes were passed on in the families and they were also traded massively
at the Bourse de Paris (for more information see [T 00]). Of course, they were not
necessarily traded at par value but rather at changing prices similarly as in today’s
bond markets.

We spoke in some detail about the “rentes”, because their special properties are
important to understand the choice of Bachelier’s model for the stock price process.

(i) There was a (very) liquid market, and price fluctuations happened “in contin-
uous time”, similarly as in the major stock and bond markets of today.

(ii) The price of a “rente” would typically not deviate too much from its par value,
e.g. 100 francs; hence the absolute price changes (expressed in francs) and the
relative price changes (expressed in percent) would roughly be the same.

(iii) The price fluctuations were relatively mild, if compared, e.g., with today’s price
fluctuations of stocks: one may deduce from the data provided by L. Bachelier
that the standard deviation of the price change of a “rente” with par value of
100 francs over a year was about 2.4 francs (which roughly corresponds to a



yearly volatility of 2.4 percent in the Black-Scholes model analyzed in section
3 below).

L. Bachelier was interested in designing a rational theory for the prices of term
contracts. The two forms which were traded at the Bourse at that time also play a
basic role today as forward contracts and options.

Definition 1.1 A forward contract on an underlying security S consists of the right
and the obligation to buy a fized quantity (which we normalize to be one) of the
underlying security, at a fived price K and a fixed time T in the future.

The underlying was in Bachelier’s case typically a “rente”, but it may just as
well be any risky security such as a share, a foreign currency, a commodity etc.

Depending on the value of the “strike price” K, the present day value (i.e., at
time ¢ = 0) of such a forward contract could be positive or negative. The price
K = F at which a forward is contracted today at price zero is called the forward
price of the underlying S (see, e.g., [H99] or any introductory text on Mathematical
Finance for more explanation).

We shall show now — in a similar way as Bachelier did in 1900 — that the
forward price F' is determinated by some very elementary no-arbitrage arquments.
For the sake of clarity, we provide an example in a slightly different economic context
than the one considered by Bachelier.

Example 1.2 Let X = (X;)o<i<r model the exchange rate of the US$ vs. the €,
i.e., the price of 1 US$ in terms of €. The present day rate X, (the “spot price”) can
be looked up in the newspaper, hence this is just a positive number, say Xy = 1.1.
On the other hand, for ¢ > 0, we do not know the exchange rate X;. Later on we
shall model X as a stochastic process, but presently it is not even necessary to speak
about probability at all. X; simply is some quantity which will be known at time %.

To compare cash-flows at different times we assume that there are “cash-
accounts” B¢ and Btf for € and US $ respectively, which are given by

Bl = et Bl = e, (1)

where d stands for “domestic”, i.e. €, while f stands for “foreign”, i.e. US$. The
idea behind the notion of “cash account” is that an investor has the possibility of
investing in a “riskless” way, which means that the value of her investment in the
“cash-account” will develop deterministically in a way which is known in advance.
The reader should think of a bank account (in € or US$ resp.) yielding an interest
rate of r4 or 7y respectively. We in advance shall also assume that these investments
may be either positive or negative (“long” or “short” in the financial lingo), in
other words we may invest or borrow at the same conditions. Of course, this is an
unrealistic assumption for small investors, but we should think of large investors
(banks, investment funds, broker houses etc.) for which this assumption is a close
approximation to reality.

Claim 1.3 Given the time horizon T, there is a unique forward price F' which does
not allow arbitrage opportunites, namely

F = XpelrarT, (2)



We have not yet defined the notion of arbitrage — and we shall give a formal
mathematical definition only much later. But the best way to grasp this — very
primitive and economically convincing — concept is to consider the subsequent
argument.

Consider two portfolios which can be established on the market today.
Portfolio A: Invest e /7 US$ into a US$ cash account. This investment will be
worth one US$ at time 7', and we can buy it today at a price of e ™7 X, €.
Portfolio B: Invest e "7 F'€ into a € cash account and buy one forward contract
with maturity 7" and strike-price K = F. A moment’s reflection reveals that this
investment will also be worth one US$ at time T and that we can buy it today at
a price of e 7T F € (recall that F is defined in such a way that we can “buy” (i.e.,
enter into) a forward contract today at cost zero).

Hence the portfolios A and B are worth the same at time 7 (independent of
how the exchange rate (X;)o<;<r develops!). We therefore claim that they also must
have the same value today which results in equation (2).

Indeed, suppose for example that F' > Xoe(¢ 77T In this case an “arbitrageur”
would profit of the situation by buying portfolio A and selling portfolio B, thus
obtaining the strictly positive difference e "7 F — ™7 X, as a riskless profit: at
time 7" the two positions will cancel out surely.

If the inequality is of the form F' < Xge("¢ )T just reverse the roles of portfolio
A and B. Also note that we have given our example in terms of the rather symbolic
quantity of one US$. But of course there is no normalizing factor in front of the
above argument and — if the market circumstances permit — you are free to multi-
ply it with your favourite power of 10. Hence it is economically quite obvious that a
market, where equation (2) is violated, cannot be in equilibrium as such an arbitrage
opportunity would quickly be exploited by economic agents; a moment’s reflection
reveals that the market forces triggered by an arbitrageur behaving according to
the above recipe will act towards making a possible violation of the identity (2)
become smaller, and that people would continue to exploit such a violation of the
“no-arbitrage principle” up to the point where (2) is satisfied to a sufficient degree
as to make this arbitrage opportunity unattractive, even for a large investor.

The reader also should note that it is not necessary that all market participants
behave rationally (and that they are aware of the identity (2)). It suffices that some
of them (in theory even one would suffice!), who are ready and able to act with large
sums on the market, are aware of (2) and eager to exploit arbitrage opportunities,
whenever they come up.

Let us recapitulate the assumptions on the financial market which we have made
above (more or less tacitly) in order for the no-arbitrage argument — and therefore
the formula (2) — to be valid: we assumed that we can go long and short in the
cash accounts (1) as well as in the forward contract at prices, which do not depend
on the sign of the investment, without any transaction costs and with arbitrarily
large quantities. As mentioned above, these assumptions are not fully satisfied in
practice, but the economic situation of the “big players” in the market is quite close
to these assumptions.

The attentive reader has noticed that we did not fully rely on the assumption (1)
that there exist “riskless” cash accounts behaving according to (1), forall 0 < ¢ < T



all we needed was, that the relation holds true for ¢t = 7. In other words and
using the financial lingo, we had to assume the existence of “riskless” (in practice
this means that the government guarantees for the payment) “zero coupon bonds”
maturing at time 7, i.e., a contract, which pays 1€ (or 1US$) at time 7. Such
contracts — or close approximations to them — are indeed traded in massive volume
in financial markets.

At this point the reader is advised to convince herself — by consulting the
financial section of a standard newspaper — that the above arguments are not merely
theoretical but confirm very well to reality: the forward price of a currency depends
on the difference of the interest rates in the corresponding currencies, pertaining to
the maturity 7', via (2) — and it only depends on this difference. Also observe that,
in the case rq = ry, (2) reduces to F' = X, i.e. the forward price then simply equals
the spot price.

Let us turn back to L. Bachelier and the “rentes” traded at the Bourse de Paris.
There was a liquid market in forward contracts on these “rentes” and Bachelier
noticed the above relation between the spot price and the forward price. To link
to our US$/€ example, the role of the accumulated interest of a “rente” plays
a similar role as the interest rate r; for the foreign currency, at least for periods
[0, 7] which contain no coupon payment (in the case of coupon payments one has
to make some rather straightforward adaptations). On the other hand, there was a
complicated system of partial recompensation of the buyer of a forward contract with
respect to this accumulated interest, called — “contangoes” (in french: “reports”)
— which — roughly speaking — plays a similar role as r4 above. The details are
quite complicated, only of historical interest, and not relevant for our purposes. We
shall therefore assume that the system of contangoes would fully recompensate the
accumulated interest of the “rentes”; while this was not the case in reality, it was
explicitly mentioned as a theoretical case by Bachelier. This corresponds to the
case r4 = 7y for the case of foreign exchange considered above, and implies — by
similar no-arbitrage arguments — that the forward price (called the “true price” by
Bachelier) coincides with the spot price.

Assumption 1.4 We assume for the rest of this section that, for every maturity
T, the spot price Sy of the underlying security, and the forward price F' with respect
to T, coincide.

We shall see later that this convenient assumption does not restrict the gener-
ality of the argument. What it does in practice: it dispenses us of making boring
calculations of upcounting and discounting as reflected by the identity (2).

One final comment on whether Bachelier used the same no-arbitrage arguments
as we did above: Bachelier does not argue by no-arbitrage but simply states that
bond prices must “logically increase” by the accumulated interest which is tanta-
mount to (2). He would simply appeal to common sense without explicitly mention-
ing the rather obvious no-arbitrage arguments. He saves this for more complicated
securities where the argument becomes less obvious, as we shall presently see.

After this elementary treatment of forward contracts and forward prices in the
first pages of his thesis, Bachelier passes to the case of options, which — in today’s
terminology — were European options.



Definition 1.5 A FEuropean call (resp. put) option on an underlying security S
consists in the right (but not the obligation) to buy (resp. to sell) a fixed quantity
(which we normalize to be one) of the underlying security, at a fized price K and a
fized time T in the future.

In fact, there is a slight — but for the mathematical modelling rather crucial —
difference between the way options are traded today and the way they were traded
in Bachelier’s days, at least in France. Nowadays the option premium C, i.e., the
price, the buyer of an option has to pay, in order to enter into the contract, (the
letter C' standing for call option) is paid up front, i.e., at ¢ = 0. In 1900 it was paid
at the exercise time t = T of the option. We denote the latter premium by C to
indicate that it corresponds to the upcounted premium C' (from ¢ = 0 to t = T') with
respect to the risk free rate of interest (more precisely and in modern terminology:
with respect to the zero coupon rate with maturity 7). Fixing the letter K for the
strike price of the option one arrives — after a moment’s reflection — at the usual
“hockey-stick” shape for the pay-off function of the option at time 7. We draw the
value of the option as a function of the price St of the underlying at time 7":

Profit

Figure 1: Pay-off function of a call option at time 7.

This famous picture appears explicitly (with different letters for notation) in
Bachelier’s thesis. In fact, Bachelier compares the pay-off function of an option to
the pay-off function of a forward contract with forward price F"

Profit

Price Sy

F/K
/ /K+6

Figure 2: Pay-off function of a call option and a forward contract at time 7.



Today the quotation system in option markets usually fixes the strike price K
while the premium C' is variable and fluctuates (the reader might look up the finan-
cial section of any standard newspaper); in Bachelier’s times it was done the other
way round (at least for the “rentes”): the (upcounted) premium C was fixed, typi-
cally C = 50, 25, or 10 centimes, and the strike price K would fluctuate according
to demand and supply. In fact, the way people were quoting options was in terms
of the “spread” K + C — F', which is very natural as we now shall see.

Bachelier gives the following numerical example: Suppose that the forward price
F (for fixed horizon 7" which at these times was in the order of one or two months)
for a “rente” equals 104 francs. He then continues: “If we buy a forward contract
on 3000 francs par value, we expose ourselves to a potential loss which may become
considerable if a fall in the market occurs. To avoid this risk, we could buy an option
at 50 centimes paying no longer 104 francs but 104.15 francs, for example.” In our
notation this amounts to F' = 104, K = 103.65, C =0. 50, K + C = 104.15, and
the spread K + C — F = 0.15. The idea is that one agrees to pay K + C-F (the

“spread”) more than in the case of a forward contract when exercising the contract
at time T'; en revanche, one has limited the maximal loss to C = 0.50.

He then remarks the “obvious fact” that the spread is a decreasing function
of the premium C' and again he does not bother to give the — rather trivial —
corresponding no-arbitrage argument (which we leave to the attentive reader). But
then he also observes the concavity of this function by a less trivial combination
of investments: this combination of options is known today under the name of
“butterfly” in finance. We don’t give the details here; the interested reader may look
it up in Bachelier’s thesis [B 00, p.24] and compare it to the “butterfly” argument
as explained, e.g., in [H99]. Bachelier does not use the word arbitrage, which is
today’s terminology, but refers to “operations in which one of the traders would
profit regardless of eventual prices”, which amounts to the same, and is in fact a
very pretty description of the notion of arbitrage. Working at the bourse he was
very aware of the no-arbitrage principle [B 00, p.24]: “We will see that such spreads
are never found in practice”.

After these preparations, L. Bachelier passes to the central topic, Probabilities
in Operations on the Exchange. He had already addressed the basic difficulty of
introducing probability in the context of the stock exchange in the introduction to
the thesis in a very sceptical way: “The calculus of probabilities, doubtless, could
never be applied to fluctuations in security quotations, and the dynamics of the
Exchange will never be an exact science.”

Nevertheless he now proceeds to model the price change of securities by a prob-
ability distribution distinguishing

“two kinds of probabilities:

(i) The probability which might be called “mathematical”, which can
be determined a priori and which is studied in games of chance.

(ii) The probability dependent on future events and, consequently im-
possible to predict in a mathematical manner.

This last is the probability that the speculator tries to predict.”



My personal interpretation of this — somewhat confusing — definition is the
following: sitting daily at the Bourse and watching the movement of prices, Bache-
lier got the same impression that we get today when observing price movements in
financial markets, e.g., on the internet. The development of the charts of prices of
stocks, indices etc. on the screen or blackboard resembles a “game of chance”. On
the other hand, the second kind of probability seems to refer to the expectations
of a speculator who has a personal opinion on the development of prices. Bache-
lier continues: “His (the speculator’s) inductions are absolutely personal, since his
counterpart in a transaction necessarily has the opposite opinion.”

Here he is led to the remarkable conclusion, which in today’s terminology is
called the “efficient market hypothesis”:

“It seems that the market, the aggregate of speculators, at a given
instant can believe in neither a market rise nor a market fall since, for
each quoted price, there are as many buyers as sellers.”

He then makes clear that this principle should be understood in terms of “true
prices”, i.e., forward prices (compare the up- and discounting arguments as well as
assumption 1.4 above). Finally he ends up with his famous dictum:

“In sum, the consideration of true prices permits the statement of this
fundamental principle:
The mathematical expectation of the speculator is zero.”

This is a truly fundamental principle and the reader’s admiration for Bache-
lier’s pathbreaking work will increase even more when continuing to the subsequent
paragraph of Bachelier’s thesis:

It is necessary to evaluate the generality of this principle carefully: It
means that the market, at a given instant, considers not only currently
negotiable transactions, but even those which will be based on a subse-
quent fluctuation in prices as having a zero expectation.

For example, I buy a bond with the intention of selling it when it will
have appreciated by 50 centimes. The expectation of this complex trans-
action is zero exactly as if I intended to sell my bond on the liquiditation
date, or at any time whatever.

In my opinion, in these two paragraphs, the basic ideas underlying the concepts
of martingales, stopping times, trading strategies, and Doob’s stopping theorem
already appear in a very intuitive way. It also sets the basic theme of the modern
approach to option pricing which is based on the notion of a martingale.

In the remainder of this introductory review of Bachelier’s thesis we shall discuss
the implications of this fundamental principle and we shall address the following
natural basic question:

Is the fundamental principle of L. Bachelier true?

There are, at least, two aspects to this question:



(i) Is it true, from a practical point of view, i.e., does it agree with data from
financial markets?

(ii) Is it true, from a mathematical point of view, i.e., are there theorems that
support his claim?

But let us first look at the implications of the fundamental principle: In order
to draw conclusions from it, Bachelier had to determine the probability distribution
of the random variable St (the price of the underlying security at expiration time
T'), or, more generally, on the entire stochastic process (S;)o<i<r. It is important
to note that Bachelier had the approach of considering this object as a process, i.e.,
by thinking of the pathwise behaviour of the trajectories (S;(w))o<i<r; this was very
natural for him, as he was constantly exposed to observing the behaviour of the
prices, as t “varies in continuous time”.

To fix the process S, Bachelier fixes the maturity time 7" and chooses the coor-
dinates such that the forward price F' which — according to our assumption 1.4 —
coincides with the current price Sy of the underlying security, is at the origin. Then
Bachelier assumes — more or less tacitly — that, for 0 < ¢ < T, the probability
pzidx, that the price S; of the underlying security, starting at time ¢, = 0 from
the point z = 0, lies at time ¢ in the infinitesimal interval (x, z + dx), is symmetric
around the origin and homogeneous in time t as well as in space x.

Of course, Bachelier notices that this creates a problem, as it gives positive
probabilities to negative values of the underlying security, which is absurd. But one
should keep in mind the proportions mentioned above: a typical yearly standard
deviation o of the prices of the bonds considered by L. Bachelier was of the order
of 2.4%. Hence the region where the bond price after a year becomes negative is
roughly 40 standard deviations away from the mean; anticipating that Bachelier uses
the normal distribution this is — in his words — “considered completely negligible”,
as the time horizons for the options were just fractions of a year. On the other hand,
we should be warned when considering Bachelier’s results asymptotically for ¢ — oo
(or ¢ — oo which roughly amounts to the same), as in these circumstances the
effect of assigning positive probabilities to negative values of S; is not “completely
negligible” any more.

After these specifications, Bachelier argues that “by the principle of joint proba-
bilities” (apparently he means the independence of the increments), we obtain

“+o00o
Patitty = / Pa,ty Pz—a,t, . (3)

—0oQ

In other words, he obtains what we call today the Chapman-Kolmogoroff equation.
Then he observes that “this equation is confirmed by the function”

1 x2
Dez= exp ( ) , (4)

 o/2rt 202t

concluding that “evidently the probability is governed by the Gaussian law already
famous in the calculus of probabilities”.

Some remarks seem in order here: firstly, for the convenience of the reader who
looks up Bachelier’s original text, we mention that Bachelier did not use the quantity
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o for the parametrisation but rather the quantity H = \/Lz_ﬁ Secondly, he obviously
did not bother about the uniqueness of the solution to (3). Thirdly, he was well
aware — and explicitly mentions — that he models the price movements in absolute
terms and not in relative terms (w.r.t. the stock prices). As already mentioned, this
distinction is not very important in the case of the “rentes”, where the current price
is typically close to the par value of 100 francs.

Summing up, Bachelier derived from some basic principles the transition law of
Brownian Motion and it’s relation to the Chapman-Kolmogoroff equation.

Bachelier then gives an “Alternative Determination of the Law of Probability”.
He approximates the continuous time model (S;);>¢ by a random walk, i.e., a process

which during the time interval At moves up or down with probability % by Az. He

clearly works out that Az must be of the order (At)z and — using only Stirling’s
formula — he obtains the convergence of the one-dimensional marginal distributions
of the random walk to those of Brownian motion.

Now a section follows, which is not directly needed for the subsequent applica-
tions in finance, but which — retrospectively — is of utmost mathematical impor-
tance: “Radiation of probability”. Consider the random walk model and suppose
that the grid in space is given by ..., Zp_2, Tpn_1, Tn, Tni1, Tnio, - - - having the same
distance Ax = x,, — x,,_1, for all n, and such that at time ¢ these points have proba-
bilities . .., pL_o, 04 _1, P, Pl 1, Phto, - . . under the random walk under consideration.
What are the probabilities ..., pht5?, phta?, pttat phtat phat . of these points at
time t + At? A moment’s reflection reveals the rule which is so nicely described by
Bachelier in the subsequent phrases:

“Fach price x during an element of time radiates towards its neigh-
boring price an amount of probability proportional to the difference of
their probabilities.

I say proportional because it is necessary to account for the relation
of Ax to At.

The above law can, by analogy with certain physical theories, be called
the law of radiation or diffusion of probability.”

Passing formally to the continuous limit and denoting by P, , the distribution
function associated to the density function (4)

Pac,t = / pz,tdz (5)

—0oQ
Bachelier deduces in an intuitive and purely formal way the relation
orP _ 1dp 1 0%P (6)
ot  20x 2 0x?
where ¢ > 0 is a constant. Of course, the heat equation was known to Bachelier: he
notes that “this is a Fourier equation”.
Hence Bachelier in 1900 very explicitly discovered the fundamental relation

between Brownian motion and the heat equation; this fact was rediscovered five
years later by A. Einstein and resulted in a goldmine of mathematical investigation

11



through the work of Kolmogoroff, Kakutani, Feynman, Kac, and many others up
to recent research. It is worth noting that H. Poincaré in his report on Bachelier’s
thesis apparently saw the seminal importance of this idea when he wrote “On peut
regretter que M. Bachelier n’ait pas developpé d’avantage cette partie de sa thése”
(One may regret that M. Bachelier did not develop further this part of his thesis).

With all these considerations L. Bachelier has fixed the model for the price
changes of the underlying security — namely the normal distribution — up to the
crucial parameter o, which he calls the “coefficient of instability or of nervousness
of a security” (strictly speaking he considers \/% rather than o, which is just a
matter of normalization). Fixing the parameter o and applying the “fundamental
principle” to the pay-off function in figure 2 one obtains — using the identity F' = S,

from assumption 1.4 — the equation

—C+ /K OOS (z — (K = S,)) f(z)dz = 0, (7)
where . ,
f(ﬂ?) = e 2:2T’ (8)

oV 2rT

which clearly determines the relation between the premium C of the option and
K — Sy and therefore also the relation between C' and the “spread” K +C — Sp. In
other words, equation (7) determines the price for the option and therefore solves
the basic problem considered by Bachelier.

It is straightforward to derive from (7) an “option pricing formula” by calculating
the integral in (7) (compare, e.g., [Sh99]): denoting by ¢(z) the standard normal
density function, i.e., ¢(z) equals (8) for 0?T = 1, by ®(x) the corresponding distri-
bution function, and using the relation ¢'(z) = —zp(z), an elementary calculation
reveals that

C = /:)F (ma\/T— (K — F)) o(z)dz 9)

VT

= (F-K)® (ﬁ;\_/;) +oVTy (i\_/z_{{) .

Interestingly, Bachelier does not bother to write up this easy formula which gives
C' as a function of K (the way which is useful in determining option prices today).
As mentioned above, he was rather interested in expressing inversely the “spread”
K + C' — F as a function of C, and apparently there is no explict way of writing
down this relation.

Instead, he does something much more interesting: he first specializes to the
case of simple options (this is terminology from 1900), when K = F', which at his
time were the usual options on commodities; in modern terms they correspond to
so called at-the-money options where the strike price K equals the forward price F'
(which in our setting is equal to the spot price Sy by assumption 1.4). In this case
the solution to (7) obviously results in

C= \/—Q_W\/T, (10)

12



which is a remarkably simple formula. Bachelier also uses this formula to turn
the point of view upside down, or — in modern terms — to determine the “implied
volatility”, thus discovering yet one more basic idea of modern mathematical finance:
if we can observe the (upcounted) premium C' of an at-the-money option on the
market, formula (10) determines very directly the “nervousness” parameter 5= and
therefore specifies the probability distribution p, ;.

Still, formula (10) depends on the parameter o and Bachelier — following the
reflexes of a true mathematician — wanted to find quantities invariant under varia-
tions of the parameter ¢ and the expiration date T: For example, he determines the
probability that the buyer of an at-the-money option (i.e., K = F') makes a profit.
Glancing at figure 2 this probability p equals

p= /C flalde = [, Sl (11)

where f(x) is given by (8). Calculating this expression, the term /T cancels out,
and we obtain

*© 1 22 1
= ——e 2dr=1—® | — | ~ 0.345. 12
P /\/;2_7( V2T (\/2#) ( )

In other words, according to Bachelier’'s model, the buyer of an at-the-money
option makes a profit in 34,5% of the cases, and a loss in 65,5% of the cases.
Isn’t it a remarkable and surprising result that this number does not depend on
any parameter? Bachelier also derives explicit numbers (not depending on any
parameter) for the probability of success in a number of similar situations.

Then he treats the case of options where the strike price K is not necessarily
equal to the forward price F), i.e., options which are not necessarily at the money.
He uses a quadratic approximation of the behaviour of the relation between K and
C' determined by (7) in a neighbourhood of K = F which again yields very explicit
and practical formulae, displaying a good fit for the values appearing in practice,
i.e.,when |K — F| is small as compared to F.

After all these derivations Bachelier compares his theoretical results with the
financial data observed for the “rentes” in the period of 1894-1898.

He just considers averages over these five years and in particular the “nervousness
parameter” \/LQ—W is an average estimate, while it becomes clear from the remarks of
Bachelier, that the “nervousness” \/Lz—ﬂ of the market was varying in time (just as it
does today).

He estimates the yearly standard deviation of the price movement of a rente to
be approximately equal to 240 centimes, which corresponds to the above mentioned
2.4% of the par value of 100 francs.

Then he compares the quantities derived from his model (using this parameter)
to the empirical financial data (taking again averages over these five years).

This comparison of calculated figures with observed data does not live up to the
standards of a modern statistical analysis; also the match is not overwhelmingly
good — the difference sometimes being in the range of 10 or 20 percent — but it
shows that the qualitative features are well captured.
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To sum up the issue of the match of his theory with empirical financial data
Bachelier makes the remarkable comment:

“If, with respect to several questions treated in this study, I have
compared the results of observation with those of theory, it was not to
verify formulae established by mathematical methods, but only to show
that the market, unwittingly, obeys a law which governs it, the law of
probability.”

It is interesting to have a look into Poincaré’s report on Bachelier’s thesis where
he gives an argument in favor of Bachelier’s fundamental principle (which, of course,
is the basis of the above methodology) relying on the law of large numbers; Poincaré
also clearly stresses the relative weakness of this argument (the reader should com-
pare the argument below involving the law of large numbers to the much more
convincing no-arbitrage arguments encountered above):

“One should not expect a very exact verification. The principle of the
mathematical expectation holds in the sense that, if it were violated,
there would always be people who would act so as to re-establish it and
they would eventually notice this. But they would only notice it, if the
deviations were considerable. The verification, then, can only be gross.
The author of the thesis gives statistics where this happens in a very
satisfactory manner.”

In the final part of his thesis L. Bachelier makes another seminal discovery: the
law of the maximum of a Brownian path. Here we again see clearly that Bachelier
had a pathwise approach to stochastic processes. The fact that the density function
of the maximum of the Brownian path equals twice the density of the corresponding
Gaussian density function on the positive axis (while it is of course zero on the
negative axis) is today the standard example for the use of the “reflection principle”,
which reduces this fact almost to a triviality.

Interestingly, Bachelier does not derive it in this way, but rather by approxima-
tion with a discrete random walk and using a combinatorial result obtained in 1888
by D. André, called the solution to the ballot problem (“probléme du scrutin”).

Using this theorem and passing in an appropriate way to the limit, Bachelier
obtains the result on the distribution of the maximum of Brownian motion. It is
only then that he uses the reflection principle to interpret this result:

“The interpretation of this result is very simple: The price cannot be
exceeded at the moment t without having been attained previously. The
probability P is therefore equal to the probability P multiplied by the
probability that, given that the price was quoted previously, it will be
exceeded at the moment t, i.e., multiplied by % Thus

P=L (13)

To explain the notation: letting ¢ > 0 denote “the price” referred to above, and
(Wi)i>0 Brownian motion, the letter P denotes the probability P{W; > c} while
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P denotes P{supy,<; Wy > c}, so that (13) describes the well known law of the
maximum of a Brownian path.

Bachelier was led to consider this problem by a very interesting idea from the
financial point of view, which may be considered as a precursor of the idea of dy-
namical hedging, which in turn is the central idea of modern mathematical finance.

Consider again the buyer of an at-the-money option with K = F' = S; and a
premium C. We have seen above that the probability of success of the buyer of such
an option is

~ 1
PS> Sy+Cl=1-9 <\/%) ~ 0.345. (14)

Now suppose that the buyer of this option follows the subsequent strategy: at
the first moment when S; reaches the level Sq + C (if this happens before T'), she
“locks in” her profit by going short (i.e., selling) one unit of the underlying security.
Of course, the “first moment when ...” is a stopping time 7 in modern terminology.
A moment’s reflection reveals that in the case 7 < T the speculator cannot end up
with a negative result and will have a strictly positive gain, when, in addition to
7 < T, the price St at expiration time happens to be less than K. But, of course,
this operation of “locking in” the profit only happens if S; attains the level Sy + C'
for some 0 < ¢ < T, while in the other case the speculator will end up with a loss.

What is the probability of success (i.e., a non-negative result) of a speculator
pursuing this strategy? Clearly it equals

P [max Sy > So + C'\] (15)

0<t<T

for which we obtain, using the law of the maximum of Brownian motion,

~ 1
> = — — ~ U.0Y.
P [org%XTSt > So+ C} 2 (1 ) (\/%)> 0.69 (16)
In other words, the probability of a non-negative result of this strategy is about 69 %.
Again we find it remarkable that this result does not depend on any parameter.

Let us try to give a résumé of this review of Bachelier’s remarkable thesis and
to compare it with the modern theory, in particular with the Black-Scholes model
considered below.

The usual argument against Bachelier and in favor of Black-Scholes is the fact
that Bachelier’s model of Brownian motion assigns positive probability to negative
prices of the underlying stock, while the Black-Scholes model (using geometric Brow-
nian motion) does not. (For the remainder of this section we assume that the reader
is already sufficiently familiar with the basic features of the Black-Scholes model as
discussed in section 3 below.)

In my opinion this argument is to a large extent a myth: in basic applications of
statistics (say, quality control) there are good reasons to model the quantities under
consideration (say, the length of a screw) by a normal distribution. Apparently
nobody worries that this model also assigns positive probability to a negative length
of the screw, although this is at least as absurd as a negative stock price. The
reason is, that — if expressed numerically — these probabilities are “completely
negligible”, as was so nicely phrased by Bachelier.
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One might compare the relation of modelling price processes with Brownian
motion as opposed to geometric Brownian motion, to that of using linear interest
as opposed to continuously compounded interest for cash accounts. Of course, the
latter one is logically more appealing, but we all know, that the difference between
these two procedures is very minor for short periods (say, less than a year, in the
case of reasonable values of the interest rate). On the other hand, in the long run
the difference is spectacular.

Similarly, the differences between the Bachelier and the Black-Scholes option
pricing formulae are very minor, as long as ¢ and 7 remain in a reasonable range,
which certainly was the case for the options on the rentes considered by Bachelier
(compare the more quantitative discussion at the end of section 3). On the other
hand it is worth noting that, for 7' — oo, Bachelier’s formula C = \/LQ—W\/T (see
(10) above) for the option price assigns arbitrarily large values to the premium of
an option, while an obvious no-arbitrage argument (using assumption 1.4 and the
non-negativity of the underlying security) reveals that C is certainly less than Sj.

In my opinion, L. Bachelier has obtained an option pricing model which, for
practical purposes, is just as satisfactory as the model obtained by Black and Scho-
les some 70 years later, with the shortcomings of these models being very similar
(e.g., underestimation of extreme movements of the underlying by using normal
or lognormal distributions). But there is one crucial idea which L. Bachelier has
missed and which is of central importance for the modern theory: the concept of
dynamic hedging which allows to reduce Bachelier’s “fundamental principle” to no-
arbitrage considerations. The use of this idea to determine option prices is due to
R. Merton (in a footnote of the original Black-Scholes paper [BS 73] this is explicitly
acknowledged) and plays a truly fundamental role.

On the other hand, we have seen above that L. Bachelier was already close to this
idea when considering trading strategies where the selling of a security would happen
at a stopping time. But for a full-fledged theory of dynamic hedging, Bachelier
would have had to make quite a number of additional pioneering steps in his lonely
endeavour of investigating Brownian motion. His situation was in sharp contrast to
the situation encountered by the researchers in Mathematical Finance in the last
third of the 20 century, who could build on a well-established theory of stochastic
integration, as notably developed by K. It6 and by the school of P.A. Meyer in
Strasbourg.

In any case, let us stop here with the review of Bachelier’s seminal achievements
and turn to a systematic development of the modern theory of option pricing, which
is based on the notion of no-arbitrage.
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2 Models of Financial Markets on Finite Proba-
bility Spaces

In order to reduce the technical difficulties of the theory of option pricing to a min-
imum, we assume throughout this section that the probability space €2 underlying
our model will be finite, say, Q = {w;,ws,...,wy}. This assumption implies that
all functional-analytic delicacies pertaining to different topologies on L*(Q2, F, P),
LY(Q, F,P) and L°(2, F,P) evaporate, as all these spaces are simply RY (we assume
w.l.o.g. that the sigma-algebra F is the power set of (2 and that P assigns strictly
positive value to each w € ). Hence all the functional analysis, which we shall need
in section 4 for the case of more general processes, reduces to simple linear algebra
in the setting of the present chapter.

Nevertheless we shall write L>(Q, F,P), L'(Q, F,P) etc. below (knowing very
well that these spaces are isomorphic in the present setting) to indicate, what we
shall encounter in the setting of the general theory.

Definition 2.1 A model of a financial market is an R4 -valued stochastic process
S = (S)L, = (S, 8},...,SNL,, based on and adapted to the filtered stochastic
base (Q, F, (F)i_y,P). We shall assume that the zero coordinate S°, which we call
the cash account, satisfies SO = 1, fort = 0,1,...,T. The letter AS, denotes the
mncrement Sy — Si_1.

Definition 2.2 H denotes the set of trading strategies for the financial market S.
An element H € H is an R%-valued process (Hy)]_, = (H}, H}, ..., HY)L | which is
predictable, i.e. each Hy; is F;_1-measurable.

We then define the stochastic integral (H-S) as the R-valued process ((H-S);)L,

given by
t

(H-S)y=> (H;,AS)), t=0,...,T, (17)

where (.,.) denotes the inner product in RY.

The reader might be puzzeled why we chose S to be R**!-valued, while we chose
H to be R¢-valued. The reason is that we defined the zero coordinate S° of S to
be identically equal to 1 so that AS? = 0 and this coordinate can not contribute
to the stochastic integral (17). We note that this assumption does not restrict the
generality of the model as we always may choose the cash account as numéraire.
This means, that the stock prices are expressed in units of the cash account, or —
in more practical terms — we have expressed stock prices in discounted terms.

On the other hand we want to stress for later use (the change of numéraire
theorem 2.13 below) the role of the cash account — which we choose as numéraire
— in the definition of a financial market, although the coordinate S° presently only
serves as a dummy.

Definition 2.3 We call the subspace K of L°(Q, F,P) defined by
K={(H-S)r:HecH} (18)

the set of contingent claims attainable at price 0.
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The economic interpretation is the following: the random variables f = (H-S)r,
for some H € H, are precisely those contingent claims, i.e., the pay-off functions at
time T" depending on w € €2, that an economic agent may replicate with zero initial
investment, by pursuing some predictable trading strategy H.

For a € R, we call the set of contingent claims attainable at price a the affine
space K, obtained by shifting K by the constant function al, in other words the
random variables of the form a + (H - S)r, for some trading strategy H. Again
the economic interpretation is that these are precisely the contingent claims that
an economic agent may replicate with an initial investment of a by pursuing some
predictable trading strategy H.

Definition 2.4 We call the convex cone C in L>(Q, F,P) defined by
C = {ge€L>®Q,F,P) st thereis f € K, f > g} (19)
the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g € L*°(Q, F,P) is super-replicable at
price 0, if we can achieve it with zero net investment, subsequently pursuing some
predictable trading strategy H — thus arriving at some contingent claim f — and
then, possibly, “throwing away money” to arrive at g. This operation of “throwing
away money’ may seem awkward at this stage, but we shall see later that the set
C plays an important role in the development of the theory. Observe that C' is a
convex cone containing the negative orthant L>°(Q, F,P). Again we may define C,
as the contingent claims super-replicable at price a if we shift C' by the constant
function al.

Definition 2.5 A financial market S satifies the no-arbitrage condition (NA) if
KnLY(QF,P) = {0} (20)

or, equivalently,
CNLY(Q,F,P)={0}, (21)

where 0 denotes the function identically equal to zero.

In other words we now have formalized the concept of an arbitrage possibility:
it consists of the existence of a trading strategy H such that — starting from an
initial investment zero — the resulting contingent claim f = (H-S)r is non-negative
and not identically equal to zero. If a financial market does not allow for arbitrage
we say it satisfies the no-arbitrage condition (NA).

Definition 2.6 A probability measure Q@ on (2, F) is called an equivalent martin-
gale measure for S, if Q ~ P and S is a martingale under Q.

We denote by M¢(S) the set of equivalent martingale probability measures and
by M*(S) the set of all (not necessarily equivalent) martingale probability measures.
The letter a stands for “absolutely continuous with respect to P” which in the present
setting (finite Q and P having full support) automatically holds true, but which will
be of relevance for general probability spaces (€2, F,P) later. We shall often identify
a measure @ on (£, F) with its Radon-Nikodym derivative % e LY(Q, F,P).
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Lemma 2.7 For a probability measure Q on (2, F) the following are equivalent:
(i) @ € M*(S),
(i) Eq[f] =0, for all f € K,

(1it) Eglg] <0, for all g € C.

Proof The equivalences are rather trivial, as (ii) is tantamount to the very def-
inition of S being a martingale under ), and the equivalence of (ii) and (iii) is
straightforward. m

After having fixed these formalities we may formulate and prove the central
result of the theory of pricing and hedging by no-arbitrage, sometimes called the
“fundamental theorem of asset pricing”, which in its present form (i.e., finite 2) is
due to Harrison and Pliska [HP 81].

Theorem 2.8 (Fundamental Theorem of Asset Pricing) For a financial
market S modeled on a finite stochastic base (0, F,(F),,P) the following are
equivalent:

(i) S satisfies (NA).
(ii) Me(S) # 0.

Proof (ii) = (i): This is the obvious implication. If there is some Q € M*(S) then
by lemma 2.7 we have that

Eglg] <0, forgeC. (22)

On the other hand, if there were ¢ € C'N LS°, g # 0, then, using the assumption
that @ is equivalent to P, we would have

Eqlg] > 0, (23)

a contradiction.

(i) = (ii) This implication is the important message of the theorem which will
allow us to link the no-arbitrage arguments with martingale theory. We give a
functional analytic existence proof, which will be generalizable — in spirit — to
more general situations.

By assumption the space K intersects L3° only at 0. We want to separate the
disjoint convex sets L°\{0} and K by a hyperplane induced by a linear functional
Q € L'(Q, F,P). Unfortunately this is a situation, where the usual versions of the
separation theorem (i.e., the Hahn-Banach Theorem) do not apply (even in finite
dimensions!).

One way to overcome this difficulty (in finite dimension) is to consider the convex
hull of the unit vectors (1y,,3)2_; in L*®(Q2, F,P) ie.

N N
P = {Zﬂnl{wn} :,unZO,Z,unzl}. (24)
n=1 n=1

19



This is a convex, compact subset of L3°(€2, F,P) and, by the (NA) assumption,
disjoint from K. Hence we may strictly separate the sets P and K by a linear
functional Q € L>*(Q, F,P)* = LY(Q, F,P), i.e., find o < 8 such that

@Q.f) £ a for feK, (25)
(@Q,h) > B for heP.

As K is a linear space, we have @ > 0 and may, in fact, replace a by 0. Hence
B > 0. Therefore (@, 1) > 0, and we may normalize @) such that (Q,1) = 1. As @
is strictly positive on each 1y,,;, we therefore have found a probability measure @
on (€2, F) equivalent to P such that condition (ii) of lemma 2.7 holds true. In other
words, we found an equivalent martingale measure () for the process S. m

Corollary 2.9 Let S satisfy (NA) and f € L=(Q2, F,P) be an attainable contingent
clatm so that
f=a+(H-9r, (26)

for some a € R and some trading strateqy H.
Then the constant a and the process (H-S) are uniquely determined by (26) and
satisfy, for every @Q € M*(S),

a=Eq[f], and a+(H-S)=Eq[f|F] for0<t<T. (27)

Proof As regards the uniqueness of the constant a € R, suppose that there are
two representations f = a' + (H'-S)r and f = o® + (H?-S)r with o' # d?.
Assuming w.l.o.g. that a* > a? we find an obvious arbitrage possibility: we have
a' —a® = ((H' — H?)- S)r, i.e. the trading strategy H' — H? produces a strictly
positive result at time T, a contradiction to (NA).

As regards the uniqueness or the process H - S we simply apply a conditional
version of the previous argument: assume that f = a+(H"-S)r and f = a+(H?-9)r
such that the processes H'-S and H?-S are not identical. Then thereis 0 < ¢t < T
such that (H'-S); # (H?-S); w.lo.g. A:={(H'-S); > (H?-S);} is a non-empty
event, which clearly is in F;. Hence, using the fact that (H'-S)r = (H?-S)z, the
trading strategy H := (H? — H')xx - Xji,7] 18 a predictable process producing an
arbitrage, as (H-S)7 = 0 outside A, while (H-S)y = (H'-S); — (H?*-S); > 0 on A,
which again contradicts (NA).

Finally, the equations in (27) result from the fact that, for every predictable
process H and every @@ € M%(S), the process H - S is a Q-martingale. m

Denote by cone(M?*(S)) and cone(M?(S)) the cones generated by the convex sets
Me(S) and M?(S), respectively. The subsequent result clarifies the polar relation
between these cones and the cone C. Recall (see, e.g., [Sch66]) that, for a pair

(E, E') of vector spaces in separating duality via the scalar product (.,.), the polar
C° of a set C in E is defined as

C'={geE :(f,g) <1, forall fecC}. (28)

In the case when C is closed under multiplication with positive scalars (e.g., if
C is a convex cone) the polar C° may equivalently be defined by

C'={geE :(f,g) <0, forall feC}. (29)
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The bipolar theorem (see, e.g., [Sch66]) states that the bipolar C% := (C?)° of
a set C in E is the o(E, E')-closed convex hull of C.

After these general considerations we pass to the concrete setting of the cone
C C L*(Q, F,P) of contingent claims super-replicable at price 0. Note that in our
finite-dimensional setting this convex cone is closed as it is the algebraic sum of
the closed linear space K (a linear space in RY is always closed) and the closed
polyhedral cone L* (2, F,P) (the verification, that the algebraic sum of a space and
a polyhedral cone in R" is closed, is an easy, but not completely trivial exercise).
Hence we deduce from the bipolar theorem, that C' equals its bipolar C.

Proposition 2.10 Suppose that S satisfies (NA). Then the polar of C is equal to
cone(M*(S)) and M¢®(S) is dense in M®(S). Hence the following assertions are
equivalent for an element g € L*°(Q, F,P)

(i) g€C,
(ii) Eglg] < 0, for all Q € M*(S),
(iii) Eqlg] <0, for all Q € Me(S),

Proof The fact that the polar C° and cone(M%(S)) coincide, follows from lemma
2.7 and the observation that C' D L>(Q, F,P) implies C° C LL(Q,F,P). Hence
the equivalence of (i) and (ii) follows from the bipolar theorem.

As regards the density of M¢(S) in M?(S) we first deduce from theorem 2.8
that there is at least one @* € M*(S). For any @ € M?%(S) and 0 < u < 1 we
have that puQ* + (1 — p)Q € M*(S), which clearly implies the density of M¢(S) in
M?(S). The equivalence of (ii) and (iii) now is obvious. =

The subsequent theorem tells us precisely what the principle of no arbitrage can
tell us about the possible prices for a contingent claim f. It goes back to the work
of D. Kreps [K 81] and was subsequently extended by several authors.

For given f € L>®(Q, F,P), we call a € R an arbitrage-free price, if in addition
to the financial market S, the introduction of the contingent claim f at price a does
not create an arbitrage possibility. Mathematically speaking, this can be formalized
as follows. Let C/ denote the cone spanned by C and the linear space spanned by
[ — a; then a is an arbitrage-free price for f if C/* N LY (Q, F,P) = {0}.

Theorem 2.11 (Pricing by No-Arbitrage) Assume that S satisfies (NA) and
let f € L*(Q2, F,P). Define

7(f) = sup{Eq[f]: Q € M*(S)}, (30)
n(f) = inf{Eq[f]: Q@ € M*(5)}, (31)

FEither (f) = 7(f), in which case f is attainable at price n(f) := w(f) = 7(f),
ie. f=m(f)+ (H-S)r for some H € H; therefore w(f) is the unique arbitrage-free
price for f.

Or w(f) < 7(f), in which case {Eq[f] : @ € M*®(S)} equals the open interval
1w (f), 7(f)], which in turn equals the set of arbitrage-free prices for the contingent
claim f.
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Proof First observe that the set {Eg[f] : Q € M*(S)} forms a bounded non-empty
interval in R, which we denote by I.

We claim that a number a is in I, iff a is an arbitrage-free price for f. Indeed,
supposing that a € I we may find @ € M*(S) s.t. Eg[f — a] = 0 and therefore
Cclhen Le(Q, F,P) = {0}.

Conversely suppose that C/¢ N L (Q, F,P) = {0}. Note that Ch is a closed
convex cone (it is the algebraic sum of the linear space span(K, f — a) and the
closed, polyhedral cone L>(2, F,P)). Hence by the same argument as in the proof
of theorem 2.8 there exists a probability measure @) ~ P such that Q|cs. < 0. This
implies that Eg[f —a] =0, i.e., a € I.

Now we deal with the boundary case: suppose that a equals the right boundary
of I, i.e., a = 7(f) € I, and consider the contingent claim f — 7(f); by definition
we have Eg[f — 7(f)] < 0, for all @ € M*®(S), and therefore by proposition 2.10,
that f — 7(f) € C. We may find g € K such that ¢ > f —7(f). If the sup in
(30) is attained, i.e., if there is @Q* € M*®(S) such that Eq-[f] = 7(f), then we have
0 =Eg-[g9] > Eq-[f —7(f)] = 0 which in view of Q* ~ P implies that f —7(f) = g;
in other words f is attainable at price 7(f). This in turn implies that Eq[f] = 7(f),
for all @ € M¢(S), and therefore I is reduced to the singleton {7(f)}.

Hence, if 7(f) < 7(f), 7(f) cannot belong to the interval I, which is therefore
open on the right hand side. Passing from f to —f, we obtain the analogous result
for the left hand side of I, which therefore equals I =|x(f),7(f)[. =

Corollary 2.12 (complete financial markets) For a financial market S satis-
fying the no-arbitrage condition (NA) the following are equivalent:

(i) M®(S) consists of a single element Q.
(i1) Each f € L*(Q, F,P) may be represented as

f=a+(H-S)r, forsomea€R, and H € H. (32)

In this case a = Eqglf], the stochastic integral (H -S) is unique, and we have that

Eolf|F] = Bolf] + (H-8), t=0,...,T. (33)

Proof The implication (i) = (ii) immediately follows from the preceding theorem;
for the implication (ii) = (i), note that, (32) implies that, for elements @1, Q2 €
M?*(S), we have Eq,[f] = a = Eg,[f]; hence it suffices to note that if M¢(S5)
contains two different elements ()1, Q2 we may find f € L>(Q, F,P) s.t. Eg,[f] #

EQ2[f]' u

Let us pause here for a moment and recapitulate the above results from an
economic point of view. In particular we address the question: how does this theory
relate to Bachelier’s fundamental principle?

We consider a model S of a financial market satisfying the assumptions of corol-
lary 2.12. The reason why these (models of) financial markets are called complete
in the Mathematical Finance literature is related to assertion (ii) above: in such a
market any contingent claim f is already replicable by an initial investment a and a
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properly chosen trading strategy H. We shall see in the next section that the arch-
example of a complete financial market in discrete time is the random walk, also
called the binomial model. We have seen that this model was already considered
by Bachelier (over a grid in arithmetic progression); some 70 years later, Cox, Ross
and Rubinstein [CRR 79] studied this model over a grid in geometric progression.

The basic problem of Bachelier, as well as of modern Mathematical Finance in
general, is that of assigning a price a to a contingent claim f; corollary 2.12 tells
us that, in the case of a complete market, we simply have to take the expectation
Eg|f], similarly as Bachelier proposed in his “fundamental principle”. But now the
argument in favor of this methodology is based on a no-arbitrage argument, which
is more robust from an economic point of view than the equilibrium argument used
by Bachelier.

Also, the message of corollary 2.12 is not quite identical to Bachelier’s “funda-
mental principle”. The subtle difference is that in modern Mathematical Finance
one takes the expectation with respect to a risk neutral probability measure @), i.e.,
a measure under which S is a martingale and which does not necessarily coincide
with the physical measure P. This distinction between P and () does not show up
in Bachelier’s work (although he also is speaking about “two kinds of probability”,
but apparently he has something different in mind in this passage of his thesis).
Bachelier argues somehow in the opposite direction as compared to the modern
approach: he postulates that the process S has to be a martingale already under
the “physical” measure P (this is what his “fundamental principle” amounts to in
modern terminology).

The distinction between the measure () and P is one of the crucial features of
the modern approach to Mathematical Finance. It is implicit in the early work of
Black and Scholes [BS 73] and Merton [M 73], and has clearly been crystallized in
the later work of Harrison, Kreps and Pliska ([HK 79], [HP 81], [K 81]).

In this respect Bachelier’s approach really misses something crucial: for example,
there is massive empirical evidence that — in the long run — stocks perform better
than bonds. At least, this happened in the previous hundred or two hundred years.
Many people believe that this will also be the case in the future (but, of course, we
don’t know that). In any case, Bachelier has no way of modelling such a phenomenon
without violating the “fundamental principle”.

One might try to argue in favor of Bachelier that such a long term effect is not
of crucial importance for short term option prices and may therefore be ignored.

But there are also other obstructions to the somewhat naive application of the
“fundamental principle”, which involve logical inconsistencies (which is, of course,
particularly annoying from a mathematical part of view): let’s take up again the
foreign exchange example 1.2 and assume, mainly for notational convenience, that
the domestic and foreign interest rates r4 and r; equal zero. The stochastic process
(Xt)o<t<r models the price of one US$ in terms of €. By applying Bachelier’s
“fundamental principle” to the situation of a €-investor “speculating” in US$, we
must have

Xo = E[X7]. (34)

On the other hand, the same principle applied to the situation of a US $-investor

“speculating” in € implies
X' =E[X;. (35)
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But Jensen’s inequality tells us that (34) and (35) cannot hold simultaneously
(except for the trivial case when X7 is constant). Hence we find a logical obstruction
to the “fundamental principle” of Bachelier.

At this stage a distiction between the measure P and @) is unavoidable and we
also see from the above argument that the “risk-neutral” measure () apparently
depends on the choice of a numéraire.

We therefore pass to a thorough analysis of the role of the numéraire S° in our
modelling of a financial market. In particular, we investigate what happens under
a “change of numéraire”, i.e., by passing from one unit of denomination, say €, to
another one, say US$.

Let us consider once more the basic example 1.2 of a financial market consisting
of a €-bond and a $-bond (which we now consider in discrete time, to confirm with
the setting of this section). We now drop the assumption 74 = 7y = 0 and assume
that these bonds develop (expressed in terms of € and $ respectively) by

BE=eat, BS—ert t—01,...T (36)

Denoting again by (X;)o<;<r the stochastic process modelling the exchange rate,
the value (in terms of €) of an investment into the $-bond is given by the stochastic
process (e"*X,;)T ;. But note that this refers to the € as numéraire, which is not a
traded asset, unless we have r4 = 0. This may seem odd a first glance; but remember
our standing assumption that we can go long and short in traded assets at the same
conditions. If the Euro were a traded asset, this would imply that we could borrow
Euros at nominal value (i.e., without paying interest); combining this operation with
an investment into a €-bond paying positive interest, clearly creates an arbitrage.

We have agreed to choose a traded asset as numéraire: from the point of view
of a €-investor, the natural choice in our example is the €-bond. Hence from her
point of view the financial market is modeled by

Sy = (8P, S) = (1, e X)), t=0,1,...,T, (37)

where S now is expressed in terms of units of the €-bond.
But adopting the point of view of a $-investor it is natural to express everything
in terms of the $-bond, i.e.

. S sl
Sy = <—t1, —ﬁ) = (e X1, t=0,1,...,T. (38)
Sy Sy

The previous theorem 2.11 and corollary 2.12 tell us, how to relate the arbitrage
free prices of derivative securities f € L*(Q,F,P) to the expectations under the
“risk-neutral” probabilities @ € M¢(S).

How do these things change, when we pass to a new numéraire? Of course, the
arbitrage free prices should remain unchanged (after denominating things in the
new numéraire), as the notion of arbitrage should not depend on whether we do
the book-keeping in € or in §. On the other hand, we shall presently see that the
risk-neutral measures () do depend on the choice of numéraire.

Let us analyze the situation in the proper degree of generality: the model of a
financial market S = (S?,S},...,S%)L is defined as above. Recall that we assumed
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that the traded asset S° serves as numéraire, i.e., the value Sf of the j'th asset at
time ¢ is expressed in units of S°. In particular, we have S? =1, for all 0 < ¢ < T.

We also assume that the process (S})o<i<r is strictly positive; choosing this
asset as the new numéraire we find the process S denoting the prices of the assets
S0, St ..., S%in terms of S

L (S0 sz T
S= (251,25, = . (39)
Sl gl g
To link with the previous example, we might have that S° is a cash account in €,
S! a cash account in US$, while S2, ..., S% model some other stocks, commodities
etc.

We now have the proper setting to formulate the theorem clarifying the situation:

Theorem 2.13 (change of numéraire) Assume that the financial market S =
(89S}, ..., 8% satisfies (NA) and recall that we have assumed S? = 1, i.e., we have
chosen the zero coordinate as numéraire.

We also assume that the first coordinate (S})}_, is a strictly positive process, so
that we may define the “process S in terms of the numéraire S'” by passing to

L[S0 52 g\ T
s-(S05.5) ”
Then the set M®(S ) of equivalent martingale measures for S equals
erQy S dQ ST dQ e
M) = {0 2 =22 gems). (41)

For a contingent claim f € L*(Q,F,P) the interval of arbitrage-free prices
therefore does not depend on the chosen numéraire, as we have

(Balf]: @ e M(5)) = {8, | ] s e s | (@

Proof Note that the fact that S is a (Q-martingale implies that EQ[%] =1, for
all Q € M*(S), so that the set defined by the right hand side of (41) consists of
probability measures. Also note that, by our assumption on the strict positivity of
S!, these measures are equivalent to P.
We now calculate the space K C L>®(Q, F,P) of claims attainable at price 0
with respect to S,
K={(L-S)r:LeM}. (43)
We claim that

Vz{si%f:feK}. (44)

~In fact, we claim more generally, that the class of processes of the form S} (L
S); coincides with the class of processes (H -S); where L and H run through the
predictable processes.
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Economically speaking this means that the possible gains processes H - S, ob-
tained by trading with respect to some trading strategy H in terms of the numéraire
S0, coincide with the possible gains processes S 1(L-S), where L-S run through the
possible gains processes in terms of the numéraire S*, which subsequently are trans-
formed into units of the numéraire S° by multiplication with S*.

To verify this — economically rather obvious — identity in a formal way we
use a little stochastic calculus, namely the stochastic version of the product formula
(similarly as in [DS 95, theorem 11]). We have

St == Stlsft, (45)
the right hand side refering to multiplication of the positive scalar S}(w) with the

(d 4 1)-vector Sy(w) = (g?gi;, 1, g:fgzg, ey ggg:’;) Hence by elementary algebra we

obtain ) 5 )
AS; = Stl,lASt + St_lAStl + AStlASt. (46)

Now we fix any predictable process L and calculate the increment of the process
SHL-S); in a similar way:
A(S;(L-S)) = (L-

= (L

= (L-

8)i1AS; + S A((L-5).) + AS;A((L-S))  (47)
)1 ASE + Ly(SL,AS, + AS}AS))
)e-1AS} + Ly(SE AS; + S;_1ASH + ASIAS))
— LS, AS}
= ((L-8)i1 — LiS;_1)AS} + L,AS,,

S
S

where in the last equality we have used (46). In other words, the increment A (S} (L-
S);) of the process S*(L-S) is the product of some F,_;-measurable functions with
the increments AS} and AS; respectively. Noting that AS} is just one of the
coordinates of AS;, we conclude that the process Stl(L-S't) may be represented as a
stochastic integral of the form (H-S) for some predictable process H. Reversing the
roles of S and S and using the strict positivity of the process S, we also conclude
that each process of the form (H - S) may be presented in the form S'(L-S), for
some predictable process L, which shows in particular (44).

Hence the linear map M : L — L of multiplication by the function S—§
T

1
Mf = g—;f (48)

maps K bijectively onto K. By basic linear algebra the adjoint M* of M, which is
equal to M, maps the polar of K onto the polar of K and therefore cone(M“(S’)) and
cone(M?®(S)) onto cone(M?(S)) and cone(M?®(S)) respectively. Hence we obtain
the identity (41). Finally observe that equality (42) is an immediate consequence of
equality (41), noting that, when @Q runs through M¢(S), then M~1(Q) runs through

Me(S). m

Corollary 2.14 (change of numéraire in a complete market) Assume in ad-
dition to the assumptions of theorem 2.13 that M*(S) consists of a singleton {Q}.

Then M#(3) = {Q} where 44 = 499
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For f € L*(Q, F,P), we obtain the unique arbitrage free price as

Eq[f] = S;Eg [Si%} . (49)

We finish this section by a dynamic version of theorem 2.11 on pricing by no
arbitrage, due to D. Kramkov (in a much more general setting; see [K 96] and section
5 below).

Theorem 2.15 (Optional Decomposition) Assume that S satisfies (NA) and
let V.= (V})i>0 be an adapted process.
The following assertions are equivalent:

(i) V is a super-martingale for each @ € M*(S).
(i’) V is a super-martingale for each Q € M?(S)

(it) V' may be decomposed into V =Vy+ H-S—C, where H € H and C = (Cy)1>0
1S an increasing adapted process starting at Cy = 0.

To explain the terminology “optional decomposition” let us compare this theorem
with Doob’s celebrated decomposition theorem for non-negative super-martingales
(Vi)i>o (see, e.g., [P90]): this theorem asserts that, for a non-negative (adapted,
cadlag) process V', we have equivalence between the following two statements:

(i) V is a super-martingale (with respect to the fixed measure P),

(ii) V may be decomposed in a unique way into V = V; + M — C, where
M = (Mi)>o is a local martingale (with respect to P) and C an increasing
predictable process s.t. My = Cy = 0.

We see the similarity in spirit, but, of course, there are differences. As regards
condition (i) the difference is that, in the setting of the optional decomposition
theorem, the super-martingale properly pertains to all martingale measures () for
the process S. As regards condition (ii) the role of the local martingale M in Doob’s
theorem is taken by the stochastic integral H-S. A decisive difference between the
two theorems is that, in theorem 2.15, the decomposition is not unique any more
and one cannot choose, in general, C' to be predictable. The process C' can only be
chosen to be adapted and therefore optional (for finite €, a process is adapted iff it
is optional).

The economic interpretation of the optional decomposition theorem goes as fol-
lows: a process of the form V =V, + H-S — C describes the wealth process of an
economic agent, starting at an initial wealth V4, subsequently investing in the finan-
cial market according to the trading strategy H, and consuming as described by the
process C: the random variable C; models the accumulated consumption during the
time interval {1,...,¢}. The message of the optional decomposition theorem is that
these wealth processes are characterised by condition (i) (or, equivalently, (i’)).
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Proof of theorem 2.15 First assume that 7' = 1, i.e., we have a one-period model
S = (Sy,S1). In this case the present theorem is an immediate consequence of
theorem 2.11: if V' is a super-martingale under each @) € M*(S), then

EqVi] <V, for all @ € M®(S). (50)

Hence there is a predictable trading strategy H such that V4 (H-S); > V;. Letting
Co = 0 and writing AC; = Cy =V; — (Vo + (H - S)1) we have obtained the desired
decomposition.

Recall our general assumption that Fy is trivial; it implies that the trading
strategy H = H, simply is a vector in R?, as an Fy-measurable function is constant.
But this assumption is not at all essential for the above argument: if 7 is not trivial,
we simply apply the above argument to each of the atoms of the sigma-algebra F
to obtain an Fy-measurable function H,.

Hence we may apply, for each fixed t € {1,...,T}, the same argument as above
to the one-period financial market (S;_1, S;) based on (€2, F,P) and adapted to the
filtration (F;_1, ;). We thus obtain an F;_;-measurable R¢-valued function H; and
a non-negative F;-measurable function AC} such that

AVZ = (Ht: ASt) - Act, (51)

where (.,.) denotes the inner product in R?.

This finishes the construction of the optional decomposition: define the pre-
dictable process H as (H;)]_,, and the adapted increasing process C by C; =
¥ AC.

This shows the implication (i) = (ii); the implications (ii) = (i’) = (i) are
trivial. m
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3 The Binomial Model, Bachelier’s Model and
the Black-Scholes Model

The canonical example of a finite probability space €2, to which the no-arbitrage
theory applies very nicely, is the binomial model. Let Q = {—1,+1}" be equipped
with the filtration (F;)]_,, where JF; is generated by the first ¢ coordinate maps on
. As probability measure P we chose the uniform measure on F = Fr, but we
remark that the subsequent results do not depend on this special choice of P; the
only property of P which is needed is, that P assigns positive mass to each point of
Q.

Consider a financial market based on (2, (F;)L,, P) consisting of a cash account
B; := (S?)L, = 1 and a risky asset (stock) (S})L, which is an R-valued adapted
process defined on (€, (F)L,, F). By abuse of notation we also shall write S for
the one-dimensional process S*.

To avoid trivialities we assume that

P[S; # Sy 1|Fi-1] > 0  everywhere, for t =1,...,T. (52)
It ist rather obvious and very intuitive that S does not allow arbitrage iff
]P[St > Stfl‘j:tfl] >0 and ]P[St < Stfl‘]'—tfl] > 0, for ¢t = 1,..., T. (53)

It is just as obvious — using, e.g., backward induction (compare [LL 96]) — that
in this case there exists a unique equivalent martingale measure (). Hence we know
that, for any contingent claim f € L*(Q, F,P), we can find a trading strategy H
such that

f=Eqlfl+ (H-5)r (54)

and that we have, for every t =0,...,T,
Eolf[Fi] = Eqlf]+ (H - S):. (55)

We now specialize to two concrete cases for the financial market model S: the
first example is the simple random walk; this was considered by Bachelier as a
discrete approximation to Brownian motion. The second one is the multiplicative
version of the random walk — i.e., (ln(g—;))fzo is a random walk, possibly with drift.
In finance the latter model is called the Cox, Ross, and Rubinstein model [CRR 79].
These authors analyzed this model as a discrete analogue to geometric Brownian
motion.

In the former case, i.e., the simple random walk, where (S; — S; 1)L, are i.i.d.
random variables taking values +oAx with probability %, the original measure P is
already the unique martingale measure for the process (S;)L_,. Hence we deduce from
corollary 2.14 that the unique arbitrage-free price of a contingent claim f € L*(P)
is given by Ep[f], which justifies Bachelier’s “fundamental principle” on the basis
of no-arbitrage arguments for the model of a simple random walk.

In the Cox-Ross-Rubinstein case the original measure P — in general — is not
a martingale measure, but it is easy to explicitly calculate the density Z—% (which
amounts to a discrete version of Girsanov’s theorem).
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In both cases the pricing formulae for an option reduce to the calculation of
the expected value of the hockey-stick function f(z) = (z — K), with respect to a
binomial distribution, placed on a sequence of points in arithmetic progression in
the former and on a sequence in geometric progression in the latter case.

We leave the elementary but somewhat cumbersome calculations of the resulting
formulae in the first case to the energetic reader (who may also find the calcuations
essentially in Bachelier’s thesis) and in the second case we refer to the beautiful
book by Lamberton and Lapeyre [LL 96], where these calculations are presented in
a clean and transparent way.

We now pass on to the continuous limits of these models (if properly normalised),
where — as usual in mathematics — the results and formulae become more elegant
and more transparent.

To do so, we recall the martingale representation theorem for Brownian motion,
which is the continuous analogue to the elementary considerations on the binomial
model above.

Theorem 3.1 (see, e.g., [RY 91]) Let (Wi)o<i<r be a standard Brownian motion
modeled on (2, (Fy)o<i<r, P), where (Fy)o<i<r is the natural (saturated) filtration
generated by W .

Then P is the unique measure on Fr which is absolutely continuous with respect
to P, and under which W 1s a martingale.

Correspondingly, for every function f € L*(Q, Fr,P) there is a unique predictable
process H = (Hy)o<i<r Such that

f=E[f]+ (H-W)r, (56)
and
Elf|R]=E[fl+(H-W);, 0<t<T, (57)
which implies in particular that (H -W) is a uniformly integrable martingale.

Bachelier’s model revisited:

Let us restate Bachelier’s model in the framework of the formalism developed
above: let B; =1 and S; = Sg+ocW,;, 0 <t <T, where Sy is the current stockprice,
o > 0 is a fixed constant, and W is standard Brownian motion on its natural base
(€, (F)o<e<r, P).

Fixing the strike price K, we want to price and hedge the contingent claim

f(w) = (Sr(w) — K)4 € L\(Q, Fr, P). (58)

Using the martingale representation theorem we may find a trading strategy H s.t.

f = E[f]+(H-W)r (59)
= E[f]+ (H-S)r,
where H = g Noting that B; = 1 implies that assumption 1.4 is satisfied, we
deduce from (9) above that
So— K So— K
C (S, T) := E[f] = (S; — K)® +\/T< ) 60
(50, 7) = Blf] = (50— 109 (2 ) ovTe (BE). o0
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By the same token we obtain, for every 0 < t < T, and conditionally on the
stock price having the value S; at time £,

Si— K Si— K

Hence this solves the pricing problem, which now is based on the no-arbitrage
considerations rather than on accepting Bachelier’s fundamental principle, as we
now have the “replication formula” (59).

But what is the trading strategy H, in other words, the recipe to replicate the
option by trading dynamically? Economic intuition suggests that we have
9 o, —1) (62)
0S ’ '

Indeed, consider the following heuristic reasoning using infinitesimals: suppose
at time ¢ the stock price equals S; so that the value of the option equals C(Sy,1).
During the infinitesimal interval (¢,t + d¢) the Brownian motion W; will move by
AW, = Wia — Wy = e,/dt, where Ple; = 1] =Ple; = —1] = %, so that S; will move
by dS; = Syiqt — Sy = eov/dt. Hence the value of the option C(S;,t) will move by
dCy = C(Sprar, T — (t+ dt)) — C(S,, T — t) = 95(S;, T — t)o/dt, where we neglect
terms of smaller order than v/dt. In other words, the ratio between the up or down
movement of the underlying stock S and the option is

oC

H(S,t) =

dCy:dS, = a5 (8, T —1)o dt : eoVdt (63)
aC
- aS(Sta )

If we want to replicate the option by investing the proper quantity H of the
underlying stock, formula (63) suggests that this quantity should equal g—g(St, T—t).
After these motivating remarks, let us deduce the equation
oC 9¢
oS

more formally. Consider the stochastic process

H(S,t) = -5 (5, T —1) (64)

C(S;, T—t)=C(So+cW,, T —t), 0<t<T, (65)
of the value of the option. By Itd’s formula
oC oCc 19%*C
dC (S, t) = ﬁdSt + (E + - 5952° ) dt, (66)

where we have used dS; = odW;. One readily deduces from formula (61) that C
verifies the heat equation with parameter % displayed in (68) below (time is running
into the negative direction in the present setting). In particular, for the function C
defined in (61), the drift term in (66) vanishes as it must be the case according to
the general theory (the option price process is a martingale by (57)). Hence (66)
reduces to the formula

C(S;, T —t) =C(So,T) + (H-S)4, (67)
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where H is given by (64). Rephrasing this result once more we have shown that the
trading strategy H, whose existence was guaranteed by the martingale representa-
tion, is of the form (64).

One more word on the fact that C(S,T — t) satisfies the heat equation, which
may be verified by simply calculating the partial derivatives in (61). Admitting this
calculation, we concluded above that the drift term in (66) vanishes. One may also
turn the argument around to conclude from (57) that the drift term in (66) must
vanish, which then implies that C'(S,T — t) must satisfy the heat equation (time
running inversely)

oC o? 0*°C

o T =5 gl

Imposing the boundary condition C(S,T—T) = C(S,0) = (S— K) one may derive
from this p.d.e. by standard methods the solution (61). This is, in fact, how F. Black
and M. Scholes originally proceeded (in the framework of their model, which we shall
analyse in a moment). Let us also give the heuristic argument to deduce the p.d.e.
(C10) from Bachelier’s “fundamental principle” and It6’s formula.

Suppose there is a “formula” C(S;, T — t) which gives the value of an option for
every 0 <t < T and S; € R. By assumption, at the terminal date ¢ = T we have
the boundary condition C(Sy, T — T) = C(S7,0) = (St — K) .

Applying Bachelier’s fundamental principle (remember this wonderful passage
following the formulation of his “fundamental principle”, which describes the idea
of a martingale!) the stochastic process (C(S;, T — t))o<i<r should be a martingale.
Therefore the drift term in (66) should vanish, which amounts to formula (68).

The Black-Scholes model:

This model of a stock market was proposed by the famous economist P. Samuel-
son in 1965 ([S 65]), who at this time was aware of Bachelier’s work. In fact, triggered
by a question of J. Savage, it was P. Samuelson who had rediscovered Bachelier’s
work for the economic literature some years before 1965.

The model is usually called the Black-Scholes model today and became the stan-
dard reference model in the context of option pricing:

S, T —1). (68)

. rt
Bt_ea

2
Sy = Spe?MiHu=HN <t <T. (69)

Again W is a standard Brownian motion with natural base (€2, (F;)o<i<r, P).

The paramenter r models the “riskless rate of interest”, while the parameter p
models the average increase of the stock price. Indeed using It6’s formula one may
describe the model equivalently by the differential equations:

dB,

E = Tdt, (70)
% = pdt+ odW,. (71)
t

The numéraire in this model is just the relevant currency (say €); in order to
remain consistent with the above theory, we shall rather follow our usual procedure
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of taking a traded asset as numéraire, namely the bond. We then have

B, = 1, (72)

~ 2
Sp = Spe”WrtlTr=HIt

The tilde indicates that we now have denominated B; and S; in terms of the
bond By, i.e., we have discounted them. We shall write v for u — r which is called
the “excess return”. The only thing we have to keep in mind by passing to the bond
as numéraire, is that now quantities have to be expressed in terms of the bond: in
particular, if K denotes the strike price of an option at time 7" (expressed in € at
time T'), we have to express it as Ke™"? units of the bond.

Contrary to Bachelier’s setting, the process

S, = Spe”Wit=)t 0 <t < T, (73)

is not a martingale under P (unless v = 0, which typically is not the case).

The unique martingale measure @ for S (which is absolutely P-continuous) is
given by Girsanov’s theorem (see [RY 91| or any introductory text to Mathematical
Finance)

202

2
@ _ exp <—KWT - y—T) : (74)
o

Let us price and hedge the contingent claim f(w) = (Sr(w) — Ke ™), which
is the pay-off function of the European call option with exercise time 7" and strike
price K (expressed in terms of €).

Noting that (W; + vt);>¢ is a standard Brownian motion under () and applying

theorem 3.1 to the @)-martingale S, we may calculate

O T) =Balf] = Bo |(Suert 07— ge=rt) | (75)

27

= SeEo [eaﬁzf% X{STZK}] ~ Ke "TQ[Sr > K],

where Z denotes a N (0, 1)-distributed random variable under Q.
After an elementary but tedious calculation (see, e.g., [LL96]) this yields the
famous Black-Scholes formula

In(52) + (r + )T
C(So,T) = S()(I)(n(K) r+%) ) (76)
oVT
Ko T In(3) + (r — )T
oVT
and, by the same token, for 0 <¢ <7, and S; > 0,
In(S: CNT —t
C(S,T—1t) = soq><n(K)+(r+ DY) (77)
oV —1t
ket (™ 50y 4 (r — 2T —t)
oI —t
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Let us take some time to contemplate on this truly remarkable formula (for which
R. Merton and M. Scholes received the Nobel prize in economics in 1997; F. Black
unfortunately had passed away in 1995).

1.) As a warm-up consider the limits as 0 — oo (which yields C(Sy,T) = Sp)
and o — 0 (which yields C(Sy,T) = (Sy — Ke "T),). The reader should convince
herself that this does make sense economically. For an extremely risky underlying
S, an option on one unit of S is almost as valuable as one unit of S itself (think,
for example, of a call option on a lottery ticket with K = 100 and exercise time 7T,
such that T is later than the drawing where it is decided, whether the ticket wins a
million or not). On the other hand, if the underlying S is almost riskless a similar
consideration reveals that the value of an option is almost equal to its “inner value”
(S() — K@frT)_F.

This behavior of the Black-Scholes formula should be contrasted to Bachelier’s
formula (specializing to the case Sy = K and r = 0)

CBachelier S, ,T _ g \/T 78

obtained in (10) above, which tends to infinity as ¢ — oo; this limiting behaviour
is economically absurd and contradicts an obvious no-arbitrage argument which —
using the fact that St is non-negative — shows that the value of a call option always
must be less than the value of the underlying stock.

The reason for this difference in the behaviour of the Black-Scholes formula and
Bachelier’s one, for large values of o, is that geometric Brownian motion always
remains positive, while Brownian motion may also attain negative values, a fact
which has strong effects for very large ¢ or — what amounts to the same, at least
in the case r = 0 — for very large T. Nevertheless we shall presently see that — for
reasonable values of o and T — the Black-Scholes formula and Bachelier’s formula
(78) are very close. This seems to be the essential fact, keeping in mind Keynes’
dictum telling us, not to look at the limit 7" — oo: in the long run we all are dead.

2.) Let us compare the Black-Scholes formula (76) and Bachelier’s formula (78)
more systematically. To do so we specialize in the Black-Scholes formula to r = 0
and Sy = K, and we have to let the o in the Black-Scholes formula, which we now
denote by o®°, correspond to the o appearing in Bachelier’s formula, denoted by
oB. As the former pertains to the relative standard deviation of stock prices and
the latter to the absolute standard deviation, we roughly find the correspondence
— at least for small values of T —

0B ~ 0B85, (79)

Hence, in this special case, the Black-Scholes and Bachelier option prices to be
compared are

OB = S, [@ ("Bsﬁ) —® (—"Bsﬁ) , (80)
2 2
while 5 B
C® = \/—z_wﬁ ~ SO\/—Q_T('\/T' (81)
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The difference of the two quantitaties is best understood by looking at the shaded
2

area in the subsequent graph involving the density ¢(x) = \/LZ—ﬁeJT of the standard
1

normal distribution, and noting that ¢(0) = —-.

(fh)

Figure 3: Comparison of the Bachelier with the Black-Scholes formula.

Developping ¢(x) into a Taylor series around zero and using ¢”(0) = — 75 we
get the asymptotic expression

CB—CP =g, [24\1/% (oBS\/T) 3] +o ((aBS\/T)?’) : (82)

which indicates a very good fit, if oB5y/T is small. Evaluating this expression for
the empirical data reported by Bachelier, i.e., 0?5 ~ 2.4% on a yearly basis, and
T =~ 2months = %year (this is a generous upper bound for the periods considered
by Bachelier which were ranging between 10 and 45 days) we find

B S . 1 \/I ’ ~ -8
C C” ~ 5024\/2_7 (0.024 6) ~ 1.56 * 107°S,. (83)

Hence for this data the difference of the option value obtained from Bachelier’s
or the Black-Scholes model is of the order 10~8 times the value Sy of the underlying;
keeping in mind, that for Bachelier’s data, the price of an option was of the order
of Sy/100, we find that the difference is of the order 10~ of the price of the option.

In view of all the uncertainties involved in option pricing, in particular as regards
the estimation of o, one might be tempted to call this quantity “completely negligi-
ble, a priori” (this expression was used by Bachelier when discussing the drawbacks
of the normal distribution giving positive probability to negative stock prices).

3.) Let us now comment on the role of the riskless rate of interest r, appearing
in the Black-Scholes formula and the reason why this variable does not show up in
Bachelier’s formula: noting the obvious fact that

So So
In (E) +7rT =1In <Ke—"T) , (84)
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one readily observes that this quantity only enters the Black-Scholes formula (76)
via the discounting of the strike price, i.e., transforming K units of €,_7 into Ke™""
units of €,_y. When comparing the setting of Black-Scholes to that of Bachelier one
should recall that the option premium in Bachelier’s days pertained to a payment at
time 7" or, in modern terms, was expressed in terms of a zero coupon bond maturing
at time 7. Under the assumption of a constant riskless interest — as is the case in
the Black-Scholes model — this amounts to considering the present day quantities
upcounted by e’7. This was perfectly taken into account by Bachelier, who stressed
that the quantities appearing in his formulae have to be understood in terms of “true
prices”, i.e., forward prices in modern terminology, which amounts to upcounting
by €T in the present setting. In fact, we have seen in section 1 that Bachelier did
even more, as he in addition was considering the “contangoes”, which — in modern
terminology — correspond to a continuous yield on the stock.

The bottom line of these considerations on the role of  is: when we assumed that
r = 0 in the above comparison of the Bachelier and Black-Scholes option pricing
methodology, this assumption did not restrict the generality of the argument: it
also applies to r # 0 as Bachelier denoted the relevant quantities in terms of “true
prices”.

4.) What is the partial differential equation satisfied by the solution (77) of the
Black-Scholes formula? Again we specialize to the case » = 0 in order to focus the
attention of the reader to the crucial aspect, but we note that now we do restrict
the generality and refer to any introductory text to Mathematical Finance (e.g.,
[LL96]) for the Black-Scholes partial differential equation in the case of a riskless
rate of interest r # 0.

From the Martingale Representation Theorem 3.1 above we know that the Black-
Scholes option price process

C(S:, T — t)o<i<r (85)

is a martingale under the measure @) defined in (74). Hence, denoting by (Wt)OStST

a standard Brownian motion under @), using dS; = 0S5;dW;, and working under the
measure (), we obtain from It6’s formula

80 820 oc

We first observe, using again aStth dS;, that — s1m11arly as in the context of
Bachelier — the replicating trading strategy H(w) is given by %5(Sy(w), T —t). In
the lingo of finance this quantity is called the “Delta” of the optlon (which depends
on S; and t), and the trading strategy H is called “delta-hedging”.

Next we pass to the drift term: as it must vanish, we arrive at the “Black-Scholes
partial differential equation”

0*C
05?

oC

___2
(ST —1)=-55

(S, T —1), for S > 0,t> 0. (87)

This is the multiplicative analogue of the heat equation (68) and may, in fact,
easily be reduced to a heat equation (with drift) by passing to logarithmic coordi-
nates z = In(S5).
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Exactly as in Bachelier’s case we may proceed by solving the partial differential
equation (87) for the boundary condition C(S,T — T) = C(S,0) = (S — K), and
C(0,t) = 0 to obtain the Black-Scholes formula

In the lingo of finance, the quantity —2¢ is called the “Theta” and the quantity

gf;;’ the “Gamma” of the option. Hence the p.d.e. (87) allows for the following
economic interpretation: the loss of value of the option, when time to maturity
T — t decreases (and S remains fixed), is equal to the “convexity” or “gamma” of

the option price (as a function of S) at time ¢, normalized by "7252 (in the case of

the Bachelier model the normalisation was simply %2) This has a good economic
interpretation and today’s option traders think in these terms. They speak about
“selling or buying convexity” or rather “going gamma-short or gamma-long” which
amounts to the same thing. The interpretation of (87) is that, for the buyer of an
option, the convexity of the function C(S,T — t) in the variable S corresponds to a
kind of insurance with respect to price movements of S. As there is no such thing
as a free lunch this insurance costs (proportional to the second derivative) and a
positive —S 2 ?,SS is reflected by a negative partial derlvatlve of C(S,T —t) with
respect to time t.

Let us illustrate this fact by reasoning once more heuristically with infinitesimal
movements of Brownian motion: we want to explain the infinitesimal change of the
option price when “time increases by an infinitesimal while the stock price S remains
constant”. To do so we apply the heuristic analogue of the Brownian bridge: consider
the infinitesimal interval [t, ¢+ 2dt] and assume that the driving ()-Brownian motion
W moves in the first half [¢,t + d¢] from W, to W, + eV/dt, where ¢ is a random
variable with Q[e; = 1] = Q[e; = —1] = 1, while in the second half [t + dt,t + 2dt]

it moves back to W;. What happens during this time interval to a “hedger” who
proceeds according to the Black-Scholes trading strategy H described above, which
replicates the option? At time ¢ she holds (St, T —t) units of the stock. Following
first the scenario ¢, = +1, the stock has a price of S; + 0S;V/dt at time ¢ + dt.
Appart from being happy about this up movement, the hedger now (i.e., at time
¢ + dt) adjusts the portfolio to hold 9%(S, + 05,9/7 T — (t + dt)) units of stock,

which results in a net buy of gs(; (S, T )oSt\/_t units of stock, where we neglect
terms of smaller order than v/dt. In the next half [t 4+ dt,t + 2dt] of the interval
the stock price S drops again to the value S; 04 = S; and the hedger readjusts
the portfolio by selling again the %(&,T — t)oS;V/dt units of stock (neglecting
again terms of smaller order than \/ﬂ) It seems at first glance that the gains made
in the first half are precisely compensated by the losses in the second half, but a
closer inspection shows that the hedger did “buy high” and “sell low”: the quantitiy
gZT(;(St, T — t)oS;/dt was bought at price S; + 0.5;V/dt at time ¢ + dt, and sold at
price S; at time t + 2dt, resulting in a total loss of

82C 82C
< S5z (ST t)ast\/cﬁ) (ast\/%)—&sf ooz (5T — t)dt. (88)

Going through the scenario ¢, = —1, one finds that the hedger did first “sell low”
and then “buy high” resulting in the same loss (where again we neglect infinitesimals
resulting in effects (with respect to the final result) of smaller order than dt).
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Keeping in mind that this was achieved during an interval of total length 2dt we

have found a heuristic explanation for the Black-Scholes equation (87) (we also note
that the same argument, applied to Bachelier’s model, yields a heuristic explanation
of the heat equation (68)). The general phenomenon behind this fact is that, in the
case of convexity, the “wobbling” of Brownian motion, which is of order v/dt in
an interval of length dt, causes the hedger to have systematic losses, which are
proportional to g%% as well as to the increment d(S); of the quadratic variation
process (S); = [, 0?S2du of the stock price process S.
5.)  When deriving the Black-Scholes formula (76) we did not go through the
(elementary but tedious) trouble of explicitly calculating (75). We shall now furnish
an explicit derivation of the formula which has the merit of yielding an interpretation
of the two probabilities appearing in (76). It also allows for a better understanding
of the formula (for example, for the remarkable fact, that the parameter u has
disappeared) and which also dispenses us of some troubles in the calculation.

As observed in (75) above, the contingent claim f(w) = (Sp(w) — Ke ™T),
(expressed in terms of the numeraire B;) splits into

(Sr—Ke™™ ) = SrX(gzke-rry — K€ X5z ke-rmy (89)

= Srx(srzxy — Ke X532k
= f1 - f2-

We have to calculate Eg[fi] and Eg|f,] under the risk-neutral measure () defined
in (74). This is easy for f> and we do not have to use the explicit form of the density

(74) provided by Girsanov’s theorem. It suffices to observe that Sy = Sy exp(acW, —
< %t) where W is a Brownian motion under Q. So

In(%E)+5T
X = (S;?/T 2 ~ N(0,1) under Q, (90)

whence
Eqlfs] = e KQ[Sr > e "K] (91)
() + 57 I (SgK) + g7
>
oVT oVT

= ¢ "TKQ

2

e_;:K) + %T
ovVT
n () + (r=5)T
oVT ’

ln(
= e TKQX >

= ¢"TK®

which yields the second term of the Black-Scholes formula.
Why was the calculation of Eq[f>] so easy? Because the amount Ke™"" is just
a constant (expressed in terms of the present numéraire); hence the calculation of

—rT
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the expectation reduced to the calculation of the probability of an event, namely
the prohability that the option will be exercised, with respect to Q.

To proceed similarly with the calculation of Eg[fi;] we make a change of
numéraire, now choosing the risky asset S in the Black-Scholes model (69) as
numéraire. Under this numéraire the model reads

& — So—le—aWt—l—(r—u—l—%)t (92)
Sy

é = 1

St

where W is a standard Brownian motion under P. The reader certainly has noticed
the symmetry with (72). But what ist the probability measure ) under which the
process ]g—tt becomes a martingale? Using Girsanov we can explicitly calculate the

density Z—g; but, in fact, we don’t really need this full information. All we need is to
observe that we may write

B gtemment (93)

St
where W is a standard Brownian motion under () (the reader worried by the minus
sign in front of oW, may note that —I also is a standard Brownian motion under
Q). We now apply the change of numéraire theorem (in the form of corollary 2.14)
to calculate Eg[f1]. In fact, we have only proved this theorem for the case of finite
2, but we trust in the reader’s faith that it also applies to the present case (for a
thorough investigation for the validity of this theorem for general locally bounded
semi-martingale models we refer to [DS95]). Applying this theorem we obtain

Balfil = Eo [Sryges i) (049

= SEg

Sr
g_TX{g_;SeTTKA}
= SO EQ [X{Sale—UWT—%TSerTK—I}}

~ > 0-2
- 5,0 [soeffWT+7T > e*TTK} .

Noting that Wr/v/T is N(0,1)-distributed under @, this expression is completely
analogous to that appearing in (91), with the exception that now there is a plus in
front of the term "72T. Hence we get

1n(%)+(r+”§)T

EQ[fl] = SO(I> 0'\/T ’

(95)

which is the first term appearing in the Black-Scholes formula. We now may interpret

. (m(%(ﬁ%ﬁ

T > as the probability, that the option will be exercised, with respect

v

to Q.
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4 The No-Arbitrage Theory for General Pro-
cesses

We now again take up the theme of the no-arbitrage theory as developed in section
2: what can we deduce from applying the no-arbitrage principle with respect to
pricing and hedging of derivative securities?

While we obtained satisfactory and mathematically rigorous answers to these
questions in the case of a finite underlying probability space €2 in section 2, we saw
in section 3, that the basic examples for this theory, the Bachelier and the Black-
Scholes model, do not fit into this easy setting, as they involve Brownian motion.

In section 3 we coped with the difficulty either by using well-known results from
stochastic analysis (e.g., the martingale representation theorem 3.1 for the Brownian
filtration), or by appealing to the faith of the reader, that the results obtained in
the finite case also carry over — mutatis mutandis — to more general situations,
as we did when applying the change of numéraire theorem to the calculation of the
Black-Scholes model.

In the present chapter we want to develop a “théorie génerale of no-arbitrage”
applying to a general framework of stochastic processes. The development of Math-
ematical Finance since the work of Black, Merton and Scholes made it clear, that
the relatively poor fit of the Black-Scholes model (as well as Bachelier’s model) to
empirical data (especially with respect to extremal behaviour, i.e., large changes
in prices) makes it necessary for many applications, to pass to more general mod-
els; in some cases these models still have continuous paths, but also processes (in
continuous time) with jumps are increasingly gaining importance.

We adopt the following general framework: let S = (S;);>0 be an RéFI-
valued stochastic process based on and adapted to the filtered probability space
(2 F, (F)is0,P). Again we assume that the zero coordinate S°, called the bond, is
normalised to S = 1.

We first will make a technical assumption, namely that the process S is bounded,
i.e., that there exists a sequence (7,,)%, of stopping times, increasing a.s. to +oo,
such that the stopped processes S{* = Sin., are uniformly bounded, for each n €
N. Note that continuous processes — or, more generally, cadlag processes with
uniformly bounded jumps — are locally bounded. This assumption will be very
convenient for technical reasons, and only at the end of this section we shall indicate,
how to extend to the general case of processes, which are not necessarily locally
bounded.

We have chosen [0,00] for the time index set in order to allow for maximal
generality; of course this also covers the case of a compact interval [0, 7], which is
relevant in most applications, by assuming that S; is constant, for ¢ > 7. We shall
always assume that the filtration (F;)i>o satisfies the usual assumptions of right
continuity and saturatedness, and that S has a.s. cadlag trajectories.

How to define the trading strategies H, which played a crucial role in the pre-
ceding sections? A very elementary approach, corresponding to the role of step
functions in integration theory, is formalized by the subsequent concept.

Definition 4.1 (compare, e.g., [P 90]) For a locally bounded stochastic process S
we call an R%-valued process H = (Hy)1>o a simple trading strategy (or, speaking
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more mathematically, a simple integrand ), if H is of the form

H = Z h’iX]]Ti—laTi]]’ (96)

i=1

where 0 =19 <1y < ... < 7, are finite stopping times and h; are F.,_ -measureable,
R?-valued functions.

We then may define, similarly as in definition 2.2, the stochastic integral (H -S)
as the stochastic process

n

(H : S)t = Z (h’Z? S’Ti/\t - S’Tifl/\t) (97)
=1
n d . . .
= Zzh/‘g (S:Tj'i/\t - S:77'i_1/\t) ) O S t < 0,
=1 j=1

and its terminal value as the random variable
n

(H-S)oo = (hi, Sr = SriLy)- (98)

=1

We call H admissible if, in addition, the stopped process S™ and the functions
hi, ..., h, are uniformly bounded.

This definition is a well known building block for developing a stochastic in-
tegration theory (see, e.g., [P90]). It has a clear economic interpretation in the
present context: at time 7;_; an investor decides to adjust her portfolio in the assets
St,...,587,...,5% by fixing her investment in asset S7 to be h(w) units; we allow
h! to have arbitrary sign (holding a negative quantity means borrowing or “going
short”), and to depend on the random element w in an F,,_,-measurable way, i.e.,
using the information available at time 7;_;. The funds for adjusting the portfolio
in this way simply are financed by taking the appropriate amount from (or putting
into) the “cash box”, modeled by the numéraire S° = 1. The investor holds this
portfolio fixed up to time 7;. During this period the value of the risky stocks S/,
j=1,...,d, changed from SJ_ (w) to S (w) resulting in a total gain (or loss) given
by the random variable (h;, S;, — S;,_,). At time 7;, for ¢ < n, the investor read-
justs the portfolio again and at time 7, she liquidates the portfolio, i.e., converts all
her positions into the numéraire. Hence the random variable (H-S),, = (H-5)w
models the total gain (in units of the numéraire Sy) which she finally, i.e., at time
Tn, Obtained by adhering to the strategy H; the process (H -S); models the gains
accumulated up to time ¢.

The concept of a simple trading strategy is designed in a purely algebraic way,
avoiding limiting procedures, in order to be on safe grounds.

The next crucial ingredient in developing the theory is the proper generalisation

of the notion of an equivalent martingale measure.

Definition 4.2 A probability measure Q on F which is equivalent (resp. absolutely
continuous with respect) to P is called an equivalent (resp. absolutely continuous)
local martingale measure, if S' is a local martingale under Q.
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We denote by M®(S) (resp. M*(S)) the family of all such measures, and say that
S satisfies the condition of the existence of an equivalent local martingale measure

(EMM), if Mé(S) # 0.

Note that, by our assumption of local boundedness of S, we have that S is a
local (Q-martingale, iff S is a ()-martingale for each stopping time 7 such that S7™
is uniformly bounded.

Why did we use the notion of a local martingale instead of the more familiar
notion of a martingale? The reason is, that it is the natural degree of generality.
The subsequent easy lemma (whose proof is an obvious consequence of the chosen
concepts and left to the reader) shows that this notion serves just as well as the
notion of a martingale for the present purpose of a no-arbitrage theory. On the
other hand, the restriction to the notion of martingale measures would make it
impossible to formulate the general version of the fundamental theorem of asset
pricing (theorem 2.8 below), as may bee seen from easy examples (see, e.g., [DS 94al).

Lemma 4.3 A locally bounded semi-martingale S is a local martingale under @ iff
Eq[(H-S)w] =0, (99)
for each admissible simple trading strateqy H.

For later use we note that the “=” in (99) may equivalently be replaced by “<”
(OI‘ “Z”).

We define the subspace K¢ of L>(Q, F,P) of contingent claims available at
price zero via an admissible simple trading strategy by

Kemele — f([.8) . : H simple, admissible} (100)

and by C®™Pl® the convex cone in L*® (), F,P) of contingent claims dominated by
some f € K

Csimple — Ksimple _ Lf — {f — k- f c Ksimple’ k Z 0} . (101)

Definition 4.4 S satisfies the no-arbitrage condition (NA) with respect to simple
integrands, if KS™P'*NLe(Q, F,P) = {0} (or, equivalently, C5™P*N LY (Q, F,P) =
{0}).

We want to prove a fundamental theorem of asset pricing analogous to theorem
2.8 above. But now things are more delicate and the notion of (NA) defined above
is not sufficiently strong to imply this result:

Proposition 4.5 The condition (EMM) of the ezistence of an equivalent local mar-
tingale measure implies the condition (NA) of no-arbitrage with respect to simple
integrands, but not vice versa.

Proof (EMM) = (NA): this is an immediate consequence of lemma 4.3, noting
that for Q ~ P, and a non-negative function f > 0, which does not vanish almost
surely, we have Eg[f] > 0.

(NA) % (EMM): we give an easy counterexample which is just an infinite random
walk.
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Let t, =1— n%l and define the R-valued process S to start at Sy = 1, and to

be constant except for jumps at the points ¢, which are defined as
AS;, =2 "€, (102)

such that (,)2; are independent random variables taking the values +1 or —1 with

probabilities
1+ ay 1—a,
Ple, = —1] = , 103

where (a,,)22, is a sequence in | — 1,41[ to be specified below.

Clearly this well-defines a bounded process S, for which there is a unique measure
Q on (,F) = ({—1,1} Borel ({—1,1}"), under which S is a martingale; this
measure is given by

Ple, =1 =

Qlen =1 = Qlen = 1] = 5, (104)
and (e,)22, are independent under Q).
By a result of Kakutani (see, e.g. [W 91]) we know that @ is either equivalent to
P, or P and ) are mutually singular, depending on whether Y >  «2 < co or not.
Taking, for example, «,, = %, for all n € N, we have constructed a process S
on (2, F,P), for which there is no equivalent (local) martingale measure . On the
other hand, it is an easy and instructive exercise to show that, for simple trading
strategies, there are no-arbitrage opportunities for the process S.

The example in the above proof shows, why the no-arbitrage condition defined in
4.4 is too narrow: it is intuitively rather obvious that by a sequence of properly scaled
bets on a (sufficiently) biased coin one can “produce something like an arbitrage”,
while a finite number of bets (as formalized by definition 4.1) does not suffice to do
S0.

But here we are starting to move on thin ice, and it will be the crucial issue to
find a mathematically precise framework, in which the above intuitive insight can
be properly formalized.

A decisive step in this direction was done in the work of D. Kreps [K 81], who
realized that the purely algebraic notion of no-arbitrage with respect to simple in-
tegrands has to be complemented with a topological notion:

Definition 4.6 (compare [K 81]) S satisfies the condition of no free lunch (NFL), if
the closure C of CS™Pe taken with respect to the weak-star topology of L (), F,P),
satisfies

CNL®Q,F,P)={0}. (105)

This strengthening of the condition of no-arbitrage is taylor-made so that the
subsequent version of the fundamental theorem of asset pricing holds true.

Theorem 4.7 (Kreps - Yan) A locally bounded process S satisfies the condition
of no free lunch (NFL), iff condition (EMM) of the existence of an equivalent local
martingale measure is satisfied:

(NFL) < (EMM). (106)
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Proof (EMM) = (NFL): This is still the easy part. By lemma 4.3 we have Eg[f] <
0, for each Q@ € M¢(S) and f € CS'™Pl  and this inequality also extends to the
weak-star closure C. On the other hand, if (EMM) would hold true and (NFL) were
violated, there would exist a Q@ € M¢(S) and f € C, f > 0 not vanishing almost
surely, whence Eg[f] > 0, a contradiction.

(NFL) = (EMM): We follow the strategy of the proof for the case of finite €2,
but have to refine the argument:

Step 1 (Hahn-Banach argument): ~ We claim that, for fixed f € L, f # 0,
there is g € L} which, viewed as a linear functional on L*, is less than or equal to
zero on C, and such that (f, g) > 0. To see this, apply the separation theorem (e.g.,
[Sch 66, th. II, 9.2]) to the o*-closed convex set C and the compact set {f} to find
g € L' and o < f such that g|z < aand (f, g) > . Since 0 € C we have o > 0. As
C is a cone, we have that g is zero or negative on C and, in particular, nonnegative
on LY, i.e. g € L. Noting that 5 > 0 we have proved step 1.

Step 2 (Ezhaustion Argument): Denote by G the set of all g € L1, g < 0 on
C. Since 0 € G (or by step 1), G is nonempty.

Let S be the family of (equivalence classes of) subsets of €2 formed by the supports
of the elements g € G. Note that S is closed under countable unions, as for a sequence
(9n)22; € G, we may find strictly positive scalars (o, )52, such that Y~ >° | angn € G.
Hence there is gy € G such that, for Sy = {go > 0}, we have

P(Sy) =sup{P(S): S € G}. (107)

We now claim that P(Sp) = 1, which readily shows, that gq is strictly positive
almost surely. Indeed, if P(Sp) < 1, then we could apply step 1 to f = x(a\s,) to
find g; € G with

(f, 1) = / PP >0 (108)

Hence, go+¢1 would be an element of G whose support has P-measure strictly bigger
than P(S)), a contradiction.

Normalize go so that ||go|l1 = 1 and let @ be the measure on F with Radon-
Nikodym derivative d@Q/dP = go. We conclude from lemma 4.3 that @ is a local
martingale measure for S, so that M¢(S) #0. m

Some comments on the Kreps-Yan theorem seem in order: this theorem was
obtained by D. Kreps [K 81] in a more general setting and under a — rather mild —
additional separability assumption; the reason for the need of this assumption is that
D. Kreps did not use the above exhaustion argument, but rather some sequential
procedure relying on the separability of L'(Q2, 7, P). Independently, and at about
the same time, Ji-An Yan [Y 80] proved in a different context, namely the charac-
terisation of semi-martingales as good integrators, and without a direct relation to
finance, a general theorem. C. Stricker [S90] observed, that Yan’s theorem may be
applied, to quickly yield the above theorem without any separability assumption.
We therefore took the liberty to name it after these two authors.

The message of the theorem is, that the assertion of the “fundamental theorem
of asset pricing” 2.8 is valid for general processes, if one is willing to interpret the
notion of “no arbitrage” in a somewhat liberal way, crystallized in the notion of “no
free lunch” above.
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What is the economic interpretation of a “free lunch”? By definition S violates
the assumption (NFL), if there is a function go € LP(Q2, F,P), go # 0, and nets
(9a)acts (fa)aer in L®(Q, F,P), such that f, = (H*-S) for some admissible,
simple integrand H%, g, < fo, and limyes g, = go, the limit converging with respect
to the weak-star topology of L®(, F,P). Speaking economically: an arbitrage
opportunity would be the existence of a trading strategy H such that (H-S)s > 0,
almost surely, and P[(H - S) > 0] > 0. Of course, this is the dream of each
arbitrageur, but we have seen, that — for the purpose of the fundamental theorem
to hold true — this is asking for too much (at least, if we only allow for simple
admissible trading strategies). Instead, a free lunch is the existence of a contingent
claim gy > 0, go # 0, which may, in general, not be written as (or dominated by)
a stochastic integral (H -S), with respect to a simple admissible integrand; but
there are contingent claims g, “close to go”, which can be obtained via the trading
strategy H®, and subsequently “throwing away” the amount of money f, — g,-

This triggers the question whether we can do somewhat better than the above
— admittedly complicated — procedure. Can we find a requirement sharpening the
notion of “no free lunch”, i.e., being closer to the original notion of “no arbitrage”
and such that a — properly formulated — version of the “fundamental theorem”
still holds true?

Here are some mathematically precise questions related to our attempt to make
the process of taking the weak-star closure more understandable:

(1) is it possible, in general, to replace the net (g, )ac; above by a sequence (g,)52,?
(ii) can we choose the net (gq)aer (or, hopefully, the sequence (g,)52,) such
that (¢ga)aecr remains bounded in L*®(P) (or at least such that the negative parts
((9a)-)aer remain bounded)? This latter issue is crucial from an economic point of
view, as it pertains to the question whether the approximation of f by (ga)acr can
be done respecting a finite credit line.

(iii) is it really necessary to allow for the “throwing away of money”?

It turns out that questions (i) and (ii) are intimately related and, in general,
the answer to these questions is no. In fact, the study of the pathologies of the
operation of taking the weak-star closure is an old theme of functional analysis. On
the very last pages of S. Banach’s original book ([B32]) the following example is
given: there is a separable Banach space X such that, for every given fixed number
n > 1 (say n = 35), there is a convex cone C in the dual space X*, such that
cegoWgcCc®gqg...gcm™=cCcrt) =C, where C*) denotes the sequential
weak-star closure of C*~1) i.e., the limits of weak-star convergent sequences (;)$2,,
with z; € C**~1) and C denotes the weak-star closure of C. In other words, by taking
the limits of weak-star convergent sequences in C' we do not obtain the weak-star
closure of C' immediately, but we have to repeat this operation precisely n times,
when finally this process stabilizes to arrive at the weak-star closure C.

In Banach’s book this construction is done for X = ¢y and X* = {! while our
present context is X = L'(P) and X* = L*®(P). Adapting the ideas from Banach’s
book, it is possible to construct a semi-martingale S such that the corresponding
convex cone CS™P® has the following property: taking the weak-star sequential
closure (C*™P)(D | the resulting set intersects LP(P) only in {0}; but doing the
operation twice, we obtain the weak-star closure C® = C, and C intersects L (P)
in a non-trivial way (see [DS 94, example 7.8]). Hence we cannot reduce to sequences
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(gn)22, in the definition of (NFL). The construction of this example uses a process
with jumps; for continuous processes the situation is, in fact, nicer, and in this case
it is possible to give positive answers to questions (i) and (ii) above (see [S90], [D 92]
and [DS 94]).

As regards question (iii), the dividing line again is the continuity of the process
S (see [S90] and [D 92] for positive results for continuous processes, and [S 94| for a
counterexample S, where S is a process with jumps).

Summing up the above discussion: the theorem of Kreps and Yan is a beautiful
and mathematically precise extension of the fundamental theorem of asset pricing
2.8 to a general framework of stochastic processes in continuous time. However, in
general, the concept of passing to the weak-star closure does not allow for a clear-
cut economic interpretation. It is therefore desirable to prove versions of the above
theorem, where the closure with respect to the weak-star topology is replaced by
the closure with respect to some finer topology (ideally the topology of uniform
concergence, which allows for an obvious and convincing economic interpretation).

To do so, let us contemplate once more, where the above encountered difficulties
related to the weak-star topology originated from: they are essentially caused by
our restriction to consider only simple, admissible trading strategies. These nice and
simple objects can be defined without any limiting procedure, but we should not
forget, that they are only auxiliary gimmicks, playing the same role as step functions
in integration theory. The concrete examples of trading strategies encountered in
section 3 for the case of the Bachelier and the Black-Scholes model led us already
out of this class: of course, they are not simple trading strategies.

Hence we have to pass to a suitable class of more general trading strategies than
just the simple, admissible ones. Among other pleasant and important features,
this will have the following effect on the corresponding sets C' and K: these sets will
turn out to be “closer to their closures” (ideally they will already be closed in the
relevant topology), than the above considered sets C5™P¢ and K®™P!; the reason is
that the passage from simple to more general intergrands involves already a limiting
procedure.

Let us do in a more systematic way our search for an appropriate class of trading
strategies:

First of all, one has to restrict the choice of the integrands H to make sure that
the process H - S exists. Besides the qualitative restrictions coming from the theory
of stochastic integration, one has to avoid problems coming from so-called doubling
strategies. This was already noted in the paper by Harrison and Pliska (1979). To
explain this remark, let us consider the classical doubling strategy. We toss a coin,
and when heads comes up, the player is paid 2 times his bet. If tails comes up, the
player loses his bet. The strategy is well known: the player doubles his bet until
the first time he wins. If he starts with 1 €, his final gain (= last pay out - total
sum of the preceding bets) is 1 € almost surely. He has an almost sure win. The
probability that heads will eventually show up, is indeed one (even if the coin is not
fair). However, his accumulated losses are not bounded from below. Everybody,
especially the casino boss, knows that this is a very risky way of winning 1 €. This
type of strategy has to be ruled out: there should be a lower bound on the player’s
loss. The described doubling strategy is known for centuries and in French it is still
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referred to as “la martingale”.

Here is the definition of the class of intergrands which turns out to be appropriate
for our purposes.

Definition 4.8 Fiz an R* ! -valued stochastic process S = (St)e>0 as defined in the
beginning of this section, which we now also assume to be a semi-martingale. An
R -valued predictable process H = (Ht)i>0 is called an admissible integrand for the
semi-martingale S, if

(i) H is S-integrable, i.e., the stochastic integral H-S = ((H-S);)i>0 is well-defined
in the sense of stochastic integration theory for semi-martingales,

(ii) there is a constant M such that
(H-S); > —M, a.s., for all t > 0. (109)

Let us comment on this definition: we place ourselves into the “théorie générale”
of integration with respect to semi-martingales: here we are on safe grounds as the
theory developed, in particular by P.-A. Meyer and his school, tells us precisely what
it means that a predictable process H is S-integrable (see, e.g., [P 90]). But in order
to do so we have to make sure that S is a semi-martingale: this is precisely the
class of processes allowing for a satisfactory integration theory, as we know from the
theorem of Bichteler and Dellacherie.

How natural is the assumption, that S is a semi-martingale, from an economic
point of view? In fact, it fits very naturally into the present no-arbitrage framework:
it is shown in ([DS 94, theorem 7.2]) that, for a locally bounded, cadlag process S, the
assumption, that the closure of C*™P wjith respect to the norm topology of L>(P)
intersects L>(P); only in {0}, implies already that S is a semi-martingale. This
assumption therefore is implied by a very mild strengthening of the no-arbitrage
condition for simple, admissible integrands. Loosely speaking, the message of this
theorem is that a no-arbitrage theory only makes sense, if we start with a semi-
martingale model for the financial market S.

As regards condition (ii) in the above definition, this is a strong and economically
convincing requirement to rule out the above discussed doubling strategy, as well as
similar schemes, which try to make a final gain at the cost of possibly going very
deep into the red. Condition (ii) goes back to the original work of Harrison and
Pliska [HP 81]: there is a finite credit line M obliging the investor to finance her
trading in such a way, that this credit line is respected at all times ¢ > 0.

Definition 4.9 Let
K ={(H-S)s : H admissible and (H - S)x = tlim (H-S); exists a.s.},  (110)
— 00

which forms a convex cone of functions in L°(Q), F,P), and
C={geL>®(P):g< [ for some f € K}. (111)
We say that S satisfies the condition of no free lunch with vanishing risk

(NFLVR), if

CnLE(P) = {0}, (112)
where C now denotes the closure of C' with respect to the norm topology of L*®(P).
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Comparing the present definition to the notion of “no free lunch” (NFL), the
weak-star topology has been replaced by the topology of uniform convergence. Tak-
ing up again the discussion following the Kreps-Yan theorem 4.7, we now find a
better economic interpretation: S allows for a free lunch with vanishing risk, if there
is f € L2(P)\{0} and sequences (fn)52, = ((H"-95)x)s, € K, for a sequence
(H™)%2, of admissible integrands, and (g,)$2, satisfying g, < fn, such that

Tim [|f = gnlleo = 0. (113)

In particular the negative parts ((¢,)-)32, tend to zero uniformly, which explains
the term “vanishing risk”.

We now have all the ingredients to formulate a general version of the fundamental
theorem of asset pricing.

Theorem 4.10 ([DS 94, corr.1.2]) The following assertions are equivalent for
an R¥! -valued locally bounded semi-martingale model S = (S;)>0 of a financial
market:

(i) (EMM), i.e., there is a probability measure Q, equivalent to P, such that S is
a local martingale under Q).

(i) (NFLVR), i.e., S satisfies the condition of no free lunch with vanishing risk.

The present theorem is a sharpening of the Kreps-Yan theorem, as it replaces the
weak-star convergence in the definition of “no free lunch” by the economically more
convincing notion of uniform convergence. The price to be paid for this improvement
is, that now we have to place ourselves into the context of general admissible, instead
of simple admissible integrands.

The proof of theorem 4.10 as given in [DS 94] is surprisingly long and technical;
despite of several attempts, no essential simplification of this proof has been achieved
so far. We are not able to go in detail through this proof, but we shall try to give a
“guided tour” through it, which should motivate and help the interested reader to
find her way through the arguments in [DS 94].

We start by observing that the implication (i) = (ii) still is the easy one: sup-
posing that S is a local martingale under () and H is an admissible trading strategy,
we may deduce from a result of Ansel-Stricker ([AS94], see also [E80]) and the
fact that H - S is bounded from below, that H -S is a local martingale under @,
too. Using the boundedness from below of H - S, we also conclude that H - S is a
(Q-super-martingale, so that

Eg[(H-S)w) <0. (114)

Hence Eg[g] < 0, for all g € C, and this equality extends to the norm closure C
of C (in fact, it also extends to the weak-star closure of C, but we don’t need this
stronger result for the proof of the present theorem).

Summing up, we have proved that (EMM) implies (NFLVR).

Before passing to the reverse implication let us still have a closer look at the
crucial inequality (114): its message is that the notion of equivalent local martingale
measures () and admissible integrands H has been designed in such a way, that the
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basic intuition behind the notion of a martingale holds true: you cannot win in
average by betting on a martingale. Note, however, that the notion of admissible
integrands does not rule out the possibility to lose in average by betting on S. An
example, already noted in [HP 81], is the so-called “suicide stategy H”. Consider a
simplified roulette, where red and black both have probability %, and as usual, when
winning, your bet is doubled. The strategy consists in placing one € on red and then
walking to the bar and regarding the roulette from a distance: if it happens that
consecutively only red turns up in the next couple of games, you may watch a huddle
of chips piling up with exponential growth. But, inevitably, i.e., with probability
one, black will eventually turn up, which will cause the huddle — including your
original € — to disappear. Translating this story into the language of stochastic
integration, we have a martingale S (in fact, a random walk) and an admissible
trading strategy H such that we have a strict inequality in (114). Of course, the
present process H - S corresponding to the “suicide strategy”, is just the process
corresponding to the “doubling strategy” with opposite sign.

We now discuss the hard implication (NFLVR) = (EMM) of theorem 4.10. It
is reduced to the subsequent theorem wich may be viewed as the “abstract” version
of theorem 4.10:

Theorem 4.11 ([DS 94, theorem 4.2]) In the setting of theorem 4.10 assume
that (ii) holds true, i.e., that S satisfies (NFLVR).
Then the cone C C L*(P) is weak-star closed.

The fact that theorem 4.11 implies theorem 4.10 now follows immediately from
the Kreps-Yan theorem: theorem 4.11 tells us that we don’t have to bother about
passing to the weak-star closure of C' any more, as assumption (ii) of theorem 4.10
implies that C already is weak-star closed. In other words, our program of choosing
the “right” class of admissible integrands was successful: the “passage to the limit”
which was necessary in the context of the Kreps-Yan theorem, i.e., the passage from
CsimPle 6 its weak-star closure, is already taken care of by the “passages to the
limit” in the stochastic integration theory of general admissible integrands for the
semi-martingale S.

In fact, theorem 4.11 tells us that — under the assumption of (NFLVR) — C
equals precisely the weak-star closure of C*™Pl¢ (the fact that CS™P* is weak-star
dense in C' follows from the general theory of stochastic integration, which is based
on the idea of approximating a general integrand by simple integrands).

By rephrasing theorem 4.10 in the form of theorem 4.11, we did not come closer
to a proof yet. But we see more clearly, what the heart of the matter is: for a net
(H?%)aer of admissible integrands, fo, = (H®-S)s and g, < fo such that (ga)aer
weak-star converges to f € L*(P), we have to show that we can find an admissible
integrand H such that f < (H-S)s. This will prove theorem 4.11 and therefore
4.10. Loosely speaking, we have to be able to pass from a net (H*),¢; of admissible
trading strategies to a limiting admissible trading stategy H.

The first good news on our way to prove this result is that in the present context
we may reduce from the case of a general net (H%),c; to the case of a sequence
(H™)22,. This follows from a good old friend from functional analysis, the theorem
of Krein-Smulian (see, e.g., [Sch 66]): this theorem implies that a convex set C' in a
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dual Banach space X* is weak-star closed, iff it is relatively weak-star closed in each
bounded subset of X*. Using some easy additional facts from general functional
analysis (see [DS94, theorem 2.1]) we may conclude that the convex cone C' in
L>(Q, F,P) is weak-star closed iff it is weak-star sequentially closed. The reader
should note the subtle difference to the example from Banach’s book discussed after
the Kreps-Yan theorem 4.7 above: to pass from a convex set C' C L*>°(Q, F,P) to its
weak-star closure, it does, in general, not suffice to add all the weak-star sequential
limits. But to check, whether a convex set C is already weak-star closed, it does
suffice to check, whether the weak-star sequential limits remain within C.

Once we have reduced to the case of sequences (H™)% , we may exploit another
good friend from functional analysis, the theorem of Banach-Steinhaus (also called
principle of uniform boundedness): if a sequence (g,)5°, in X* is weak-star con-
vergent, the norms (||g,|)32, remain bounded. This result implies that we may
reduce to the case that the sequence (H™)> , admits a uniform bound M such that
H™- S > —M, foralln e N.

Putting together these reductions from general functional analysis, it will suffice
for the proof of theorem 4.11 to prove the following result:

Proposition 4.12 Under the hypotheses of theorem 4.11, let (H™)$2 , be a sequence
of admissible integrands such that

(H"™-8): > —1, a.s., fort >0 and n € N.. (115)

Also assume that f, = (H™-S)s converges almost surely to f. Then there is an
admissible integrand H such that

(H-S)oo > f. (116)

To convince ourselves that proposition 4.12 indeed implies theorem 4.11, we
still have to justify one more reduction step which is contained in the statement
of proposition 4.12: we may reduce to the case, when (f,)S°, converges almost
surely. This is done by an elementary lemma in the spirit of Komlos’ theorem
([DS94, lemma A 1.1]). In its simplest form it states the follwing: Let (g,)S%, be
an arbitrary sequence of random variables uniformly bounded from below. Then we
may find convex combinations h,, € conv(fy, fnt1,..) converging almost surely to an
R U {+o0}-valued random variable f. For more refined variations on this theme see
[DS99].

Note that the passage to convex combinations does not cost anything in the
present context, where our aim is to find a limit to a given sequence in a locally
convex vector space; hence the above lemma allows us to reduce to the case where
we may assume, in addition to (115), that (f,,)52, = ((H™S)w)s, converges almost
surely to a function f : Q — R U {+o0}. Using the assumtion (NFLVR) we can
show in the present context that f is a.s. finitely valued.

Summing up, proposition 4.12 is a statement about the possibility of passing
to a (kind of) limit H, for a given sequence (H™)22, of admissible integrands. The
crucial hypothesis is the uniform one-sided boundedness (115); apart from this strong
assumption, we only have an information on the a.s. convergence of the terminal
values ((H™S)x0)$2 o, but we do not have any a priori information on the convergence
of the processes ((H™-S)>0)5-
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Let us compare proposition 4.12 with the literature. An important theorem
of J. Memin [M80] states the following: if a sequence of stochastic integrals
((H™-8)1>0)22, on a given semi-martingale S converges with respect to the semi-
martingale topology, then the limit exists (as a semi-martingale) and is of the form
H - S for some S-integrable predictable process H.

This theorem finally will play an important role in proving proposition 4.12;
but we still have a long way to go, before we can apply it, as the assumptions
of proposition 4.12 a priori do not tell us anything about the convergence of the
sequence of processes ((H™-S)i>0)nl0-

Another line of results in the spirit of proposition 4.12 assumes that the process S
is a (local) martingale. The arch-example is the theorem of Kunita-Watanabe (see,
e.g. [P90] or [Y 78]): suppose that S is a locally L2-bounded martingale, that each
(H™-S);>0 is an L2-bounded martingal, and that the sequence ((H™-S);>0)2%, is
Cauchy in the Hilbert space of square-integrable martingales (equivalently: that
the sequence of terminal values ((H" - S)s)5, is Cauchy in the Hilbert space
L?(Q, F,P)). Then the limit exists (as a square-integrable martingale) and it is
of the form (H - S)i>o.

As the proof of this theorem is very simple and allows for some insight into the
present theme, we sketch it (assuming, for simplicity, that S is R-valued): denote by
(S); the predictable, quadratic variation process of the L?-bounded martingale S,
which defines a finite measure d(S); on the sigma-algebra P of predictable subsets
of  x R, . Denoting by L*(Q2 x R, P, d(S);) the corresponding Hilbert space, the
stochastic integration theory is designed in such a way that we have the isometric
identity

[ H | z2(@xrs pas)) = |(H - S)oollL2(0,7,p), (117)

for each predictable process H, for which the left hand side of (117) is finite.

Hence the assumption that ((H"-.S)i>0)52, is Cauchy in the Hilbert space of
square-integrable martingales is tantamount to the assumption that (H™)>, is
Cauchy in L2(Q xR, , P, d{S);). Now, once more, the stochastic integration theory is
designed in that way that L?(Q xRy, P, d(S);) consists precisely of the S-integrable,
predictable processes H such that H-S is an L?-bounded martingale. Hence by the
completeness of the Hilbert space L?(Q xR, , P, d{(S);) we can pass from the Cauchy-
sequence (H™) , to its limit H € L*(Q2 x R, , P, d(S);), thus finishing the sketch of
the proof of the Kunita-Watanabe theorem.

The above argument shows in a nice and transparent way how to deduce from
a completeness property of the space of predictable integrands H a completeness
property of the corresponding space of stochastic integrals H -S. In the context
of the theorem of Kunita-Watanabe, the functional analytic background for this
argument is reduced to the — almost trivial — isometric identification of the two
corresponding Hilbert spaces in (117).

Using substantially more refined arguments, M. Yor [Y 78] was able to extend
this result to the case of Cauchy sequences (H™-S)% , of martingales bounded in
L?, for arbitrary 1 < p < oo, the most delicate and interesting case being p = 1.

After this review of some of the previous literature on the topic of completeness
of the space of stochastic integrals, let us turn back to propostion 4.12.
Unfortunately the theorems of Kunita-Watanabe and Yor do not apply to its
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proof, as we don’t assume that S is a local martingale. It is precisely the point, that
we finally want to prove that S is a local martingale with respect to some measure
Q equivalent to P.

But in our attempt to build up some motivation for the proof of proposition
4.12, let us cheat for a moment and suppose that we know already that S is a
local martingale under some equivalent measure @) and let (H™")S2, be a sequence
of S-integrable predictable processes satisfying (115). Using again the theorem of
Ansel-Stricker [AS 94] we conclude that (H"-S)3, is a sequence of local martingales;
inequality (115) quickly implies that this sequence is bounded in L!(Q)-norm:

|H" - S||£1(@) := sup{E[|(H" - S).[], 7 finite stopping time} < 2, for n > 0. (118)

Let us cheat once more and assume that each H™-S is in fact a uniformly
integrable @-martingale (instead of only being a local -martingale) and that ((H"-
9)e)2, is Cauchy with respect to the L'(Q)-norm defined above (instead of only
being bounded with respect to this norm).

Admitting the above “cheating steps” we are in a position to apply Yor’s theorem
to find a limiting process H to the sequence (H™)$, for which (116) holds true,
where we even may replace the inequality by an equality. But, of course, this is only
motivation, why proposition 4.12 should hold true, and we now have to find a proof
without cheating.

We have taken some time for the above heuristic considerations to develop an
intuition for the statement of proposition 4.12 and to motivate the general philosophy
underlying its proof: we want to prove results which are — at least more or less —
known for (local) martingales S, but replacing the martingale assumption on S by
the assumption that S satisfies (NFLVR).

As a starter we give the proof of a result which shows that, under the assumption
of (NFLVR), the technical condition imposed on the admissible integrand H in (110)
is, in fact, automatically satisfied.

Lemma 4.13 ([DS 94, theorem 3.3]) Let S satisfy (NFLVR) and H be an ad-
missible integrand.
Then
(H-S)s := lim (H-S), (119)

t—o0

exists and is finite, almost surely.

This result is a good illustration for our philosophy: suppose we know already
that the assumption of 4.13 implies that S is a local martingale under some @)
equivalent to P. Then the conclusion follows immediately from known results: from
Ansel-Stricker [AS 94] we know that H-S is a super-martingale. As H-S is bounded
from below, Doob’s theorem (see, e.g., [W91]) implies the almost sure convergence
of (H-S); as t — oo to an a.s. finite random variable.

Our goal is to replace these martingale arguments by some arguments relying only
on (NFLVR). The nice feature is that these arguments also allow for an economic
interpretation.

Proof of Lemma 4.13 As in the usual proof of Doob’s super-martingale con-
vergence theorem we consider the number of up-crossings: to show almost sure
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convergence of (H - S);, for t — oo, it will suffice to show that, for any 8 < =, the
P-measure of the set {w: (H-S);(w) upcrosses |3, v[ infinitely often} equals zero.
So suppose to the contrary that there is § <  such that the set

A={w: (H-S); upcrosses |3, [ infinitely often} (120)

satisfies P[A] > 0. The economic interpretation of this situation is the following:
an investor knows at time zero that, when following the trading strategy H, with
probability P[A] > 0 her wealth will infinitely often be less than or equal to 5 as
well as more than or equal to 7. A smart investor will realize that this offers a free
lunch with vanishing risk, as she can modify H to obtain a very rewarding trading
strategy K.

Indeed, define inductively the sequence of stopping times (0,)%° ; and (7)., by
0o =T =0 and, for n > 1,

o, = inf{t > 7,1 :(H-5): < B}, (121)
T, = inf{t>ao,:(H-5) >~}

The set A then equals the set where, 0, and 7, are finite, for each n € N (as
usual, the inf over the empty set is taken to be +00).

What every investor wants to do is to “buy low and sell high”; the above stopping
times allow her to do that in a systematic way: define K' = H1{ 14,1}, Which
clearly is a predictable S-integrable process. A more verbal description of K goes
as follows: the investor starts by doing nothing (i.e., making a zero-investment into
the risky assets S?, ..., S%) until the time o; when the process (H -S); has dropped
below 8 (If 5 > 0, we have o; = 0)). At this time she starts to invest according to
the rule prescribed by the trading strategy H; she continues to do so until time 7
when (H - S); first has passed beyond ~. Note that, if 7;(w) is finite, our investor
following the strategy K has at least gained the amount v — 3. At time 7y (if it
happens to be finite) the investor clears all her positions and does not invest into
the risky assets until time o9, when she repeats the above scheme.

One easily verifies (arguing either “mathematically” or “economically”) that the
process K - S is uniformly bounded from below and satisfies

(K-S)y>-M a.s., for all ¢, (122)
where M is the uniform lower bound for (H -S), and

lim (K - S); = oo. a.s. on A. (123)
t—00
Hence K describes a trading scheme, where the investor can lose at most a fixed
amount of money, while, with strictly positive probability, she ultimately becomes
infinitely rich. Intuitively speaking, this is “something like an arbitrage”, and it
is an easy task to formally deduce from these properties of K a “free lunch with
vanishing risk”: for example, it suffices to define K" = %K 1j0,7,a13,]» fOr a sequence
of (deterministic) times (7},)2, to let f, = (K™ S)oo = (K™ S);, a1, and to define
9n = fu N (y— B)1g where B = (" {m < T,}. If (7,)%2, tends to infinity
sufficiently fast, we have P[B] > 0, and one readily verifies that (g,)2°; converges
uniformly to (v — 8)15.
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Summing up, we have shown that (NFLVR) implies that, for 5 < =, the process
H - S almost surely upcrosses the interval |3, [ only finitely many times. Whence
(H-S); converges almost surely to a random variable (H-S)., with values in RU{oo}.
The fact that (H-S) is a.s. finitely valued follows from another application (similar
but simpler than above) of the assumption of (NFLVR), which we leave to the reader.
|

After all these preparations we finally start to sketch the main arguments un-
derlying the proof of proposition 4.12. The strategy is to obtain from assumption

(115) and from suitable modifications of the original sequence (H™)S,, still de-

noted by (H™)22,, more information on the convergence of the sequence of processes
(H™-S)2,. Eventually we shall be able to reduce to the case where (H"-S)

converges in the semi-martingale topology; at this stage Memin’s theorem will give
us the desired limiting trading strategy H.

So, what can we deduce from assumption (115) and the a.s. convergence of
(fn)22y = ((H™S)00), for the convergence of the sequence of processes (H"-S)$ 7
The unpleasant answer is: a priori, we cannot deduce anything. To see this, recall
the “suicide” strategy H which we have discussed in the context of inequality (114)
above: it designs an admissible way to lose one €. Speaking mathematically, the
corresponding stochastic integral H - S starts at (H - S)y = 0, satisfies (H-S5); > —1
a.s., for all t > 0, and (H-S)s = —1. But clearly this is not the only admissible
way to lose one € and there are many other trading strategies K on the process S
having the same properties. A trivial example is, to first wait without playing for a
fixed number of games of the roulette, and to start the suicide strategy only after
this waiting period; of course, this is a (slightly) different way of losing one €.

Speaking mathematically, this means that — even when S is a martingale, as it
is the case in the example of the suicide strategy — the condition (H -S); > —1.
a.s., for all ¢ > 0, and the final outcome (H -S) do not determine the process H-S.
In particular there is no hope to derive from (115) and the a.s. convergence of the
sequence of random variables ((H"-5))2, a convergence property of the sequence
of processes (H™-S).

The idea to remedy the situation is to remark the following fact: the suicide
strategy is a silly investment and obviously there are better trading strategies, e.g.,
not to gamble at all. By discarding such “silly investments”, we hopefully will be
able to improve the situation.

Here is the way to formalize the idea of discarding “silly investments”: Denote by
D the set of all random variables h such that there is a random variable f > h and
a sequence (H™)$°, of admissible trading strategies satisfying (115), and such that
(H™-S) converges a.s. to f. We call f; a maximal element of D if the conditions
h > fo and h € D imply that h = f.

For example, in the context of the “suicide strategy“, f = —1 is an element of
D, but not a maximal element. A maximal element dominating f is, for example,
fo=0.

More generally, it is not hard to prove under the assumptions of proposition 4.12
that, for a given f = (H-S)s > —1, where H is an admissible integrand, there is a
maximal element f, € D dominating f (see [DS 94, lemma 4.3]).
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The point of the above concept is that, in the proof of proposition 4.12, we
may assume without loss of generality that f is a maximal element of D. Under this
additional assumption it is indeed possible to derive from the a.s. convergence of the
sequence of random variables ((H™-S))22, some information on the convergence
of the sequence of processes ((H™-5)i>0)o%0-

As the proof of this result is another nice illustration of our general approach of
replacing “martingale arguments” by “economically motivated arguments” relying
on the assumption (NFLVR), we sketch the argument.

Lemma 4.14 ([DS 94, lemma 4.5]) Under the assumptions of proposition 4.12
suppose, in addition, that f is a maximal element of D.
Then the sequence of random variables

Fom =sup|(H"-S)y— (H™-S)| (124)

>0

tends to zero in probability, as n,m — oo.

Proof Suppose to the contrary that there is o > 0, and sequences (ny, m)k>1
tending to oo s.t., for each k, we have Plsup,so((H" - S); — (H™* - S);) > a] > a.
Define the stopping times 7 as

T, = inf{t: (H"™-S); — (H™-S); > a}, (125)

so that we have P[r; < o] > a.

Define L* as L¥F = H™ 1y ;.7 + H™ 1y, oo[. Clearly the process L* is predictable
and LF-S§ > —1.

Translating the formal definition into prose: the trading strategy L* consists
in following the trading strategy H™ up to time 7%, and then switching to H™*.
The idea is that L* produces a sensibly better final result (LF - S),, than either
(H™-S) o or (H™*-S) o, which will finally lead to a contradiction to the maximality
assumption on f.

Why is L¥ “sensibly better” than H™ or H™? For large k, the random variables
(H™ - S)y as well as (H™* - S), will both be close to f in probability; for the sake
of the argument, assume that both are in fact equal to f (keeping in mind that
the difference is “small with respect to convergence in probability”). A moment’s
reflection reveals that this implies that the random variables (L*-S)., equal f plus
the random variable ((H™ -S),, — (H™* -S);,)1{r,<o0}- The latter random variable
is non-negative and with probability o greater than or equal to «; this means that
this difference between f and (L*-S), is not “small with respect to convergence
in probability”; this is, what we had in mind when saying that L* is a “sensible”
impovement as compared to H"* or H™*.

Modulo some technicalities, which are worked out in [DS94, lemma 4.5], this
gives the desired contradiction to the maximality assumption on f, thus finishing
the (sketch of the) proof of lemma 4.14. m

Lemma 4.14 is our first step towards a proof of proposition 4.12: it gives some
information on the convergence of the sequence of processes (H"-S)%2, in terms
of the maximal functions defined in (124). But the assertion that these maximal
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functions tend to zero in probability is still much weaker than the convergence of
(H™-S)>, with respect to the semi-martingale topology, which we finally need in
order to be able to apply Memin’s theorem. There is still a long way to go!

But it is time to finish this “guided tour” and to advise the interested reader
to find the remaining part of the proof on pages 482-494 of [DS 94]. We hope that
we have succeeded to give some motivation for the proof and for the “economically
motivated” arguments underlying it.

To finish this section we return to the issue, that we always have assumed that
the process S is locally bounded. What happens if we drop this — technically very
convenient — assumption?

Before starting to answer this question, we remark that it is not only of “aca-
demic” interest. It is also important from the point of view of applications: once
one leaves the framework of continuous processes S — and there are good empirical
reasons to do so — it is also natural to allow for the jumps to be unbounded. As
a concrete example we mention the family of ARCH (Auto Regressive Conditional
Heteroskedastic) processes and their relatives (GARCH, EGARCH etc.), which are
very popular in the econometric literature. These are processes in discrete time
where the conditional distribution of the jumps is Gaussian. In particular, these
processes are not locally bounded. There are many other examples of processes
which fail to be locally bounded, used in the modelling of financial markets.

The answer to the above question is as we expect it to be: mutatis mutandis
the fundamental theorem of asset pricing 4.10 and the related theorems obtained
in its proof carry over to the case of not necessarily locally bounded R%t!-valued
semi-martingales S. Not coming as a surprise, the techniques of the proofs have
to be refined: in particular, we cannot entirely reduce the situation to the study of
the space L®°(Q, F,P), and the weak-star and norm topology of this space: there
is no possibility any more to reduce to the case of (one-sided) bounded stochastic
integrals and we therefore have to use larger spaces than L>®(Q, F,P). Yet it turns
out — and this is slightly surprising — that the duality between L°°(P) and L'(P)
still remains the central issue of the proof.

Here is the statement of the extension of the fundamental theorem of asset pricing
as obtained in [DS 98].

Theorem 4.15 ([DS 98, corr.1.2]) The following assertions are equivalent for an
R -valued semi-martingale model S = (S;)>o0 of a financial market:

(i) (ESMM), i.e., there is a probability measure Q equivalent to P such that S is
a stgma-martingale under Q).

(ii)) (NFLVR), i.e., S satisfies the condition of no free lunch with vanishing risk.

There is a slight change in the statement of the theorem as compared to the
statement of theorem 4.10: the term “local martingale” in the definition of (EMM)
was replaced by the term “sigma-martingale” thus replacing the acronym (EMM)
by (ESMM). On the other hand, condition (ii) remained completely unchanged.

The notion of a sigma-martingale is a generalisation of the notion of a local
martingale:
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Definition 4.16 /DS 98]/ An R"-valued semi-martingale S = (S;)i>0 s called a
sigma-martingale if there is a predictable process g = (gi)i>0, taking its values in
10, 1], such that the stochastic integral g-S is a martingale.

It is easy to verify that a local martingale satisfies the above condition. More
delicate is the fact that there are examples of sigma-martingales which fail to be
local martingales: this was shown in a famous and ingenious example by M. Emery
[E 80].

It is shown in [DS98] that the notion of sigma-martingales makes good sense
economically in the present context. Indeed, the “only if” implication of lemma
4.3 above extends to not necessarily locally bounded semi-martingales, if we replace
the term local martingale by the term sigma-martingale. For this as well as for the
(rather technical) proof of theorem 4.15 we refer to [DS 98].
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5 Some Applications of the Fundamental Theo-
rem of Asset Pricing

The crucial message of theorem 4.10 and the results obtained in the course of the
proof is not only, that the version of the FTAP, as obtained by Harrison-Pliska for
the case of finite Q (theorem 2.8 above) and subsequently extended by several au-
thors (we refer to [DS94] for references on the literature), carries over — mutatis
mutandis — to the general semi-martingale setting. For the applications, the addi-
tional information provided by theorem 4.11 pertaining to the weak-star closedness
of the set C turns out to be at least as relevant.

As a typical example we show that, once the weak-star closedness of C' is estab-
lished by theorem 4.11, it is straight forward to deduce the extension of theorem
2.11 on Pricing by No Arbitrage from the setting of finite 2 to the present semi-
martingale setting.

We start with the analogue of proposition 2.10: for the sake of coherence we again
place us into the setting of locally bounded processes as in the previous section; but
we remark that the subsequent results also extend to the non locally bounded case
(see [DS98)).

Proposition 5.1 Suppose that the locally bounded Rt -valued semi-martingale
S = (St)i>0 satisfies (NFLVR). Then the polar of C, taken with respect to the du-
ality between L*®(P) and L'(P), and identifying a P-absolutely continuous measure

Q with its Radon-Nikodym derivative 92, is equal to cone(M®(S)), and M®(S) is
dense in M(S) with respect to the norm topology of L'(P). Hence the following

assertions are equivalent for an element g € L*(Q, F,P):
(i) g € C,
(i1) Balg] <0, for all g € M(S),

(iii) Bglg] <0, for all g € M*(S),

Proof First note that, similarly as in lemma 2.7, a probability measure (), absolutely
continuous with respect to P, is in M%(S) iff Eglg] < 0, for all g € C: the necessity
of this condition was shown in (114); for the sufficiency we use the local boundedness
of S and lemma 4.3 to obtain that the condition Eglg] < 0, for g € C, implies in
particular that S is a local martingale under (). In other words, the polar of C'
equals cone(M*(9)).

The bipolar theorem [Sch 66] therefore implies that an element g of L>*(Q, F, P)
is in the weak-star closure of C iff condition (ii) is satisfied. By theorem 4.11 we
know that C is already weak-star closed, hence (i) is equivalent to (ii).

The density of M¢(S) in M*(S) and therefore the equivalence of (ii) and (iii)
follows by the same argument as in proposition 2.10 above. m

We now carry the argument underlying theorem 2.11 over to the present setting.
To maintain in line with the formulation of theorem 2.11, it is convenient to
introduce some notation. A given f € L*®(Q), F,P) is called super-hedgeable (resp.
strictly super-hedgeable) at price a € R, if there is an admissible trading strategy H
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st. f<a+ (H-S)x ( resp. s.t., in addition, we have P[f < a+ (H-S)s] > 0). In
other words, f is super-hedgeable (resp. strictly super-hedgeable) at price a, if f —a
is in C (resp. if, in addition, f — a is not a maximal element of C'). Accordingly, we
say that f is sub-hedgeable, (resp. strictly sub-hedgeable) at price a if —(f — a) is in
C (resp. if, in addition, —(f — a) is not maximal in C'). A real number a is called
an arbitrage free price for f, if f is neither strictly super- nor strictly sub-hedgeable
at price a.

Denoting by S, the set of prices a at which f is super-hedgeable, it is rather
obvious that S, is an interval, its upper bound being equal to oo, and its lower
bound being an element of the interval [ess inf (f), ess sup (f)]. It is less obvious
that S, is closed, but this fact is a straightforward consequence of theorem 4.11: If
(f —ay,) € C, for each n, and lim,,_,o, a, = a, then f —a € C. Hence there is § € R

s.t. Sy = [, 0.
Denoting by S_ the set of prices at which S is sub-hedgeable we similarly obtain
that S_ =] — 0o, ], for some o € R. As, for any Q € M*(S), we have Eg[f] <

S and Eg[f] > «, (apply (114)), we observe that « < 3, as soon as M¢(S) # 0.

Using the notation (30) and (31) we also have f = 7(f) and a = = (f). Indeed,
we just have remarked the inequalities 7(f) < § and 7(f) > «. Conversely, we know
from theorem 4.11 and proposition 5.1 that, for a < 3, we may find Q € M*(S) such
that Eg[f—a] > 0, as f—a isnot in C. Hence for 7(f) := sup{Eg[f] : @ € M*(S)},
we obtain the inequality 7(f) > (; the same argument implies that 7(f) < .

Having established o = z(f) and 8 = 7(f), we need a little extra argument for
the proper treatment of the boundary cases a and S.

Lemma 5.2 Under the above assumptions suppose in addition that o < 3. Then
f s strictly super-hedgeable at price B and strictly sub-hedgeable at price a. Hence,
for Q@ € M*(S), we have Eg|f] €]a, B.

Proof We know that f is super-hedgeable at price 3, i.e., there is an admissible
trading strategy H such that f < 8+ (H-S)w. To show that f is, in fact, strictly
super-hedgeable at price 3, define the stopping time 7 by

T=inf{t: (H-S); > 1+esssup(f)}. (126)

Clearly H:=H 1jo,r] also is a super-hedging strategy for f.

Now we distinguish two cases: either P[T < oo] > 0. Then the trading strategy
H strictly super-hedges f. Or P[r < oo] = 0; in this case we have that H = H and
that H-S is a bounded process; therefore H-S is a uniformly integrable martingale
under each Q € M“(S). This implies that the original strategy H defines a strict
super-hedge for f,i.e., P[f < 8+ (H-S)x > 0. Indeed, otherwise we would have
that Eg[f] = Eg[f + (H - S)x] = B, for each Q € M¢(S), in contradiction to the
assumption o < f.

Summing up, we have shown that f is strictly super-hedgeable at price (; ap-
plying the same argument to —f we see that f is strictly sub-hedgeable at price
Q.

The final statement of the lemma is now obvious. m

Taking up again the discussion preceding lemma 5.2, we distingnish two cases:
either o < B, in which case lemma 5.2, tells us that the arbitrage-free prices for f
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consist of the open interval |o, 5[. We then also have that |o, S[=|z(f),7(f)[. In
the case @ = ( we have that there is an admissible trading strategy H such that
f <a+(H-S)w. Fixing an arbitrary @ € M?*(S), we must have Eg[f] = «, so that
H-S must be a uniformly integrable martingale under @ (it is a @-super-martingale
verifying Eq[(H - S)e] = Eg[(H - S)o] = 0). Hence (H-S); = Eg[f — a|F], which
shows in particular that the process H - S is bounded. Therefore H as well as —H
are admissible trading strategies.

Summing up: we have proved the subsequent extension of theorem 2.11 (compare
[DS95, theorem 5.7]) to the present semi-martingale setting, which carries over
almost verbatim from the setting of finite (2.

Theorem 5.3 (Pricing by No-Arbitrage) Assume that the locally bounded
semi-martingale S = (S;)i>0 satisfies (NFLVR) and let

(f) = sup{Eq[f]: @ e M*(S)}, (127)
(f) = inf{Eq[f]: Q € M*(S)}, (128)

Either n(f) =7(f), in which case f = 7(f)+(H-S) oo, where n(f) =7(f) = n(f)
and H 1is a predictable process such that the process H - S is bounded.

Or n(f) < 7(f), in which case {Eq[f] : Q@ € M®(S)} equals the open interval
1w (f), 7(f)], which in turn equals the set of arbitrage-free prices for the contingent
claim f.

™
™

In the formulation of the above theorem we have restricted ourselves to the case
of bounded random variables f € L>(£, F,P). One may also extend it — mutatis
mutandis — to the case of functions f which are uniformly bounded from below
or, more generally, bounded from below by some fixed random variable w having
appropriate integrability conditions (see, e.g., [J92], [AS94] and [DS 98]).

Let us briefly review some other applications of theorem 4.11. A rather subtle
consequence, requiring quite a bit of additional work, is the subsequent extension
of the optional decomposition theorem 2.15 to a general semi-martingale setting as
given by D. Kramkov([K 96]):

Theorem 5.4 emph(Optional Decomposition) Let S = (Si)i>0 be a locally
bounded R -valued semi-martingale satisfying (NFLVR), and let V. = (Vi)i>o
be a non-negative, adapted, cadlag process, defined on the filtered stochastic base
(Q,F, (Fi)i>o, P).

The following assertions are equivalent:

(1) V is a super-martingale, for each Q € M*(S).
(i) V is a super-martingale, for each Q € M*(S).

(7)) V may be decomposed into V= Vy+ H-S—C, where H is an admissible trading
strateqy and C = (Cy)>0 15 an increasing, cadldg, adapted process starting at
C() =0.
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The above theorem extends the “baby version” for finite {2 presented in theorem
2.15 above. A first non-trivial version of this theorem was given by N. El Karoui and
M.-C. Quenez [KQ95] in the context of a filtration generated by an n-dimensional
Brownian motion, using techniques from stochastic control. The version stated
above was proved by D. Kramkov [K 96]. Subsequently H. Fllmer and Y. Kabanov
[FK 98] extended the result to the case of non locally bounded semi-martingales;
their method uses a Lagrange multiplier technique and does not rely on theorem 4.11.
Finally, F. Delbaen and the present author [DS99] also removed the assumption of
non-negativity of V; their proof is similar in spirit to Kramkov’s original one and
heavily relies on theorem 5.3. We shall now present the basic idea of this proof.

Sketch of proof of theorem 5.4 As in theorem 2.15 above we only have to
show the implication (i) = (ii). Fix an increasing sequence of finite meshes M™ =
{0,2%, ..., % }, such that U2, M™ is dense in R,. For example, we may take N,, =
n2" and t} = 2%, fori=1,...,N,.

For fixed n € N and ¢ = 1,..., N,, we proceed similarly as in the proof of
theorem 2.15 above: we consider the process (S;)i  <i<q and apply theorem 5.3:
the condition

BolVelFi J< Vi, for Qe M(S), (129)

implies that there is an admissible predictable process (H;" ’i)t?_1<t§t?; supported by

|t*_,,t?], such that
Vie < Vin, + (H™- 8. (130)

In fact, we have to apply theorem 5.3 conditionally with respect to the sigma-
algebra Fy» ; but this conditional extension of theorem 5.3 does not present any
difficulty.

Fixingn € N, letting H" := X% H™ and, defining AC? := Ve +(H™S) =V
for s = 1,..., N,, we obtain the following objects: an admissible trading strategy
H" = (H}")i>0, indexed by Ry, and an adapted increasing process C" = (C}')1emn,
indexed by the finite time index set M™, such that

V, = (H"-S), - O™, for t € M,. (131)

This is not yet quite what we want to have, as we want to find a predictable
process H = (H;);>o and an adapted cadlag process C = (Cy)¢>0, indexed by t € Ry,
such that (131) holds true for all ¢t € R, .

But it is clear what we have to do to achieve this goal: we have to pass to the
limit of the sequence (H™)2° ;. Hence, again, we face our usual problem: how to pass
from a sequence (H™)$°, of admissible integrands to a limit H? Similarly as in the
context of the proof of the fundamental theorem of asset pricing, the only essential
information on the sequence of admissible trading strategies (H")2° ; is that they
have a uniform lower bound: indeed, one easily deduces from the assumption V' > 0
that H"-S > -V}, for all n € N.

Hence the basic problem of the proof of the present theorem is very similar in
spirit to the theme of the proof of theorem 4.11. It turns out that, refining some of
these arguments, it is indeed possible to find a limiting strategy H above. For the
details we refer to [K 96] or [DS99]. m
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As a final application of theorem 4.11 we mention the topic of utility optimization
in financial markets. Roughly speaking, one fixes a utility function U on R, i.e. an
increasing, strictly concave function U : R — RU {—oc}, and an initial endowment
x € R. A typical problem consists in finding, for a fixed horizon 7', a trading strategy
H maximizing

E[U(z + (H-S)7)]. (132)

We cannot go in detail into this rather extensive theory here and refer, e.g., to
the survey paper [S01]. We only mention that the modern way to deal with the
problem of maximizing (132) is to use the duality theory of convex optimization in
infinite-dimensional spaces. The crucial property in order to make this theory work,
again, is the polar relation between the sets C and M?*(S) as stated in theorem 5.2.
The heart of the matter therefore again is the weak-star closedness of C' as stated
in theorem 4.11.
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