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Abstract

We shall explain the concepts alluded to in the title in economic as
well as in mathematical terms. These notions play a fundamental role
in the modern theory of mathematical finance. We start by presenting
the ideas in a very informal style and then gradually raise the level of
mathematical formalisation.

1 Arbitrage

The notion of arbitrage is crucial in the modern theory of Finance. It is
the cornerstone of the option pricing theory due to F. Black, M. Scholes and
R. Merton (published in 1973, Nobel prize in Economics 1997).

The underlying idea is best explained by telling a little joke: A finance
professor and a normal person go on a walk and the normal person sees a
e 100 bill lying on the street. When the normal person wants to pick it up,
the finance professor says: “Don’t try to do that! It is absolutely impossible
that there is a e 100 bill lying on the street. Indeed, if it were lying on the
street, somebody else would already have picked it up before you”. (end of
joke)

How about financial markets? There it is already much more reasonable
to assume that there are no e 100 bills lying around waiting to be picked up.
We shall call such opportunities of picking up money that is “lying around”
arbitrage possibilities. Let us illustrate this with an easy example.

Consider the trading of $ versus e which takes place simultaneously at two
exchanges, say in New York and Paris. Assume for simplicity that in New
York the $/e rate is 1:1. Then it is quite obvious that in Paris the exchange
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rate (at the same moment of time) also is 1:1. Let us have a closer look why
this is indeed the case. Suppose to the contrary that you can buy in Paris a $
for e 0,999. Then, indeed, the so-called “arbitrageurs” (these are people with
two telephones in their hands and three screens in front of them) would quickly
act to buy $ in Paris and simultaneously sell the same amount of $ in New
York, keeping the margin in their (or their bank’s) pocket. Note that there is
no normalizing factor in front of the exchanged amount and the arbitrageur
would try to do this on as large a scale as possible.

It is rather obvious that in the above described situation the market can-
not be in equilibrium. A moment’s reflection reveals that the market forces
triggered by the arbitrageurs acting according to the above scheme will make
the $ rise in Paris and fall in New York. The arbitrage possibility will only
disappear when the two prices become equal. Of course “equality” here is to
be understood as an approximate identity where — even for arbitrageurs with
very low (proportional) transaction costs — the above scheme is not profitable
any more.

This brings us to a first — still informal and intuitive — definition of arbi-
trage: an arbitrage opportunity is the possibility to make a profit in a financial
market without risk and without net investment of capital. The principle of no
arbitrage states that a mathematical model of a financial market should not
allow for arbitrage possibilities.

2 An easy model of a financial market

To apply this principle to less trivial cases, we consider a — still extremely
simple — mathematical model of a financial market: there are two assets,
called the bond and the stock. The bond is riskless, hence — by definition
— we know what it is worth tomorrow. For (mainly notational) simplicity we
neglect interest rates and assume that the price of a bond equals e 1 today as
well as tomorrow, i.e.,

B0 = B1 = 1. (1)

The more interesting feature of the model is the stock which is risky: we
know its value today, say S0 = 1, but we do not know its value tomorrow. We
model this uncertainty stochastically by defining S1 to be a random variable
depending on the random element ω ∈ Ω. To keep things as simple as possible,
we let Ω consist of two elements only, g for “good” and b for “bad”, with
probability P[g] = P[b] = 1

2
. We define S1(ω) to equal 2 or 1

2
according to

whether

S1(ω) =

{
2 for ω = g
1
2

for ω = b.
(2)

.
Now we introduce a third financial instrument in our model, an option on

the stock with strike price K: the buyer of the option has the right — but not
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the obligation — to buy one stock at time t = 1 at the predefined price K.
To fix ideas let K = 1. A moment’s reflexion reveals that the price C1 of the
option at time t = 1 (where C stands for contingent claim) equals

C1 = (S1 −K)+, (3)

i.e., in our simple example

C1(ω) =

{
1 for ω = g
0 for ω = b.

(4)

Hence we know the value of the option at time t = 1, contingent on the
value of the stock. But what is the price of the option today?

At this stage the reader might consult the financial section of a newspaper
or the web to see some “life” examples on quoted option prices.

The classical approach, used by actuaries for centuries, is to price contin-
gent claims by taking expectations, which leads to the value C0 := E[C1] = 1

2

in our example. Although this simple approach is very successful in many ac-
tuarial applications, it is not at all satisfactory in the present context. Indeed,
the rationale behind taking the expected value as the price of a contingent
claim is the following: in the long run the buyer of an option will neither gain
nor lose on average. We rephrase this fact in a financial lingo: the performance
of an investment in the option would on average equal the performance of the
bond. However, a basic feature of finance is that an investment into a risky
asset should, on average, yield a better performance than an investment in
the bond (for the skeptical reader: at the least these two values should not
necessarily coincide). In our “toy example” we have chosen the numbers such
that E[S1] = 1.25 > 1 = E[B1], so that on average the stock performs better
than the bond.

3 Pricing by No Arbitrage

A different approach to the pricing of the option goes like this: we can buy
at time t = 0 a portfolio consisting of 2

3
of stock and −1

3
of bond. The reader

might be puzzled about the negative sign: investing a negative amount in a
bond — “going short” in financial lingo — means to borrow money.

One verifies that the value Π1 of the portfolio at time t = 1 equals 1 or 0
depending on whether ω equals g or b. The portfolio “replicates” the option,
i.e.,

C1 ≡ Π1. (5)

We are confident that the reader now sees why we have chosen the above
weights 2

3
and −1

3
: the mathematical complexity of determining these weights

such that (5) holds true amounts to solving two linear equations in two vari-
ables.
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The portfolio Π has a well-defined price at time t = 0, namely Π0 =
2
3
S0 − 1

3
B0 = 1

3
. Now comes the “pricing by no arbitrage” argument: equality

(5) implies that we also must have

C0 = Π0 (6)

whence C0 = 1
3
. Indeed, suppose that (6) does not hold true; to fix ideas,

suppose we have C0 = 1
2

as above. This would allow an arbitrage by buying
(“going long in”) the portfolio Π and simultaneously selling (“going short in”)
the option C. The difference C0 − Π0 = 1

6
remains as arbitrage profit at time

t = 0, while at time t = 1 the two positions cancel out independently of whether
the random element ω equals g or b.

4 Variations of the example

Although the preceding “toy example” is extremely simple and, of course, far
from reality, it contains the heart of the matter: the possibility of replicating a
contingent claim, e.g. an option, by trading on the existing assets and applying
the no arbitrage principle.

It is straightforward to generalize the example by passing from the time in-
dex set {0, 1} to an arbitrary finite discrete time set {0, . . . , T} by considering
T independent Bernoulli random variables. This binomial model is called the
Cox-Ross-Rubinstein model in finance. It is not difficult — at least with the
technology of stochastic calculus that is available today — to pass to the (prop-
erly normalized) limit as T tends to infinity, thus ending up with a stochastic
process driven by Brownian motion. The so-called geometric Brownian motion
with drift is the celebrated Black-Scholes model, which was proposed in 1965
by P. Samuelson. In fact, already in 1900 L. Bachelier used Brownian motion
to prize options in his remarkable thesis “Théorie de la spéculation” [B 00]
(member of the jury and rapporteur: H. Poincaré).

In order to apply the above no arbitrage arguments to more complex models
we still need one more crucial concept.

5 Martingale Measures

To explain this notion let us turn back to our “toy example”, where we have
seen that the unique arbitrage-free price of our option equals C0 = 1

3
. We also

have seen that, by taking expectations, we obtained E[C1] = 1
2

as the price of
the option, which allowed for arbitrage possibilities. The economic rationale
for this discrepancy was that the expected return of the stock was higher than
that of the bond.

Now make the following thought experiment: suppose that the world is
governed by a different probability than P that assigns different weights to g
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and b, such that under this new probability — let’s call it Q — the expected
return of the stock equals that of the bond. An elementary calculation reveals
that the probability measure defined by Q[g] = 1

3
and Q[b] = 2

3
is the unique

solution satisfying EQ[S1] = S0 = 1. Speaking mathematically, the process S
is a martingale under Q, and Q a martingale measure for S.

Speaking again economically, it is not unreasonable to expect that in a
world governed by Q, the recipe of taking expected values should indeed give
a price for the option that is compatible with the no arbitrage principle. A
direct calculation reveals that in our “toy example” this is indeed the case:

EQ[C1] = 1
3
. (7)

At this stage it is, of course, the reflex of every mathematician to ask: what
precisely is going on behind this phenomenon?

6 The Fundamental Theorem of Asset Pricing

The basic message of this theorem is that — essentially — a model of a financial
market is free of arbitrage if and only if there is a probability measure Q,
equivalent to the original P (i.e., P[A] = 0 iff Q[A] = 0), such that the
stock price process is a martingale under Q. In this case the recipe of taking
expectations EQ[ . ] in order to price contingent claims yields precisely the
arbitrage-free pricing rules, where Q runs through all equivalent martingale
measures. In particular, if Q is unique, EQ[ . ] yields the unique arbitrage-free
price, as in the “toy example” above.

This theorem was proved by M. Harrison and S. Pliska [HP 81] in 1981 for
the case where the underlying probability space (Ω,F ,P) is finite. In the same
year D. Kreps [K 81] extended this theorem to a more general setting: for this
extension the condition of no arbitrage turns out to be too narrow and has to
be replaced by a stronger assumption.

7 No Free Lunch

We formalize the model of a financial market in continuous time [0, T ]: the
bond again is harmless and without loss of generality normalized, i.e., Bt ≡ 1
for 0 ≤ t ≤ T . The stock price process (St)0≤t≤T is assumed to be an Rd-
valued stochastic process (we consider d = 1 for simplicity) defined over and
adapted to a filtered stochastic base (Ω,F , (Ft)0≤t≤T ,P) such that the filtra-
tion (Ft)0≤t≤T satisfies the “usual conditions” of right continuity and saturat-
edness.

A real-valued stochastic process S = (St)0≤t≤T is a function S : Ω×[0, T ] →
R verifying some measurability condition: we call S progressively measurable
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if, for every t ∈ [0, T ], the restriction of S to Ω × [0, t] is Ft ⊗ Borel([0, t])-
measurable. The interpretation is that the behaviour of (Su)0≤u≤t depends only
on the information available at time t, which is modelled by the sigma-algebra
Ft.

The “economic agents” are allowed to buy or sell arbitrary quantities of the
stock during the time interval [0, T ]. To model this activity mathematically,
first consider so-called “elementary” trading strategies: fix a mesh 0 = t0 <
t1 < . . . < tn = T , which we interpret as the (deterministic) instants of time
when the agent rebalances her portfolio. To define the portfolio she has to
determine the amounts Hti−1

of stock which she holds during the time intervals
]ti−1, ti]. When she will make this decision, i.e. at time ti−1, she will dispose of
the information available at at time t− 1; hence it is natural to require Hti−1

to be an Fti−1
-measurable random variable. An elementary trading strategy

therefore is defined as a function H = Ht(ω) defined on Ω× T of the form

Ht(ω) =
n∑

i=1

Hti−1
(ω)1]ti−1,ti] (8)

where each Hti−1
is Fti−1

-measurable. The interpretation is that at time t the
agent holds Ht(ω) units of the stock in her portfolio.

For each such H we may define the stochastic integral XH
T as the random

variable

XH
T =

n∑
i=1

Hti−1
(Sti − Sti−1

) =:

∫ T

0

HtdSt (9)

The interpretation is as follows: applying the trading strategy H results
in a (random) gain or loss Hti−1

(ω)(Sti(ω)−Sti−1
(ω)) during the time interval

]ti−1, ti]. The total gain or loss therefore is given by the above Riemann-type
sum which may formally be written — for each fixed ω ∈ Ω — as a Stieltjes
integral dSt over a step function.

This notation insinuates already that one should allow for more general
trading strategies than just “elementary” ones. Similarly as in ordinary calcu-
lus the step functions are only a technical gimmick on the way to a reasonable
integration theory.

In order to pass to more general integrands H in (9) we need some more
steps: firstly we have to suppose that S is a semi-martingale (see [RY 91] for
a definition). This is, according to a theorem of Bichteler and Dellacherie, the
maximal class of stochastic processes for which there is a reasonable integration
theory. Fortunately, this assumption of S being a semi-martingale does not
restrict the generality: indeed it was shown in [DS 94] that, whenever S fails
to be a semi-martingale then — essentially (in a sense made precise in [DS 94])
— S admits arbitrage.

We can now proceed developping the integration theory. It is natural to
replace the deterministic mesh 0 = t0 ≤ . . . ≤ tn = T by an increasing
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sequence of stopping times 0 = τ0 ≤ . . . ≤ τn = T . The corresponding class H
of integrands (or trading strategies in the financial lingo) is called the class of
simple integrands.

This first extension step (from elementary to simple integrands) is rather
harmless and does not require any delicate passage to the limit as the integral
is still defined by a finite sum as in (9).

In general, trading strategies are modeled by predictable, S-integrable pro-
cesses (Ht)0≤t≤T , where Ht describes the amount of the stock held at time t.
For each H the random variable

XH
T =

∫ T

0

HtdSt (10)

then equals the accumulated gains or losses up to time T by following the
trading strategy H. For technical reasons we have to restrict ourselves to
“admissible” trading strategies H: we require that there is some constant M
(a “credit line”) such that, for all 0 ≤ t ≤ T , the accumulated losses up to
time t are less than M almost surely,∫ t

0

HudSu > −M, a.s., for 0 ≤ t ≤ T. (11)

We now may formally define an arbitrage opportunity as an admissible
trading strategy H s.t. the random variable XH

T is non-negative a.s. and strictly
positive with strictly positive probability.

We have mentioned above that the requirement that there are no arbitrage
possibilities is too weak to imply the existence of an equivalent martingale
measure in general. Kreps’ idea was to allow for a passage to the limit:

Definition 7.1 [K 81] The process S admits a free lunch, if there is a random
variable f ∈ L∞+ (Ω,F ,P) with P[f > 0] > 0 and a net (fα)α∈I = (gα − hα)α∈I

such gα =
∫ T

0
Hα

t dSt, for some admissible trading strategy Hα, hα ≥ 0 and
(fα)α∈I converges to f in the weak-star topology of L∞(Ω,F ,P).

The economic idea behind this notion is the following: although f itself is
not supposed to be of the form

∫ T

0
HtdSt, for some admissible H (this would

be an arbitrage), we require that f can be approximated by fα in a suitable
topology. The interpretation of the random variables hα ≥ 0 is that, in this
approximation, people are allowed to “throw money away”.

With these preparations we can deduce from D. Kreps’ work the following
version of the fundamental theorem of asset pricing.

Theorem 7.2 A bounded process S = (St)0≤t≤T admits no free lunch iff there
is a probability measure Q equivalent to P such that S is a martingale under
Q.
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Subsequent to Kreps’ seminal paper many authors elaborated on improve-
ments of this theorem (see, e.g., [DS 98] for an account on the literature).
Typical questions are whether the weak-star topology (which is difficult to
interpret economically) can be replaced by a finer topology or whether the
net(fα)α∈I can be replaced by a sequence (fn)n∈N.

In [DS 94] we introduced the notion of a “free lunch with vanishing risk” by
replacing the weak-star topology in the above definition by the norm-topology
of L∞. One may then replace the net (fα)α∈I by a sequence (fn)∞n=1; this notion
allows for a clear-cut economic interpretation to which we tried to allude to
by the term “vanishing risk”.

To extend to the case of unbounded processes (which are important in the
applications) one also needs some generalisations of the notions of a martingale,
namely the notion of local martingales and sigma-martingales. The latter
concept goes back to the work of Chou and Emery (see [DS 98]).

We now can state the version of the fundamental theorem of asset pricing
as obtained in [DS 98].

Theorem 7.3 A semi-martingale S = (St)0≤t≤T admits no free lunch with
vanishing risk iff there is a probability measure Q equivalent to P such that S
is a sigma-martingale under Q.

If S is bounded (resp. locally bounded) the term sigma-martingale may
equivalently be replaced by the term martingale (resp. local martingale).
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