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Preface

In these lectures we give a short introduction to the basic concepts of Mathe-
matical Finance, focusing on the notion of “no arbitrage”, and subsequently apply
these notions to the problem of optimizing dynamically a portfolio in an incomplete
financial market with respect to a given utility function U .

In the first part we mainly restrict ourselves to the situation where the under-
lying probability space (Ω,F ,P) is finite, in order to reduce the functional-analytic
difficulties to simple linear algebra. In my opinion, this allows — at least as a first
step — for a clearer picture of the Mathematical Finance issues.

We then treat the problem of utility maximisation and, in particluar, its duality
theory for a general semi-martingale models of financial market. Here we are rather
informal and concentrate mainly on explaining the basic ideas, e.g., the notion of
the asymptotic elasticity of a utility function U .

These notes are largely based on the surveys [S 03] and [S 01a] and, in particular,
on the notes taken by P. Guasoni during my Cattedra Galileiana lectures at Scuola
Normale Superiore in Pisa [S 04a]. We also refer to the original papers [KS 99] and
[S 01] for more detailed information on the topics of the present lectures.

Vienna, January 2004 Walter Schachermayer
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Chapter 1

Problem Setting

We consider a model of a security market which consists of d + 1 assets. We denote
by S = ((Si

t)1≤t≤T )0≤i≤d the price process of the d stocks and suppose that the
price of the asset S0, called the “bond” or “cash account”, is constant, i.e.,S0

t ≡ 1.
The latter assumption does not restrict the generality of the model as we always
may choose the bond as numéraire, i.e., we may express the values of the other
assets in units of the “bond”. In other words, ((Si

t)0≤t≤T )1≤i≤d, is an Rd-valued
semi-martingale modeling the discounted price process of d risky assets.

The process S is assumed to be a semimartingale, based on and adapted to
a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions of
saturatedness and right continuity. As usual in mathematical finance, we consider
a finite horizon T , but we remark that our results can also be extended to the case
of an infinite horizon.

In chapter 2 we shall consider the case of finite Ω, in which case the paths of S
are constant except for jumps at a finite number of times. We then can write S as
(St)

T
t=0 = (S0, S1, . . . , ST ), for some T ∈ N.

The assumption that the bond is constant is mainly chosen for notational con-
venience as it allows for a compact description of self-financing portfolios: a self-
financing portfolio Π is defined as a pair (x, H), where the constant x is the ini-
tial value of the portfolio and H = (H i)1≤i≤d is a predictable S-integrable pro-
cess specifying the amount of each asset held in the portfolio. The value process
X = (Xt)0≤t≤T of such a portfolio Π at time t is given by

Xt = X0 +

∫ t

0

HudSu, 0 ≤ t ≤ T, (1.1)

where X0 = x and the integral refers to stochastic integration in Rd.

In order to rule out doubling strategies and similar schemes generating arbitrage-
profits (by going deeply into the red) we follow Harrison and Pliska ([HP81], see also
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2 CHAPTER 1. PROBLEM SETTING

[DS 94]), calling a predictable, S-integrable process admissible, if there is a constant
C ∈ R+ such that, almost surely, we have

(H ·S)t :=

∫ t

0

HudSu ≥ −C, for 0 ≤ t ≤ T. (1.2)

Let us illustrate these general concepts in the case of an Rd-valued process S =
(St)

T
t=0 in finite, discrete time {0, 1, . . . , T} adapted to the filtration (Ft)

T
t=0. In

this case each Rd-valued process (Ht)
T
t=1, which is predictable (i.e. each Ht is Ft−1-

measurable), is S-integrable, and the stochastic integral reduces to a finite sum

(H ·S)t =

∫ t

0

HudSu (1.3)

=
t∑

u=1

Hu∆Su (1.4)

=
t∑

u=1

Hu(Su − Su−1), (1.5)

where Hu∆Su denotes the inner product of the vectors Hu and ∆Su = Su− Su−1 in
Rd, i.e.

Hu∆Su =
d∑

j=1

Hj
u(S

j
u − Sj−1

u ). (1.6)

Of course, each such trading strategy H is admissible if the underlying probability
space Ω is finite.

Passing again to the general setting of an Rd-valued semi-martingale S =
(St)0≤t≤T we denote as in [KS 99] by Me(S) (resp. Ma(S)) the set of probabil-
ity measures Q equivalent to P (resp. absolutely continuous with respect to P) such
that for each admissible integrand H, the process H ·S is a local martingale under
Q.

We shall assume the following version of the no-arbitrage condition on S:

Assumption 1.1 The set Me(S) is not empty.1

1If follows from [DS 94] and [DS 98] that Assumption 1.1 is equivalent to the condition of “no
free lunch with vanishing risk”. This property can also be equivalently characterised in terms of
the existence of a measure Q ∼ P such that the process S itself (rather than the integrals H ·S
for admissible integrands) is “something like a martingale”. The precise notion in the general
semi-martingale setting is that S is a sigma-martingale under Q (see [DS 98]); in the case when
S is locally bounded (resp. bounded) the term “sigma-martingale” may be replaced by the more
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In these notes we shall mainly be interested in the case when Me(S) is not
reduced to a singleton, i.e., the case of an incomplete financial market.

After having specified the process S modeling the financial market we now define
the function U(x) modeling the utility of an agent’s wealth x at the terminal time
T .

We make the classical assumptions that U : R → R ∪ {−∞} is increasing on
R, continuous on {U > −∞}, differentiable and strictly concave on the interior of
{U > −∞}, and that marginal utility tends to zero when wealth tends to infinity,
i.e.,

U ′(∞) := lim
x→∞

U ′(x) = 0. (1.7)

These assumptions make good sense economically and it is clear that the require-
ment (1.7) of marginal utility decreasing to zero, as x tends to infinity, is necessary,
if one is aiming for a general existence theorem for optimal investment.

As regards the behavior of the (marginal) utility at the other end of the wealth
scale we shall distinguish two cases.

Case 1 (negative wealth not allowed): in this setting we assume that U satifies
the conditions U(x) = −∞, for x < 0, while U(x) > −∞, for x > 0, and the so-
called Inada conditions

U ′(0) := lim
x↘0

U ′(x) = ∞. (1.8)

Case 2 (negative wealth allowed): in this case we assume that U(x) > −∞,
for all x ∈ R, and that

U ′(−∞) := lim
x↘−∞

U ′(x) = ∞. (1.9)

Typical examples for case 1 are

U(x) = ln(x), x > 0, (1.10)

or

U(x) =
xα

α
, α ∈ (−∞, 1) \ {0}, x > 0, (1.11)

whereas a typical example for case 2 is

U(x) = −e−γx, γ > 0, x ∈ R. (1.12)

familiar term “local martingale” (resp. “martingale”).
Readers who are not too enthusiastic about the rather subtle distinctions between martingales,
local martingales and sigma-martingales may find some relief by noting that, in the case of finite
Ω, or, more generally, for bounded processes S, these three notions coincide.
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We again note that it is natural from economic considerations to require that
the marginal utility tends to infinity when the wealth x tends to the infimum of its
allowed values.

For later reference we summarize our assumptions on the utility function:

Assumption 1.2 (Usual Regularity Conditions) A utility function U : R →
R∪{−∞} satisfies the usual regularity conditions if it is increasing on R, continuous
on {U > −∞}, differentiable and strictly concave on the interior of {U > −∞},
and satisfies

U ′(∞) := lim
x→∞

U ′(x) = 0. (1.13)

Denoting by dom(U) the interior of {U > −∞}, we assume that we have one of
the two following cases.

Case 1: dom(U) =]0,∞[ in which case U satisfies the condition

U ′(0) := lim
x↘0

U ′(x) = ∞. (1.14)

Case 2: dom(U) = R in which case U satisfies

U ′(−∞) := lim
x↘−∞

U ′(x) = ∞. (1.15)

We now can give a precise meaning to the problem of maximizing the expected
utility of terminal wealth. Define the value function

u(x) := sup
H∈H

E [U(x + (H ·S)T )] , x ∈ dom(U), (1.16)

where H ranges through the family H of admissible S-integrable trading strategies.
To exclude trivial cases we shall assume that the value function u is not degenerate:

Assumption 1.3

u(x) < sup
ξ

U(ξ), for some x ∈ dom(U). (1.17)

Since u is clearly increasing, and U(y) ≤ U(x) + U ′(x)(y−x) for any y > x, this
assumption implies that

u(x) < sup
ξ

U(ξ), for all x ∈ dom(U). (1.18)

Under appropriate hypotheses (e.g., when Ω is finite) Assumptions 1.1 and 1.2
already imply Assumption 1.3.



Chapter 2

Models on Finite Probability
Spaces

In order to reduce the technical difficulties of the theory of utility maximization to
a minimum, we assume throughout this chapter that the probability space Ω will be
finite, say, Ω = {ω1, ω2, . . . , ωN}. This assumption implies that all the differences
among the spaces L∞(Ω,F ,P), L1(Ω,F ,P) and L0(Ω,F ,P) disappear, as all these
spaces are simply isomorphic to RN . Hence all the functional analysis reduces to
simple linear algebra in the setting of the present chapter.

Nevertheless we shall write L∞(Ω,F ,P), L1(Ω,F ,P) etc. below (knowing very
well that these spaces are isomorphic in the present setting) to indicate, what we
shall encounter in the setting of the general theory.

Definition 2.1 A model of a finite financial market is an Rd+1-valued stochas-
tic process S = (S)T

t=0 = (S0
t , S

1
t , . . . , S

d
t )T

t=0, based on and adapted to the filtered
stochastic base (Ω,F , (F)T

t=0,P). Without loss of generality we assume that F0 is
trivial, that FT = F is the power set of Ω, and that P[ωn] > 0, for all 1 ≤ n ≤ N .
We assume that the zero coordinate S0, which we call the cash account, satisfies
S0

t ≡ 1, for t = 0, 1, . . . , T . The letter ∆St denotes the increment St − St−1.

Definition 2.2 H denotes the set of trading strategies for the financial market S.
An element H ∈ H is an Rd-valued process (Ht)

T
t=1 = (H1

t , H2
t , . . . , Hd

t )T
t=1 which is

predictable, i.e. each Ht is Ft−1-measurable.
We then define the stochastic integral (H ·S) as the R-valued process ((H ·S)t)

T
t=0

given by

(H ·S)t =
t∑

k=1

(Hk, ∆Sk), t = 0, . . . , T, (2.1)

where ( . , . ) denotes the inner product in Rd.

5



6 CHAPTER 2. MODELS ON FINITE PROBABILITY SPACES

Definition 2.3 We call the subspace K of L0(Ω,F ,P) defined by

K = {(H ·S)T : H ∈ H} (2.2)

the set of contingent claims attainable at price 0.

The economic interpretation is the following: the random variables f = (H ·S)T ,
for some H ∈ H, are precisely those contingent claims, i.e., the pay-off functions at
time T depending on ω ∈ Ω in an FT -measurable way, that an economic agent may
replicate with zero initial investment, by pursuing some predictable trading strategy
H.

For a ∈ R, we call the set of contingent claims attainable at price a the affine
space Ka obtained by shifting K by the constant function a1, in other words the
random variables of the form a + (H · S)T , for some trading strategy H. Again
the economic interpretation is that these are precisely the contingent claims that
an economic agent may replicate with an initial investment of a by pursuing some
predictable trading strategy H.

Definition 2.4 We call the convex cone C in L∞(Ω,F ,P) defined by

C = {g ∈ L∞(Ω,F ,P) s.t. there is f ∈ K, f ≥ g} . (2.3)

the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g ∈ L∞(Ω,F ,P) is super-replicable
at price 0, if we can achieve it with zero net investment, subsequently pursuing some
predictable trading strategy H — thus arriving at some contingent claim f — and
then, possibly, “throwing away money” to arrive at g. This operation of “throwing
away money” may seem awkward at this stage, but we shall see later that the set
C plays an important role in the development of the theory. Observe that C is a
convex cone containing the negative orthant L∞− (Ω,F ,P). Again we may define Ca

as the contingent claims super-replicable at price a if we shift C by the constant
function a1.

Definition 2.5 A financial market S satifies the no-arbitrage condition (NA) if

K ∩ L0
+(Ω,F ,P) = {0} (2.4)

or, equivalently,

C ∩ L∞+ (Ω,F ,P) = {0} (2.5)

where 0 denotes the function identically equal to zero.
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In other words we now have formalized the concept of an arbitrage possibility:
it consists of the existence of a trading strategy H such that — starting from an
initial investment zero — the resulting contingent claim f = (H ·S)T is non-negative
and not identically equal to zero. If a financial market does not allow for arbitrage
we say it satisfies the no-arbitrage condition (NA).

Definition 2.6 A probability measure Q on (Ω,F) is called an equivalent martin-
gale measure for S, if Q ∼ P and S is a martingale under Q.

We denote by Me(S) the set of equivalent martingale probability measures and
byMa(S) the set of all (not necessarily equivalent) martingale probability measures.
The letter a stands for “absolutely continuous with respect to P” which in the
present setting (finite Ω and P having full support) automatically holds true, but
which will be of relevance for general probability spaces (Ω,F ,P) later. We shall
often identify a measure Q on (Ω,F) with its Radon-Nikodym derivative dQ

dP
∈

L1(Ω,F ,P).

Lemma 2.7 For a probability measure Q on (Ω,F) the following are equivalent:

(i) Q ∈Ma(S),

(ii) EQ[f ] = 0, for all f ∈ K,

(iii) EQ[g] ≤ 0, for all g ∈ C.

Proof The equivalences are rather trivial, as (ii) is tantamount to the very def-
inition of S being a martingale under Q, and the equivalence of (ii) and (iii) is
straightforward.

After having fixed these formalities we may formulate and prove the central
result of the theory of pricing and hedging by no-arbitrage, sometimes called the
“fundamental theorem of asset pricing”, which in its present form (i.e., finite Ω) is
due to Harrison and Pliska [HP 81].

Theorem 2.8 (Fundamental Theorem of Asset Pricing) For a financial
market S modeled on a finite stochastic base (Ω,F , (Ft)

T
t=0,P) the following are

equivalent:

(i) S satisfies (NA).

(ii) Me(S) 6= ∅.
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Proof (ii) ⇒ (i): This is the obvious implication. If there is some Q ∈Me(S) then
by lemma 2.7 we have that

EQ[g] ≤ 0, for g ∈ C. (2.6)

On the other hand, if there were g ∈ C ∩ L∞+ , g 6= 0, then, using the assumption
that Q is equivalent to P, we would have

EQ[g] > 0, (2.7)

a contradiction.
(i) ⇒ (ii) This implication is the important message of the theorem which will

allow us to link the no-arbitrage arguments with martingale theory. We give a
functional analytic existence proof, which will be generalizable — in spirit — to
more general situations.

By assumption the space K intersects L∞+ only at 0. We want to separate the
disjoint convex sets L∞+ \{0} and K by a hyperplane induced by a linear functional
Q ∈ L1(Ω,F ,P) which is strictly positive on L∞+ \{0}. Unfortunately this is a
situation, where the usual versions of the separation theorem (i.e., the Hahn-Banach
Theorem) do not apply (even in finite dimensions!). Indeed, one usually assumes
that one of the convex sets is compact in order to obtain a strict separation.

One way to overcome this difficulty (in finite dimension) is to consider the convex
hull of the unit vectors (1{ωn})

N
n=1 in L∞(Ω,F ,P) i.e.

P :=

{
N∑

n=1

µn1{ωn} : µn ≥ 0,
N∑

n=1

µn = 1

}
. (2.8)

This is a convex, compact subset of L∞+ (Ω,F ,P) and, by the (NA) assumption,
disjoint from K. Hence we may strictly separate the sets P and K by a linear
functional Q ∈ L∞(Ω,F ,P)∗ = L1(Ω,F ,P), i.e., find α < β such that

EQ[f ] = 〈Q, f〉 ≤ α for f ∈ K, (2.9)

EQ[h] = 〈Q, h〉 ≥ β for h ∈ P.

As K is a linear space, we have α ≥ 0 and may, in fact, replace α by 0. Hence
β > 0. Therefore 〈Q,1〉 > 0, and we may normalize Q such that 〈Q,1〉 = 1. As Q
is strictly positive on each 1{ωn}, we therefore have found a probability measure Q
on (Ω,F) equivalent to P such that condition (ii) of lemma 2.7 holds true. In other
words, we found an equivalent martingale measure Q for the process S.

Corollary 2.9 Let S satisfy (NA) and f ∈ L∞(Ω,F ,P) be an attainable contingent
claim so that

f = a + (H ·S)T , (2.10)
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for some a ∈ R and some trading strategy H.
Then the constant a and the process (H ·S) are uniquely determined by (2.10)

and satisfy, for every Q ∈Me(S),

a = EQ[f ], and a + (H ·S)t = EQ[f |Ft] for 0 ≤ t ≤ T. (2.11)

Proof As regards the uniqueness of the constant a ∈ R, suppose that there are
two representations f = a1 + (H1 · S)T and f = a2 + (H2 · S)T with a1 6= a2.
Assuming w.l.o.g. that a1 > a2 we find an obvious arbitrage possibility: we have
a1 − a2 = ((H1 − H2) ·S)T , i.e. the trading strategy H1 − H2 produces a strictly
positive result at time T, a contradiction to (NA).

As regards the uniqueness or the process H · S we simply apply a conditional
version of the previous argument: assume that f = a+(H1·S)T and f = a+(H2·S)T

such that the processes H1 ·S amd H2 ·S are not identical. Then there is 0 < t < T
such that (H1 ·S)t 6= (H2 ·S)t; w.l.g. A := {(H1 ·S)t > (H2 ·S)t} is a non-empty
event, which clearly is in Ft. Hence, using the fact hat (H1 ·S)T = (H2 ·S)T , the
trading strategy H := (H2 − H1)χA · χ]t,T ] is a predictable process producing an
arbitrage, as (H ·S)T = 0 outside A, while (H ·S)T = (H1 ·S)t− (H2 ·S)t > 0 on A,
which again contradicts (NA).

Finally, the equations in (2.11) result from the fact that, for every predictable
process H and every Q ∈Ma(S), the process H ·S is a Q-martingale. Noting that,
for a measure Q ∼ P, the conditional expectation EQ[f |Ft] is P-a.s. well-defined
we thus obtain (2.11) for each Q ∈Me(S).

Denote by cone(Me(S)) and cone(Ma(S)) the cones generated by the convex sets
Me(S) and Ma(S) respectively. The subsequent result clarifies the polar relation
between these cones and the cone C. Recall (see, e.g., [S 66]) that, for a pair (E, E ′)
of vector spaces in separating duality via the scalar product 〈., .〉, the polar C0 of a
set C in E is defined as

C0 = {g ∈ E ′ : 〈f, g〉 ≤ 1, for all f ∈ C} . (2.12)

In the case when C is closed under multiplication with positive scalars (e.g., if
C is a convex cone) the polar C0 may equivalently be defined by

C0 = {g ∈ E ′ : 〈f, g〉 ≤ 0, for all f ∈ C} . (2.13)

The bipolar theorem (see, e.g., [S 66]) states that the bipolar C00 := (C0)0 of a
set C in E is the σ(E, E ′)-closed convex hull of C.

After these general considerations we pass to the concrete setting of the cone
C ⊆ L∞(Ω,F ,P) of contingent claims super-replicable at price 0. Note that in
our finite-dimensional setting this convex cone is closed as it is the algebraic sum
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of the closed linear space K (a linear space in RN is always closed) and the closed
polyhedral cone L∞− (Ω,F ,P) (the verification, that the algebraic sum of a space and
a polyhedral cone in RN is closed, is an easy, but not completely trivial exercise).
Hence we deduce from the bipolar theorem, that C equals its bipolar C00.

Proposition 2.10 Suppose that S satisfies (NA). Then the polar of C is equal to
cone(Ma(S)) and Me(S) is dense in Ma(S). Hence the following assertions are
equivalent for an element g ∈ L∞(Ω,F ,P)

(i) g ∈ C,

(ii) EQ[g] ≤ 0, for all g ∈Ma(S),

(iii) EQ[g] ≤ 0, for all g ∈Me(S),

Proof The fact that the polar C0 and cone(Ma(S)) coincide, follows from lemma
2.7 and the observation that C ⊇ L∞− (Ω,F ,P) implies C0 ⊆ L∞+ (Ω,F ,P). Hence
the equivalence of (i) and (ii) follows from the bipolar theorem.

As regards the density of Me(S) in Ma(S) we first deduce from theorem 2.8
that there is at least one Q∗ ∈ Me(S). For any Q ∈ Ma(S) and 0 < µ ≤ 1 we
have that µQ∗ + (1− µ)Q ∈Me(S), which clearly implies the density of Me(S) in
Ma(S). The equivalence of (ii) and (iii) now is obvious.

The subsequent theorem tells us precisely what the principle of no arbitrage can
tell us about the possible prices for a contingent claim f . It goes back to the work
of D. Kreps [K 81] and was subsequently extended by several authors.

For given f ∈ L∞(Ω,F ,P), we call a ∈ R an arbitrage-free price, if in addition
to the financial market S, the introduction of the contingent claim, which pays the
random amount f at time t = T and can be bought or sold at price a at time
t = 0, does not create an arbitrage possibility. Mathematically speaking, this can
be formalized as follows. Let Cf,a denote the cone spanned by C and the linear space
spanned by f−a; then a is an arbitrage-free price for f if Cf,a∩L∞+ (Ω,F ,P) = {0}.

Theorem 2.11 (Pricing by No-Arbitrage) Assume that S satisfies (NA) and
let f ∈ L∞(Ω,F ,P). Define

π(f) = sup {EQ[f ] : Q ∈Me(S)} , (2.14)

π(f) = inf {EQ[f ] : Q ∈Me(S)} . (2.15)

Either π(f) = π(f), in which case f is attainable at price π(f) := π(f) = π(f),
i.e. f = π(f) + (H ·S)T for some H ∈ H; therefore π(f) is the unique arbitrage-free
price for f .

Or π(f) < π(f), in which case {EQ[f ] : Q ∈ Me(S)} equals the open interval
]π(f), π(f)[, which in turn equals the set of arbitrage-free prices for the contingent
claim f .
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Proof First observe that the set {EQ[f ] : Q ∈Me(S)} forms a bounded non-empty
interval in R, which we denote by I.

We claim that a number a is in I, iff a is an arbitrage-free price for f . Indeed,
supposing that a ∈ I we may find Q ∈ Me(S) s.t. EQ[f − a] = 0 and therefore
Cf,a ∩ L∞+ (Ω,F ,P) = {0}.

Conversely suppose that Cf,a ∩ L∞+ (Ω,F ,P) = {0}. Note that Cf,a is a closed
convex cone (it is the albegraic sum of the linear space span(K, f − a) and the
closed, polyhedral cone L∞− (Ω,F ,P)). Hence by the same argument as in the proof
of theorem 2.8 there exists a probability measure Q ∼ P such that Q|Cf,a ≤ 0. This
implies that EQ[f − a] = 0, i.e., a ∈ I.

Now we deal with the boundary case: suppose that a equals the right boundary
of I, i.e., a = π(f) ∈ I, and consider the contingent claim f − π(f); by definition
we have EQ[f − π(f)] ≤ 0, for all Q ∈ Me(S), and therefore by proposition 2.10,
that f − π(f) ∈ C. We may find g ∈ K such that g ≥ f − π(f). If the sup in (2.14)
is attained, i.e., if there is Q∗ ∈ Me(S) such that EQ∗ [f ] = π(f), then we have
0 = EQ∗ [g] ≥ EQ∗ [f−π(f)] = 0 which in view of Q∗ ∼ P implies that f−π(f) ≡ g;
in other words f is attainable at price π(f). This in turn implies that EQ[f ] = π(f),
for all Q ∈Me(S), and therefore I is reduced to the singleton {π(f)}.

Hence, if π(f) < π(f), π(f) connot belong to the interval I, which is therefore
open on the right hand side. Passing from f to −f , we obtain the analogous result
for the left hand side of I, which therefore equals I =]π(f), π(f)[.

Corollary 2.12 (complete financial markets) For a financial market S satis-
fying the no-arbitrage condition (NA) the following are equivalent:

(i) Me(S) consists of a single element Q.

(ii) Each f ∈ L∞(Ω,F ,P) may be represented as

f = a + (H ·S)T , for some a ∈ R, and H ∈ H. (2.16)

In this case a = EQ[f ], the stochastic integral (H ·S) is unique and we have that

EQ[f |Ft] = EQ[f ] + (H ·S)t, t = 0, . . . , T. (2.17)

Proof The implication (i) ⇒ (ii) immediately follows from the preceding theorem;
for the implication (ii) ⇒ (i), note that, (2.16) implies that, for elements Q1, Q2 ∈
Ma(S), we have EQ1 [f ] = a = EQ2 [f ]; hence it suffices to note that. if Me(S)
contains two different elements Q1, Q2. we may find f ∈ L∞(Ω,F ,P) s.t. EQ1 [f ] 6=
EQ2 [f ].
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2.1 Utility Maximization

We are now ready to study utility maximization problems with the convex duality
approach.

2.1.1 The complete case (Arrow)

As a first case we analyze the situation of a complete financial market (Corollary
2.12 above), i.e., the set Me(S) of equivalent probability measures under which S
is a martingale is reduced to a singleton {Q}. In this setting consider the Arrow
assets 1{ωn}, which pay 1 unit of the numéraire at time T , when ωn turns out to be
the true state of the world, and 0 otherwise. In view of our normalization of the
numéraire S0

t ≡ 1, we get for the price of the Arrow assets at time t = 0 the relation

EQ

[
1{ωn}

]
= Q[ωn] = qn, (2.18)

and by 2.12 each Arrow asset 1{ωn} may be represented as 1{ωn} = Q[ωn] + (H ·S)T ,
for some predictable trading strategy H ∈ H.

Hence, for fixed initial endowment x ∈ dom(U), the utility maximization problem
(1.16) above may simply be written as

EP [U(XT )] =
N∑

n=1

pnU(ξn) → max! (2.19)

EQ[XT ] =
N∑

n=1

qnξn ≤ x. (2.20)

To verify that (2.19) and (2.20) indeed are equivalent to the original problem
(1.16) above (in the present finite, complete case), note that by Theorem 2.11 a
random variable (XT (ωn))N

n=1 = (ξn)N
n=1 can be dominated by a random variable

of the form x + (H · S)T = x +
∑T

t=1 Ht∆St iff EQ[XT ] =
∑N

n=1 qnξn ≤ x. This
basic relation has a particularly evident interpretation in the present setting, as qn

is simply the price of the Arrow asset 1{ωn}.
We have written ξn for XT (ωn) to stress that (2.19) simply is a concave maximiza-

tion problem in RN with one linear constraint. To solve it, we form the Lagrangian

L(ξ1, . . . , ξN , y) =
N∑

n=1

pnU(ξn)− y

(
N∑

n=1

qnξn − x

)
(2.21)

=
N∑

n=1

pn

(
U(ξn)− y qn

pn
ξn

)
+ yx. (2.22)



2.1. UTILITY MAXIMIZATION 13

We have used the letter y ≥ 0 instead of the usual λ ≥ 0 for the Lagrange mul-
tiplier; the reason is the dual relation between x and y which will become apparent
in a moment.

Write
Φ(ξ1, . . . , ξN) = inf

y>0
L(ξ1, . . . , ξN , y), ξn ∈ dom(U), (2.23)

and
Ψ(y) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y), y ≥ 0. (2.24)

Note that we have

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN) = sup
ξ1,...,ξN∑N

n=1 qnξn≤x

N∑
n=1

pnU(ξn) = u(x). (2.25)

Indeed, if (ξ1, . . . , ξN) is in the admissible region
∑N

n=1 qnξn ≤ x then Φ(ξ1, . . . , ξN) =

L(ξ1, . . . , ξN , 0) =
∑N

n=1 pnU(ξn). On the other hand, if (ξ1, . . . , ξN) satisfies∑N
n=1 qnξn > x, then by letting y →∞ in (2.23) we note that Φ(ξ1, . . . , ξN) = −∞.
As regards the function Ψ(y) we make the following pleasant observation which

is the basic reason for the efficiency of the duality approach: using the form (2.22)
of the Lagrangian and fixing y > 0, the optimization problem appearing in (2.24)
splits into N independent optimization problems over R

U(ξn)− y qn

pn
ξn → max!, ξn ∈ R. (2.26)

In fact, these one-dimensional optimization problems are of a very convenient
form: recall (see, e.g., [R 70], [ET 76] or [KLSX91]) that, for a concave function
U : R → R∪{−∞}, the conjugate function V (which is just the Legendre-transform
of x 7→ −U(−x)) is defined by

V (η) = sup
ξ∈R

[U(ξ)− ηξ] , η > 0. (2.27)

Definition 2.13 We say that the function V : R → R, conjugate to the function
U , satisfies the usual regularity assumptions, if V is finitely valued, differentiable,
strictly convex on ]0,∞[, and satisfies

V ′(0) := lim
y↘0

V ′(y) = −∞. (2.28)

As regards the behavior of V at infinity, we have to distinguish between case 1 and
case 2 in Assumption 1.2 above:

case 1: lim
y→∞

V (y) = lim
x→0

U(x) and lim
y→∞

V ′(y) = 0 (2.29)

case 2: lim
y→∞

V (y) = ∞ and lim
y→∞

V ′(y) = ∞ (2.30)
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We have the following wellknown fact (see [R 70] or [ET 76]).

Proposition 2.14 If U satisfies Assumption 1.2, then its conjugate function V
satisfies the the inversion formula

U(ξ) = inf
η

[V (η) + ηξ] , ξ ∈ dom(U) (2.31)

and satisfies the regularity assumptions in Definition 2.13. In addition, −V ′(y) is
the inverse function of U ′(x). Conversely, if V satisfies the regulatory assumptions
of Definition 2.13, then U defined by (2.31) satisfies Assumption 1.2.

Following [KLS 87] we denote −V ′ = I (for “inverse” function).

Proof It follows from Assumption 1.2 that V is finitely valued on ]0,∞[. Note that
we have that

U(x) ≤ a + yx ∀x ∈ dom(U) ⇐⇒ V (y) ≤ a (2.32)

which implies the inversion formula above. In turn, this formula shows that V is
the supremum of affine functions, and therefore convex. Since U is strictly concave
and differentiable, the maximizer ξ̂ = ξ(µ) in (2.27) solves the first-order condition
U ′(ξ(η)) = η. Also, we have that U ′ is a continuous bijection between {U > −∞}
and R+. This observation and the inversion formula show that V is both strictly
convex, differentiable, and that −V ′ is the inverse of U ′.

Remark 2.15 Of course, U ′ has a good economic interpretation as the marginal
utility of an economic agent modeled by the utility function U .

Here are some concrete examples of pairs of conjugate functions:

U(x) = ln(x), x > 0, V (y) = − ln(y)− 1,

U(x) = − e−γx

γ
, x ∈ R, V (y) = y

γ
(ln(y)− 1), γ > 0

U(x) = xα

α
, x > 0, V (y) = 1−α

α
y

α
α−1 , α ∈ (−∞, 1) \ {0}.

We now apply these general facts about the Legendre transformation to calculate
Ψ(y). Using definition (2.27) of the conjugate function V and (2.22), formula (2.24)
becomes

Ψ(y) =
N∑

n=1

pnV
(
y qn

pn

)
+ yx (2.33)

= EP

[
V
(
y dQ

dP

)]
+ yx. (2.34)
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Denoting by v(y) the dual value function

v(y) := EP

[
V
(
y dQ

dP

)]
=

N∑
n=1

pnV
(
y qn

pn

)
, y > 0, (2.35)

the function v has the same qualitative properties as the function V listed in Def-
inition 2.13, since it is a convex combination of V calculated on linearly scaled
arguments.

Hence by (2.28), (2.29), and (2.30) we find, for fixed x ∈ dom(U), a unique
ŷ = ŷ(x) > 0 such that v′(ŷ(x)) = −x, which therefore is the unique minimizer to
the dual problem

Ψ(y) = EP

[
V
(
y dQ

dP

)]
+ yx = min! (2.36)

Fixing the critical value ŷ(x), the concave function

(ξ1, . . . , ξN) 7→ L(ξ1, . . . , ξN , ŷ(x)) (2.37)

defined in (2.22) assumes its unique maximum at the point (ξ̂1, . . . , ξ̂N) satisfying

U ′(ξ̂n) = ŷ(x) qn

pn
or, equivalently, ξ̂n = I

(
ŷ(x) qn

pn

)
, (2.38)

so that we have

inf
y>0

Ψ(y) = inf
y>0

(v(y) + xy) (2.39)

= v(ŷ(x)) + xŷ(x) (2.40)

= L(ξ̂1, . . . , ξ̂N , ŷ(x)). (2.41)

Note that ξ̂n are in dom(U), for 1 ≤ n ≤ N , so that L is continuously differentiable at

(ξ̂1, . . . , ξ̂N , ŷ(x)), which implies that the gradient of L vanishes at (ξ̂1, . . . , ξ̂N , ŷ(x))
and, in particular, that ∂

∂y
L(ξ1, . . . , ξN , y)|(ξ̂1,...,ξ̂N ,ŷ(x)) = 0. Hence we infer from

(2.21) and the fact that ŷ(x) > 0 that the constraint (2.20) is binding, i.e.,

N∑
n=1

qnξ̂n = x, (2.42)

and that
N∑

n=1

pnU(ξ̂n) = L(ξ̂1, . . . , ξ̂N , ŷ(x)). (2.43)

In particular, we obtain that

u(x) =
N∑

n=1

pnU(ξ̂n). (2.44)
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Indeed, the inequality u(x) ≥
∑N

n=1 pnU(ξ̂n) follows from (2.42) and (2.25), while
the reverse inequality follows from (2.43) and the fact that for all ξ1, . . . , ξN verifying
the constraint (2.20)

N∑
n=1

pnU(ξn) ≤ L(ξ1, . . . , ξN , ŷ(x)) ≤ L(ξ̂1, . . . , ξ̂N , ŷ(x)). (2.45)

We shall write X̂T (x) ∈ C(x) for the optimizer X̂T (x)(ωn) = ξ̂n, n = 1, . . . , N .
Combining (2.39), (2.43) and (2.44) we note that the value functions u and v are

conjugate:

inf
y>0

(v(y) + xy) = v(ŷ(x)) + xŷ(x) = u(x), x ∈ dom(U), (2.46)

which, by Proposition 2.14 the remarks after equation (2.35), implies that u inherits
the properties of U listed in Assumption 1.2. The relation v′(ŷ(x)) = −x which was
used to define ŷ(x), therefore translates into

u′(x) = ŷ(x), for x ∈ dom(U). (2.47)

Let us summarize what we have proved:

Theorem 2.16 (finite Ω, complete market) Let the financial market S =
(St)

T
t=0 be defined over the finite filtered probability space (Ω,F , (F)T

t=0,P) and sat-
isfy Me(S) = {Q}, and let the utility function U satisfy Assumption 1.2.

Denote by u(x) and v(y) the value functions

u(x) = sup
XT∈C(x)

E[U(XT )], x ∈ dom(U), (2.48)

v(y) = E
[
V
(
y dQ

dP

)]
, y > 0. (2.49)

We then have:

(i) The value functions u(x) and v(y) are conjugate and u inherits the qualitative
properties of U listed in Assumption 1.2.

(ii) The optimizer X̂T (x) in (2.48) exists, is unique and satisfies

X̂T (x) = I(y dQ
dP

), or, equivalently, y dQ
dP

= U ′(X̂T (x)), (2.50)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).
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(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ

[
V ′ (y dQ

dP

)]
(2.51)

xu′(x) = EP

[
X̂T (x)U ′(X̂T (x))

]
, yv′(y) = EP

[
y dQ

dP
V ′ (y dQ

dP

)]
. (2.52)

Proof Items (i) and (ii) have been shown in the preceding discussion, hence we only
have to show (iii). The formulae for v′(y) in (2.51) and (2.52) immediately follow
by differentiating the relation

v(y) = EP

[
V
(
y dQ

dP

)]
=

N∑
n=1

pnV
(
y qn

pn

)
. (2.53)

Of course, the formula for v′ in (2.52) is an obvious reformulation of the one in
(2.51). But we write both of them to stress their symmetry with the formulae for
u′(x).

The formula for u′ in (2.51) translates via the relations exhibited in (ii) into the
identity

y = EP

[
y dQ

dP

]
, (2.54)

while the formula for u′(x) in (2.52) translates into

v′(y)y = EP

[
V ′ (y dQ

dP

)
y dQ

dP

]
, (2.55)

which we just have seen to hold true.

Remark 2.17 Firstly, let us recall the economic interpretation of (2.50)

U ′
(
X̂T (x)(ωn)

)
= y

qn

pn

, n = 1, . . . , N. (2.56)

This equality means that, in every possible state of the world ωn, the marginal
utility U ′(X̂T (x)(ωn)) of the wealth of an optimally investing agent at time T is
proportional to the ratio of the price qn of the corresponding Arrow security 1{ωn}
and the probability of its success pn = P[ωn]. This basic relation was analyzed in the
fundamental work of K. Arrow and allows for a convincing economic interpretation:
considering for a moment the situation where this proportionality relation fails to
hold true, one immediately deduces from a marginal variation argument that the
investment of the agent cannot be optimal. Indeed, by investing a little more in
the more favorable asset and a little less in the less favorable the economic agent
can strictly increase expected utility under the same budget constraint. Hence for
the optimal investment the proportionality must hold true. The above result also
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identifies the proportionality factor as y = u′(x), where x is the initial endowment
of the investor. This also allows for an economic interpretation.

Theorem 2.16 indicates an easy way to solve the utility maximization at hand:
calculate v(y) by (2.49), which reduces to a simple one-dimensional computation;
once we know v(y), the theorem provides easy formulae to calculate all the other

quantities of interest, e.g., X̂T (x), u(x), u′(x) etc.
Another message of the above theorem is that the value function x 7→ u(x)

may be viewed as a utility function as well, sharing all the qualitative features of
the original utility function U . This makes sense economically, as the “indirect
utility” function u(x) denotes the expected utility at time T of an agent with initial
endowment x, after having optimally invested in the financial market S.

Let us also give an economic interpretation of the formulae for u′(x) in item (iii)
along these lines: suppose the initial endowment x is varied to x+h, for some small
real number h. The economic agent may use the additional endowment h to finance,
in addition to the optimal pay-off function X̂T (x), h units of the cash account, thus

ending up with the pay-off function X̂T (x)+h at time T . Comparing this investment
strategy to the optimal one corresponding to the initial endowment x + h, which is
X̂T (x + h), we obtain

lim
h→0

u(x + h)− u(x)

h
= lim

h→0

E[U(X̂T (x + h))− U(X̂T (x))]

h
(2.57)

≥ lim
h→0

E[U(X̂T (x) + h)− U(X̂T (x))]

h
(2.58)

= E[U ′(X̂T (x))]. (2.59)

Using the fact that u is differentiable, and that h may be positive as well as
negative, we must have equality in (2.58) and therefore have found another proof
of formula (2.51) for u′(x); the economic interpretation of this proof is that the
economic agent, who is optimally investing, is indifferent of first order towards a
(small) additional investment into the cash account.

Playing the same game as above, but using the additional endowment h ∈ R
to finance an additional investment into the optimal portfolio X̂T (x) (assuming,

for simplicity, x 6= 0), we arrive at the pay-off function x+h
x

X̂T (x). Comparing

this investment with X̂T (x + h), an analogous calculation as in (2.57) leads to the
formula for u′(x) displayed in (2.52). The interpretation now is, that the optimally
investing economic agent is indifferent of first order towards a marginal variation of
the investment into the optimal portfolio.

It now becomes clear that formulae (2.51) and (2.52) for u′(x) are just special
cases of a more general principle: for each f ∈ L∞(Ω,F ,P) we have

EQ[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]

h
. (2.60)
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The proof of this formula again is along the lines of (2.57) and the interpretation
is the following: by investing an additional endowment hEQ[f ] to finance the contin-
gent claim hf , the increase in expected utility is of first order equal to hEQ[f ]u′(x);
hence again the economic agent is of first order indifferent towards an additional
investment into the contingent claim f .

2.1.2 The Incomplete Case

We now drop the assumption that the set Me(S) of equivalent martingale measures
is reduced to a singleton (but we still remain in the framework of a finite probability
space Ω) and replace it by Assumption 1.1 requiring that Me(S) 6= ∅.

In this setting it follows from Theorem 2.11 that a random variable XT (ωn) = ξn

may be dominated by a random variable of the form x + (H · S)T iff EQ[XT ] =∑N
n=1 qnξn ≤ x, for each Q = (q1 . . . , qN) ∈ Ma(S) (or equivalently, for every

Q ∈Me(S)).

In order to reduce the infinitely many constraints, where Q runs throughMa(S),
to a finite number, make the easy observation that Ma(S) is a bounded, closed,
convex polytope in RN and therefore the convex hull of its finitely many extreme
points {Q1, . . . ,QM}. Indeed, Ma(S) is given by finitely many linear constraints.
For 1 ≤ m ≤ M , we identify Qm with the probabilites (qm

1 , . . . , qm
N ).

Fixing the initial endowment x ∈ dom(U), we therefore may write the utility
maximization problem (1.16) similarly as in (2.19) as a concave optimization problem
over RN with finitely many linear constraints:

EP [U(XT )] =
N∑

n=1

pnU(ξn) → max! (2.61)

EQm [XT ] =
N∑

n=1

qm
n ξn ≤ x, for m = 1, . . . ,M. (2.62)

Writing again

C(x) =
{
XT ∈ L0(Ω,F ,P) : EQ[XT ] ≤ x, for all Q ∈Ma(S)

}
(2.63)

we define the value function, for x ∈ dom(U),

u(x) = sup
H∈H

E [U (x + (H ·S)T )] = sup
XT∈C(x)

E[U(XT )]. (2.64)
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The Lagrangian now is given by

L(ξ1, . . . , ξN , η1, . . . , ηM) (2.65)

=
N∑

n=1

pnU(ξn)−
M∑

m=1

ηm

(
N∑

n=1

qm
n ξn − x

)
(2.66)

=
N∑

n=1

pn

(
U(ξn)−

M∑
m=1

ηmqm
n

pn

ξn

)
+

M∑
m=1

ηmx, (2.67)

where (ξ1, . . . , ξN) ∈ dom(U)N , (η1, . . . , ηM) ∈ RM
+ . (2.68)

Writing y = η1 + . . . + ηM , µm = ηm

y
, µ = (µ1, . . . , µM) and

Qµ =
M∑

m=1

µmQm, (2.69)

note that, when (η1, . . . , ηM) runs trough RM
+ , the pairs (y,Qµ) run through R+ ×

Ma(S). Hence we may write the Lagrangian as

L(ξ1, . . . , ξN , y,Q) = = EP[U(XT )]− y (EQ[XT − x])

=
N∑

n=1

pn

(
U(ξn)− yqn

pn

ξn

)
+ yx, (2.70)

where ξn ∈ dom(U), y > 0, Q = (q1, . . . , qN) ∈Ma(S).
This expression is entirely analogous to (2.22), the only difference now being

that Q runs through the set Ma(S) instead of being a fixed probability measure.
Defining again

Φ(ξ1, . . . , ξn) = inf
y>0,Q∈Ma(S)

L(ξ1, . . . , ξN , y,Q), (2.71)

and
Ψ(y,Q) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y,Q), (2.72)

we obtain, just as in the complete case,

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN) = u(x), x ∈ dom(U), (2.73)

and

Ψ(y,Q) =
N∑

n=1

pnV

(
yqn

pn

)
+ yx, y > 0, Q ∈Ma(S), (2.74)
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where (q1, . . . , qN) denotes the probabilities of Q ∈Ma(S). The minimization of Ψ
will be done in two steps: first we fix y > 0 and minimize over Ma(S), i.e.,

Ψ(y) := inf
Q∈Ma(S)

Ψ(y,Q), y > 0. (2.75)

For fixed y > 0, the continuous function Q → Ψ(y,Q) attains its minimum on

the compact set Ma(S), and the minimizer Q̂(y) is unique by the strict convexity of

V . Writing Q̂(y) = (q̂1(y), . . . , q̂N(y)) for the minimizer, it follows from V ′(0) = −∞
that q̂n(y) > 0, for each n = 1, . . . , N ; Indeed, suppose that q̂n(y) = 0, for some
1 ≤ n ≤ N and fix any equivalent martingale measure Q ∈ Me(S). Letting

Qε = εQ+(1−ε)Q̂ we have that Qε ∈Me(S), for 0 < ε < 1, and Ψ(y,Qε) < Ψ(y, Q̂)

for ε > 0 sufficiently small, a contradiction. In other words, Q̂(y) is an equivalent
martingale measure for S.

Defining the dual value function v(y) by

v(y) = inf
Q∈Ma(S)

N∑
n=1

pnV

(
y
qn

pn

)
(2.76)

=
N∑

n=1

pnV

(
y
q̂n(y)

pn

)
(2.77)

we find ourselves in an analogous situation as in the complete case above: defining
again ŷ(x) by v′(ŷ(x)) = −x and

ξ̂n = I

(
ŷ(x)

q̂n(y)

pn

)
, (2.78)

similar arguments as above apply to show that (ξ̂1, . . . , ξ̂N , ŷ(x), Q̂(y)) is the unique
saddle-point of the Lagrangian (2.70) and that the value functions u and v are
conjugate.

Let us summarize what we have found in the incomplete case:

Theorem 2.18 (finite Ω, incomplete market) Let the financial market S =
(St)

T
t=0 defined over the finite filtered probability space (Ω,F , (F)T

t=0,P) and let
Me(S) 6= ∅, and the utility function U satisfies Assumptions 1.2.

Denote by u(x) and v(y) the value functions

u(x) = supXT∈C(x) E[U(XT )], x ∈ dom(U), (2.79)

v(y) = infQ∈Ma(S) E
[
V
(
y dQ

dP

)]
, y > 0. (2.80)

We then have:
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(i) The value functions u(x) and v(y) are conjugate and u shares the qualitative
properties of U listed in Assumption 1.2.

(ii) The optimizers X̂T (x) and Q̂(y) in (2.79) and (2.80) exist, are unique, Q̂(y) ∈
Me(S), and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)

dP
= U ′(X̂T (x)), (2.81)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).

(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(2.82)

xu′(x) = EP[X̂T (x)U ′(X̂T (x))], yv′(y) = EP

[
y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)]
.(2.83)

Remark 2.19 Let us again interpret the formulae (2.82), (2.83) for u′(x) similarly
as in Remark 2.17 above. In fact, the interpretations of these formulae as well as
their derivations remain in the incomplete case exactly the same.

But a new and interesting phenomenon arises when we pass to the variation of
the optimal pay-off function X̂T (x) by a small unit of an arbitrary pay-off function
f ∈ L∞(Ω,F ,P). Similarly as in (2.60) we have the formula

EQ̂(y)[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]

h
, (2.84)

the only difference being that Q has been replaced by Q̂(y) (recall that x and y are
related via u′(x) = y).

The remarkable feature of this formula is that it does not only pertain to varia-
tions of the form f = x + (H ·S)T , i.e, contingent claims attainable at price x, but
to arbitrary contingent claims f , for which — in general — we cannot derive the
price from no arbitrage considerations.

The economic interpretation of formula (2.84) is the following: the pricing rule
f 7→ EQ̂(y)[f ] yields precisely those prices, at which an economic agent with initial
endowment x, utility function U and investing optimally, is indifferent of first order
towards adding a (small) unit of the contingent claim f to her portfolio X̂T (x).

In fact, one may turn the view around, and this was done by M. Davis [D 97]

(compare also the work of L. Foldes [F 90]): one may define Q̂(y) by (2.84), verify
that this indeed is an equivalent martingale measure for S, and interpret this pric-
ing rule as “pricing by marginal utility”, which is, of course, a classical and basic
paradigm in economics.
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Let us give a proof for (2.84) (under the hypotheses of Theorem 2.18). One
possible strategy of proof, which also has the advantage of a nice economic interpre-
tation, is the idea of introducing “fictitious securities” as developed in [KLSX91]:
fix x ∈ dom(U) and y = u′(x) and let (f 1, . . . , fk) be finitely many elements of
L∞(Ω,F ,P) such that the space K = {(H ·S)T : H ∈ H}, the constant function 1,
and (f 1, . . . , fk) linearly span L∞(Ω,F ,P). Define the k processes

Sd+j
t = EQ̂(y)[f

j|Ft], j = 1, . . . , k, t = 0, . . . , T. (2.85)

Now extend the Rd+1-valued process S = (S0, S1, . . . , Sd) to the Rd+k+1-valued
process S = (S0, S1, . . . , Sd, Sd+1, . . . , Sd+k) by adding these new coordinates. By

(2.85) we still have that S is a martingale under Q̂(y), which now is the unique
probability under which S is a martingale, by our choice of (f 1, . . . , fk) and Corollary
2.12.

Hence we find ourselves in the situation of Theorem 2.16. By comparing (2.50)

and (2.81) we observe that the optimal pay-off function X̂T (x) has not changed.
Economically speaking this means that in the “completed” market S the optimal
investment may still be achieved by trading only in the first d+1 assets and without
touching the “fictitious” securities Sd+1, . . . , Sd+k.

In particular, we now may apply formula (2.60) to Q = Q̂(y) to obtain (2.84).

Finally we remark that the pricing rule induced by Q̂(y) is precisely such that the

interpretation of the optimal investment X̂T (x) defined in (2.81) (given in Remark
2.17 in terms of marginal utility and the ratio of Arrow prices q̂n(y) and probabilities
pn) carries over to the present incomplete setting. The above completion of the
market by introducing “fictious securities” allows for an economic interpretation of
this fact.
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Chapter 3

The general case

In the previous chapter we have analyzed the duality theory of the utility maxi-
mization problem in detail and with full proofs, for the case when the underlying
probability space is finite.

We now pass to the question under which conditions the crucial features of the
above Theorem 2.18 carry over to the general setting. In particular one is naturally
led to ask: under which conditions

• are the optimizers X̂T (x) and Q̂(y) of the value functions u(x) and v(y) at-
tained?

• does the basic duality formula

U ′
(
X̂T (x)

)
= ŷ(x)

dQ̂(ŷ(x))

dP
(3.1)

or, equivalently

X̂T (x) = I

(
ŷ(x)

dQ̂(ŷ(x))

dP

)
(3.2)

hold true?

• are the value functions u(x) and v(y) conjugate?

• does the value function u(x) still inherit the qualitative properties of U listed
in Assumption 1.2?

• do the formulae for u′(x) and v′(y) still hold true?

We shall see that we get affirmative answers to these questions under two provisos:
firstly, one has to make an appropriate choice of the sets in which XT and Q are
allowed to vary. This choice will be different for case 1, where dom(U) = R+, and

25
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case 2, where dom(U) = R. Secondly, the utility function U has to satisfy — in
addition to Assumption 1.2 — a mild regularity condition, namely the property of
“reasonable asymptotic elasticity”.

3.1 The reasonable asymptotic elasticity condi-

tion

The essential message of the theorems below is that, assuming that U has “reasonable
asymptotic elasticity”, the duality theory works just as well as in the case of finite
Ω. On the other hand, we shall see that we do not have to impose any regularity
conditions on the underlying stochastic process S, except for its arbitrage-freeness in
the sense made precise by Assumption 1.1. We shall also see that the assumption of
reasonable asymptotic elasticity on the utility function U cannot be relaxed, even if
we impose very strong assumptions on the process S (e.g., having continuous paths
and defining a complete financial market), as we shall see below.

Before passing to the positive results we first analyze the notion of “reasonable
asymptotic elasticity” and sketch the announced counterexample.

Definition 3.1 A utility function U satisfying Assumption 1.2 is said to have “rea-
sonable asymptotic elasticity” if

AE+∞(U) = lim sup
x→∞

xU ′(x)

U(x)
< 1, (3.3)

and, in case 2 of Assumption 1.2, we also have

AE−∞(U) = lim inf
x→−∞

xU ′(x)

U(x)
> 1. (3.4)

We recall the following lemma from [KS99, Lemma 6.1], from which it follows
that, for any concave function U such that the right hand side makes sense, we
always have that AE+∞(U) ≤ 1. Note that, the asymptotic elasticity assumption
requires that the strict inequality holds.

Lemma 3.2 For a strictly concave, increasing, real-valued differentiable function
U the asymptotic elasticity AE(U) is well-defined and, depending on U(∞) =
limx→∞ U(x), takes its values in the following sets:

(i) For U(∞) = ∞ we have AE(U) ∈ [0, 1],

(ii) For 0 < U(∞) < ∞ we have AE(U) = 0,

(iii) For −∞ < U(∞) ≤ 0 we have AE(U) ∈ [−∞, 0].
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Proof (i) Using the monotonicity and positivity of U ′ we may estimate

0 ≤ xU ′(x) =(x− 1)U ′(x) + U ′(x)

≤[U(x)− U(1)] + U ′(1)

hence, in the case U(∞) = ∞,

0 ≤ lim sup
x→∞

xU ′(x)

U(x)
≤ lim sup

x→∞

U(x)− U(1) + U ′(1)

U(x)
= 1.

(ii) For each x0 > 0 we have

lim sup
x→∞

xU ′(x) = lim sup
x→∞

(x− x0)U
′(x)

≤ lim sup
x→∞

(U(x)− U(x0)).

If U(∞) < ∞ we may choose x0 such that the right hand side becomes arbitrary
small.

(iii) We infer from U(∞) ≤ 0 that U(x) < 0, for x ∈ R+, so that xU ′(x)
U(x)

< 0, for
all x ∈ R+.

Example 3.3

• For U(x) = log x, we have AE+∞(U) = 0.

• For U(x) = xα

α
, we have AE+∞(U) = α, for α ∈ (−∞, 1) \ {0}.

• For U(x) = x
log x

for x ≥ x0, we have AE+∞(U) = 1.

The asymptotic elasticity compares as follows with other conditions used in the
literature [KLSX 91]:

Lemma 3.4 Let U be a utility function, and consider the following conditions:

i) There exists x0 > 0, α < 1, β > 1 such that U ′(βx) < αU ′(x) for all x ≥ x0.

ii) AE+∞(U) < 1

iii) There exist k1, k2 and γ < 1 such that U(x) ≤ k1 + k2x
γ for all x ≥ 0.

Then we have that i) ⇒ ii) ⇒ iii). The reverse implications do not hold true in
general.
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Proof (i) ⇒ (ii) Assume (i) and let a = αβ and b = 1
α

> 1 and estimate, for
x > ax0:

U(bx) =U(βx0) +

∫ bx

βx0

U ′(t)dt (3.5)

=U(βx0) + β

∫ x/a

x0

U ′(βt)dt (3.6)

≤U(βx0) + αβ

∫ x/a

x0

U ′(t)dt (3.7)

=U(βx0) + aU(
x

a
)− aU(x0). (3.8)

It follows that criterion (ii) of corollary 6.1 in [KS99] is satisfied, hence AE(U) <
1.

(ii) ⇒ (iii) is immediate from assertion (i) of lemma 6.3 in [KS99].
(ii) ; (i): For n ∈ N, let xn = 22n

and define the function U(x) by letting
U(xn) = 1− 1

n
and to be linear on the intervals [xn−1, xn]; (for 0 < x ≤ x1 continue

U(x) in an arbitrary way, so that U satisfies (2.4)).
Clearly U(x) fails (i) as for any β > 1 there are arbitrary large x ∈ R with

U ′(βx) = U ′(x). On the other hand, we have U(∞) = 1 so that AE(U) = 0 by

Lemma 3.2. Finally, note that in this counterexample the limit limx→∞
xU ′(x)
U(x)

exists
and equals zero.

The attentive reader might object that U(x) is neither strictly concave nor differ-
entiable. But it is obvious that one can slightly change the function to “smooth out”
the kinks and to “strictly concavify” the straight lines so that the above conclusion
still holds true.

(iii) ; (ii): Let again xn = 22n
and consider the utility function Ũ(x) = x1/2.

Define U(x) by letting U(xn) = Ũ(xn), for n = 0, 1, 2... and to be linear on the
intervals [xn, xn+1]; (for 0 < x ≤ x1 again continue U(x) in an arbitrary way, so that
U satisfies (2.4)).

Clearly U(x) satisfies condition (iii) as U is dominated by Ũ(x) = x1/2.
To show that AE(U) = 1 let x ∈]xn−1, xn[ and calculate the marginal utility U ′

at x:

U ′(x) =
U(xn)− U(xn−1)

xn − xn−1

=
22n−1 − 22n−2

22n − 22n−1 =
22n−1

(1− 2−2n−2
)

22n(1− 2−2n−1)
= 2−2n−1

(1 + o(1)).

On the other hand we calculate the average utility at x = xn:

U(xn)

xn

=
22n−1

22n = 2−2n−1

.
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Hence

AE+∞(U) = lim sup
x→∞

xU ′(x)

U(x)
= 1.

As regards the lack of smoothness and strict concavity of U a similar remark
applies as in (ii) ; (i) above.

Let us discuss the economic meaning of the notion of reasonable asymptotic
elasticity: as H.-U. Gerber ponted out to us, the quantity xU ′(x)

U(x)
is the elasticity

of the function U at x. We are interested in its asymptotic behaviour. It easily
follows from Assumption 1.2 that the limits in (3.3) and (3.4) are less (resp. bigger)

than or equal to one (compare Lemma 3.2). What does it mean that xU ′(x)
U(x)

tends

to one, for x →∞? It means that the ratio between the marginal utility U ′(x) and

the average utility U(x)
x

tends to one. A typical example is a function U(x) which
equals x

ln(x)
, for x large enough; note however, that in this example Assumption 1.2

is not violated insofar as the marginal utility still decreases to zero for x →∞, i.e.,
limx→∞ U ′(x) = 0.

If the marginal utility U ′(x) is approximately equal to the average utility U(x)
x

for large x, this means that for an economic agent, modeled by the utility function
U , the increase in utility by varying wealth from x to x + 1, when x is large, is
approximately equal to the average of the increase of utility by changing wealth
from n to n + 1, where n runs through 1, 2, . . . , x− 1 (we assume in this argument
that x is a large natural number and, w.l.o.g., that U(1) ≈ 0). We feel that the
economic intuition behind decreasing marginal utility suggests that, for large x,
the marginal utility U ′(x) should be substantially smaller than the average utility
U(x)

x
. Therefore we have denoted a utility function, where the ratio of U ′(x) and

U(x)
x

becomes arbitrarily close to one if x tends either to +∞ or −∞, as being
“unreasonable”.

P. Guasoni observed, that there is a close connection between the asymptotic
behaviour of the elasticity of U , and the asymptotic behaviour of the relative risk
aversion associated to U . Recall (see, e.g., [HL88]) that the relative risk aversion of
an agent with endowment x, whose preferences are described by the utility function
U , equals

RRA(U)(x) = −xU ′′(x)

U ′(x)
. (3.9)

A formal application of de l’Hôpital’s rule yields

lim
x→∞

xU ′(x)

U(x)
= lim

x→∞

U ′(x) + xU ′′(x)

U ′(x)
= 1− lim

x→∞

(
−xU ′′(x)

U ′(x)

)
(3.10)

which insinuates that the asymptotic elasticity of U is less than one iff the “asymp-
totic relative risk aversion” is strictly positive.
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Turning the above formal argument into a precise statement, one easily proves
the following result: if limx→∞(−xU ′′(x)

U ′(x)
) exists, then limx→∞

xU ′(x)
U(x)

exists too, and

the former is strictly positive iff the latter is less than one (for details see [S 04a]).
Hence “essentially” these two concepts coincide.

On the other hand, in general (i.e. without assuming that the above limit exists),

there is no way to characterize the condition lim supx→∞
xU ′(x)
U(x)

< 1 in terms of the

asymptotic behaviour of −xU ′′(x)
U ′(x)

, as x →∞.

3.2 Existence Theorems

Let us now move to the positive results in the spirit of Theorem 2.16 and Theorem
2.18 above. We first consider the case where U satisfies case 1 of Assumption 1.2,
which was studied in [KS 99].

Case 1: dom(U) = R+.
The heart of the argument in the proof of Theorem 2.18 (which we now want

to extend to the general case) is to find a saddlepoint for the Lagrangian. In more
general situations we have to apply the minimax theorem, which is crucial in the
theory of Lagrange multipliers. We want to extend the applicability of the minimax
theorem to the present situation. The infinite-dimensional versions of the minimax
theorem available in the literature (see, e.g, [ET76] or [St 85]) are along the following
lines: Let 〈E, F 〉 be a pair of locally convex vector spaces in separating duality, C ⊆
E, D ⊆ F a pair of convex subsets, and L(x, y) a function defined on C×D, concave
in the first and convex in the second variable, having some (semi-)continuity property
compatible with the topologies of E and F (which in turn should be compatible with
the duality between E and F ). If (at least) one of the sets C and D is compact
and the other is complete, then one may assert the existence of a saddle point
(ξ̂, η̂) ∈ C ×D such that

L(ξ̂, η̂) = sup
ξ∈C

inf
η∈D

L(ξ, η) = inf
η∈D

sup
ξ∈C

L(ξ, η). (3.11)

We try to apply this theorem to the analogue of the Lagrangian encountered in
the proof of Theorem 2.18 above. Fixing x > 0 and y > 0 let us formally write the
Lagrangian (2.70) in the infinite-dimensional setting,

Lx,y(XT ,Q) = EP[U(XT )]− y(EQ[XT − x]) (3.12)

= EP

[
U(XT )− y dQ

dP
XT

]
+ yx, (3.13)

where XT runs through “all” non-negative FT -measurable functions and Q through
the set Ma(S) of absolutely continuous local martingale measures.
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To restrict the set of “all” nonnegative functions to a more amenable one, note
that infy>0,Q∈Ma(S) Lx,y(XT ,Q) > −∞ iff

EQ[XT ] ≤ x, for all Q ∈Ma(S). (3.14)

Using the basic result on the super-replicability of the contingent claim XT (see
[KQ95], [J 92], [AS 94], [DS 94], and [DS 98]), we have — as encountered in Theorem
2.11 for the finite dimensional case — that a non-negative FT -measurable random
variable XT satisfies (3.14) iff there is an admissible trading strategy H such that

XT ≤ x + (H ·S)T . (3.15)

Hence let

C(x) =
{
XT ∈ L0

+(Ω,FT ,P) :

XT ≤ x + (H ·S)T , for some admissible H} (3.16)

=
{
XT ∈ L0

+(Ω,FT ,P) :

EQ[XT ] ≤ x, for all Q ∈Ma(S)} (3.17)

and simply write C for C(1) (observe that C(x) = xC).
We thus have found a natural set C(x) in which XT should vary when we are

mini-maxing the Lagrangian Lx,y. Dually, the set Ma(S) seems to be the natural
domain where the measure Q is allowed to vary (in fact, we shall see later, that this
set still has to be slightly enlarged). But what are the locally convex vector spaces
E and F in separating duality into which C and Ma(S) are naturally embedded?
As regards Ma(S) the natural choice seems to be L1(P) (by identifying a measure
Q ∈ Ma(S) with its Radon-Nikodym derivative dQ

dP
); note that Ma(S) is a closed

subset of L1(P), which is good news. On the other hand, there is no reason for C
to be contained in L∞(P), or even in Lp(P), for any p > 0; the natural space in
which C is embedded is just L0(Ω,FT ,P), the space of all real-valued FT -measurable
functions endowed with the topology of convergence in probability.

The situation now seems hopeless (if we don’t want to impose artificial P-
integrability assumptions on XT and/or dQ

dP
), as L0(P) and L1(P) are not in any

reasonable duality; in fact, L0(P) is not even a locally convex space, hence there
seems to be no hope for a good duality theory, which could serve as a basis for
the application of the minimax theorem. But the good news is that the sets C
and Ma(S) are in the positive orthant of L0(P) and L1(P) respectively; the crucial
observation is, that for f ∈ L0

+(P) and g ∈ L1
+(P), it is possible to well-define

〈f, g〉 := EP[fg] ∈ [0,∞]. (3.18)

The spirit here is similar as in the very foundation of Lebesgue integration theory:
For positive measurable functions the integral is always well-defined, but possibly
+∞. This does not cause any logical inconsistency.
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Similarly the bracket 〈 . , . 〉 defined in (3.18) shares many of the usual properties
of a scalar product. The difference is that 〈f, g〉 now may assume the value +∞ and
that the map (f, g) 7→ 〈f, g〉 is not continuous on L0

+(P) × L1
+(P), but only lower

semi-continuous (this immediately follows from Fatou’s lemma).
At this stage it becomes clear that the role of L1

+(P) is somewhat artificial, and
it is more natural to define (3.18) in the general setting where f and g are both
allowed to vary in L0

+(P). The pleasant feature of the space L0(P) in the context
of Mathematical Finance is, that it is invariant under the passage to an equivalent
measure Q, a property only shared by L∞(P), but by no other Lp(P), for 0 < p < ∞.

We now can turn to the polar relation between the sets C and Ma(S). By (3.15)
we have, for an element XT ∈ L0

+(Ω,F ,P),

XT ∈ C ⇐⇒ EQ[XT ] = EP[XT
dQ
dP

] ≤ 1, for Q ∈Ma(S). (3.19)

Denote by D the closed, convex, solid hull of Ma(S) in L0
+(P). It is easy to

show (using, e.g., Lemma 3.5 below), that D equals

D = {YT ∈ L0
+(Ω,FT ,P) : there is

(Qn)∞n=1 ∈Ma(S) s.t. YT ≤ lim
n→∞

dQn

dP
}, (3.20)

where the limn→∞
dQn

dP
is understood in the sense of almost sure convergence. We

have used the letter YT for the elements of D to stress the dual relation to the
elements XT in C. In further analogy we write, for y > 0, D(y) for yD, so that
D = D(1). By (3.20) and Fatou’s lemma we again find that, for XT ∈ L0

+(Ω,F ,P)

XT ∈ C ⇐⇒ EP[XT YT ] ≤ 1, for YT ∈ D. (3.21)

Why did we pass to this enlargement D of the set Ma(S)? The reason is that
we now obtain a more symmetric relation between C and D: for YT ∈ L0

+(Ω,F ,P)
we have

YT ∈ D ⇐⇒ EP[XT YT ] ≤ 1, for XT ∈ C. (3.22)

The proof of (3.22) relies on an adaption of the “bipolar theorem” from the theory
of locally convex spaces (see, e.g., [S 66]) to the present duality 〈L0

+(P), L0
+(P)〉,

which was worked out in [BS 99].
Why is it important to define the enlargement D of Ma(S) in such a way that

(3.22) holds true? After all, Ma(S) is a nice, convex, closed (w.r.t. the norm of
L1(P)) set and one may prove that, for g ∈ L1(P) such that EP[g] = 1,

g ∈Ma(S) ⇐⇒ EP[XT g] ≤ 1, for XT ∈ C. (3.23)

The reason is that, in general, the saddle point (X̂T , Q̂) of the Lagrangian will

not be such that Q̂ is a probability measure; it will only satisfy E
[

dQ̂
dP

]
≤ 1, the
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inequality possibly being strict. But it will turn out that Q̂, which we identify with
dQ̂
dP

, is always in D. In fact, the passage from Ma(S) to D is the crucial feature in
order to make the duality work in the present setting: even for nice utility functions
U , such as the logarithm, and for nice processes, such as a continuous process
(St)0≤t≤T based on the filtration of two Brownian motions, the above described
phenomenon can occur: the saddle point of the Lagrangian leads out of Ma(S).

The set D can be characterized in several equivalent manners. We have defined D
above in the abstract way as the convex, closed, solid hull of Ma(S) and mentioned
the description (3.20). Equivalently, one may define D as the set of random variables
YT ∈ L0

+(Ω,F ,P) such that there is a process (Yt)0≤t≤T starting at Y0 = 1 with
(YtXt)0≤t≤T a P-supermartingale, for every non-negative process (Xt)0≤t≤T = (x +
(H ·S)t)0≤t≤T , where x > 0 and H is predictable and S-integrable. This definition
was used in [KS 99]. Another equivalent characterization was used in [CSW01]:
Consider the convex, solid hull of Ma(S), and embed this subset of L1(P) into the
bidual L1(P)∗∗ = L∞(P)∗; denote by Ma(S) the weak-star closure of the convex
solid hull of Ma(S) in L∞(P)∗. Each element of Ma(S) may be decomposed into
its regular part µr ∈ L1(P) and its purely singular part µs ∈ L∞(P)∗. It turns out
that D equals the set {µr ∈ L1(P) : µ ∈Ma(S)}, i.e. consists of the regular parts of
the elements of Ma(S). This description has the advantage that we may associate
to the elements µr ∈ D a singular part µs, and it is this extra information which is
crucial when extending the present results to the case of random endowment as in
[CSW01]. Compare also [HK02], where the case of random endowment is analyzed
in full generality without using the space L∞(P)∗.

Why are the sets C and D hopeful candidates for the minimax theorem to work
out properly for a function L defined on C×D? Both are closed, convex and bounded
subsets of L0

+(P). But recall that we still need some compactness property to be able
to localize the mini-maximizers (resp. maxi-minimizers) on C (resp. D). In general,
neither C nor D is compact (w.r.t. the topology of convergence in measure), i.e.,
for a sequence (fn)∞n=1 in C (resp. (gn)∞n=1 in D) we cannot pass to a subsequence
converging in measure. But C and D have a property which is close to compactness
and in many applications turns out to serve just as well.

Lemma 3.5 Let A be a closed, convex, bounded subset of L0
+(Ω,F ,P). Then for

each sequence (hn)∞n=1 ∈ A there exists a sequence of convex combinations kn ∈
conv(hn, hn+1, . . .) which converges almost surely to a function k ∈ A.

This easy lemma (see, e.g., [DS 94, Lemma A.1.1], for a proof) is in the spirit
of the celebrated theorem of Komlos [Kom 67], stating that for a bounded sequence
(hn)∞n=1 in L1(P) there is a subsequence converging in Cesaro-mean almost surely.
The methodology of finding pointwise limits by using convex combinations has
turned out to be extremely useful as a surrogate for compactness. For an extensive



34 CHAPTER 3. THE GENERAL CASE

discussion of more refined versions of the above lemma and their applications to
Mathematical Finance we refer to [DS 99].

The application of the above lemma is the following: by passing to convex com-
binations of optimizing sequences (fn)∞n=1 in C (resp. (gn)∞n=1 in D), we can always
find limits f ∈ C (resp. g ∈ D) w.r.t. almost sure convergence. Note that the pas-
sage to convex combinations does not cost more than passing to a subsequence in
the application to convex optimization.

We have now given sufficient motivation to state the central result of [KS 99],
which is the generalization of Theorem 2.18 to the semi-martingale setting under
Assumption 1.2, case 1, and having reasonable asymptotic elasticity.

Theorem 3.6 ([KS 99], Theorem 2.2) Let the semi-martingale S = (St)0≤t≤T

and the utility function U satisfy Assumptions 1.1, 1.2 case 1 and 1.3; suppose in
addition that U has reasonable asymptotic elasticity. Define

u(x) = sup
XT∈C(x)

E[U(XT )], v(y) = inf
YT∈D(y)

E[V (YT )]. (3.24)

Then we have:

(i) The value functions u(x) and v(y) are conjugate; they are continuously differ-
entiable, strictly concave (resp. convex) on ]0,∞[ and satisfy

u′(0) = −v′(0) = ∞, u′(∞) = v′(∞) = 0. (3.25)

(ii) The optimizers X̂T (x) and ŶT (y) in (3.24) exist, are unique and satisfy

X̂T (x) = I(ŶT (y)), ŶT (y) = U ′(X̂T (x)), (3.26)

where x > 0, y > 0 are related via u′(x) = y or equivalently x = −v′(y).

(iii) We have the following relations between u′, v′ and X̂T , ŶT respectively:

u′(x) = E
[

X̂T (x)U ′(X̂T (x))
x

]
, x > 0, v′(y) = E

[
ŶT (y)V ′(ŶT (y))

y

]
, y > 0. (3.27)

For the full proof of the theorem we refer to [KS 99].

How severe is the fact that the dual optimizer ŶT (1) may fail to be the density

of a probability measure (or that E[ŶT (y)] < y, for y > 0, which amounts to the
same thing)? In fact, in many respects it does not bother us at all: we still have
the basic duality relation between the primal and the dual optimizer displayed in
Theorem 3.6 (ii). Even more is true: using the terminology from [KS 99] the product
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(X̂t(x)Ŷt(y))0≤t≤T , where x and y satisfy u′(x) = y, is a uniformly integrable mar-
tingale. This fact can be interpreted in the following way: by taking the optimal
portfolio (X̂t(x))0≤t≤T as numéraire instead of the original cash account, the pric-

ing rule obtained from the dual optimizer ŶT (y) then is induced by an equivalent
martingale measure. We refer to ([KS 99], p. 912) for a thorough discussion of this
argument.

Finally we want to draw the attention of the reader to the fact that — comparing
item (iii) of Theorem 3.6 to the corresponding item of Theorem 2.18 — we only
asserted one pair of formulas for u′(x) and v′(y). The reason is that, in general, the
formulae (2.82) do not hold true any more, the reason again being precisely that

for the dual optimizer ŶT (y) we may have E[ŶT (y)] < y. Indeed, the validity of

u′(x) = E[U ′(X̂T (x))] is tantamount to the validity of y = E[ŶT (y)].

Case 2: dom(U) = R
We now pass to the case of a utility function U satisfying Assumption 1.2 case 2

which is defined and finitely valued on all of R. The reader should have in mind the
exponential utility U(x) = −e−γx, for γ > 0, as the typical example.

We want to obtain a result analogous to Theorem 3.6 also in this setting. Roughly
speaking, we get the same theorem, but the sets C and D considered above have to
be chosen in a somewhat different way, as the optimal portfolio X̂T now may assume
negative values too.

Firstly, we have to assume throughout the rest of this section that the semi-
martingale S is locally bounded. The case of non locally bounded processes is not
yet understood and waiting for future research.

Next we turn to the question; what is the proper definition of the set C(x) of
terminal values XT dominated by a random variable x + (H ·S)T , where H is an
“allowed” trading strategy? On the one hand we cannot be too liberal in the choice
of “allowed” trading strategies as we have to exclude doubling strategies and similar
schemes. We therefore maintain the definition of the value function u(x) unchanged

u(x) = sup
H∈H

E [U (x + (H ·S)T )] , x ∈ R, (3.28)

where we still confine H to run through the set H of admissible trading strategies,
i.e., such that the process ((H · S)t)0≤t≤T is uniformly bounded from below. This
notion makes good sense economically as it describes the strategies possible for an
agent having a finite credit line.

On the other hand, in general, we have no chance to find the minimizer Ĥ in
(3.28) within the set of admissible strategies: already in the classical cases studied
by Merton ([M69] and [M 71] where, in particular, the case of exponential utility is

solved for the Black-Scholes model) the optimal solution x+(Ĥ ·S)T to (3.28) is not
uniformly bounded from below; this random variable typically assumes low values
with very small probability, but its essential infimum typically is minus infinity.
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In [S 01] the following approach was used to cope with this difficulty: fix the
utility function U : R → R and first define the set Cb

U(x) to consist of all random
variables GT dominated by x+(H ·S)T , for some admissible trading strategy H and
such that E[U(GT )] makes sense:

Cb
U(x) =

{
GT ∈ L0(Ω,FT ,P) : there is H admissible s.t. (3.29)

GT ≤ x + (H ·S)T and E[|U(GT )|] < ∞} . (3.30)

Next we define CU(x) as the set of R∪ {+∞}-valued random variables XT such
that U(XT ) can be approximated by U(GT ) in the norm of L1(P), when GT runs
through Cb

U(x):

CU(x) =
{
XT ∈ L0(Ω,FT ,P; R ∪ {+∞}) : U(XT ) is in (3.31)

L1(P)-closure of {U(GT ) : GT ∈ Cb
U(x)}

}
. (3.32)

The optimization problem (3.28) now reads

u(x) = sup
XT∈CU (x)

E[U(XT )], x ∈ R. (3.33)

The set CU(x) was chosen in such a way that the value functions u(x) defined
in (3.28) and (3.33) coincide; but now we have much better chances to find the
maximizer to (3.33) in the set CU(x).

Two features of the definition of CU(x) merit some comment: firstly, we have
allowed XT ∈ CU(x) to attain the value +∞; indeed, in the case when U(∞) < ∞
(e.g., the case of exponential utility), this is natural, as the set {U(XT ) : XT ∈
CU(x)} should equal the L1(P)-closure of the set {U(GT ) : GT ∈ Cb

U(x)}. But we

shall see that — under appropriate assumptions — the optimizer X̂T , which we are
going to find in CU(x), will almost surely be finite.

Secondly, the elements XT of CU(x) are only random variables and, at this stage,
they are not related to a process of the form x + (H ·S). Of course, we finally want

to find for each XT ∈ CU(x), or at least for the optimizer X̂T , a predictable, S-
integrable process H having “allowable” properties (in order to exclude doubling
strategies) and such that XT ≤ x + (H · S)T . We shall prove later that — under
appropriate assumptions — this is possible and give a precise meaning to the word
“allowable”.

After having specified the proper domain CU(x) for the primal optimization
problem (3.33), we now pass to the question of finding the proper domain for the
dual optimization problem. Here we find a pleasant surprise: contrary to case 1
above, where we had to pass from the set Ma(S) to its closed, solid hull D, it turns
out that, in the present case 2, the dual optimizer always lies in Ma(S). This fact
was first proved by F. Bellini and M. Fritelli ([BF 02]).

We now can state the main result of [S 01]:
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Theorem 3.7 [S 01, Theorem 2.2] Let the locally bounded semi-martingale S =
(St)0≤t≤T and the utility function U satisfy Assumptions 1.1, 1.2 case 2 and 1.3;
suppose in addition that U has reasonable asymptotic elasticity. Define

u(x) = sup
XT∈CU (x)

E[U(XT )], v(y) = inf
Q∈Ma(S)

E
[
V
(
y dQ

dP

)]
. (3.34)

Then we have:

(i) The value functions u(x) and v(y) are conjugate; they are continuously differ-
entiable, strictly concave (resp. convex) on R (resp. on ]0,∞[) and satisfy

u′(−∞) = −v′(0) = v′(∞) = ∞, u′(∞) = 0. (3.35)

(ii) The optimizers X̂T (x) and Q̂(y) in (3.34) exist, are unique and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)

dP
= U ′(X̂T (x)), (3.36)

where x ∈ R and y > 0 are related via u′(x) = y or equivalently x = −v′(y).

(iii) We have the following relations between u′, v′ and X̂, Q̂ respectively:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(3.37)

xu′(x) = EP[X̂T (x)U ′(X̂T (x))], yv′(y) = EP

[
y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)]
.(3.38)

(iv) If Q̂(y) ∈ Me(S) and x = −v′(y), then X̂T (x) equals the terminal value of

a process of the form X̂t(x) = x + (H · S)t, where H is predictable and S-

integrable, and such that X̂ is a uniformly integrable martingale under Q̂(y).

We refer to [S 01] for a proof of this theorem and further related results. We
cannot go into the technicalities here, but a few comments on the proof of the above
theorem are in order: the technique is to reduce case 2 to case 1 by approximating
the utility function U : R → R by a sequence (U (n))∞n=1 of utility functions U (n) :
R → R ∪ {−∞} such that U (n) coincides with U on [−n,∞[ and equals −∞ on
]−∞,−(n + 1)]. For fixed initial endowment x ∈ R, we then apply Theorem 3.6 to

find for each U (n) the saddle-point (X̂
(n)
T (x), Ŷ

(n)
T (ŷn)) ∈ Cb

U(x) ×D(ŷn); finally we

show that this sequence converges to some (X̂T (x), ŷQ̂T ) ∈ CU(x)× ŷMa(S), which
then is shown to be the saddle-point for the present problem. The details of this
construction are rather technical and lengthy (see [S 01]).
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We have assumed in item (iv) that Q̂(y) is equivalent to P and left open the

case when Q̂(y) is only absolutely continuous to P. F. Bellini and M. Fritelli have
observed ([BF 02]) that, in the case U(∞) = ∞ (or, equivalently, V (0) = ∞), it

follows from (3.34) that Q̂(y) is equivalent to P. But there are also other important

cases where we can assert that Q̂(y) is equivalent to P: for example, for the case of
the exponential utility U(x) = −e−γx, in which case the dual optimization becomes

the problem of finding Q̂ ∈Ma(S) minimizing the relative entropy with respect P,
it follows from the work of Csiszar [C 75] (compare also [R 84], [F 00], [GR01]) that

the dual optimizer Q̂(y) is equivalent to P, provided only that there is at least one
Q ∈Me(S) with finite relative entropy.

Under the condition Q̂(y) ∈ Me(S), item (iv) tells us that the optimizer

X̂T ∈ CU(x) is almost surely finite and equals the terminal value of a process

x + (H ·S), which is a uniformly integrable martingale under Q̂(y); this property
qualifies H to be a “allowable”, as it certainly excludes doubling strategies and
related schemes. One may turn the point of view around and take this as the defini-
tion of the “allowable” trading strategies; this was done in [DGRSSS 02] for the case
of exponential utility, where this approach is thoroughly studied and some other
definitions of “allowable” trading strategies, over which the primal problem may
be optimized, are also investigated. Further results on these lines were obtained in
[KS 02] for the case of exponential utility, and in [S 03a] for general utility functions.
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change of numéraire. Stochastics and Stochastic Reports, Vol. 53, pp. 213–
226.

[DS 98] F. Delbaen, W. Schachermayer, (1998), The Fundamental Theorem of As-
set Pricing for Unbounded Stochastic Processes. Mathematische Annalen,
Vol. 312, pp. 215–250.



BIBLIOGRAPHY 41

[DS 98a] F. Delbaen, W. Schachermayer, (1998), A Simple Counter-example to Sev-
eral Problems in the Theory of Asset Pricing, which arises in many incom-
plete markets. Mathematical Finance, Vol. 8, pp. 1–12.

[DS 99] F. Delbaen, W. Schachermayer, (1999), A Compactness Principle for
Bounded Sequences of Martingales with Applications. Proceedings of the
Seminar of Stochastic Analysis, Random Fields and Applications, Progress
in Probability, Vol. 45, pp. 137–173.

[ET 76] I. Ekeland, R. Temam, (1976), Convex Analysis and Variational Problems.
North Holland.

[E 80] M. Emery, (1980), Compensation de processus à variation finie non locale-
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