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Abstract: We investigate some weakenings of the notion of
Radon-Nikodym property, such as the point of continuity
property [B-R], the property of (strong) regularity [(G-G-M]
and the weak-star Radon-Nikodym property [T] for operators
T from L1[O,1] to a Banach space X. We characterise
these classes of operators in terms of properties cf the
set M = T*(ball {X*)} in 17[0,1] similar to Grothendieck's
characterisation of Riesz-representable operators in terms
of equimeasurable subsets M of L”[0,1]. We also charac-
terise strong regularity in terms of a kind of multidimen-
sional dentability and show that a Banach space X is
strongly regular iff every operator from L1[O,T] to X

is strongly regular. Finally we show that regular operators
from L1[O,1] to X have a Pettis-derivative with values
in X** thus extending a theorem of N. Ghoussoub, G. Gode-

froy and B. Maurey.



Introduction: Some eight years ago J. Bourgain introduced

in the remarkable paper [B1] the notion of the "convex
point-of-continuity property" (CPCP) (under the name pro-
perty (*); in [R2] or [S6] one may find different presen-
tations of the content of [B1]). This concept - a weakening
of the Radon-Nikodym property - was the starting point of

a series of investigations trying (sucessfully) to obtain

a deeper understanding of the Radon-Nikodym property in
terms of geometrical and topological notions by J. Bourgain
and H.P. Rosenthal [B-R], G. Edgar and R. Wheeler [E-W]

and the papers of N. Ghoussoub and B. Maurey'(e.g. [G=-M]) .

J. Bourgain had observed in [B1] that a weakly relatively
open subset of a bounded, convex set contains a convex
combination of slices (lemma 1.2a below). This fact is fun-
damental for all the later development. N. Ghoussoub, G.
Godefroy and B. Maurey [G-G-M] used this lemma to develope
and elaborate the notions of strongly regular and regular

sets in a Banach space.

Parallel to this development new results about Pettis-
integrability and weak versions of the Radon-Nikodym pro-
perty were achieved (see the comprehensive memoir of M.
Talagrand [T] and the references and comments (p. 208 ff.)
given there): In particular, D.H. Fremlin [F] introduced
the notion of stable sets of functions and related it to
Pettis-integrability (under certain set-theoretical assump-

tions) .



Finally, these two directions of investigation were linked
by N. Ghoussoub, G. Godefroy and B. Maurey [G-G-M] who
proved - under some separability assumption - that a regu-
lar Banach space has the weak-star Radon-Nikodym property

as introduced in [T].

Here lies the starting point for the present paper which
builds mainly on [G-G-M] and [T]: We investigate systema-
tically the notions which became important in these investi-
gations in terms of operator T from L1[O,1] to X.

We also characterise the properties of these operators in
terms of the subsets M = T (ball (X)) of L”[0,1]. The
pattern for these results is the theorem of Grothendieck
that T is representable by a Bochner-derivative iff M

is equimeasurable (theorem 1.15 below). We get analogous
results for all the notions investigated here (theorem 3.4

and 6.5 bélow).

In chapter 1 we give the definitions and a review of re-
sults concerning the RNP such as a detailed discussion of
Grothendieck's theorem (1.15). We also obtain some general
results about the classes of operators between arbitrary
Banach spaces X and Y related to our notions; they will
not be needed for the subsequent results and may be skipped

at a first reading.

In chapter 2 we investigate the geometrical and topological



structure of the positive face F of the unit ball of
L1[O,1]. The remarkable properties of F (a kind of con-
verse to Bourgain's lemma 1.2a holds true for this set)

will be basic for the subsequent results.

In chapter 3 we show that the notions of "point of conti-
nuity", "convex point of continuity" and "strong regulari-
ty" coincide for operators from L1[O,1] to X and may

be characterised in terms of subsets of L[0,1] of "small

oscillation".

In chapter 4 we give a number of examples and remarks. In
particular, example 4.6 will be the source of motivation

for the results of chapter 5 and 7.

In chapter 5 we obtain one of the major results of the
paper: A Banach space X 1is strongly regular iff every
cperator T : L1[0,1] -» X 1is strongly regular (theorem
5.2) . For the proof we shall characterise strong regularity

as a kind of "multi-dimensional dentability" (lemma 5.1).

In chapter 6 we characterise "regular operators"

T 3 L1[O,1] » X in terms of subsets of L°[0,1] of "re-
gular oscillation". We also clarify that regularity corres-
ponds to a kind of weak-star to weak continuity just in

the same way as strong regularity corresponds to weak to

norm continuity.



In chapter 7 we relate the theory developped in the pre-
vious chapters to Fremlin's notion of stable sets and to

a condition due to J. Bourgain [B3]. In particular we re-
prove the theorem of N. Ghoussoub, G. Godefroy and B.
Maurey that a regular Banach space has the weak-star Radon-

Nikodym property (without separability assumptions) .

This paper owes much to many: In particular I want to thank
N. Ghoussoub for suggesting the notion of a regular opera-
tor and to F. Lust-Piquard, B. Maurey and G. Mokobodzki

for converéations on these topics during a stay in Paris

in November 1985. Thanks go also to J.B. Cooper, V. Losert,
H.P. Rosenthal, Ch. Stegall and A. Wessel for stimulating

discussions and suggestions.

We have not striven for maximal generality. For example we
have restricted us throughout the paper to the space
L1([O,1],m), m denoting Lebesgue-measure, as we feel this
space to be the natural framework to consider the Radon-
Nikodym property and related notions. However, all the
proofs carry over to spaces L1(p) where pup 1is any (not

purely atomic) probability measure.

There is a difference beéween our approach and that of [T]:
M. Talagrand presents the results of [T] in terms of sets
of measurable functions, i.e. subsets of Lm(u), while we
consider here sets of equivalence classes of functions, i.e.

subsets of L¥(p). As usual, we shall not distinguish bet-



ween a function and its equivalence class if there is no
danger of confusion; for example we shall write,for

g € .”[0,1] and A a measurable subset of [0,1], m(A) > O,
osc (glA) (1)

meaning the essential oscillation of £ over the - strictly
speaking - equivalence class of sets equalling A almost

everywhere.

However there will be situations, in particular in chapter
7, where we have to distinguish rather pedantically between

functions and their equivalence classes.
We shall write F for the positive face of L1[O,1], i.e.
F={feL'[0,1] : £20 and lfll = 1}

and for A < [0,1], m(A) > O

F.o={f € .'0,11 : £ 20 and lfll = I1£x I

A ik

With this notation one may give a more precise definition

of (1), namely for g € L”[0,1],
osc (glA) = sup {<f1—f2,g> : f1,f2 € FA}'

All Banach spaces will be over the reals and all operators

will be linear and continuous.

After writing up this paper we learned about the preprint of
A. Wessel [W], where some results similar to those of chapter

3 are obtained and related to non-Dunford-Pettis-operators.



1. The Radon-Nikodym property and related notions

We recall some definitions related to the Radon-Nikodym
property, which were introduced in the last years and seem
important for a deeper understanding of the topic. The
characterisation a) of the Radon-Nikodym property in terms
of diameters of slices essentially goes back to M.A. Rieffel

[R1]:

1.17. Definition:

a) A closed, convex, bounded subset C of a Banach space
X has the "Radon-Nikodym property" (RNP) if for every
subset D C and ¢ > O there is a slice S of D

of diameter less than ¢ (see, e.g., [D-U] or [B4]).

Recall that a slice of D 1is a set of the form

* *
S = S(x ;B) = {x €D 2 <x;Xx > > Mx*-ﬁ}
* * *
where B3 > 0, x € X , Ix Il = 1 and
*
M * = sup {<x,x > : x € DI}.

The diameter of a non-empty subset A of a Banach space

X 1is defined as

diam (A) = sup {lx-yll : x,y € A}.

b) (c.f. [B-R]) A weakly closed, bounded (not necessarily

convex) subset C < X 1is said to have the "Point-of-



d)

e)

Continuity-property" (PCP) if for every subset D < C

and ¢ > O there is a relatively weakly open subset

UcD with diam (U) < e¢.

(c.f. [B1], [E-W], [G-G-M] and [G-M-S]): A closed,
bounded, convex subset C < X 1is said to have the "con-

vex-Point-of-Continuity-property" (CPCP) if for every

convex subset D e C and ¢ > O there is a relatively

weakly open subset U < D with diam (U) < €.

(c.f. [B1] implicitely and [G-G-M] explicitely): A
closed, bounded, convex C < X 1is said to be strongly
regular (SR) if for every D < C and ¢ > O there are

slices S1""’Sn of D s.t.

1

diam (n (S1+...+Sn)) & B

H.P. Rosenthal [R2] proposed the name "small-combinations-

of-slices-property" (SCSP) for this concept.

(c.f. [G=-G-M]): A closed, convex, bounded C < X |is

* %%k * %%

called "regular" (R) if for ¢ > O and x € X

there is a slice S of C such that for S, the weak-

%* %
star-closure of S in X , we have
kk ~a
osc (x |S) < ¢
. . * %k L
where osc denotes the oscillation of x on S, i.e.
khkdk %* % % * % * % % * %
osc (x ,S) = sup {I<x 1Xq > <X Xy >
* % * %

Xq 1%, € St.



f) (c.f. [T] 7-1-7): A closed, bounded, convex C < X has

*
the "weak-star-Radon-Nikodym-property" (W _-RNP) if for

every operator
T : 1'0,1] - X

such that T(F) € C there is a Pettis-integrable (with
* % % i * %
respect to X (1)) function F : [0,1] = X repre-

senting T via the formula

ok ok k
<Tf,x > = [ £(t).<F(t),x >dt

[0,1]
1 * % % %%k J )
for £ € L'[0,1] and x € X . F denotes the posi-

tive face of the unit-ball of L1[O,1], i.e.

F=1(fer'o,1] : £20 and Il = 1}.

g) (c.f. [T] 7-2-3): A closed, convex, bounded C < X has

the "compact-range-property" (CRP) if for every operator

T 3 L1[O,1] - X

such that T(F) < C, £he operator T 1is Dunford-Pettis,

i.e. T{f : lIfll_ £ 1} is relatively compact in X.
[==]

1.2 Remark: This was a long list! But it seems unavoidable

to deal with these concepts if one wants to penetrate deeper

into the problems related with the concept of (RNP).

We have given the "local" definitions. A Banach space X
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has the properties (a) - (g) iff the unit-ball of X has

the corresponding property.

There is an increasing order of generality of the above

concepts:

(a) versus (b): It was shown in [B-R] that (RNP) = (PCP)

while (PCP) # (RNP).

(b) versus (c): (PCP) = (CPCP) 1is obvicus while

(CPCP) # (PCP) was shown in [G-M-S].

(c) versus (d): That (CPCP) = (SR) was shown in [B1] and
this crucial observation was the starting point for most of
the investigations we are dealing here with. Because of its
importance we shall state this lemma explicitely below (1.2a).

Whether (SR) = (CPCP) holds true seems to be open.

(d) versus (e): That (SR) = (R) was observed in [G-G-M]

while the wvalidity of the converse is open too.

(e) versus (f): It was proved - under some separability

*
assumption - in [G-G-M] that (R) = (W RNP), thus relating
the geometric concepts (a) - (e) to the work of Talagrand

[T] on the Pettis integral (see also theorem 7.9 below).

(£) versus (g): The memoir [T] contains a wealth of informa-
*
tion on (W RNP), (CRP) and related notions in particular,
*
it is shown that (W RNP) = (CRP) while the converse does

not hold true.
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1.2a Lemma ([B1], for a proof see [G-G-M], lemma II.1):

Let C be a convex, bounded subset of X and U a rela-
tively weakly open subset of C. Then there are slices

{81,...,Sn) in C such that

1.3 Extension of the above properties to operators: There

is an obvious extension of the above notions to operators;
it is chosen in such a way that a Banach space X has the
respective property iff the identity operator has this

property:

1.4 Definition: (A) A (continuous, linear) operator T

from a Banach space X to a Banach space Y 1is called an
(RNP) -operator if for every closed, convex, bounded C < X

and & > O there is a slice S of C such that

diam (T(S)) < €.

In an obvious way we define the notions (B) to (G) corres-
ponding for (b) to (g) above. For illustration we do this
for the notion of regularity:

(E): An operator T : X » Y is called regular (R) if for
every closed, convex, bounded C <« X and ¢ > O and

* %k * % %k .
vy | 'S there is a slice S of C such that

* % *
oly ,Y)
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1.5 Remark: This generalisation of the above properties of

spaces (or sets) to properties of operators is purely formal
and there is little interesting that we can tell in this

general setting.

Note, however, that there is no hope for any factorisation
result of the above properties: It has been shown in [G-J]
that there is an (RNP)-operator T £from a Banach lattice
X to ¢ such that every Banach space Y, through which
there is a factorisation of T contains Cqye Hence Y

fails (CRP), the most general of the conditions (a) - (h)

above.

Also note that the above properties define operator ideals
(c.f. [P]). In particular if T : X » Y and either X or
Y has one of the properties (a) - (g) above then T has

the corresponding property too.

The definition.of (RNP)-operators is usually given in terms
cf representation of operators from L1[O,1] (c.£. L[P], 24.2).
The subsequent proposition shows that our definition (A) is

equivalent.

1.6 Proposition: T : X - Y 1is an (RNP)-operator (as de-

fined above) iff for every continuous R : LT[O,TI -» X the
operator RT 1is representable by a Bochner-integrable

function (c.f. [D-U], III.Z2).



13

Proof: If RT is not representable, a routine exhaustion
argument implies (see, e.g. [S4]) that there is a subset
Ac [0,1] of positive measure and a > O such that for

every slice S of FA we have

diam (RT(S)) > a.

Hence C = T(F,) satisfies the assumption of definition

(A) above .

For the converse suppose there is C < X such that for each
slice S8 of C diam (T(S)) > 2a. We have to construct

an operator R : L1[O,1] -» X, which is done by construc-
ting a bush; this construction is routine by now (c.f.
[D-U]) hence we don't give the details but only the crucial

lemma (compare also the constructicn of proposition 1.11 and

theorem 5.2 below) :

1.7 Lemma: Let T : X - Y be an operator, C closed,

convex, bounded in X and « > O such that for every slice

s ©of C;
diam (T(S)) > 2a.

Given xo € C and ¢ > O there are x1,...,xn such that

1

%X =N (X.+...+X < ¢
[l x ( n)”X

1

and

HT(xO-xi)Ikz o, =T y%m0
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Proof: Let

U={xe€c: IT(x=x) Il <a}
and let

D = co (C~U).

If X € D then we clearly may find XqreeorX in C~NU

as in the assertion of the lemma and we are finished.

If Xq ¢ D then by the separation theorem there is a slice
* *
S of C, determined by some x € X , such that S < U.

However this would imply that
diam (T(S)) £ 2a,

a contradiction proving the lemma.

1.8 Remark: A word of warning seems necessary. If T : X = Y

is a (PCP)- (resp. (CPCP)- ) operator, C a closed, bounded

(resp. convex) subset of X and ¢ > O then:

C = {x € C : 3 a weak neighbourhood U of x s.t.

diam T(U N C) < &}

is a weakly open and weakly dense subset of C.

However, in this general setting we do not have any argument

to ensure that

n C8 9,
e>0
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i.e. that there are "points of continuity" x € C such
that T 1is weak-to-norm continuous at x. We do not
dispose of an example where the above intersection is

empty, but there seems no reason, why this should not
happen in general (see however theorem 3.4 below for the
case, where the domain space is L1[O,1]). Nevertheless we
believe, that the definition 1.4 above is the proper gene-
ralisation of the concepts of (PCP) and (CPCP) to operators,

although the names might be somewhat misleading.

For the case of (SR) however we do have a positive result

even in this general setting.

1.9 Definition ([R2], remark after 3.1): Let C be a

closed, convex, bounded subset of X and T : X - Y.

Following H.P. Rosenthal we call x € C an SCS-point under

T if, for ¢ > O there is a convex combination of slices

of C

such that x € W and diam (T(W)) < e.

1.10 Remark: The above notion is slightly stronger than the

related notion of "strongly regular points" ([G-G-M],III.1),

where one only requires that =x 1is in the closure of W.

The following result is a variation of a refinement, due to
R.P. Rosenthal, of a result of N. Ghoussoub, G. Godefroy and

B. Maurey.
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1.11 Proposition: Let T : X - Y be a strongly regular

operator and C a closed, convex, bounded subset of X.
The set of SCS-points of C wunder T is a convex, .-
dense subset of C.

For the proof we need a lemma:

1.12 Lemma: Under the assumption of 1.11 let X € C and

€ > 0. There are XqpeoorX € C and relative weak neigh-

bourhoods U1,...,Un in C such that

1

(1) Ik -n (x1+...+xn)llX < g

i = -1
(ii) diam Tl (T(n (U1+...+Un)) < €.

Proof: We shall show that we may choose the Ui above even

as slices of C.

Let C8 be the x € C such that there is a convex combi-

w1

nation W =n (S +...+Sn) of slices of C such that

1

x € W and diam (T(W)) < e¢. It follows easily from the
assumption that T is an (SR) operator that C5 is weakly
dense in C (see, e.g. the arguments given in [G-G-M]). It

is clear that Cs is convex, hence it is norm-dense in C.

The lemma is proved.

Proof of proposition 1.11: (the argument is a variation of

[R2], remark 3.8.2): Let x, €C and &6 > 0. We have to



show that there is an SCS

that HKO—EOH & G,

"approximate bush" starting at

associated "exact bush" w

We proceed by induction on

to find k and X

-point Eo

R
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of C under T

XOF

ill then be the desired EO.

n: For n

1 17° k1
hoods U1,...,Uk such that
1
. -1
(i) imo-k1 (x1+...+xk )1l < &6/2

(ii) diam (T(k;T(UT

For n = 2 find 61 > O such that, for i1 1,...,k1,
Es'(x:.L 6,) N CeU,
1 1
where g(xi ,61) denotes the closed ball of radius 61
1
around x. .
i
1
Let n, = min (61/2,6/4) and apply 1.12 to find k, € W
< 4 < i < i
and xi1’12 € Cyp 1 = i, s k1, 1 = i, s k2 and relative
weak neighbourhoods U, . such that
e
ko
. _az=1 i &
(i) Iki k2 . E X; 3 I < Nyqr 1 = i, s k1
1 12—1 1522
and k1 k2
(11)  diam (T((k,k,) ' £ = U, ) < 1/2
; ‘ ; .
i, =1 i, =1 1552
1 2
For the general step suppose k1,...,k e & i
n LyreeerX
si1,.-.,in and 01""’6n—1 constructed. Find o, > o}

such that

1

+.C.+U

k1))'} < 1/2.

such

We shall do this by constructing an

the origin of the

1 apply lemma 1.12

and relative weak neighbour-
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B ; s ,6n} ncec Ui

’ i€ i, £k,,;...
l1""'ln T " 1 1

...,1 £ 1 £ k
' n n

and let N, = min (6n/2,6 /4,...,6/2n+1) and apply 1.12

n-1
i < 3 <
to f£ind kn+1 € N and xi1’ "'in+1 €C, fToxr 1 & i, s k1;
< 3 < : :
wesang 1 S i41 8 kn+1 and relative weak neighbourhoods
U. i such that
11,..., n+1
kr1+‘|
(i) [Ix . . -k z X. . Il < n
i e pd n+1 . _ S R ¢ n
1 n ln+1“1 1 n+1
& §. % <
for 1 = i, s k1,...,1 s i s kn
-1 k1 kn+1
(ii) diam (T((k1...kn+1) g - z ) Ui B )) < 1/n.
11—1 ln+1_1 1 n+1

This finishes the inductive construction of the "approximate

bush". To get the "exact bush" let

_ ; -1
Eo = lim {k1,...,kn)

n-sco 3 1

and- for 1 :s i, = k1,...,1 <1 £k

1 P P
k k
-1 P+ n
€i , i = lim (kp+1"'kn) b _ z X, . i
1 P n- lp+1=1 1n=1 1 n

It follows from the construction that £,

i 3, €4y 4
1;.--’P

o ORI §
1 P
hence Eo is an SCS-point of C under T. The observation,

that on-€0H < 6 finishes the proof.
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1.13 Operators from L1[O,1] to Banach spaces X: After

these few general results about operators between Banach
spaces X and Y related to the properties studied here,
we now focus our attention to operatcrs from L1[0,1] to
X. For these operators we can prove much better results

than in the above general setting.

Note that an operator T : L1[O,1] -» X is (CRP) according
to our definition 1.2 iff T 4is Dunford-Pettis and in this

case we shall of course use the classical name.

We first deal with the characterisation of (RNP)-operators
in terms of equimeasurable sets. This fundamental idea is
due to A. Grothendieck [G]. Theorem 1.15 below is essential-
ly known (in fact: essentially due to A.Grothendieck),
although the characterisation 1.15 (ii) and its proof do

not seem to have been noticed before. We present this
theorem in some detail as it will be the pattern for our

further investigations.

1.14 Definition [G]: A bounded subset M of L7[0,1] is

called equimeasurable if, for ¢ > O, there is A < [0,1],

m(A) > 1-¢ such that the restriction

MIA = {g.XA : g € M}

is relatively |l.|l_-compact.



20

1.15 Theorem: Let T : L1[O,1] - X be a (continuous,

linear) operator. T.f.a.e.

* *
(1) T (ball (X )) is equimeasurable;
(ii) T is an (RNP)-operator (in the sense of defini-
tion 1.2);
(iii) T is representable, i.e. there is F : [0,1] » X

such that, for f € L1{0,1]

T(f) = Bochner - [ F(t).£(t)dm
[0;1]
(iv) For A < [0,1], m(A) > O and ¢ > O there is
a slice S of FA such that diam (T(S)) < ¢.
Proof:
(i) & (iii) is the wellknown equivalence due to Grothendieck

([G], see also [S4]).

(i) = (ii): We give a geometric proof using the classical
Krein-Milman theorem and the following - also classical -
fact: If K 1is convex, compact in a locally convex space

E and x_ is extreme in K then the slices containing
X form a relative neighbourhood base of X in K.

* *
Suppose first T (ball (X )) is compact in L [0, ls L&
T 4is a compact operator. For ¢ > O and a convex, bounded
(say lIcll = sup {Illfll : £ € C} = 1) subset C = X denote
~ . 1 * % 1 * % -
€ the closure of C in (L'[0,1] , o(L'[O,1] , L[O,1])).

* % P~
By Krein-Milman there is an extreme point X € C with
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+* % * % ‘] * % .
“XO [ > 1-¢e. As T : L [0,1] - X 1is weak-star to

norm continuous by the above remark there is a weak-star

slice S of C such that

* %
diam (T (S)) < e¢.

o ~ % % . ) .
as {x €€ : llx Il > 1-¢} 1is a relative weak-star neigh-

* % * % ~

bourhood of X € ¢ we may assume that for x € S we

* % ~
have |Ix |l > 1-¢. The slice S of C given by S =S NnC

satisfies diam (T(S)) < & thus proving (ii) in the compact

case.
*

Now assume only that M = T (ball (X*)) is equimeasurable

and let (An)n=1 be subsets of [0,1], m(An) - 1 such

that M restricted to A/ is compact in L”[0,1]. Given

C as above denote Cn the restriction of C to A and

n
note that
lim liC_Il = lim {Nf : Xp g ¢+ £ € EF = 1s
I1—co =<0 n

Let ng be such that HCn I > 1-¢. By the first part of

o
the proof, applied to
T| 'L1(A m| ) » X
A : n '"T'A
n o n
o o
we find a slice S = S(g,B) of Cn , with g in the unit
o
sphere of Lm(An ), such that
o

diam (TlA (S)) < ¢

n
o}
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and

f e€sS= \Ifli1 > M=
Considering g as an element of L.”([0,1]) - taking the
value O outside An - let

o

s' = 8'(g,B) {fec: <f,g> > Mg-B}

be the slice corresponding to S but taken in C. Clearly
S' @S + ¢ . ball (L1[0,1})

hence

diam (T(S')) < ¢ + 2¢lITll

which proves (ii).
(ii) = (iv): obvious.

(iv) = (i): We shall make use of the propositions 2.2 and

2.2a below.

Let ¢ >0 and n € N and apply 2.2, 2.2a and an exhaustion

argument to find disjoint compact subsets K?,...,K; such
n

that, for g€ M and 1 s j = m_,

osc (gIKE ) < n 1
n
and il
n
m( £ Y 5 (1 = a/2n).
j=1

We may assume that K? is the support of the restriction of

m to Kq.
J
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Let m

© n
K= n Uu K2,
n=1 j=1
which is a compact set of measure greater than 1-e. We

shall show that M restricted to K is relatively Il.Il_-

compact. For n € IN, let

e . L, JER VR ) .
6 = min {dist (Ki,Kj) : 1 £ 1 # 3 s kn}.

| < &6 , t and t lie

Note that for t,,t, € K, lt1—t

1772

in the same K? hence, for g € M,

1g(ty)=g(t,) | < n~ 7,

Here we have identified the restriction of the equivalence
class g to K with its (unique) continuous representant
on K. A glance at the Ascoli-Arzela theorem proves (i)

and therefore 1.15.

1.16 _Remark: I could not resist to give the "topological”

argument for (iv) = (i) above. This was meant as a little
"hommage & Grothendieck" and the french style of measure
theory. However, as the alert reader has noticed, the proof
may just as well be given in the abstract setting without
using compactness. In particular the above result has
nothing to do with the special topological structure of the

measure space ([0,1],m).
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2. The geometrical and topological structure of the
positive face of the unit ball of Ll[D,l]

We shall see in the next chapter that most of the properties
of operators from L1[O,1} to X we are here dealing with,
find their explanation in the geometrical properties of the
positive face F of L (e.g., the fact that the proper-
ties (PCP), (CPCP) and (SR) are equivalent for these opera-

tors). Hence we assemble in this section the necessary

technical tools.

2.1 Notation: Recall that F denotes the positive face of

the unit ball of L'[0,1] i.e.
F=1{fetrlo,1] : £20 and IlIElNl = 1}.
Given A ¢ [0,1], m(A) > O denote

Fo = (£€L'(0,1] : £20 and [EI = E.xyll = 13,

which is of course a closed, convex, bounded subset of

L1[0,1].

If B<c A, m(B) >0 and B > O denote

S = 8 (F,) = {f € FA : uf.xBn > 1=-B1}.

A

Note that Sy 8 is a slice (determined by xg € L*[o,11)
r

of FA and the family of these slices forms a fundamental

system of the slices of FA:
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2.2 Proposition: Let S be a slice of F Then there

G

is a compact K < A, p(K) > 0 and B > O such that

Proof: Suppose S 1is of the form
S =8 = {f € FA : £g; > > Mg—Y}

where g € L (0,115 Hglu =1, and 1 > y > O.
Mg = sup {<g,f> : f € FA}

is just the essential supremum of g on A.

Note that
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We may find a compact K < A, m(K) > O such that the
essential infimum of g over K 1is bigger than Mg-Y/B.

Let B = yv/3 and note that

SK!B & Sng
Indeed, for £ € SK 8 we have
l<£,g>1 2 | £(t).g(t)dtl - | [ £(t)g(t)dtl
K A~K

(A%

(Mg—Y/3) e (1-v/3) - v/3

(A%

2
M - 3y/3 + 9 > M - Y.
g Vi ) i 4 4 Y

The next easy proposition will be the pattern for the crucial

proposition 2.7:

2.2a Proposition: Let T : L1[0,1] -» X Dbe an operator,

Ac [0,1]1, m(A) > O, B> 0 and let S be the slice SA B
r

* .30
taken in F. Denoting M = T (ball X ) we have

sup {osc (glA) : g € M} £ diam T(S, ,) S

A,B

< sup {osc (glA) : g € M} + 4plITIl.

Proof: We have (by definition)

*
sup {osc (gla) : g € M} = sup {<T*x ,f1—f2>
£o€ Fo,ix Il s 1)

= diam (T(FA))'
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The inequalities now follow from

1
Fy © SA:B < F, + 28(ball (L [0,11)). D

2.3 Notation: We now turn our attention from slices to general

weak neighbourhoods.

First, let C be any closed, convex, bounded subset of
L1[0,1], P = {A1""'An) a partition of [0O,1] into sets

of strictly positive measure and ¢ 2 0. Define, for £ €@,

n
Up (£) = {gec: = If (f-g)am| £ ¢}
r €
i=1 Ai
and
o n
Up (f) = {gec: = If (f-g)dml < e}.
’ i=1 Ai

Clearly, for ¢ > O, the above sets are relative weak
neighbourhoods of f£ in C and, for ¢ = 0, the first
set is a closed, convex subset of C containing £f. It

is an exercise left to the reader to verify that UP,s(f)
forms a relative weak neighbourhocd base of £ in C,

when P runs through the finite partitions of [0,1] into

sets of positive measure and ¢ runs through ]0O,1].

If the closed, convex, bounded set C 1is just F we shall

write V 8(f) (resp. Vo 5(f)) for U

o
p P P,a(f) (resp. U a(f))‘

P,

Note that Vg 8(f) is a typical example of a convex combi-
I

nation of slices, namely

nmMg

X E
VP’S(f) - (f £dm) S,

1A 1’5/2‘
i

i
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It is instructive to verify directly this formula - which

will be a special case of proposition 2.5 below.

2.4 Proposition: For f € F and ¢ 2 O the following

formula holds true

Vo (£) = [V. _(£f) + e.pball (L'[0,11)1 n F (1)

P,O
Proof: If g + ¢h belongs to the right hand side, where

g € F, h € ball (L1[O,1]) then clearly

n
[ (f-(g+eh)dml = X |f ehdml < .

1 Ai i=1 Ai

M3

i

Conversely,given g € V 5(f)' define

P,

n
g, = I g.x5 (J fam/] gdm).
i=1 1a, A

Clearly, g, €V O(f) and

[ g s B v

llg-g, Il

J lg.xy (J fdm/[ gdm - 1) ldp =
i=1 A, iA

A,
1

|/ £fdm - [ gdml £ e.

1 A, A,
.5 i

I
=

i

2.5 Proposition (compare [S2], lemma 2.5): For f1,f2 € F

and A € ]O,1[ the following formula holds true

AVP,s(f1)+(1_A)VP,a(f2) = VP'S(AE1+(1-A)f2). (2)
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Proof: Suppose first ¢ = O. An element g, € F belongs

to VP,O(f1) iff
I (f1—g1)dm = Q. S G
By

From this remark it is obvious that an element kg1+(1~x)g2
of the left hand side of (2) belongs to the right hand side

too.

If g belongs to the right hand side of (2) then

n
g, = A7 I (g.xy )-(J £,dm/f gdm)
1=9 i A, A,
and
....1 n
g, = (1=0)7" I (g.xy ). () £,dn/[ gam)

i=1 i A, A,
4 i

furnishes the desired decomposition g = Ag1+(1—h)gz.

The case € > 0 now follows from 2.4.

2.6 Remark: Formula (2) shows a remarkable geometrical

property of F (which also holds true for each FA):

A convex combination of a finite number of relatively

weakly open subsets (in particular slices) of F is still

weakly open. Hence a converse of Bourgain's lemma (1.2a

above) holds true for F. This is the reason behind the

fact that the notions of (PCP), (CPCP) and (SR) operétors
1

coincide for operators from L to X as we shall see in

theorem 3.4 below.
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Note that in general a convex combination of slices need
not be relatively weakly open, as is shown by the following

very easy example: Let C be the unit ball of 2?

5, = x € e . (x,e,) > V374)
and
5, = {x € %+ (x,-e,) > V374).

Clearly for every x € 1/2(S1+82) we have |xIl £ v2/2

(this is a very rough estimate).

As any relatively weakly open subset U of C contains
an element of norm 1 we conclude that the relative weak
interior of 1/2(S1+82) in C 1is empty.

We can now prove the crucial result of this section:

2.7 Proposition: Let T : L1[O,1] -» X be an operator,

P = (A1,...,Ah) a partition of [0,1] into sets of posi-

tive measure and f € F. Then

n
diam (T(V, olf))) = sup L, Lz [( fdm).osc(T*x*]Ai)]}
’ x¥eball (X ) i=1 A,

where diam denotes the diameter with respect to the norm

of X.

Hence, for ¢ > O,
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n *
sup { £ [(J £dm).osc(T x*lAi)]} < diam (T (v, 5{f)))
Ix*|ls1 i=1 A, c
i
n * *
< sup { £ [(J f£dm).osc(T x IAi)]} + 2¢e. Tl
Ix*|I€1 i=1 A,
i
Proof: Clearly
diam (T{VP,O(f))) = sup {HT(g1-g2)H : 9419, € VP,O(f)}

! * *
= sup {l<g,-g,,T x >l : g,,9, € V £E) b
Il * |15 1 172 g = e

Hence the first formula follows immediately from the obser-
vation, that for any set A with m(A) > O and f € Lm(m)

osc (f|A) = sup {<g1-g2,f> : gq4/9, € FA}.

Finally, the last inequality follows immediately from pro-

position 2.4.
a



31

3, Sets of small oscillation and strongly regular operators

3.1 Definition: A subset M of Lm[0,1] is a set of small

osciallation (SO) if, for ¢ > O, there is a finite parti-

tion P = (A1,...,An) of [0,1] into sets of positive

measure s.t., for g € M,

nmm™M3

m(Ai).osc (glAi) < &.

i=1

It is an easy and instructive exercise to verify that an
equimeasurable set is (SO). Theorem 3.4 below shows that
(PCP)~-, (CPCP)- and (SR)-operators correspond to (SO)-sets
in the same way as (RNP)-operators correspond to equimeasur-

able sets.

3.2 Proposition: A bounded subset M of L*[0,1] 1is (SO)

iff for A < [0,1], m(A) > O there is B < A, m(B) > O

such that M restricted to B is (SO).

In fact, it suffices to require that, for ¢ > O and

Ac[0,1], m(d) > O, there is £ € L'[0,1], X, 2 £ 2 O,
and a partition P = (A?""'An) of [0,1] such that
n
sup { £ [ fdm.osc (glA;) : g € M} s e.lifll;. (1)
i=1 A,
5

Proof: The condition is obviously necessary. In order to
show that the above condition implies that M is (SO) we

may assume |MIl_ s 1. Fix ¢ > O.
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1

Assume there are £ ,f2 € L1£O,1] and P1 and P2 partitions

.

of [0,1] such that for both (£',p') anda (£2,r%)

formula (1) holds true. Let P be the partition [0,1]
generated by P1 and P2 and £ = f1+f2; then (£,P)

satisfy inequality (1) too.

Let (fj,Pj)?=1 be a family of pairs as above such that
(fj,Pj) satisfy (1) and maximal with respect to the condi-
tion

£I(t) £ 1 for t € [0,1].
1

™8

]
It follows easily from the assumption that

£ (t) = 1 , for a.e. t € [0,1].

"™ 8

Hence there is k € W such that

i -

M~

fju1 2 i
=1

Let P = (A1,...,An) be the partition generated by

P1,...,PJ. For g € M we may estimate

m(Ai).osc (gIAi) <

k . n k .
z £J) dm.osc (glay) + 2. % (m(Ai)-f (= £9)dm) s

1 i=1 Ai j=1

which readily shows that M 1is (SO).
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3.3 Proposition: Let T : L1[0,1] - X be an operator,

f € F and suppose that the restriction of T to F is
weak-to-norm continuous at f. Let B = {f > 0}. Then

* *
the restriction of M =T (ball (X)) to B is of small

osciallation.

Proof: It follows from proposition 3.2 above that it
suffices to show, for o > O, that the restriction of M

to the set B = {f > a} is (S0O).

Fix o > 0 and 6 > 0 and find a partition P = (A1""'An)
and & > O such that
diam (T(VP,a(f))) < 6.

There is no loss of generality in assuming that B belongs

to the o-algebra generated by P, i.e. there is a subset

'@ {1;ecuiit Blch thae
B = U A.,.
&  der =

From proposition 2.7 we infer that

* %
sup Y m(A.).osc (T x IAi) <
Ix*[I€1 i€l

-1 * %
sup a . T (f fdm).osc (T x |A;) <

o ,
llx* 11 i€I Ai

A

&' diam (T(VP,S(f))) < a 1.s.

A

As 0 > O 1is arbitrary we finished the proof.
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We are now ready to state the general theorem.

3.4 Theorem: Let T : L1{0,1] -» X be an operator. T.f.a.e.

(1) 7% (ball (X)) is (SO);

(ii) T is (PCP);

(ii') T is (CPCP);

(£i™) T 1is (SR);

5 i) T restricted to F is weak-to-norm continuous

at every f € F;

(iii") T restricted to F 1is weak-to-norm continuous
at £ = 1;
(iidi") For ¢ > O there are f1""'fn € F+ s.t. T

restricted to F is weak-to-norm continuous at
n
each f. and m( U {f. > 0}) > 1-¢;
% j=1 °
(iv) For A< [0,1]. m(A) > 0O and ¢ > O there is a
relatively weakly open subset U of FA such

that diam (T(U)) < ¢.

Proof:
(i) = (iii): et f € F and 6 > O and suppose first that
£ € L°[0,1], say Ifl_ € M. Find a partition P = (Ay,...,A )

*
such that for every IIx Il £ 1

* %
m(Ai).osc (T % lAi) < &6/2M.

M3

i=1

Consider Vj s{f) for ¢ < &/4|ITll. Noting that
r
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we may apply proposition 2.7 to see that
diam (T(V, _(£))) M. (6/2M) + 2¢e.IITIl < 6.

If £ € F is arbitrary, write f = kf1+(1—l)f2 where

£.,£, € F, A < 8/2lITll and £, is in L”(m). By the pre-

1'72

vious argument we may find a partition P and ¢ > 0 s.t.

diam (T(VP,E(fz))) < O

On the other hand we trivially have

diam (T(VP,a(f1))) < 2.0lTll.

By proposition 2.5 we obtain

diam (T(Vp'a(f))) =

= diam (k-T(Vp’S(f1)))+ (1_A)‘T(VP,a(f2))) <
< X.diam {T(VP,a(f1}))+ (1-2) .diam (T(VP,a(fZ))) <
< o - 6 = 26.

Hence we have obtained a relative weak neighbourhood

v (£} of £ in F 8.t TV (f)) has diameter less
P E P,

than 26, which readily shows that T restricted to £

is weak-to-norm continuous at £f.
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(iii) = (iii') = (iii") are obvious and
(iii") = (i) follows from the preceding propositions 3.2

and 3.3.

(i) =» (ii): Let C be a bounded subset of L1[O,1]. We
may and do suppose IICIl = sup {lIfll : £ € C} = 1 as well

as |ITIl = 1.

We have to show that for & > O there is a relatively
weakly open subset U of C such that diam (T(U)) < 56.
We shall show more precisely that for 6 > 0 and f € C
with |Ifll > 1-6 there is a relative weak neighbourhood

Up 8(f) in the (bigger) set ball (L1} such that

diam (T(UP,a(f)) < 56.

Let f and & be as above and find & > B > O such that

IEll > 1-6+8. Let £, be an element of 1L*[0,1] such that

IlE.-fll, < B/4 and find a partition P = (A1,...,An) such

1 1
that the set {f1 > 0} is in the o-algebra generated by

P and s.t.
n

* *
sup I m(A,).osc (T x |A,) < B/lIE. Il .
lk*l<1 i=1  * 1 T

For the relative weak neighbourhood

.

(f1) = {g € ball (L")

nmMs

If (£,-g)dml| < B/2}

Up,p/2 O
i

1

of £, in ball (L") we shall show that
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diam (T (U (f1))) < 56,

P,B/2

This will finish the proof as

(£) = {g € ball (L") |[ (£-g)dml s B/4}

1 Ai

nmM3

is contained in UP,B/Z(f1)'
Given g € UP,B/Z(f1) define

g on those A. where £, > O on A,
+ i 1 i

91 = .
-g_ on those Ay where f1 £ 0O on A;-
As n n
z IS g,dml 2z % B £,dml - /2
i=1 A, i=1 A,
i i
= IE 0l - B/2 2 1-5+B/4

we conclude that Hg1H 2 1-6+B/4 and therefore

Now define

M3

g, = g1xA_.(I fldm/f g,dm)

i=1 i A. A
i i

which is an element of the unit ball of L1[O,1] putting

the same (signed) mass on each Ai as f.l does. We may
estimate
g =g ll; = = I (g4-g,)dml = X If (g,-f,)dml <

i=1 A, i=1 A,
L a
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IN
M3

| f (g-£,)dml| + lig-g, I, =

i=1 A,
=

< B/2+6-B/4 £ &6 + B/4
hence

llg-g, Il s lig=g, Il + llg,=g,ll s 25.

Now let g and h be two elements of U (£,) and
P,B/2" 71
9, and h2 associated as above. For i = 1,...,n the

functions 9, and h2 have the same sign over Ai and

we conclude - similarly as in the proof of proposition

2.7 = that

*
lIT (g,=h,) Il = su <T(g,-h,) ,x > <
s ux*u% 9272

n * *
< sup £ I (g,=h,) . (T x )dml =
Ix*|151 i=1 Ai

n
S sup T If £

*
dm| .osc (T*x IAi) -
Ix*11s1 i=1 A,

1

< NELN * ma,) (T 2 1a.) <
= su m " « OSC 6, N =
Vo x|z ie1 1 -

A
Lo

hence |IT(g-h)Il < 26+26+B < 56, which finishes the proof

of the implication (i) = (ii).
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(ii) = (ii') = (ii") @ is evident and

(ii") = (iv) is obvious too in view of the remark 2.6 that

a convex combination of slices of FA is relatively weakly
open in FA'

* *
(iv) = (i): If M = T (ball (X)) 4is not (SO) then by

proposition 3.2 there is A < [0,1], m(A) > O and ¢ > O

such that for every O £ £ = of positive measure and

Xa
(A1”"’An) a partition of [0,1] there is g € M such

that

nMs

1

. [ fdm.osc (gla;) z e.lIfll,.
i Ai

As the above formula is positively homogeneous in £, it

also holds true for £ € FA' provided |Ifll < e.

As we assume that (iv) holds true we may find a relatively

weakly open set U in FA s.t. diam (T(U)) < e¢.

We may find £ € FA’ HfIL < o, B >0 and a partition

P = (A1""'An) of [0,1] into sets of positive measure
s.t.
n
U > UP,B(f) = {h € FA : -E |/ (f-g)dm| < B}.
i=1 Ai

A glance at proposition 2.7 shows that
a * * )
sup { £ [ fdm.osc (T x IAi)} < diam T(U) < ¢
llx*[ls1 i=1 A,
i
a contradiction finishing the procof of (iv) = (i) and there-

fore of theorem 3.4. a



40

4, Examples and Remarks

After establishing the general theorem 3.4 it seems appro-
priate to present some examples before going further in the
study of classes of operators T from L1 to X and the

* =]
corresponding subsets T*(ball (X)) of L.

The operators in the next examples will act from L1[O,1]
to Cq: Note that there is a one-to-one correspondence

between these operators and sequences {gn)n___1 in 17[0,1]

tending weak-star to O via the formula

T : 110,11 » ¢,
f - <f,gn>z=1.
It is an easy and instructive exercise to verify that T
is Dunford-Pettis iff (gn):=1 tends to zero with respect
to H.H1. Less trivial is the observation, due to
Mokobodzki (c.f. [M], [C-L]), that T is an (RNP)-operator

iff frl tends to zero pointwise almost everywhere.

4.1 Remark: Let us mention in this context, that it was

shown in [S1] that an absolutely convex, bounded subset
M c L7[0,1] is equimeasurable iff every sequence (gn):=1
tending weak-star to zero converges to zero almost every-
where (this part is due to Mokobodzki) and iff every se-
quence (gn);::1 tending to zero w.r.t. II.H1 tends to

zero almost everywhere. This result gives a direct link
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between the theory of (RNP)-operators and a characterisation

of integral operators due to A.V. Bukhvalov (c.f. [B5],

[S1]; compare also [S3] and remark 7.4 below).

4.2 Example: An operator T : L1[O,1] - cg which is (SR)

but not (RNP).

This example is certainly well-known (c.f. [P], 24.2.11)
but we are unable to trace back who stated it first expli-

citely.

It is also the arch-example of a "complemented bush", a
notion introduced by R.C. James and A. Ho which turnded
out to be useful in studying the Krein-Milman problem

(C.f. [H]r[ss]) .

(==}

Let (g =1

)

5 be an enumeration of the indicator-functions
of the dyadic intervals
= < k <

n,k
and

[==]

T(f) = <f'gj>j=1'
This sequence obviocusly does not tend to zero almost every-
where. On the other hand it is just as obvious that
(gj)?=1 is (SO) by taking as partitions the dyadic inter-
vals of the n-th generation. In order to be able to apply

theorem 3.4 we still need the subsequent easy observation



42

showing that the (SO)-sets have a stability property just

as the equimeasurable sets.

4,3 Proposition: A bounded subset M of Lm£0,1] is (80)

iff the weak-star closed, convex circled hull of M 1is (SO).
Proof: Straightforward from the definition of (SO).

4.4 Example: An operator T : L1[O,1] * 2, which is Dunford-

Pettis but not (SR).

This example was apparently first noticed by M. Talagrand

([T1s T=3~10})a

This time let (gj)c;=1 be an enumeration of all indicator

functions of k dyadic intervals of length 2_k (k € IN) .

Clearly (g.) tends to zero w.r. to H.H1, hence T 1is

(==
37 3=1
Dunford-Pettis. On the other hand one easily verifies that
for any partition P = (A1,...,An) cf [0,1] into sets
of positive measure
n

r m(A.) .osc JA,) : j € N} =1,
sup {i=1 ( i (gji i J

hence T is not (SO).

4.5 Remark: It was noted by Talagrand ([T], 7-3-10), that

%*
the above operator is not (W RNP) as (gj)?=1 has non-measur-

able cluster points in the pointwise topology. The next
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example is of a different nature as the operator T will
*

be (W RNP). However we shall treat these aspects only in

chapter 7 (theorem 7.7) below, as we need for a proper

treatment some more concepts which we only introduce later.

4.6 Example: Another operator T : L1[0,1] e which is

Dunford-Pettis but not (SR).

Let (k)%

n m=1 be a sequence in W, k_ 2 2, and consider

m
the generalized Cantor-space

[==]

I
(EX

{1;.-.;km}

m=1 1

equipped with the canonical product-measure u.

Let,for m€ W and 1 s j £ k_,

b, = X(9)°™

where T is the projection onto the m-th coordinate of
A and X(j) the indicator-function of the element

5 € {1,...,km}. Let

I & L1 - C

o km .
£ (£ ) 320)) pay

k
= m o 5
The set M = ((hm,j)j=1)m=1 is not (SO). 1Indeed, for any

partition P = (A1""'An) of A into sets of positive

p-measure
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n
sup { & p(A,).osc (flA;) : £ € M} = 1 f13
i=1 * *

Indeed, by the Lebesgue-density-thecrem, there is m € IN

and atoms B1""'Bn of Bm such that, for 1 £ i £ n,
o}
p(Ai n Bi} 2 u(Bi)(1-1/2n). (2)
By an atom of Bm we mean a set B determined by a
o) m
finite sequence (pm)m21, 1 £ P < k defined via
B = Bp1:--rpm = {(qm)m=1 €4 :q =Py for m = 1,...,m0}.
o
km +1
Consider now (hm &4 j) o] and note that each of these
g T j=]

functions oscillates on each Bi by 1. We infer from (2)

and the definition of the hm 5 for 1 £ i £ n fixed, at
r
least km +1(1—1/2n) of these functions oscillate on A,
o
by 1. Hence there is some 1 < j_ <k such that
o m_+1
h j osciallates on each A, by 1 which proves (1).
ol o

On the other hand T is clearly Dunford-Pettis, if we

(==}

choose (km)m=1 such that km tends to infinity. We shall
see in 7.7 below, that M is "stable" in the sense of

=]

Talagrand [T], if we require that (km )< is summable

m=1
or, more generally, if (k;p):=1 is summable for some p < «).

a

4.7 Example: We shall now deal with convolution operators

from quW) to C(T). We thank F. Lust-Piquard for pointing

out to us the relation between the Riemann-integrability
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of g and the relevant properties of the convolution
operator Tg.

For simplicity we consider only the compact group

T = {ezﬁlt : t € [0,1[}, which we identify with [0,1[,

equipped with Haar-measure m.

Let g € L™(T and define

T, Lt - cem)

f - fxg.

It is instructive to verify that the above operator is
Dunford-Pettis and that it is an (RNP)-operator iff g € C(T).
We shall show that if g 1is Riemann-integrable then 'I‘g
is a (SR)-operator. By theorem 3.4 we have to show that

M = T;(ball (M(T))) is (SO). Noting that M is the weak-
star closed convex hull of the translates {gt : t €T}

and invoking prop. 4.4 we shall be done if we proved the

subsequent assertion.

Claim: If g € L”(T) is Riemann-integrable (in the sense:
there is a Riemann-integrable representant of g) then

{gt : t €T} is (S0).

Proof: The Riemann-integrability of g means that, for
€ > 0, there is n € N such that there are at most g.2m

of the interwvalls Ik 5 = [k/2n,(k+1]/2n] on which the
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oscillation of g is bigger than €. Fix ¢ > O and
n € N such that this holds true. If we consider Jir
where t 1is of the form k/2n, note that the number of

intervals where 9. oscillates more than ¢ |is

Ik,n
exactly the same as for g. If ¢t € T is arbitrary, a

moment's reflection shows that the number of intervals

where 9s oscillates more than ¢ 1is at most 2.¢.2".

n

1s ks 27)

Hence taking as partition P = ([k/2%, (k+1) /27
we obtain
on

sup { = 2 M.osc (gtlik/zn,(kﬂ)/zn[) : t €T} S
k=1

< 4¢ ”g”m + &,

thus proving the claim.

What we have proved is, that for a Riemann-integrable

g € L.”(T the convolution operator Tg is (SR), whence
in particular (W*RNP). On the other hand, Talagrand ([T],
15-4) has shown the much deeper fact that g is Riemann-
integrable iff there is a representant gR in the equiva-
lence class of g such that {qi : t € T} is stable
([T], 9-1-1). Admitting for the moment the results of
chapter 7 below, we see that the convolution operator Tg
is (SR) iff g is Riemann-integrable iff (under the
assumption of axiom F ([T], 9-1-2)) T is W*RNP. Hence

g

we have a complete characterisation of the nature of Tg

in terms of the properties studied here according to
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whether g 1is continuous, not continuous but Riemann-

integrable or not Riemann-integrable.

4.8 Remark: Theorem 3.4 states that an operator

T = L1[0,1] -+ X 1is (SR) iff T restricted to F 1is weak-
to-norm continuous at every f € F. Denote T the weak-
star closure of F in the double-dual L1[O,1]**. One

may consider (and this is done extensively in [S2]) the

*

*
restriction of T to T and ask for which p € ¥ this

map is weak-star to norm continuous (see chapter 6 below).

It follows easily from the above that this is the case (for
the T above) for every f € F. On the other hand if

* % %* % * %
T (p) € X ~X then T |F is certainly not weak-star
to norm continuous at p. Indeed, for every relative weak-

star-neighbourhcod U of p in F we have

W) nX#
hence

* % * %
diam (T (U)) 2z dist (T (p),X) > O.

The crucial point in [S2] consists in the fact that the (SR)-
operator T : L1[O,1] - X constructed there is such that

* % .
T |F is weak-star to norm continuous at p € T iff

% %
T (w) € X. It has been observed by H.P. Rosenthal [R2]
that this implies that. on T(F), the closure taken in
(X,1l.1) , the weak and norm topologies coincide, thus rela-

ting the result of [S2] with a recent characterisation of
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denting points due to B. Lin, P. Lin and S. Troyanski

[L-L-T].

In view of theorem 3.4 one might be tempted to conjecture
that every (SR)-operator has the property that T**I?

is weak-star to norm continuous at every u € T such that
T**(u) € X. This, however is not true as will be shown by
an example of a convolution operator Tg, where g |is

Riemann-integrable, in [L-S].

4.9 Remark: The property (SO) of being of small oscillation

may be viewed as a kind of uniform Riemann-integrability as

is indicated by the previous example 4.7:

Suppose M < .[0,1] is (SO) and find, for k € N, a

partition
pK = (A?,...,Aﬁ )
k

such that

n
sup Zk m(AE).osc (gIAE) < x .

geM i=1

There is no loss of generality in assuming that Pk+1

splits every member of Pk into m_ sets (so that
Nk )
i=1

B k=1

T

Borel-o-algebra of [0O,1].

O mk), and that {(A?) generates the
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Similarly as in example 4.6 above let

[==]

V. va T R % (PR "
k=1 Tk
For an atom
= = * s = <ms
B Bp-]r-.-:pm {(qm)m=1 €4z qlTl pm for 1_m_m0}
o)

define the measure p(B) to equal the Lebesgue-measure m
m m

of the corresponding set Aio of the partition P ©

(the
correspondence defined in an obvious way). Clearly pu ex-

tends to a measure on A which allows us to identify

L'([0,11,m) with L'(A,u). Using this identification we
may view M as a subset of L (A,p). But now the partition
% = (8 :1<p, $m 1<p, s m}
p,‘f.--,pk - = 1 1'...' = k B rrLk

are partitions of A into clopen sets, such that the g € M
oscillate only on few of them more than k_1. This condi-
tion may be viewed as a uniform Riemann-integrability, in
the sense that the (essential) lower and upper Riemann-suns

taken over ﬁk converge to the integrals of g uniformly

in g € M.

Note, however, that it is unavoidable to "change the topo-
logy" as is done above by passing from [0,1] to A even
if M is contained in C[0,1] as is shown by the subse-

quent example: Let 1/2 > ¢ > 0 and (r )

be an enumera-
n'n=1

tion of @© N [0,1] and define
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hn : IR - [011]
on r = 1
n
outside [rn~a/2“, rn+a/2n] = 0

n n n '
on [rn-s/2 , ¥ 1 and [rn,rn+£/2 ] linear

and

gn : [0:1] - [031]

n
g, (t) = inf {i=1 gi(t},1}.

It is easy to check that M = (g e is (S0). However,

n n=1

. X . 2 3 4 ko
given any increasing sequence of partitions (P )k=1 of
[0,1] 4into intervals, the corresponding lower and upper

Riemann-sums do not converge uniformly over M.

4.10 Remark: The characterisation of (SR)-operators in

terms of weak-to-norm continuity given by theorem 3.4 re-
gards (F,weak) as a topological space. It seems worth
noting that,if we regard (F,weak) as a uniform space, we
thus obtain a characterisation of (RNP)-operators analogous

to 3.4 (iv).

4.11 Proposition: A continuous operator T : L1[O,1] - X

is compact iff the restriction of T to F is uniformly
weak-to-norm continuous. Hence T : L1[O,1] -» X 1is (RNP)
iff for A < [0,1], m(A) > O there is B < A such that

T restricted to FB is uniformly weak-to-norm continuous.
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Proof: A continuous operator S between Banach spaces Y
and X 1is compact iff the restriction of S to the unit.
ball of Y is uniformly weak-to-norm continuous and

T = L1{O,1] -+ X is uniformly weak-to-norm continuous on
the unit-ball of L1[0,1] iff it is so on F. The second

assertion now follows from the first and theorem 1.15.

*
4.12 Remark: Let us finally note that for dual spaces X

the situation is much easier than in general: As has been
proved by J. Bourgain [B2] X does not contain A 1££

X* is (SR) iff every T : L1[O,1] - X* is Dunford-Pettis
(the last part follows essentially from Rosenthal's £1—theo-
rem; see, e.g. [T], 7-3-7 and 7-3-8 and the references given

there about the weak Radon-Nikodym property) .

Hence, in our language, every T : L1[0,1] - X* is (PCP)
iff every T : L1[O,1] - X* is Dunford-Pettis (to quote
the least and most general conditions in the listing of
chapter 1). Hence for dual spaces and using the quantifier
"for every" we don't have much distinction between the

properties of operators we are presently studying.
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5. A characterisation of strongly regular spaces

Note that a Banach space X has (RNP) iff and only if

every operator T : L1[O,1] -+ X is (RNP). This is by no means a
tautology but it relies on the - by now well-known - con-
struction of a bounded é-bush in a non-dentable set C

(see, e.g. [D-U]).

Note also that we can not hope to have a similar result

for the notion of (PCP) as theorem 3.4 tells us that the
notions (PCP), (CPCP) and (SR) are equivalent for operators
from L1[O,1] to X, while we know [G-M-S] that

(PCP) # (CPCP) (as a property for spaces).

However for the notion of (SR) we do have that X 1is (SR)
iff every T : L1[O,1] - X 1is (SR). This results from
theorem 5.2 below, which we formulate in the more general
"local" setting. Theorem 5.2 will result from the subsequent
crucial lemma 5.1. It might be helpful to look at example
4.6 which is the arch-example of the situation described

by lemma 5.1 and theorem 5.2.

5.1 Lemma: Let o > 0 and C c X be convex and bounded

such that every convex combination of slices of C has
diameter greater than 2a. Let X and KqreeerXy in C

be such that
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Given & > O there is m € IN and elements ({xi j)?"1)
) -
in C such that
=¥ B
(i) Hxi - m j§1 Xi,j” < g for i =1,...,k
-1 k
(5 ) Ix -k R R | N B for j=1,.c.m
© i=1 *ed

k
i=1

Proof: First note that it follows from the assumption and

Bourgain's lemma 1.2a that every convex combination of re-

latively weakly open subsets of C has diameter greater

than 2a.
Consider the (k+1)-fold product space Xk+1 - equipped with
k _ - -
the norm H(xi)i=OH = sup {HxiH : 1i=0,...,k} and let D
be the subset
k
_ k+1 | - ]
D_ {(Eor-oofgk) EC . E_,O-k -§ Ei}f
i=1
which is bounded and convex. Let
Ve= {8 = (Egrev-sE)) €D & ik, = E Il < al.

We shall prove the crucial formula, which is a kind of multi-

dimensional non-dentability
co(D ~ V) > D, (1)

where co denotes the closed, convex hull.

Indeed, if (1) fails we may apply the separation theorem

Xk+1 * . k+1

to the pairs of Banach spaces ( (X ) ) to find

& > C,
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=
1

(no,...,nk) € Vd

and

= * K+
£ = (£ re--0f) € (X))

->

such that for £ € D with

-+ = = k
<E=-n,f> = .E <£i*ni,fi> > =6
i=0
ap
we have & € VG, i.e. Hgo—xou < O.

Consider, for i = 1,...,k, the relatively weakly open

subsets Ui of C
U, = {g, € C : l<gi“ni,fi>| < &/2n and

1<£i—ni,f0>l < &6/2

and let
_‘| k
W=k DR €
fef
_‘I k
If £ =k ¥ £, 1is an element of W (i.e., &, € U,)
o, j=1 1t 2 & i

then £ = (Eof€1,...,£k) is in D and

- = =
<E=n,f> =
i

n M~

O<£i-ni,fi> > =5/2 - 6/2 = =6

hence HEO—xOH < a. But this implies that W has diameter

< 2a, a contradiction proving (1).

-

Applying (1) to x = (xo,x1,...,xk) we may find vectors

-1 = -1
x, = (k T R aop X § eyl )seeesx_ = (k ¥ 5t
1 i=1 1,377 141 ka1 m fimd

""Xk,m) in D ~ Va such that

4 X
i,m"71,m
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m
2. sl © g

r Ty I, -m |
. x. Il = sup ;o i,

1 3 i=0,..,k i

P g

Hence the ((x, 5=1) i=1

i3

thus proving lemma 5.1.

€ C above satisfy (i) and (ii)

5.2 Theorem: Let C be closed, convex, bounded in X and

a > O such that every convex combination of slices of C has
diameter greater than 2a. Then there is an operator

T = L1[O,1] - X such that T(F) «C and T is not (SR).

Proof: Let (¢ }m

sl i be a sequence of strictly positive

reals such that Te < /4. Let Xy € C. We proceed by

induction on n. For n = 1 find k1 € N and

€ C such that
1

X;.--;X

1 k

k
-1 1
on k1 E X Il < ¢

1 1 1

i
and 1

on - xi1n 2 o i, = Viceapk
(For this first step we need only the assumption that every
slice has diameter > 2a.)

Let x; be the exact average of the x1,...,xk PR B~

1

e
so that ]mo xOH < 51.
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For n = 2 apply lemma 5.1 to (x;,x1,...,xk ) to find
1
. c .
k2 and {Xi1,i2 : 1 £ i < k1, 1 £ i, < k2 such that
-1 %3
, 3 g
(1) Hxi k2 . g xi i | < €5 1 g i, < k1
1 12—1 1772
t _ ==
A _ <
(1i) on k1 - E xi i Il > o 1 £ i, < k2
11—1 1 2

Let xg be the exact average of the elements of the second

generation, i.e.

5 ) K
By ™ Hakgl & B X

i .
so that lko xOH < P

For the n'th step suppose we have found natural numbers

k1""'kn and elements {xi1,...,in £ T & i1 < k1,...,1 <
< 4 <
$i s kn} such that
-1 kn
(i) Hxi i - kn X X, I < ¢
ST Ty i_=1 L .
n
for 1 £ i1 < k1,...,1 S i 4% k
(ii) Sl o S S ]§‘ kn§1 > «a
o] 1... n-1 _...- - x1-'to-'l
11—1 ln_1—1 n

Let
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n-1 n
so that on xOH < g
n . 2oEx
Apply lemma 5.1 to {xo’xi1,...,in 2 1S i, 5 kg,
ceer1 S48 kn} to find k ., and {xi i
1 n+1
1 £ i, < k1,...,1 < 141 < kn+1} such that
-1 kn+‘|
(i) lIx . . =k z X. ; | < ¢
ireeniy n+1 ., =1 Lqreeripg n+1
n+1
< 4 < 3 <
for 1 s i, < k1,...,1 s 1) s kn
k k
T zn I
(ii) x>~ = - e X, . > o
@ L S A W B LA P8

This finishes the induction step. Let Yoy equal the limit

n,e & a < 3 <
of (xo)n=1 and, for 1 £ i < k1,...,1 $ i s kn
k k
-1 n+1 P
Y. . = lim (k s k) z s & X ; ;
i1,,..,1 n+1 P ; - A L g v o gL gusempd
1 n P 1041 1 lp 1 1 n
Clearly the above limits exist and the Yy i form a
1;-.-' n
"bush". It will be (notationally) convenient to assume y_= O

o
which may be done without loss of generality by passing

from C to C =- Y.

Similarly as in example 4.6 we define a generalized Cantor-

set

(1o}

>
il
n=8
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equipped with the canonical product measure u. Clearly
1'(a,n) may be identified with L'([0,1],m). Define the
operator T : L1{p) -» X on the atoms
., @ i ¢ o om
By . ..,i° {(jk)k ;1 €8 3 = dgseeeid i}
1 n
by
1] =¥ .

T Xz, /{By i,...1
1 n

. - - i
iyreeriy 12" n

Clearly T extends by linearity and continuity to all of
* *

r'(4) and T(F) = C. We shall show that M = T (ball (X))

is not of small oscillation. Indeed, suppose we can find a

partition P = (A1,...,Am), such that

m
sup { £ p(A,).osc (glA,)} < a/8 (2)
geM =1 ] !

Note that it follows from the assumption Yo = T(1) = 0O

* *
that, for x € X
* % *
[T x dp = <T(1),x > =0
hence (2) implies

m
sup { £ p(A;) sup (glA.)} < a/8. (3)
geM =1 3 4

A

For n € IN and 1 = 1 kn we have

n
ly =(k,uo k. )7 £, Fngl Il > a=2n_ > a/2
O e I'l""1 . . .'.- Py yi rtopi nn
i =1 i =1 1 n
1 n-1
et *
where n_ = I Ei’ hence there is X, in the unit-ball
i=n n

*
of X such that
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k k
-1 1 n-1 * 5
(Kius oK i) E vin Z <y. . X, > > a/2.
1 1 g = i &1 SRRSO
1 n-1
Writing
*
n n
and
R, = U{B, . 3 15 i, $kypeeer1 $i . sk _.}
i, 1yreeriy 1 1 n-1 n-1
we obtain
f 95 dp > a/2k = (0(/2}|.L(Ri). (4)
R n n
a
n
Formula (4) means that the average of 95 over Ri is
n n
greater than ao/2. If Qi is a subset of Ri such that
n n
H(Qi ) > (1=« /4HTH).u(RiJ
n n
~ we may conclude (in view of Hgi I, s IITI) that
n
/g, dp > (a«/4)p(R, ). (5)
S i
Q. n n
i
n
Let us turn our attention to the partition P = (A1’°"'Am)’

For n€ W and 1 £ j = m let

3 e i ; ;
Ij = {(ig,eari)) = p(By n Aj) > (1/2)p(B;

1fncgin 1'--'in
<
and for 1 = 141 s kn+1
gl . = [(Lyeserl) 2 piE, .. NnA >
Nyl 1 n l?"'fln'ﬁ1+1 J
> (1—&/8HTH)M(Bi . )}

1recrinringg
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. . i i _
For (11,..,ln) € In or J let Ei i

It follows from classical measure theory that

m .
lim (£ # I))/(k ...k ) =1
noe  §=1 n 1 n
and k
m n+1 i
lim ( Z b3 # I . W P ) = 1.
n-w  j=1 in+1=1 Nrlned 1 n+1

Hence we may choose n € IN and an appropriate

i € {T,...,kn } such that

n+1 +1
m .
£ 4 1)/ (kg.. k) > 1-a/161ITl
xis n n
and
= j
T O#F J9 . /(k,...k ) > 1=a/16 1Tl
qu1 = Bilgeg 1 B
whence
= s R
_E # (In n Jn,i )/‘k1"'kn) > 1-a/8|IT]| (6)
j=1 n+1
o . 3 . .
Note that {Ei1,..,in : (11,..,1n) € Iy 1< 3j<$mt is a

collection of disjoint subsets of A of positive measure
refining the partition P = (A1,...,Am), hence we infer
from (3) that

m

sup { £ 3

. i )} < a/8.
geEM j=1 (11,..,1n)€1n

eyl .
1f fn 1' n

(7)
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On the other hand we may estimate for 95 EM
n+1

m
x = . L(E

. ) sup (qg. |E. . -
vod i . j P § i
j 1(11“.,HQ€In

i1"' n n+l 1177

m

z . . p(E, . ) sup (g, |E, . ) 2
3=1 (iq0e-,5 )ETNTY | ek ¢ 20 Ml L T8
""n+1

(v

i

; . (3 : B ]
inf {p(Ei i )/ (Ey s O (11""ln) €T g | 8

17295 177" " "n+1 r1h+

m
. E .. W(E; . ) sup (g, I|E;
3=1 (di,,..,i)€2037 |
1 n n n,i
n+1

n

(k. 1/2) é gin au > (k_ ,/2) (a/4k ) = a/8.
' h+1

Here Qi denotes the set
n+1

0
"
T =l-

o wpd gl

u L
1 (i1,..,in)EIrjan3 n+1

n+1 Jj by

n+1

for which in view of (6) and the definition of Jg i we
"“n+1

have

-1

n+1

p(Q, ) > (1-a/4llTIk
In+1

hence the last line of the above inequalities follows from
(5). So we arrive at a contradiction to (7) thus proving

theorem 5.2.

17 n4 her qre-
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5.3 Remark: An analysis of the proof above shows that we

get in fact (with the above notation) for every partition

P = {A1""’Am) of A

m
sup { £ p(A.).osc (glAL)} 2z a.
geEM  §=1 J ]
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6. Regular operators and sets of regular oscillation

In this section we give a characterisation of regular
operators in terms of sets of regular oscillation. It will
turn out, that the results are analoguous to the characteri-
sation of strongly regular operators in terms of sets of
small oscillation given in section 3. We want to thank N.
Ghoussoub for suggesting the definition of regular opera-
tors, which was the motivation for developing the results

of this section.

6.1 Definition: A bounded subset M of L7[0,1] is of

* %
regular osciallation (RO), if, for =z in the weak-star-

~ " %
closure M of M in the bidual L17[0,1] and ¢ > 0O,

there is A < [0,1], m(A) > 1-¢ such that

* % _ ¥

for a (unique) g € Lm(A,m!A).

6.2 Remark: It is not obvious (but true) that (SO) = (RO).

This will follow from the subsequent theorem 6.5. We shall
also prove this explicitely in the next section using a

notion and an argument due to J. Bourgain.

6.3 Proposition: M is (RO) iff for A < [0,1], m(A) > O

there is B < A, m(B) > O such that M restricted to B

is (RO).
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..Proof: Suppose B1 and B2 are two disjoint sets such
that M restricted to B1 and B2 is (RO). We shall
show that the restriction of M to B1 U 82 is (RO).

* % o
Indeed, let =z € M and find subsets C1 < B]' C2 (= 52

* %
of large measure such that the restriction of =z to
c, and to C, is induced by an element of L%, hence
* %
the restriction of =z to C1 U C2 - which is a large

subset of B, U B, - is induced by an element of Lm,

1 2
which had to be shown.

Applying an exhaustion argument we finish the proof of the

propcsition.

In view of the definition cf (RO) it is not surprising
that we shall have to investigate the higher duals of
L1[0,1}. We have to introduce some additional notation:
T (resp. ?A) will denote the weak-star-closure of F

. 1 ik
(resp. FA) in L'[0,1] . For pu € T, P = (A1,...,An)
a partition of [0,1] into (equivalence classes of) sets

of strictly positive Lebesgue-measure and ¢ 2 O define

n
VP,s(“) ={veTF: =z l<p=v,Xp >1 S e}
i=1 i
and
VP,S(“) ={vefF: =z | <p=v,X, 21 < e}.
i=1 i

This notation is consistent with the above in the sense that,

for £ €F, ¥V 8(f) is the weak-star-closure of V (£)
r

P Byt
¥

< 1 *
in L'[O0,1] .



65

Again, one easily checks that vP a(u) defines a weak-

r
star neighbourhcod-basis of p in F as P runs through
the finite partitions of [0,1] into (equivalence classes

of) sets of positive measure and ¢ through ]0O,1].

For A< [0,1], m(A) > 0 and B > O denote gA 8 to be
r

the weak-star-slice cf F

SA,B = {vef: <V:Xp> > 1-}.

Similarly as in 2.3 one verifies for p € F

n
~0 = ~
Yo,alM = B Valy S0/
and
VP,O(”') = i§1 <p,XAi> Ai.

%* % = % %
For =z € L [0,1] and (an equivalence class of) a set

Ac [0,1], m(A) > O, define

* %
osc (z |A)

osc (z**I?A) =

%*
sup {<z ,p=v> : p,v € ?A}.

%* %
As F is a norming set for Lm[O,TI one verifies

** = inf {| o *k bizl
osc (z A) = in |XA-Z - Y'XA”LM[O,1] S ol

Indeed, let

*

* :
Y, = sup {<z ,p> : p € ?A} and Y, = inf {<z ,v> : v € ?A}
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then 7y = (T1-Y2)/2 gives the appropriate value in the

above infimum.

1 * %k * %k
For an operator T : L [0,1] » X and X € X we

therefore get

* %k %k * %k

*IT**(?A)) = osc (T (x *)I?A)

* ke * * % %

= inf {HXA.T (x )_T‘XA”LW[O,1]**

o+ %
osc (x

Y € R}

For a partition P = (A1,...,An) and pu € T we get

N T kkk %% 1
osc (x IT (V, (w))) = osc (x 1T (X <p,xp >?A ))
7 g=1 i B
1 ) Kkk hkk
= I <p,Xp > inf {H)(A T x  -Y;Xa sy € R}
i=1 i i i
and similarly as in 2.7 for ¢ > O
n . *kdk kkk
L. SfyXy > inf {leA T X =Y Xa I Y, € R} <
i=1 i i i
¢ ***l *k Ao ( @
< osc (x 3 (Vp,a RY)) S
n ) kkk Krk
S I <p,Xp > inf {iixy, T x  =vyxa I1:vg € R} +
i=1 i 1 i
+ 2¢elITIl.

We have assembled the tools to prove a result analoguous

to 3.3
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6.4 Proposition: Let T : L1[0,1] -» X be an operator,

* %

f € F and suppose that the restriction of T to F

is weak-star to weak continuous at f. Let B = f > 0O .
* *

Then the restriction of M =T (ball X ) to B 1is a set

of regular oscillation.

Proof: In view of 6.3 it will suffice to show that, for

a > 0, M restricted to Ba = {f > a} is (RO). Let

** i~

~ * %% * %k
z € M. As M =T (ball (X )) there is

* % % * % % * % * * %% * %
X £ ball (X ) with T (x ) =z .

By assumption, for & > O, there is a parition

P = (Aqr---:An) and O < ¢ < 6/2IITIl such that

* % % ek Ao
osc (x T (VP (£))) < 6.
’8

There is no loss of generality in assuming that Ba belongs
to the o-algebra generated by P, i.e. there is

I < {1,...,n} such that

B = U A..
%  ger

By the above remarks we obtain

inf { * %
£ m(a,).in HxAiz -

Xa Il 2 Y. € R} £
i€T 17A, 1

1 B

A

a( £ (f £dm).inf {llx

i€T A,
1

* %
A%z “Yixa l:v, € R}) <
1 1

WA

a(d+2¢lITll) £ 2aé
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hence, for n > 0, there is a subset J < I such that

> m(Ai) > m(Ba}-ﬂ

ied
and
a3 s e < inf {
ist (XA.z b 10:11) £ dnf ”XA.Z leA.” T Y
i i : i
< 2a6n”) for i € J.

As the choice of & > 0 1is still free, we see that,

k >0 and j € IN, there are finitely many disjoint sub-

sets A?,...{A% of BOl such that for

.

we get m(Bj} > m(Ba) - «.279 ana

* %
dist (xg 2 ,L7[0,11) =
3

. . k% =1
= sup dist (XAJ z , L [0,1]) <« 5 ".
i

12ism.
]
The set
O oo
B° = n B
J=1
satisfies m(Bo) > m(BG) - K
and

. *% oo
dist (XBO z ,L [0,1]) =0

* %

o Y = O restricted to B® is induced by an element of

L*[o,11.
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We now can state the general theorem analoguous to 3.4:

6.5 Theorem: Let T : L1[O,1] -» X be an operator. T.f.a.e.

* *
(i) T (ball (X )) is of regular oscillation (RO) ;
(ii) T 1is a regular operator (R);
LR . * * - L]
(iii) T restricted to F is weak-star to weak con-

tinuous at every f € F;

* %
(iii") T restricted to F is weak-star to weak con-

tinuous at £ = 1.

(iii") For ¢ > C there are f1""’fn € F such that

T restricted to F is weak-star to weak conti-
nuous at each fi and m(iE1{fi > 0}) > 1-¢;

(iv) For A < [0,1], m(A) > O, x*** € X*** and ¢ > 0
there is a relatively weak-star open subset U

* % % * %
of T, such that osc (x IT  (U)) < €.

A

Proof:
. N Yok ok %ok K * %k
(i) = (iii): Let x € X y X Il € 1. We have to show
that, for 6 > O there is a partition P = (A1,...,An) and
€ > C such that
* % % k& o
osc (x T (VP (£))) < 6.
-

In view of the formula preceding proposition 3.4 this will
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hold true if ¢ > &6/4IlITll and the partition P = (A1"“'An)

satisfies

_ kkk kkk )
(f fdm) inf {llx, T x =v.Xx, Il : v, € R} < &/2.
Ai X Ai 1

1 A,
i

nmM3

i

Find Y > O such that the integral of f over a set of
measure less than Y is less than 6/4IlTIl and find - by
assumption - a set A < [0,1], m(A) > 1-y such that

* % % * % %k I co
T (x ) restricted to A is induced by some g € L [0,1] .Let
A1 = [0,1] ~ A and (Az,...,An) be a partition of A such

that for 2 4ian, g oscillates less than 6&/4 on Ai.

We may estimate the above expression by

n
(f £dm) ITIl + £ (f £dm).osc (glA,) < &8/4 + &6/4 = 8/2
A, i=2 A, t

thus showing (iii).

(iii) = (iii') = (iii") is obvious and

(iii") = (i) follows from the two preceding propositions.

(i) = (ii): Let C be a convex, bounded subset of L1{O,1]

* k% * %k % * % %

with [ICIl 1 and X € X , lIx I £ 1. We shall

" show that, for ¢ > O, there is a slice S of C such
~ * %
that on the weak-star-closure S of S in L1[O,1] F
* % * % % * % %

* %
the element =z = 1P (x y € L1011 oscillates less

than ¢.
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As has been cbserved in [G-G-M] it follows quickly from
Bourgain's lemma 1.2a that it is equivalent to show that
there is a relatively weakly open subset U of C such

* % ~
that =z oscillates cn U 1les than ¢.

As we may find sets A of arbitrarily large measure such
* %

that =z restricted to A 1is induced by an element

g € L”[0,1] we may find such an A < [0,1] and f € C

such that [lIf.x,ll; > 1-¢/4lITIl.

We shall show that there is a relative weak neighbourhood

W of £ in the (bigger) set ball (L'[0,1]) such that
* i~
z * oscillates on W 1less than ¢. Indeed let

A, = [0,1] ~ A and (Ays...,A ) a partition of A such

that, for 2 £ i £ n, g oscillates less than ¢/4 on Ai

and either A; < {f 2 0} or Ai & 1€ < Bk

W= {h € ball (L'[0,1]) :
i

nmMps

| [ (f-h)dm| < e/4lTI}.

1 A,
i

Then we may estimate (similarly as in the proof of 3.4).

*k *%
osc (z |W) £ sup {Ilh.xA l.llz Il : h € W} +
1

+
M3

* %
(J £dm).osc (gla;) + (e/4lTI)liz” Il <
i=2 A,
2
< €/2 + ¢/4 + ¢/4 = ¢,

which shows (ii).
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(ii) = (iv) is obvious.

(iv) = (i): In view of the above remark (second paragraph
of (i) = (ii)) and proposition 2.2 the assumption implies
that there is a (compact) XK < A, m(K) >0 and B > O

%* %k

Tk A
such that osc (x T (S )) < ¢; in particular the

K,B
o kkk  kkk

oscillation of z =T (x ) on ?K is less than ¢.
Repeating the argument of the proof of proposition 6.4
combined with a standard exhaustion argument gives a set
B < [0,1], m(B) > 1-¢, and such that z** restricted to

B is induced by an element of L™ [0,1].
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7 w*RNP—operators, stable subsets of L™ and related notions

In the preceding sections we have given characterisations of
the properties (RNP), (PCP), (CPCP), (SR) and (R) of an
operator T : L1[0,1} - X in terms of the set

M = T*(ball (X*)). As regards the question as to when T
is a Dunford-Pettis-operator the situation becomes almost
dull: This is easily seen to be equivalent to the H.H1-
compactness of M. Hence we are left with (W*RNP) as the
last property to investigate: This was done in ([T], 7-4-1)
and the condition on M is given by the subsequent defini-

tion.

7.1. Definition: A subset M of L7[0,1] is called "point-

wise relatively compact under a lifting" (RCL) if

(1) there is a lifting p : L7[0,1] » L¥[0,1] such
that p(M) 1is pointwise relatively compact in

L*10,11].

Under axiom (F), a weakening of Martin's axiom
([T], 9-1-2) this condition is equivalent to any

one of the following:

(i) for every lifting p : L7[0,1]1 - L°[0,1], p(M)

is pointwise relatively compact in L*[0,1].

(iii) there is a lifting p : L”[0,1] » L¥[0,1] such

that p(M) is stable ([T], 9-1-1).
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(iv) for every lifting p : L”[0,1] - L®[0,1] the set

p(M) 1is stable.

7.2 Remark: The implication (iv) = (iii) = (ii) = (i) hold

true without any set-theoretical assumptions (c.f. [T]).

The validity of (i) = (iii) follows from axiom (F) and
apparently it is unknown whether this implication holds true
absolutely (c.f. [T], 9-1-2). Hence the implication (i) =
(ii) certainly holds true under axiom F; but it is not clear

(to the author) whether (i) = (ii) holds true absolutely.

In the sequel we shall not deal with results depending on
special axioms. For example the equivalence of (iii) and
(iv) above holds absolutely and we feel that the notion of
stability makes perfect sense for equivalence classes of
functions, i.e. for subsets of Lm(m) (instead of sets of
functions, i.e. subsets of L¥(m) (this is implicitly used
in [T], 7-4-1 d), for example). The next proposition will
clarify the situation: The first two conditions use directly
the equivalence classes of functions without the help of a
lifting. They emphasize the intuitive idea, that M < L*[0,1]
is not stable if for almost all (uq,vq), 1£gs<p in

some set A there is g € M which oscillates on each of

these pairs of points.

We need some notation: For g € L”[0,1] and p € N define

the function g{p) on [0,1]2p by



73

(p) X
g (0. neee i 0% peem¥ ) & [ min (g(v_)=-g(u ))]
1 e P 12gsp k! a
Clearly g(p) is an element of Lm([0,1]2p,m2p) and the

equivalence class of g(p)

depends only on the equivalence
class of g. Hence, for g € L”[0,1] we may define

g'®) e 12(10,11%P).

7.3 Proposition: For a bounded subset M of L [0,1] t.f.a.e.

(i) There is (an equivalence class of) a set A < [0,1],

m(A) > O, and « > O such that, for p € W,
sup {g(p) : g € M} 2 & Xp2P)

the sup taken in the sense of the complete lattice

L1®([10,11°%P).

(ii) There is (an equivalence class of) a set A < [0,1],
m(A) > O, and a > O such that, for p € N and

€ > 0, there are gqree-r9, € M with

(p)

llda.x 2p = ( sup g ) A a.x, 2Pl 1 2p, < &
(iii) For every lifting p : .”[0,1]1~» L7[0,1], p(M) is
not stable.
(iv) There is a lifting o : Lm[0,1] - L°[0,1] such

that p(M) 1is not stable.
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If M fails the above (equivalent) conditions we call it

"stable under a lifting" (SL) or - if there is not danger

of confusion - just stable.

Proof: We shall use the following fact: If (fa)aEI is an
upwards directed bounded system in Lm([0,1]29) and £ 1is
the supremum, then f0t tends to £ with respect to H.H1.
If p : L”[0,1] » L®[0,1] is a lifting then also o (£f )

(which is well-defined) tends to p(f) with respect H.H1.

(i) = (ii) follows from this remark by taking (fa)aEI to

be the finite suprema of g(p).

(ii) = (iii) follows from ([T],11-1-1). Note however that
the "brute force" ([T], p. 212) of this result applied to
the present situation is a kind of shooting with canons on

pigeons. The alert reader will find a more direct (but longer

to write) argument.
(iii) = (iv) is obvicus and

(iv) = (i) also follows from the above remark. Indeed, the
definition ([T], 9-1-1) of stability implies that - assuming
(iv) - there is a set A < [0,1], m(A) > O and &« > O such

that every p € IN

sup (pq(P) : g €M 2 a.xAp
holds true on a subset of [0,1]2p of outer measure 1 (the

sup taken pointwise).
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From the above remark we conclude that sup (g(p) : g € M)

- this time the sup taken in the lattice ﬁm([O,I]ZPJ - is

bigger than a.xA2p.

7.4 Remark: Let us announce that it is proved in [S3] that

a circled, convex, bounded set M < L7[0,1] 4is not stable
iff there is A < [0,1], m(A) > 0 and o > O such that for

every ¢ > O

(i') sup {g¥ : g € N, ligll, < e} 2 X Xp2P-

This result is parallel to the characterisation of equimea-
surable sets mentioned in 4.1 above and its proof uses

similar arguments as [S1].

We now introduce the last concept, due to Bourgain (in the
unpublished note [B3]; see [R-S] and [T], 9-5-4 for a defi-
nition). This concept too was introduced for sets of func-
tions but again we believe that this notion makes perfect

sense for sets of equivalence classes of functions.

7.5 Definition: A bounded subset M of L7[0,1] is said to

satisfy "Bourgain's condition under a lifting" (BL) if, for

(on equivalence class of) a set A « [0,1], m(A) > O and ¢ > O,
there is a partition P = (A1,...,An} of A into (equi-
valence classes of) subsets of A, m(Ai)> O, such that for

each g € M there is some 1 £ i1 £ n such that

essential osc (gIAi) < €.
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7.6 Remark: It is obvious that M satisfies (BL) iff, for

some (equivalently for every) lifting o : .?[0,11 » L[0,1],
oM satisfies Bourgain's condition ([T], 9-5-4). If there
is no danger of confusion we shall then just say

M < 1.°[0,1] satisfies Bourgain's condition (B).

We can now state the theorem clarifying (partially) the re-

lations of the above properties.

7.7 Theorem: For a bounded subset M of 1.”[0,1] we have

the following diagram of implications

stable
77‘ (sL)
ll'“\m{iom (F)
small Bdurgain's regular pointwise relatively
oscillation = condition » oscillation = compact under a lifting
(S0O) (BL) (RO) (RCL)

7.8 Remark: We do not know whether (BL) = (SO), (RO) = (BL)

and (SL) = (RO), although we know that one of the two latter
implications must fail in view of (SL) # (BL). We also do

not know whether (RO) = (SL) absolutely.

In ([T], 9-5-4) an example is given of a set which is stable
but fails Bourgain's condition (B). Note however that this
example consists of functions on [0O,1] which are different
from zero only on finitely many points. Hence it does not
fit into our situation where we are dealing with sets of

equivalence classes of functions. Hence we believe that our
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example showing (SL) # (BL) does bring new information.
Let us point out that we do not know whether our subsequent

)CD

example M = (h —_—

. is a set of regular oscillation (RO)
r
or - equivalently - whether the operator of example 4.6 is

a regular operator.

Before embarking the proof let us deduce that regular operators
*

T : L1[O,1] -+ X are W RNP-operators. The according result

for sets was proved - under a technical separability assump-

tion - by Ghoussoub, Godefroy and Maurey ([G-G-M], th. IV.7).

*
7.9 Theorem: A regular operator T : L1[O,1] - X 1is (W RNP).

Hence if D < X is a convex, bounded, regular set in X
such that T(F) €« D then T is regular and therefore

*
(W RNP).

*
Proof: T is regular iff T*(ball (X)) is (RO) (theorem
* %*
6.5 and T is W RNP iff T (ball (X)) is (RCL) ([TI,
7-4-1) . Hence the first part follows from theorem 7.7 and

the second part is obvious in view of theorem 6.5.

Proof of theorem 7.7: (SO) = (BL) is obvious.

-

(BL) = (RO): This argument is due to J. Bourgain and given

in [B3]: Let ¢ > O and (gG)GEI be an ultrafilter in M

% % =]
converging weak-star to =z € M. By an exhaustion argument

and the property of an ultrafilter we find,for p € IN,
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finitely many A?,...,Aﬁ with
p

P
m( U AE) > 1 - 5/2p
i=1 *

and such that for a 2 « each Iy oscillates on aP

P i
less than p_1, for 1 £ i s np. Defining
n
[ =]
a= n u ab
p=1 i=1

we obtain a set of measure bigger than 1-¢ and such that

* % 3
z restricted to A is induced by an element of L7[0,1]

(compare the proof of 6.4), which shows that M is of re-

gular oscillation (RO).

(RO) = (RCL): Let p : L¥[0,1] » L*[0,1] be a lifting and

(ga)u€I an ultrafilter in M; we have to show that the

pointwise limit g of (p(ga))GEI is an element of L%[0,1].

~

* %
There is a weak-star limit =z of in M. By

(94) qer

assumption there is a sequence of (equivalence classes of)

[==]
sets A < [0,1], m(An) -» 1 and elements g, € L (An,mlAn)

- which we identify with G = Tk € 1L7[0,1] - such that
* % n
the restriction of z to Lm(An}* equals g . Hence
. co
(XAn'gG)QEI converges weakly to g =~ in L [0,1] and as
0 is a continuous linear map (in fact an isometric embedding)

p(XAn'ga) =Xb(An).p(ga} converges weakly to p(g ) in the

Banach space L®[0,1], hence in particular pointwise. Hence
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the function g equals on the set p(An) the Lebesgue-
measurable function p(gn) which readily shows that

g € L”[0,1].
(BL) = (SL) is not hard to see (compare [T], 9-5-4) and

(SLL) = (RCL) and (RCL) = (SL) under axiom (F) is exten-

sively treated in ([T], chapter 9).

We still have to show that (SL) # (BL). This will be done
)km ®
m, j j=1)m=1

inspection of the argument given there shows that

by the sequence ((h given in example 4.6. An

e il not only fails to be of small oscilla-

M= (hy 5)5=1) p=1

tion (SO) but fails in.fact Bourgain's condition (B).

However, we shall presently see that if there is p € WN

such that

m=1
the set M is stable (under a lifting). Let B_ . = {h_ .=
m, j m, j
and consider h$p; - with the notation of 7.2 above:
r
1 if each v_ € B . and
(p) ( ~ P m,J
hm,j u1,..,up,v1,..,vp) = no uq € Bm,j
0O otherwise.
Hence

(p) -p
B, 3 (10,11%P) = ¥n
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and k
m
lsup BP s £ Py s k7P,
1595k ™31 T g=q M3 m
m
km -
Suppose now M = ((hm,j)m=1)m=1 is not stable. It follows

easily from the result announced in 7.4 that there 1is
Ac [0,1], m(A) >0 and a > O such that for every

mOEJN and p € N

sup {hépg : 1S3 smomzm} 2z a.x,2p,

r

the sup taken in the lattice L”[0,1].
If k;p+1 is summable choose m0 such that

T k;p+1 < a.m(A)zp.

=1
o

Then we may estimate

(P).1

-

A

k
j < km’ m 2 mO)H1 s X %

u h .
eug Wi:d m=m_ j

@ _p+1
S I km < Ha.xAZpH1.

m=1m
o

This contradiction shows that M 1is indeed stable.

We shall give yet another proof that M is stable which
is technically a little more involved but does not make
use of the result announced in 7.4: Suppose again M 1is
not stable and find A < [0,1], m(A) > O and « > O such

that, for p € WN
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)

J

.
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t 5 < >
13k ,me N} 2 & Xp2P-

Fix p € N such that k;p+1 is summable. We may find

m_ € N and an

@]

A
'_J

where 1

A

~
P

-

-

L]

L]

-~
—
I
._l
A

k such that
m

m(B N A) > m(B) /2.

We may chcose

m
o

big enough such that

s kP-1 o q/2°P,
m

m=m

Let A be the set A N B and note that we get for A

1
the estimate

sup {h(p

Note that for

n (P)

hence v
m,J

)

o1 Py o

X

m < m the h

Xg2P

.
-y
A

(-

< >
52P Sk om€ N} 2 %X, 2P

1

. do not oscillate on
(@] m, ]

equals zero. For m > m

h ..XBZP(u1,..,um,v1,..,vm) = 1 implies that each

m,]J

BNB_ .
vq % m,J

m(B N B
m

L

we may estimate

Having in mind that

= . 5 <
m(B)/km for m > m and 1 £ j £

p 2 2p ;P
“hm,j'szp“1 < m(B) /Ky

m
>
(]
I
H
Hh
o}
H
IA
3

B
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Hence

llsup (hé?;.xB2p : 1S3k, me NI, s

- k

m
5 5 m(B)2p/kg .
m=m _+1 =1

A

w(B) %P, = xP*1

A

a. (m(B) /2) %P < lloc. X, 2011 -

This contradiction shows that M is stable. It also

finishes the proof of 7.7 and - last not least - finishes

this paper.
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