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1. Introduction and Notation.

Let (Sp)g<¢ be a real valued stochastic process defined on a probability space
(Q ,F, P) . The filtration (1-'t)O is the natural filtration generated by the process S.
<t

We will also need the following concept, often used in the theory of stochastic
integration. See Protter (1990) for more details.

Definition:

We say that a process H:[0,1] x Q — R is simple predictable if it is a finite
linear combination of processes of the form. f 4 Ty, Tol where 0sT, =T, =1

are stopping times and f is F. T measurable (not necessarily bounded).

The stochastic integral (HeS) where H=f 1] T, Tl is defined as
(HeS)¢ = f (StaAT,~StaTq)- The set Kis defined as K = { (HeS); | H is simple

predictable }. The vector space K is a subspace of L9, the vector space of all F,

measurable random variables equipped with the topology of convergence in
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measure. We identify random variables that are equal almost everywhere. The

cone of nonnegative random variables of L9 is denoted Lg.

If (Sp)g<t< models the discounted price process of a securities market, then the

elements of K can be seen as the net gain or loss of the simple strategy H applied
to the process (Sp)g<i<q- We say that (Sp)g<i<q satisfies (NA) (which stands for

no-arbitrage) if K N L3=[0}. In other words if there is no simple strategy which

yields a strictly positive gain with strictly positive probability, while the
probability of loosing money is zero. We say that (Sy)g<i< satisfies (NFLBR)

(which stands for no free lunch with bounded risk) if there does not exist a
sequence (f;,);>1 such that

) f,2-1 Pas.

(i) lim fn = fO Pa.s.
n—oo

(iii) fg : Q — [0,+] and P [fg> 01> 0.

For the development and the use of the above notions we refer to Kreps (1981),

Mc Beth (1991), Delbaen (1992) and Schachermayer (1992). Let us note that a
continuous process (Sy)g<t<1 Satisfies (NFLBR) if and only if there does not exist

- +
a sequence (f)n>1, I fa || .. < 1 and such that E[f,] — 0 while E[f ] does not, as

may be easily seen from a stopping time argument. It was in this sense that
(NFLBR) was used in Delbaen (1992). Let us also note that the notions (NA) and
(NFLBR) depend on the choice of the integrands H we allow to be used. In the
present paper we use simple predictable integrands defined above. The use of
stopping times in financial modelling is perfectly allowed since it corresponds to
real life situations: act on the market if certain events only depending on past
information arise. For instance H =f 1] 1, T4 means that we buy f units at time

T1 and sell when time T, has come. It was shown in Delbaen (1992) that for

continuous bounded processes S, the notion of (NFLBR) was equivalent to the
existence of a martingale measure for S. An analogous result, without
boundedness assumptions was shown in Schachermayer (1992) for processes
indexed by a discrete and infinite time set. One may ask what happens for
continuous processes which are unbounded. From Delbaen (1992) we may
conclude that (NFLBR) still implies the existence of an equivalent local



martingale measure. See Schachermayer (1992) for more details. In the present
note we give two examples that clarify the situation when (Sp)g<i< 1s

continuous but unbounded.

Example 1is a R valued process (Sp)g<t<1 Which has a unique equivalent local

martingale measure, has moments of all orders but fails to have an equivalent
martingale measure. The process (St)g<t<1 allows arbitrage in the sense that it
fails (NA). This shows in particular that the existence of a local martingale
measure does not imply (NA).

Example 2 is somewhat more subtle: the process (Rpo<i<1 again has a unique

local martingale measure but has no martingale measure. This time however
the process (Ry)g<t<q does not allow arbitrage profits and in fact it satisfies
(NFLBR). This shows that for unbounded processes (NFLBR) only implies the
existence of an equivalent local martingale measure.

Both examples are well known in the theory of continuous stochastic processes.
See Revuz-Yor (1990) for details on these matters. We also refer to this book for

the theory of Markov processes that is used in one of our proofs. For instance
the measure Px denotes the distribution, defined on the space of all continuous

functions from R to R , of a Markov process starting at the point x of R _.
+ + +

2. The Examples.

Example 1:

Let (By)g<t be a one dimensional Brownian motion starting at By = 1. We stop
the process B when it hits the level 0 for the first time. So let T be defined as T=
inf {t| By =0}. It is well known that T is finite almost surely. The process
(Splo<t<1 is now defined as

5t = Btan(t*(n/Z))AT for t<1 and

S1 =Bt =0for t=1.

The filtration (F t)0 is the filtration generated by the process (Sy)g<t<1- The

<t<1
process (Sy)g<t<] has a unique local martingale measure. The sequence T

defined as the first hitting time of the level n is a localizing sequence and the
measure P is the only measure that turns (Sy)g<i<1 into a local martingale. An

easy way to see this is to use the martingale representation theorem Revuz-Yor



p187 theorem 3.4, then apply exercise 4.12 p 199, the reasoning is not affected by
stopping the processes at time T. The variables (St)g<t<1 have moments of all

orders but they do not form a martingale. To see that there is arbitrage take H to
be equal to -1 on the set ]0,1]. The outcome is the function (HeS)1=1 a.e.. The
process (Sy)g<¢<q is only a local martingale on [0,1], but it is a martingale on [0,1[.

Related to the above example and of the same nature is the process (St)g<t<oo
defined as

St=exp(Bt-%t) fort < ee

See=0

The process is sometimes called the exponential of the Brownian motion. It
corresponds to the process derived from a geometric random walk seen under an
equivalent martingale measure. This process is often used in mathematical

finance. The presence of arbitrage shows that some care has to be taken when

dealing with infinite time horizon problems. It is easily seen that the process
(SP)o<t<oo is Only a local martingale on [0,e¢]. Itis however a martingale on [0,=.

Example 2:

The second example can most easily be introduced using a three dimensional
Brownian motion (Xt)0<t starting at the point (1,0,0). Proposition 2.7 p179 in

Revuz-Yor (1990) shows that X will not hit the origin with certainty. Therefore

1
||X B (The || || denotes the
t

Euclidean norm on R°). The process R is a typical example of a local martingale

which is not a martingale. (see Revuz-Yor (1990): exercises 2.13 and 2.14 p182).

The family of random variables (Rt)0< is even uniformly integrable and each
<t

the process (R) can be defined as R =
Yost ¢

Re L2. (Even in LP for every p<3). The process also satisfies a stochastic
differential equation, namely dR, = -th dB, , where (ﬁt)0<t is a one dimensional

Brownian motion. The filtration (F t)0<t is defined to be the natural filtration

generated by the process (Rt)oq' It is also equal to the natural filtration generated

by the Brownian motion B. Because the process R is never zero and because of
theorem 3.4 p 187 in Revuz-Yor (1990) applied to B, there is no local martingale L
with <R,L> = 0. It follows that the only probability measure equivalent to P and
for which R remains a local martingale, is precisely P. This implies that R does
not allow a non trivial equivalent martingale measure. The process R is also a



Markov process. To facilitate the notation of the proofs we will make use of the
process R as defined on [0,o[. The process that will serve as a counter-example is
the restriction of R to the time interval [0,1] We recall that the subspace K of i
is defined as K = {(HeR); | H is simple predictable }

Proposition

R satisfies (NA):
0
K n L+ = {0}

Proof

The process R is positive and is a local martingale. It is therefore a super
martingale and for each stopping time T we have that R is integrable. In fact

E [Ry] < 1. To prove the non arbitrage relation for R we first show that if
T, <T,<1 are stopping times, then the variable RT1 g R.l.2 cannot be a

nonnegative random variable unless it vanishes a.e..

Suppose on the contrary that RT] - RT2 >0 ae and P [er- Kl.2> 0] >0

We first take M such that P [RTls M, er >Rr2 ] > 0. Such a real number M
clearly exists since R_l.1 < o a.e.. Since R.1~2 < RTl a.e. this implies RT2 <M
a.e. on {er < M}). Letus put A = {R.l.1 sMin (T, < T))e ]—'Tl. We now define

T as

T=inf{tl t=2T; R 22M}nal
We first show that P [An {T<T2}] = 0. To do so we will apply the strong
Markov property of the process R at the stopping time T. Since A € :FTl we also

have that A N {T<T2} € FT . Theset 1 (T<T,) is clearly contained in the set

{3 usuchthatT<u<T+landR < M} = { inf R < M}
. T<u<T+1 ¢

Now

Il

P [A N (T<T,)] I dP 1 p)

AN {T<T2}

IA

dP 1 jnf R, < M)
T<usT+1

AN {T<T2}



< dPE[L ¢ g oo | Frl
J T<u<T+1
AN (T<T,)}
< dP P, [inf R < M] ‘by the Markov property
i Osusl U
AN [T<T2}
<P [An{TI<T}] P, [inf R <M]
27 Mg u
ButP, [inf R, < M] < 1 since it is the probability that a 3-dimensional
0<u<1

1 1
Brownian motion starting at (m,o, O) becomes bigger than M in the time

interval [0,1]. Therefore P [A N {T<'I,‘2}] = 0. It follows that 1p Ru < 2M on
[T, T,]. But this implies that the process defined as
Yt(co) =0 fort < T1

& Rt(cn) - RTl(co) for T, 514 T, and o in A, zero elsewhere

R]‘ (w) - R.r (w) for t 2 T2 and o in A, zero elsewhere
2 1

is a bounded local martingale and therefore a martingale.
It is therefore clear that R, <R, implies that R. =R, ae.
2 1 2 1

We just proved that for T, < T

) the variable R.].1 - Krz cannot be in L?_ \ {0}.

Since R is a supermartingale it is obvious that also R, - R, cannot be in
2 1
Lg \ {0} either. From this we easily deduce that for all f, ¥ T, measurable, the
variable f ‘(RT - RT ) cannot be in L?_ \ {0}.
2 1

We now show that this already implies that K N Li = {0}

Indeed suppose that K L?_ # {0}. By definition there is a simple predictable H

of the form:

n
H = kz_‘ fk 1] Ty Tiep] fk :FTk measurable



where g = (HeR), 2 0 and P[g>0] > 0. Let moreover n be the smallest

natural number for which such a construction is possible. We claim that H' =

n-1
1?::1 £ L Ty Typq] already does the job, a contradiction to the choice of n.

Let A = [(I-I-S)Tn< 0}e I-‘Tn. Since (I—IOS)Tlr1+1

fn 1] T, Tpq] > 0 on A. Unless P [A] = 0 this is impossible by part 1 of the

proof. Therefore (HeS), 2 0 ae. If (HeS), = 0 ae. then again we would
n n

> 0 a.e. wenecessarily have

) 5 5 2 .
have frl (RTn+1 RTn ) = 0 ae. and > 0 on a set of positive measure, again a

n-1
contradiction to part 1. Therefore P [(I-I»S)Tn > 0] > 0 and H'=z fi. 1 o
k=1
did the job! ged
Theorem
The process R satisfies (NFLBR):
If (f) is a sequencein K, f 2-1ae and f - f; in probability

then f, > 0 implies f, = Oae.

Proof
From the (NA) property it follows in the same way as in Delbaen(1992) that if H
is simple predictable such that (HeR); 2 -1, then for all T stopping time

(HeR)p 2-1 a.e., hence the process (HeR) is bounded below by -1. Since R is

a local martingale HeR is a local martingale and since it is bounded below, it is a
supermartingale. Therefore E[(HOR)I] < 0. From Fatou's lemma it follows that
E [f{)] < limE [fn] < 0 which finishes the proof. g.e.d.

The next proposition shows that when net gains are not supposed to be bounded
below, the closure can become very big. This already happens when we restrict
the integrands or strategies to be defined by fixed times instead of stopping times.
To make the notation easier let us introduce:

H is a step function if H is a linear combination of processes of the form f1] 1, tol

where 0 £ 'c1 < £, <1 are deterministic times and f is J-'tl measurable and



bounded. These integrands were used in Stricker (1990). The set K' is defined as
K'= {(HeR); | H is a step function}.

Proposition

i) KNnL™ n Lr = {0} The bar denotes the closure with respect to o(L>=,LL).

ii) K’ ALY ALY # (0} The bar denotes LP dlosure, p<3.

Proof:

The first statement follows from the preceding theorem. An element of K n L™
has a negative expected value and therefore the same is true for elements in
KNL”. The second statement is less trivial. If the intersection would only
contain {0}, then we could apply theorem 3 of Stricker (1990). The conclusion
would yield the existence of an equivalent martingale measure Q with density

dQ

gp In 19 (= 5%). The only equivalent local martingale measure is however P

itself and this is not an equivalent martingale measure. g-ed.

3. Concluding Remarks.

Let us come back to the economic interpretation of the processes S and R of
example 1 and 2. As both are R valued, they may be interpreted as the price

process of a stock.

Intuitively both are loosing stocks as the processes are supermartingales but not
martingales. Hence an arbitrageur would try to make arbitrage profits by going
short on these stocks. (One should be careful in this kind of reasoning: for a

supermartingale it is perfectly possible that there is an equivalent martingale
measure.)

In the first example he or she may do so successfully. Just go short on one unit of
the stock at time t=0. At time t=1 he or she closes the position by selling
(=throwing away since the price =0) the stock. The net gain is one unit of money.
Nevertheless the stock is locally fair since it is a local martingale. This is
reflected by the fact that the arbitrageur must have very good nerves (or a good



sleep). While t ranges through [0,1[ the stock S may become very valuable and

therefore the short position will have large negative values. Indeed it is well

known that E[ sup St] = . Note by the way that it is only when the stock price
O<t<1 -

reaches zero that the arbitrageur may be certain that his position is safe.

The second example is different: again the stock is loosing in the sense that Ris a
supermartingale with strictly decreasing expectation. But here an arbitrageur,
even if he or she has good nerves, has no chance of winning the game.
Whenever he or she goes short on the stock R, then with positive probability a
loss will occur which by using simple strategies, cannot be recovered before time
1. In fact one may not even approximate a riskless profit by a sequence of simple
strategies if one requires that the maximal loss is bounded by a uniform constant.
The final proposition shows however that in LP (p<3), a positive function can be
constructed via LP approximations with simple strategies. It is a challenging
exercise for the reader to construct such a sequence explicitly.
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