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A Proof of a Conjecture of Bobkov and Houdré

S. Kwapien, M. Pycia and W. Schachermayer

Abstract: S. G. Bobkov and C. Houdré recently posed the following question
on the internet ([1]): Let X, Y be symmetric i.i.d. random variables such that

P(

X +Y]|
TZ‘)SPUJQZ”,

for each ¢ > 0. Does it follow that X has finite second moment (which then
easily implies that X is Gaussian)?

In this note we give an affirmative answer to this problem and present a
proof. Using a different method K. Oleszkiewicz has found another proof of this
conjecture, as well as further related results.

Theorem. Let X,Y be symmetric i.i.d random variables. If, for each £ > 0,
P(IX +Y| > V2t) < P(IX] 2 1), 1
then X is gaussian.

Proof. Step 1. E|X|IP<oofor0<p<2.
For this purpose it will suffice to show that, for p < 2, X has finite weak
p’th moment, i.e., that there are constants C, such that
P(IX| > 8) < Gyt~.

To do so, it is enough to show that, for ¢ > 0,6 > 0, we can find {; such
that, for ¢ > to, we have

P(IX] > (V3 + 1) < 5= P(IX] 2 1) ?)

Fix € > 0; then
P(X +Y|>V2t) =2P(X +Y > V2t) >
2P(X > (V24+t,Y > —et,or Y > (V24 )t, X > —¢t) =
202P(X > (V24 )P(Y > —et) — P(X > (V2 + t)P(Y > (V2 +€)t)) =



2P(X| 2 (V2 + t)(P(Y 2 ~dt) - 3 P(X 2 (VE+0)) >

2-8)P(IX| > (V2+ o)),

where § > 0 may be taken arbitrarily small for ¢ large enough. Using (1) we
obtain the inequality (2).

Step 2. Let ay,...,an be real numbers such that o + ...+ a2 < 1 and let
(X:)$2, be i.i.d. copies of X; then

Ela1 X1 + ...+ anXn| < V2E|X|.

We shall repeatedly use the following result:

Fact: Let S and T' be symmetric random variables such that P(|S| > t) <
P(|T] > t), for all t > 0, and let the random variable X be independent of S
and T'. Then

E|S+ X| < E|T+ X]|.

Indeed, for fixed z € R, the function A(s) = w is symmetric and
non-decreasing in s € Ry and therefore

IS+ 2| = E|S+ z| —;— |S — z| < ElT—I— x| —;— |7 — z| = BT +2|.
Now take a sequence f3i,...,0, € {2"‘/2 : k € Ng}, such that o; < 5 <
V2a;. Then Bi+ ...+ 82 <2and

E[CIIX‘L + ... +{1an| S EIﬁ1X1 + ... +,6an[.

If there is ¢ # j with B; = §; we may replace f1,...,8, by 11,...,%m—1 with
Sie1 B = X5 7} and

n n-1
E|Y BXi| < B Y v X;l. ®)
i=1 i=1

Indeed, supposing without loss of generality that i = n — 1 and j = n we let
=B, fori=1,....,n—2and Yp—1 = V2Bn_1 = V28,. With this definition
we obtain (3) from (1) and the above mentioned fact.

Applying the above argument a finite number of times we end up with 1 <
m < n and numbers (v;)7%, in {27%/2 . k € No}, % # vj, for i # j, satisfying
> 7} <2and

n m
EY aiXa| < E| Y %X
i=1 ji=1



To estimate this last expression it suffices to consider the extreme case v; =
2-U=1/2 for j = 1,...,m. In this case — applying again repeatedly the
argument used to obtain (3):

m m—1
E|ZQ—(1-1);‘2X:‘;| < E| Z 2—(1—1)1’2)(3_ + 2—(m—1)f’?Xm| <
§=1 Jazl

m=—2
B 27U-DRx;49=(m=D2X, | < ... < E|X14X2| < E[V2X:1| = V2E|X4|.
i=1

Step 3. EX? < co.
We deduce from Step 2 that for a sequence (@;)$2; with 372 o? < co the

series
s o]
E i X
i=1

converges in mean and therefore almost surely. Using the notation

_ [ sifls|<1,
[81= { sign(S) if |S] > 1.

for a random variable S, we deduce from Kolmogorov’s three series theorem
that

Z E([a,-X‘-]Z) < 00.

Suppose now that EX? = oo; this implies that, for C > 0, we may find a > 0
such that
E([aX]?) > Ca®.

From this inequality it is straightforward to construct a sequence («;)$2, such
that

oo oo
Z E([e; X;]*) = oo, while Zaf < 0,
=1 i=l1
a contradiction proving Step 3.
Step 4. Finally, we show how EX? < oo implies that X is normal. We follow
the argument of Bobkov and Houdré [2].

The finite second moment implies that we must have equality in the assump-
tion of the theorem, i.e.,

P(X +Y|>V2t) = P(|X| > t).



Indeed, assuming that there is strict inequality in (1) for some ¢ > 0, we would
obtain that the second moment of X 4 Y is strictly smaller than the second
moment of v/2X, which leads to a contradiction:

IEX? > BX 4 Y= EX 4+ BV = 9EX?,

Hence, 2"”’2(){1 + ...+ X3») has the same distribution as X and we deduce
from the Central Limit Theorem that X 1s Gaussian.
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