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Abstract. We prove that for continuous stochastic processes S based on (
;F;P) for which there is an
equivalent martingale measureQ0 with square-integrable density dQ0=dPwe have that the so-called "variance
optimal" martingale measure Qopt for which the density dQopt=dPhas minimal L2(P)-norm is automatically
equivalent to P.

The result is then applied to an approximation problem arising in Mathematical Finance.

1. Introduction

Let S = (St)t2IR+ be an IRd-valued semi-martingale based on (
;F ; (Ft)t2IR+ ;P) which in most of this
paper will be assumed to be continuous. The process S may be interpreted to model the discounted price
of d stocks.

A very important tool in Mathematical Finance is to replace the original measure Pby an equivalent local

martingale measure Q, sometimes also called a risk-neutral measure. More formally we denote as in [DS
94a] by

M(P) = fQ� P: Q is a probability measure and S is a Q-local martingaleg

the set of all probability measures Q on F which are absolutely continuous with respect to P and such
that S becomes a local martingale under Q. By

Me(P) = fQ� P: Q is a probability measure and S is a Q-local martingaleg

we denote the subset ofM(P) formed by the probability measures Q 2M(P) which are equivalent to P.

A basic problem in Mathematical Finance is to determine (i.e., �nd necessary and su�cient conditions
on S) whether or not Me(P) is non-empty. This issue is settled by the Fundamental Theorem of Asset

Pricing, where some kind of no arbitrage assumption is needed to insure that Me(P) 6= ;. We refer to
[DS 94] for a general version of this theorem and for a detailed account on related work on this problem,
starting from the seminal papers [HK 79], [HP 81], [Kre 81].

Once it is established that the set Me(P) of equivalent local martingale measures is non-empty the
question arises, which element Q in Me(P) is the \most natural" choice and how the choice of Q is
related to the pricing and hedging of a given contingent claim, i.e., an F-measurable random variable
f . The term \most natural", of course, depends on the context. Note that in the general setting of the
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Fundamental Theorem of Asset Pricing (as presented in [DS 94]) it does not make sense to ask for a \most
natural" element ofMe(P) as this setting is invariant under changes of equivalent measures. Hence the
question is as meaningful (or meaningless) as asking \what is the most natural point in a convex set".

But once we �x the original measureP, one may ask which elementQ 2Me(P) is most natural (relative to
this measure P). In the applications in Mathematical Finance and in particular in Actuarial Mathematics
one often has quite a good knowledge of what the measure P, which describes the \real" world, should
be. For example, insurance companies usually have a very precise knowledge of the \true" mortality in
their (life insurance) portfolios, which is modeled by P (\mortality tables of second order"), while for
calculating premia and reserves they use substantially di�erent probability measures Q (\mortality tables
of �rst order").

If we have a good reason to �x the measure P, it makes sense to ask for the element Q 2Me(P) which is
\closest" to P. So far there have been mainly two notions of \closest" element considered. For continuous
semi-martingales H. F�ollmer and M. Schweizer [FS 91] called the element Q 2 Me(P) which minimizes
the relative entropy

H(Q j P) =

Z
log

�
dQ

dP

�
dQ

the minimal martingale measure. If S is continuous and its Doob-Meyer decomposition is of the form
S = M + A = M + �0 � hM i (where 0 denotes transposition in IRd) for some predictable process �, then
the density of the minimal martingale measure Qmin is given by the Girsanov-type formula

dQmin

dP
= E(��0 �M )1

= exp

�
�

Z 1

0
�0tdMt �

1

2

Z 1

0
dh�0 �M it

�
;

provided this measure exists, i.e. provided that E(�� �M )t is a strictly positive uniformly integrable mar-
tingale (compare [F-S 91]). This formula is particularly appealing if we know from arguments involving
martingale representation (e.g., in the case of a \Brownian" setting) that there is at most one equivalent
(local) martingale measure. In this case one simply has to verify whether the process E(�� �M )t is a
uniformly integrable strictly positive martingale or not; several su�cient conditions, e.g. Novikov's and
Kazamaki's condition [KS 91] [RY 91], are known to guarantee this.

However, it turns out that the Girsanov-type formula above may go astray, although there may be
equivalent martingale measures around: in [Sch 93] and [DS 95] the authors constructed a continuous

process S = M +� � hM i such that there exist equivalent martingale measures Q (even with dQ
dPuniformly

bounded) but nevertheless the local martingale E(�� �M ) is not uniformly integrable. Hence, despite
of many appealing properties (see, e.g. [FS 91], [DR 91], [AS 93], [Schw 92a], [Sch�a 94]) one cannot
rely on the existence of the minimal martingale measure, even if S is continuous and models a perfectly
arbitrage-free market.

Another natural approach is to look at the element ofMe(P) of smallest L2-norm, in other words to look
for the element Q 2Me(P) which minimizes

D(Q;P) =





dQdP





L2(P)

=

�
Variance

�
dQ

dP

�
+ 1

�1
2

;

provided such an element exists (uniqueness will follow from strict convexity of the norm of L2). We refer
to [Schw 92a] for the name \variance-optimal" and for the relevance and history of this idea.

To introduce this concept in a precise way it is convenient to introduce the notion of \signed local
martingale measures" which was introduced by S. M�uller [M 85] (compare [Schw 92a], [AS 92]). Let K0

denote the subspace of L1(
;F ;P) spanned by the \simple" stochastic integrals of the form

f = h0 (ST2 � ST1)
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where T1 � T2 are stopping times such that the stopped process ST2 is bounded and h is a bounded
IRd-valued FT1-measurable function. Obviously, if S is assumed to be a locally bounded cadlag semi-
martingale, a probability measure Q on F is a local martingale measure for S i� Q vanishes on K0,
i.e.,

EQ[f ] = E

�
dQ

dP
f

�
= 0 8f 2 K0:

Identifying absolutely continuous measures with their Radon-Nikodymderivatives | which we shall freely
do throughout this paper without further notice | this leads to the subsequent concept.

1.1 De�nition. The set of signed local martingale measures for the process S is the a�ne subspace
Ms(P) of L1(P)

Ms(P) = fg 2 L1(P) : E [gf ] = 0 for f 2 K0; and E [g] = 1g;

i.e.,Ms(P) is the intersection of the annihilator of K0 with the set H = fg : E[g] = 1g. Note that H is
an a�ne hyperplane (i.e., an a�ne subspace of codimension 1) of L1(P) and that H is spanned by (the
densities of) the probability measures in L1(P), i.e., H is the smallest a�ne subspace of L1(P) containing
these probability measures.

Obviously M(P) (resp. Me(P)) is the intersection of Ms(P) with the positive (resp. strictly positive)
orthant of L1(P). Noting that the intersection of Ms(P) with L2(P) is closed in the norm of L2(P) and
that a (non-empty) closed, convex subset of L2(P) has a unique element of minimal norm, we can now
de�ne the central concept of this paper:

1.2 De�nition. [Schw 92a] IfMs(P)\L2(P) 6= ; we call the element ofMs(P) with minimalL2(P)-norm
the variance-optimal signed local martingale measure for the process S.

Why do we have to pass to the space of signed local martingale measures? As observed in [AS 92] one
may easily construct examples (the underlying probability space 
 may be chosen to consist of 3 elements
only) such that the variance-optimal | as well as the minimal | martingale measure is only a signed
measure, i.e., assumes negative values. This phenomenon is due to the fact that if S has jumps the
stochastic exponential E(�� �M ) may become negative.

On the other hand, for continuous processes the stochastic exponential E(���M ) is certainly non-negative,
hence the minimal local martingale measure | if it exists | certainly is a probability measure.

This triggered the question, whether for continuous processes we always have that the variance-optimal
local martingale measure (whose existence follows from the very weak assumption Ms(P)\ L2(P) 6= ;,
compare Lemma 2.1 below) is automatically non-negative. In fact, it turns out that it is automatically
strictly positive, i.e., equivalent to P, provided that the obviously necessary requirementMe(P)\L2(P) 6=
; is satis�ed.

1.3 Main Theorem. Let S be a continuous, IRd-valued semi-martingale and suppose that Me(P) \
L2(P) 6= ;, i.e., there is at least one equivalent local martingale measure with square-integrable density.
Then the variance{optimal measure Qopt is a probability measure equivalent to P.

We �nish this introduction by pointing out that M. Schweizer [Schw 94] showed independently that in
the setting of the main theorem we have that Qopt is a P-absolutely continuous probability measure, i.e.,
Qopt 2 M(P) (as opposed to the stronger conclusion Qopt 2 Me(P) in the preceding theorem; compare
Theorem 3.1 below).
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2. Notation and preliminary results

By S = (St)t2IR+ we denote an IRd-valued cadlag locally bounded semi-martingale. We choose IR+ as
the time index set as this setting covers the most general case. The process S will be based on a �ltered

probability space (
;F ; (Ft)t2IR+ ;P) satisfying the usual conditions. By bK0 we denote the closure of K0

in L2(
;F ;P) and by bK the closure of the span of K0 and the constants in L2(P):

bK = span(K0; 1):

The following easy lemma shows the orthogonality relation between the space K0 of simple stochastic
integrals on S and the a�ne space of signed local martingale measures for S.

2.1 Lemma.

(a)Ms(P)\ L2(P) is non-empty i� bK0 does not contain the constant function 1.

(b)A (signed) measure Q on F with dQ
dP2 L2(P) is in Ms(P) i� EQ[�] vanishes on bK0 and equals 1 on the

constant function 1.
(c)If Ms(P) \ L2(P) 6= ;, then Qopt is the unique element of bK vanishing on bK0 and equaling 1 on the

constant function 1. (Here we identify the measure Qopt with the linear functional EQ[�] and linear
functionals on L2(P) with elements of L2(P).)

Proof. The assertion (b) is an immediate consequence of the very de�nition of the spaceMs(P) of signed

local martingale measures and (a) follows from the fact that the linear functional ' on bK which satis�es

'j
bK0

= 0 and '(1) = 1 is well de�ned and continuous on the closed subspace bK of L2(P) i� 1 =2 bK0.

Finally (c) is implied by the elementary fact that the extension of ' from bK to L2(P) with minimal norm

vanishes on the orthogonal complement of bK.
q.e.d.

In the sequel we shall assume that Ms(P) \ L2(P) 6= ; so that the (signed) variance-optimal local

martingale measure, denoted by Qopt, exists. We denote by Zopt
1 the Radon-Nikodym derivative dQopt

dP

and by Zopt
t the Radon-Nikodym derivative of the restrictions to Ft so that (Z

opt
t )t2IR+ is a P-martingale

converging to Zopt
1 in L2(P).

In most of the paper we shall assume thatMe(P)\L2(P) 6= ; and �x some element Q0 2Me(P)\L2(P),

i.e., an arbitrarily chosen equivalent local martingale measure with square-integrable density Z0
1 = dQ0

dP.
Again we denote by Z0

t the conditional expectation of Z0
1 with respect to Ft.

We also associate to Zopt
1 the Q0-martingale

Ẑopt
t = EQ0

�
Zopt
1 j Ft

�
:

The next lemma shows that the process Ẑopt is independent of the choice of Q0 and may be written as
a constant c, given by kZopt

1 k2L2(P), and a stochastic integral on S. This basic fact was already observed

in [DR 91], [Sch�a 94], [Schw 94] in various degrees of generality. We refer to [Schw 94] for an account on
these results.

2.2 Lemma. Let S be a locally bounded semi-martingale such that Me(P)\ L2(P) 6= ; and �x Q0 2
Me(P)\L2(P).

Letting c = kZopt
1 k2L2(P) we may �nd a predictable S-integrable IRd-valued process � such that

Ẑopt
t = c+ (�0 � S)t
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where the stochastic integral �0 � S is well de�ned and is a uniformly integrable martingale with respect
to Q0 as well as with respect to any other measure Q1 2Me(P)\ L2(P).

The choice of � is independent of the choice of Q0 2 Me(P)\ L2(P).

Proof. Let f be in K = span (K0; 1), i.e.,

f = � +
nX
i=1

h0i (ST2
i
� ST1

i
);

where � 2 IR and where T 2
i � T 1

i are stopping times such that, for i = 1; : : : ; n, the process ST
2
i is bounded

and hi is a random variable in L1(
;FT1
i
;P; IRd). Clearly the uniformly integrable Q0-martingale

ft = EQ0 [f j Ft]

is a simple stochastic integral on S (plus a constant) as

ft = � +
nX
i=1

h0i (ST2
i ^t

� ST1
i ^t

)

= � + (H:S)t

where H =
Pn

i=1 hi1I]]T
1
i ; T

2
i ]].

By Lemma 2.1 (c) there is a sequence (fj)1j=1 2 K converging to Zopt
1 in L2(P), whence by the Cauchy-

Schwarz inequality, in L1(Q0). If �j denotes the real numbers in the representation of fj as stochastic
integrals we get

lim
j!1

�j = lim
j!1

EQ0 [fj ]

= lim
j!1

EP
�
Z0
1fj

�
= EP

�
Z0
1Z

opt
1

�
= EP

�
(Zopt
1 )2

�
=


Zopt

1



2
L2(P)

:

The last line follows from the fact that, by the optimality of Zopt
1 , the random variable Z0

1 � Zopt
1 is

orthogonal to Zopt
1 in L2(P).

The random variables (fj ��j)1j=1 converge in L
1(Q0) to Zopt

1 �kZopt
1 k2L2(P) and we may apply a theorem

of Yor ([Yor 78] th. 4.2., for the vector-valued case see [Ja 79], th. 4.60, p. 143) to obtain the desired
integrand �.

As regards the last assertion of the lemma, note that, if we choose instead of Q0 another element Q1

of Me(P) \ L2(P) the process �0 � S remains unchanged and is a Q1 uniformly integrable martingale
converging to Zopt

1 � kZopt
1 k2L2(P) in L1(Q1).

q.e.d.

2.3 Corollary. If the semi-martingale S is continuous, the process Ẑopt
t is continuous too.

2.4 Remark. On the other hand, the continuity of S does not imply that the P-martingale Zopt
t is con-

tinuous. The following easy example goes back to Harrison-Pliska ([HP 81]; see also [FS 91], ex. 5.13)
and may serve as a general source of intuition for the theory developed in section 3.
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2.5 Example. Let W = (Wt)0�t�2 be standard Brownian motion based on
(
;F ; (Gt)0�t�2;P) and let r be a random variable based on (
;F ;P), independent of W , taking the
values 0 and 1 with probability 1

2 . For t < 1 let Ft = Gt and for t � 1 let Ft be the �-algebra generated
by Gt and r and de�ne

St =Wt + r(t� 1)+:

We may and do assume that Gt is the �ltration generated by W and that F is generated by W and r.

The process S models the following situation: Before time 1 we simply have Brownian motion; at time
1 a coin is 
ipped and according to the result the process either continues to be Brownian motion or it
becomes Brownian motion with constant drift equal to one. We stop the example at time t = 2.

In this case we do not have uniqueness of the martingale measures for S. Indeed

Z(1)
1 = 21Ifr = 0g

is the density of a martingale measure Q1 and so is, by Girsanov's formula,

Z(2)
1 = 21Ifr = 1g: exp

�
�

Z 2

1

dWs �
1

2

Z 2

1

ds

�
= 21Ifr = 1g: exp

�
' �

1

2

�
where ' denotes the standard Gaussian random variable ' = W1 �W2.

The general form of the density Z of a signed martingale measure for S is given by

Z1 = �Z(1)
1 + (1� �)Z(2)

1 ;

with � 2 IR and Z1 is the density of a probability measure (resp. an equivalent probability measure) i�
� 2 [0; 1] (resp. � 2]0; 1[).

Denoting again
Zt = E [Z1 j Ft] ;

the process Z is continuous i� � = 1
2 , in which case Z is the density of the \minimal"martingale measure,

as one easily veri�es.

As regards the \variance-optimal" martingale measure, note that by elementary calculations we obtain

kZ(1)
1 k2L2(P) = 2;

while kZ(2)
1 k2L2(P) = 2e;

hence by Pythagoras' theorem

k�Z(1)
1 + (1� �)Z(2)

1 k2L2(P) = 2�2 + 2e(1� �)2:

The value of � which minimizes the above expression is not equal to 1
2 but equals �opt = e

e+1 > 1
2 for

which we get

kZopt
1 k2L2(P) = k�optZ(1)

1 + (1� �opt)Z(2)
1 k2L2(P) =

2e

e + 1
:

In particular the (cadlag version of the) P-martingale Zopt
t equals identically 1 for 0 � t < 1, while

Zopt
1 =

2e

e + 1
1Ifr = 0g+

2

e+ 1
1Ifr = 1g;

so that Zopt has a jump at t = 1. For t 2]1; 2] the process Zopt
t is continuous and we also may explicitly

calculate it:

Zopt
t =

2e

e+ 1
1Ifr = 0g+

2

e + 1
1Ifr = 1g exp

�
�(Wt �W1)�

t� 1

2

�
:
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3. The proof of the Theorem

Throughout this section we assume that S is a continuous adapted process. We start with the preliminary
result that, under very general conditions,Qopt is a well-de�ned probabilitymeasure absolutely continuous
with respect to Pand with square-integrable density, i.e., Qopt 2M(P)\L2

+(P). The more delicate issue
of showing that Qopt is equivalent to P, i.e., Qopt 2Me(P)\ L2

+(P), will only be tackled later.

3.1 Theorem. If the adapted stochastic process S is continuous and if the constant Function 1I is not
in K̂0 then the variance-optimal measure Qopt exists and is in L2(P).

Proof. We cannot make use of the results of lemma 2.2 and hence we cannot state that Zopt
1 is given

by a stochastic integral with respect to the process S. We in fact don't even assume that S is a semi-
martingale. Some approximation is therefore needed. Let f be the orthogonal projection of the constant

function 1 onto the space cK0. From elementary linear algebra it follows that the optimalmeasure is given
by Zopt

1 = 1�f
1�E[f ] . Also it is clear that E[f ] = E[1f ] = E[f2] < 1, proving that 0 � E[f ] < 1. Showing

that Qopt is non-negative, is therefore the same as proving that f � 1.

Suppose on the contrary the existence of " > 0 such that P[f > 1 + "] > ". Take K a simple integrand

such that g = (K � S)1 2 K0 and such that kg � fk � � where � � "3

32 . We may, as easily seen, also
suppose that k1� (K � S)1k2 � 1, where k � k denotes the norm of L2(P). From Cebysev's inequality we
deduce that

P

h
(K � S)1 > 1 +

"

2

i
� P[f > 1 + "]�P

h
jf � (K � S)1j >

"

2

i
� " �

4

"2
�2 �

"

2
:

De�ne now T = infft j (K � S)t > 1g. Clearly we have that

j1� (K � S)1 j
2 = (1� (K � S)T )

2 1IfT =1g+ (1� (K � S)1)2 1IfT <1g

= (1� (K � S)T )
2 + (1� (K � S)1)2 1IfT <1g

where the last equality follows from the continuity of S. From this we deduce that (denoting by k � k the
norm of L2(P))

k1� (K � S)1k
2 � k1� (K � S)T k

2 +

Z
T<1

(1� (K � S)1)2

� k1� (K � S)T k
2 +

Z
(K�S)1>1+ "

2

(1� (K � S)1)2

� k1� (K � S)T k
2 +

"

2

� "
2

�2
� k1� (K � S)T k

2 +
"3

8
:

On the other hand
k1� (K � S)1k � k1� fk + �:

and hence, as k1� (K � S)1k � 1,

k1� fk2 � k1� (K � S)1k
2 � 2�

� k1� (K � S)T k
2 +

"3

8
� 2�

� k1� (K � S)T k
2 +

"3

16
:
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These inequalities show that f cannot be the projection of the function 1.
q.e.d.

Remark. Some of the ideas of the above proof come from [St 90].

From now on we again make the assumption that Me(P)\ L2(P) 6= ;, which implies in particular that
S is a semi-martingale. Again we denote by Qopt the element of Ms(P) of smallest L2(P)-norm, we �x
some Q0 2 Me(P)\ L2(P) and we let

Zopt
t = EP

�
dQopt

dP
j Ft

�
Z0
t = EP

�
dQ0

dP
j Ft

�
;

where, of course, we choose cadlag-versions for the processes Zopt andZ0. The density dQ
dP

= Zopt
1 is given

by Zopt
1 = 1�f

1�E[f ] where f is the orthogonal projection of 1 on cK0. As shown in section 2 the element

f is given by a stochastic integral and is of the form f = (H � S)1 for some predictable process H. To
show that Qopt is equivalent we only need to show that f < 1 a.s.. Let us put

Yt = 1� (H � S)t = EQ0 [Y1 j Ft] where Y1 = 1� f

Xt = EP[Y1 j Ft] = (1� E[f ])Zopt
t

� = infft j Yt = 0g

T = infft j Xt = 0g

From the previous theorem 3.1 we know already that both processes Y and X are non-negative. We
also have that on the stochastic interval [[�;1[[ (resp. [[T;1[[) the process Y (resp. X) is constant as,
by the preceding theorem 3.1, the random variables X1 and Y1 are non-negative. Because the process
Y is continuous, the stopping time � is clearly predictable; indeed it is announced by the sequence
�n = infft j Yt �

1
n+1g ^ n.

3.2 Lemma. Let S be a continuous semi-martingale. If the set Me(P) \ L2(P) 6= ; then � = T .
Consequently T is predictable.

Proof. (1) On the set f� < Tg we have

0 < X� = E [X1 j F�]

= E [Y1 j F�]

= Y� because Y1 = Y� is F� -measurable

= 0 since f� < Tg � f� <1g:

This clearly shows that P[f� < Tg] = 0.

(2) On the set fT < �g � fT <1g we have that

0 = XT = E [X1 j FT ]

= E [Y1 j FT ]

= E [Y� j FT ] :

We therefore obtain that
R
T<�

Y� dP= 0 and hence we have that Y� = 0 on the set fT < �g. From the

martingale property for Q0 we then obtain that
R
T<�

YT dQ
0 = 0. But this is clearly a contradiction to

the de�nition of �.
q.e.d.
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3.3 Corollary. Under the hypothesis and with the notation of lemma 3.2 we have that

(1)The jump of the martingale Zopt
t at the stopping time T is zero, i.e., Zopt

t is continuous at t = T .
(2)The stopping time T is announced by the sequence of stopping times

Tn = inf

�
t j Zopt

t �
1

n

�
^ n:

Proof. The �rst claim follows from the fact that T is predictable and from the martingale property.
Indeed E

�
�Zopt

T j FT�
�
= 0. On the other hand the jump can only take non-positive values (as ZT = 0

while Zt > 0 for t < T ), hence �Zopt
T = 0 a.s.. The second claim follows trivially from the �rst claim.

q.e.d.

The following lemma should be folklore, but for completeness we give a proof.

3.4 Lemma. If U is a non-negative square integrable martingale, if U0 > 0, if the stopping time T =
infft j Ut = 0g is predictable and announced by a sequence of stopping times (Tn)n�1, then

E

�
U2
1

U2
Tn

j FTn

�
!1

on the set fUT = 0g.

Proof. Since the martingale is uniformly integrable, non-negative and since UTn > 0, we �nd by the
Cauchy-Schwarz inequality that

1I = E

�
U1
UTn

j FTn

�
= E

�
U1
UTn

1IfUT 6= 0g j FTn

�

� E

"�
U1
UTn

�2

j FTn

#1=2
E [1IfUT 6= 0g j FTn ]

1=2

Since E [1IfUT 6= 0g j FTn] tends to zero on the set fUT = 0g, the proof of the lemma is completed.
q.e.d.

We are now ready to prove the main theorem of this paper which has been stated in the introduction:

1.3 Main Theorem. Let S be a continuous, IRd-valued semi-martingale and suppose that Me(P) \
L2(P) 6= ;, i.e., there is at least one equivalent local martingale measure with square-integrable density.
Then the variance{optimal measure Qopt is a probability measure equivalent to P.

Proof. We use the notation introduced above. Suppose that P[XT = 0] > � > 0. The stopping time T
is predictable and is announced by the sequence (Tn)n�1. Because the martingale Z0 is strictly positive

it is uniformly bounded away from zero a.s., i.e. P
�
inf0�tZ

0
t > 0

�
= 1. Since the martingale Z0 is also

bounded in L2(P) we have that sup0�tE
h�
Z0
1

�2
j Ft

i
<1 a.s.. On the other hand, the previous lemma

shows that the expression

E
h
(Zopt
1 )

2
j FTn

i
�
Zopt
Tn

�2
9



tends to 1 on the set fZopt
T = 0g. It follows that for n large enough the set

A =

8<:sup0�t

E
h�
Z0
1

�2
j Ft

i
(Z0

t )
2 <

E
h
(Zopt
1 )

2
j FTn

i
�
Zopt
Tn

�2
9=;

is non empty. As a consequence, for large enough n, the set

An =

8<:E
h�
Z0
1

�2
j FTn

i
�
Z0
Tn

�2 <
E
h
(Zopt
1 )

2
j FTn

i
�
Zopt
Tn

�2
9=;

is a non-empty set in FTn . The martingale

Zt = Zopt
t for t < Tn

=
Z0
t

Z0
Tn

Zopt
Tn

for t � Tn on the set An

= Zopt
t for t � Tn outside the set An

de�nes an equivalent martingale measure Q, dQ= Z1 dPwith density Z1 in L2(P). Because kZ1k2 <
kZopt

1 k2 we arrive at a contradiction.
q.e.d.

4. Approximation of Continuous Processes

In this section we apply the main theorem to a very natural and basic problem in Mathematical Finance,
which was pointed out to us by H. F�ollmer some years ago.

4.1 Problem. Given a continuous time stochastic process (St)t2IR+ based on and adapted to the struc-
ture (
;F ; (Ft)t2IR+ ;P) (satisfying suitable assumptions), �nd a sequence (Snt )t2IR+ of processes based
on and adapted to 
;Fn; (Fn

t )t2IR+ ;Pwith the following properties.

(i)Each Sn is �nite, in the sense that Sn is adapted to (
;Fn; (Fn
t )t2IR+ ) where F

n and Fn
t are �nite

sub-�-algebras of F and Ft respectively.
(ii)Sn as well as (Fn; (Fn

t )t2IR+) converge in some reasonable sense to S and (F ; (Ft)t2IR+ ).
(iii)For each n there is a | in some sense naturally chosen | measure Qn on Fn equivalent to the restriction

of Pto Fn such that there are only two possibilities: either (Qn)1n=1 converges, in which case it converges
to an equivalent measure Q on F under which S is a local martingale or (Qn)1n=1 diverges which implies
that there is no equivalent local martingale measure for S on F .

There is an obvious interest in �nding reasonable solutions to this problem of discrete approximation,
which we deliberately formulated in somewhat vague terms. For example, we might think of a process S
with stochastic volatility which we want to approximate by discretisations modelled on �nite trees. We
shall not elaborate on particular examples but rather present a general methodology.

Of course, there is much known and a huge literature on the aspects (i) and (ii) of the above problem. The
new ingredient is the aspect (iii) pertaining to the construction of equivalent martingale measures, which
is of central importance in Mathematical Finance. The problem pertains in particular to the question in
which \natural sense" the martingale measures Qn should be chosen for the �nite processes Sn.

Let us start with the easy situation of a complete market, i.e., if the process S admits exactly one
equivalent local martingale measure Q on F . In this case the problem of \natural choice" does not arise
and it is standard to approximate S by a sequence of complete discretisations Sn, i.e., such that there
is exactly one equivalent martingale measure Qn on Fn and such that Qn converges to Q (in a sense

10



to be speci�ed). For example, we have the well known approximation of Brownian motion by binomial
processes.

The fun in problem 4.1 starts if we pass to non-complete markets where the problem of \natural choice"
becomes crucial. For example, choosing for each n 2 N the minimal local martingale measure Qn on Fn

may turn out to be a poor choice: the limit measure Q should | in any reasonable construction | again
be the minimal local martingale measure; but the examples in [S 93] and [DS 94] show that | even if S
is a very nicely behaved process | the minimal martingale measure need not exist. In other words, the
minimal martingale measure may fail to be the target, to which the Qn can aim to converge to.

On the other hand, the main theorem 1.3 above gives us a possible target for the Qn to aim for, namely
the variance-optimal measure. We shall present a possible construction responding to problem 4.1 in the
following situation. We assume S = (St)t2IR+ to be a continuous semi-martingale, which we also assume
to be one-dimensional. We shall add some technical assumptions as we proceed in our construction. For
the moment, we only suppose that S is based on (
;F ; (Ft)t2IR+ ;P) satisfying the usual assumptions
and such that F0 consists of the null-sets and their complements only and S0 = 0. We also assume that
the process S \never runs out of steam", i.e.

lim
t!1

hSit =1 a:s:

This assumption will be convenient for the time-change arguments below; it is easy to convince oneself
that this assumption is not really a restriction of generality.

4.2 Theorem. Let (St)t2IR+ be a one-dimensional continuous semi-martingale based on (
;F ; (Ft)t2IR+ ;P)
such that hSit !1 almost surely. De�ne

Tu = infft : hSit � ug

and denote by (Ru)u2IR+ the time-changed process

Ru = STu

and by (Gu)u2IR+ the natural �ltration generated by (Ru)u2IR+ so that Gu � FTu and G = �((Gu)u2IR+ ) �
F .

(a)If there is an equivalent local martingale measure Q0 for the process Ru on G, then under Q0 the process
Ru is a standard Brownian motion with respect to its natural �ltration (Gu)u2IR+ . The Doob-Meyer
decomposition (with respect to Pand the �ltration (Gu)) of Ru is of the form

dRu = dMu + �udhM iu = dMu + �udu

where (Mu)u2IR+ is a standard Brownian motion with respect to Pand to the �ltration (Gu)u2IR+ and �

is a (Gu)-predictable process with
R1
0 j �u j du < 1 almost surely. In this case the measure Q0 on G is

the unique local martingale measure for Ru and its density is given by

dQ0

dP
= E(�� �M )1:

Furthermore Ru is a martingale (and not only a local martingale) under Q0.
(b)If the process St admits an equivalent local martingale measure Q on F , then the restriction of Q to G

coincides with the above de�ned unique local martingale measure Q0 for Ru.

Proof. (a) is rather obvious and (b) results from the fact that each simple stochastic integral on R (with
respect to the �ltration Gu) may be written as a simple stochastic integral on S (with respect to the
�ltration Ft).

q.e.d.

11



The theorem suggests the following strategy to analyse the set Me(P) of equivalent local martingale
measures for the process S on F . First we pass to the time change Ru of St and check whether the
(unique) martingale measure Q0 for R exists on G. This should be (relatively) easy to check as there is
a formula at hand. The existence of Q0 is a necessary condition for the existence of a local martingale
measure Q for S on F . As a second step one has to analyze, whether (and in which possible ways) Q0

may be extended from G to F by maintaining the property that Q is a local martingale measure for S
with respect to the �ltration Ft.

To study the enlargements of the �ltration (Gu)u2IR+ which are contained in the �ltration (FTu)u2IR+ we
introduce a somewhat formal concept.

4.3 De�nition. Let A denote the family of all objects A of the form

A = (u1; : : : ; un;Hu1 ; : : : ;Hun)

where n 2 N; 0< u1 < � � � < un and Hui are �nite sub-�-algebras of FTui such that (Hui)
n
i=1 is increasing.

We sometimes denote u0 = 0;Hu0 = f;;
g and un+1 = 1. On the family A we de�ne a partial order
by saying that

B = (v1; : : : ; vm;Kv1; : : : ;Kvm)

is bigger than A if fv1; : : : ; vmg contains fu1; : : : ; ung and vj = ui implies that Kvj � Hui.

For A 2 A we de�ne the �ltration (GAu )u2IR+ by

GAu = �(Gu;Hui j ui � u);

and the �-algebra GA by
GA = �(G;Hun):

It is intuitively obvious that the family of �ltrations (GAu )A2A converges to the �ltration (FTu)u2IR+ . To
make this statement precise we adopt the usual L2-setting of this paper. It will be convenient to add a
mild technical assumption.

General Assumption: For the rest of this section we assume that S is a one-dimensional continuous
semi-martingale, hSit !1 a.s., and that, for each u0 2 IR+; R

�
u0 = sup

0�u�u0

jRuj 2 Lp(P) for some p > 2.

We shall also assume that the martingale measure Q0 for the process (Ru)u2IR+ with respect to the
�ltration (Gu)u2IR+ exists and is equivalent to P (on the �-algebra G).

4.4 Proposition. Under the above assumption let f = (H � S)1 be an element of K0, i.e., a simple
integral on S of the form introduced in 1.1 above (with respect to the �ltration (Ft)t2IR+ ).

For " > 0, there is A 2 A and a simple integrand HA with respect to (Ru)u2IR+ and the �ltration (GAu )
such that, for fA = (HA �R)1, we have that

kfA � fkL2(P) < ":

Proof. We may suppose that
f = h (ST (2) � ST (1) )

where T (1) � T (2) are stopping times such that the stopped process ST
(2)

is bounded and h is a bounded
FT (1) -measurable function. We may also suppose that h is a simple function and that T (2) is bounded by
some Tu, say T

(2) � TM for some M 2 IR+. Indeed, for the last assertion note that (Tu)u2IR+ increases
to in�nity, hence (STu^T (1) � ST (1) )u2IR+ as well as (STu^T (2) � ST (2) )u2IR+ tend to zero almost surely as
u!1. As they also remain uniformly bounded they also converge to zero in L2(P).
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By writing f = h (ST (2) � STM ) + h (STM � ST (1) ) we see that we even may assume that T (2) equals TM .

Let 0 < u1 < � � � < un = M , and de�ne Hui inductively, for i = 1; : : : ; n, to be generated by Hui�1 ,

fT (1) � Tuig, and h1IfT (1) � Tuig. Let A = (u1; : : : ; un;Hu1; : : :Hun) and de�ne the random variable

fA =
nX
i=1

h1IfT (1) � Tui�1g (STui � STui�1 )

=
nX
i=1

h1IfT (1) � Tui�1g (Rui � Rui�1);

which is a simple stochastic integral on R with respect to the �ltration (GAu )u2IR+ .

Note that our technical assumption implies that the random variables fA remain bounded in Lp(P); if

(Aj)1j=1 is a sequence inA, A
j = (uj1; : : : ; u

j
nj ;H

j
u1 ; : : :H

j
unj

) constructed as above such that lim
j!1

max
1�i�nj

juji�

uji�1j = 0, it follows from the continuity of S that (fA
j

)1j=1 converges almost surely to f . Therefore fAj

converges to f with respect to the norm of L2(P), which �nishes the proof.
q.e.d.

We may reformulate the assertion of Proposition 4.4 in the following way. Identifying L2(
;GA;P) with a
subspace of L2(
;F ;P) and denoting by KA

0 the space of simple stochastic integrals on Ru with respect
to the �ltration (GAu ), the assertion of proposition 4.4 then becomes tantamount to saying that

S
A2A

KA
0

is a k � k2-dense subspace of K0.

As a next step we analyze in detail the possible martingale measure extensions of the measure Q0 on G to
a martingale measure QA on GA. In order to do the book-keeping of the subsequent proposition 4.5 we
introduce some notation. We denote by atom(H) the atoms of a �nite �-algebra H, i.e., the elements of
H which contain only ; as a proper subset. If H1 � H2 are both �nite �-algebras and I is an atom of H1

we denote | if no confusion can arise | by atom(I) the atoms of H2 contained in I. If H0 � � � � � Hn

are increasing �nite �-algebras of 0 � k � j � n and I an atom of Hj , then we denote by �k(I) the
unique atom of Hk which contains I. The reader may want to consult example 2.5 as an easy illustration
of the situation described by the subsequent result.

4.5 Proposition. Under the above assumption let

A = (u1; : : : ; un;Hu1 ; : : : ;Hun) 2 A

be given. There is a one-to-one correspondence between

(i)the extensions Q of Q0 to the �-algebra GA such that Q is an equivalent local martingale measure for Ru

with respect to the �ltration GAu .
(ii)The families of functions ((fIii )Ii2atom(Hui

)) with the following properties:

(a) each fIii is measurable with respect to the �-algebra GAui� and takes values a.s. in ]0; 1] on the support

of E[1IIi j GAui�] and zero elsewhere.

(b) For each 1 � i � n and each atom Ii�1 2 Hui�1 we have that

X
Ii2atom(Ii�1)

fIii = 1IIi�1 a:s:
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The correspondence between (i) and (ii) is given by the subsequent formula for the density Z = dQ
dPof

the measure Q on GA

(4.1) Z1(!) =
X

In2atom(Hun )

Z0
1(!) �

nY
i=1

(g�i(In)i (!) 1IIn(!))

where

gIii =
fIii

E[1IIi j GAui�]
;

with the usual convention 0
0 = 0.

Remark. Wemay interpret, for given 0 � i � n and Ii�1 2 Hui�1 , the family of functions (fIii )Ii2atom(Ii�1)

as the rule of distributing the mass of the probabilitymeasureQ on Ii�1 among the atoms Ii 2 atom(Ii�1).
The assertion of proposition 4.5 means that we obtain the general form of a local martingale measure
extension Q to GA i� this distribution of weights is done in a �(Gui ;Hu0; : : : ;Hui�1)-measurable (but
otherwise arbitrary) way assigning to each Ii strictly positive mass.

Proof. The veri�cation of the assertion of the proposition is mainly a matter of book-keeping.

Let Q be a local martingale measure for Ru on GA with respect to the �ltration GAu . Denote by (Zu)u2IR+

the corresponding density process. For 1 � i � n and an atom Ii 2 Hui de�ne

fIii =
E
�
Zui1IIi j G

A
ui�

�
Zui�

:

The veri�cation of properties (ii) (a) and (b) is straightforward. To verify that Z is indeed of the form
given by formula (4.1) denote by Z the density process of Q with respect to the �ltration (GAu )u2IR+ and

by ~Z the GAu -martingale given by taking conditional expectations in (4.1), so that, for j = 1; : : : ; n+ 1
and t 2 [uj�1; uj[ we have

(4.2) ~Zt =
X

Ij�12atom(Huj�1 )

Z0
t

j�1Y
i=1

g
�i(Ij�1)
i 1IIj�1:

Indeed, to verify (4.2) note that

~Zun =
X

In2atom(Hun )

Z0
un

nY
i=1

g
�i(In)
i 1IIn

~Zun� = Z0
un

X
In2atom(Hun )

E
�
gInn 1IIn j G

A
un�

� n�1Y
i=1

g
�i(In)
i

= Z0
un

X
In2atom(Hun )

�
fInn E[1IIn j GAun�]

E[1IIn j GAun�]

� n�1Y
i=1

g
�i(In)
i

= Z0
un

X
In�12atom(Hun�1 )

n�1Y
i=1

g
�i(In�1)
i 1IIn�1:

Continuing in an obvious way for i = n� 1; : : : ; 0 we verify (4.2).

To establish that Z equals ~Z we observe that

(4.3)
Zuj
Zuj�

=
~Zuj
~Zuj�

=
X

Ij2atomH(uj )

g
Ij
j 1IIj
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for j = 1; : : : ; n and

(4.4)
Zuj�

Zuj�1
=

~Zuj�
~Zuj�1

=
Z0
uj�

Z0
uj�1

for j = 1; : : : ; n + 1. Equation (4.3) follows from the de�nition of fIii and (4.4) from the uniqueness of
the local martingale measure Q0 with respect to the �ltration GAu .

Summing up, we have shown that for each equivalent local martingale measure Q on GA we may de-
�ne functions ((fIii )Ii2atom(Hui

))
n
i=1 verifying (i), (ii) and (4.1). Conversely, given a family of functions

((fIii )Ii2atom(Hui
))
n
i=1 verifying (i) and (ii), we may de�ne Q via (4.1) and by going through the above

identities again it follows that Q is a probability measure equivalent to Pon GA, such that Ru is a local
martingale with respect to Q and the �ltration (GAu )u2IR+ . Note that the equivalence of Q to P follows

from the fact that the functions fIii are almost surely strictly positive on the support of E[1IIi j Gui�].
q.e.d.

The explicit description of the possible equivalent local martingale extensions of Q0 to GA in proposition
4.5 now allows us to obtain an explicit characterization of the \variance-optimal" extension.

We start with an elementary lemma.

4.6 Lemma. (a) Let (ak)Nk=1 be strictly positive real numbers. Then the minimization problem

F (x1; : : : ; xN ) =
NX
k=1

x2kak ! min!

where we minimize over all real numbers x1; : : : ; xN under the constraint

NX
k=1

xk = 1

has a unique solution, namely

x̂k =
a�1kPN
k=1 a

�1
k

:

We have that F (x̂1; : : : ; x̂N ) =

�
NP
k=1

a�1k

��1
.

(b) More generally, let (ak(!))Nk=1 be strictly positive measurable functions, de�ned on some (
;F ; P ).
Then the minimization problem

E

"
NX
k=1

x2k(!)ak(!)

#
! min!

where we minimize over all real-valued measurable functions x1(!); : : : ; xN (!) under the constraint

NX
k=1

xk(!) � 1

has a unique solution (unique up to equality almost everywhere), namely
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x̂k(!) =
ak(!)�1PN
k=1 a

�1
k (!)

:

Proof. (a) follows from elementary calculus with Lagrange multipliers. The second part is an almost
immediate consequence of the �rst one by reasoning pointwise on ! 2 
. Let xk(!) be de�ned as above
and let yk(!) be any measurable real-valued functions satisfying the constraint

NX
k=1

yk(!) � 1:

Then for each ! 2 
 we have

NX
k=1

x2k(!)ak(!) �
NX
k=1

y2k(!)ak(!)

with equality holding i� xk(!) = yk(!), for each k = 1; : : : ; N . The conclusion now follows.
q.e.d.

Note that in lemma 4.6 we have in particular that, for the solution x̂1; : : : ; x̂n, each x̂k is strictly positive.
The lemma provides us with a formula of variance-optimal distribution of weights which allows us to
calculate explicitly the family of functions ((fIii )Ii2atom(Hui

))
n
i=1, for the variance-optimalmeasure QA;opt

with respect to Ru and the �ltration GAu . Let us show this in some detail.

Denoting by ZA;opt the density process associated to QA;opt we shall determine ZA;opt by backward
induction on i = n; : : : ; 1. First note that

ZA;optt

ZA;optun

=
Z0
t

Z0
un

for t 2 [un;1]:

Indeed, this follows from the fact that any local martingale measure Q on GA for R � Run is uniquely
determined by its restriction to GAun .

The subtle point consists in calculating the (possible) jumps of ZA;opt at time un. To do so, denote, for
In 2 atom(Hun), the G

A
un�-measurable functions

aInn =

E

��
ZA;opt
1

ZA;optun

�2
1IIn j GAun�

�
E
�
1IIn j GAun�

�2
=

E

��
Z0
1

Z0
un

�2
1IIn j GAun�

�
E[1IIn j GAun�]

2
:

To construct the functions (f̂Inn )In2atom(Hun )
corresponding to QA;opt via proposition 4.5 let

f̂Inn =
(aInn )�1P

I2atom(�n�1 (In))

(aIn)
�1

1I�n�1(In)
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and

ĝInn =
f̂Inn

E
�
1IIn j GAun�

�
We have to verify that (f̂Inn )In2atom(Hun ) satis�es the conditions of proposition 4.5. The veri�cation of
a) and b) of assertion ii) is straightforward. For example, note that

X
In2atom(In�1)

f̂Inn =

P
In2atom(In�1)

(aInn )�1P
In2atom(In�1)

(aInn )�1
� 1IIn�1

= 1IIn�1:

We claim that | given the function ZA;optun� | the formula

ZA;optun

ZA;optun�

=
X

In2atom(Hun )

ĝInn 1IIn

minimizes the quantity kZ1k2L2(P) over all local martingale densities Z1 with Zun� = ZA;optun� . Indeed,

we have to solve the optimization problem

(4.5) E

24 Z1

ZA;optun�

!2
35! min!

where we minimize over all densities Z1 obtained via functions (fInn )In2atom(Hun ) (resp. (g
In
n )In2atom(Hun ))

as described in proposition 4.5. Noting that an atom In�1 2 atom(Hun�1) is G
A
un�

-measurable, we may

argue on each In�1 2 atom(Hun�1 ) separately so that in order to verify (4.5) we have to show that ZA;opt1

solves the problem

(4.6) E

24 Z1

ZA;optun�

!2

1IIn�1

35! min! for In�1 2 atom(Hun�1 )

Using the equations

Zun1IIn�1 = ZA;optun�
�

X
In2atom(In�1)

gInn 1IIn

= ZA;optun�
�

X
In2atom(In�1)

fInn
E
�
1IIn j GAun�

�1IIn
and

Z1
Zun

=
Z0
1

Z0
un

we may calculate
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E

24 Z1

ZA;optun�

!2

1IIn�1

35 = E

24 X
In2atom(In�1)

 
Z1

ZA;optun�

!2

1IIn

35
= E

24 X
In2atom(In�1)

�
Z0
1

Z0
un

�2

�

 
(fInn )

E
�
1IIn j GAun�

�!2

1IIn

35
= E

24 X
In2atom(In�1)

(fInn )2

E
�
1IIn j GAun�

�2 �E
"�

Z0
1

Z0
un

�2

1IIn j G
A
un�

#35
= E

24 X
In2atom(In�1)

(fInn )2 � aInn

35 :
Noting the constraint

P
In2atom(In�1)

fInn = 1IIn�1 we are exactly in the situation of lemma 4.6 (b) which

allows us to conclude that | whatever ZA;optun� may be | the use of (f̂Inn )In2atom(Hun ) is the optimal

choice to extend ZA;optun� to ZA;optun and therefore to ZA;opt1 .

Now we may continue by backward induction to calculate ZA;optu . By the uniqueness of Q0 with respect
to Gu there is no problem to calculate the ratio of ZA;optu in the interval [un�1; un[:

ZA;optun�

ZA;optun�1

=
Z0
un�

Z0
un�1

=
Z0
un

Z0
un�1

and, more generally, for t 2 [un�1; un[

ZA;optt

ZA;optun�1

=
Z0
t

Z0
un�1

:

The next more delicate point comes with the (possible) jumps of ZA;opt at un�1. De�ning again, for
In�1 2 atom(Hun�1 ),

a
In�1
n�1 =

E

"�
ZA;opt
1

ZA;optun�1

�2

1IIn�1 j GAun�1�

#
E
h
1IIn�1 j GAun�1�

i2
we may proceed analogously as above to calculate (f̂

In�1
n�1 )In�12atom(Hun�1 )

.

Note that in the de�nition above we used the quotient

ZA;opt1

ZA;optun�1

=
ZA;opt1

ZA;optun

�
ZA;optun

ZA;optun�

�
ZA;optun�

ZA;optun�1

=
Z0
1

Z0
un

�
ZA;optun

ZA;optun�

�
Z0
un

Z0
un�1

=
Z0
1

Z0
un�1

�
ZA;optun

ZA;optun�

;

for which we need to know the relative jump of ZA;optun which we calculated in the previous inductive step.
This is the reason, why we have to use backward induction.
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Continuing in an obvious inductive way, we �nally arrive at the ratio
ZA;opt
1

ZA;opt0

which equals ZA;opt1 . Hence

we obtain an (at least in theory) explicit way to calculate the density of the measure QA;opt. Noting that

by lemma 4.6 all the functions f̂Iii are strictly positive on the support of E[1IIi j GAui�] we see that Z
A;opt

is equivalent to Pand we have, in particular, proved the subsequent proposition:

4.7 Proposition. Under the above assumption, the variance-optimalmeasure QA;opt for Ru with respect
to the �ltration (GAu )u2IR+ exists for every A 2 A and is equivalent to P.

In addition QA;opt may be calculated explicitly by backward induction.
q.e.d.

Next we turn to the behaviour of the family(QA;opt)A2A as A increases along the partial order de�ned
on A.

4.8 Theorem. Under the above assumptions the following assertions are equivalent.

(i)The variance-optimal local martingale measure Qopt for the process S relative to the �ltration (Ft)t2IR+

exists and is a P-absolutely continuous probability measure, i.e., in M(P).
(ii)The family (QA;opt)A2A remains bounded in L2(P).
(iii)The family (QA;opt)A2A converges in L2(P) along the partial order on A. In this case the limit equals
Qopt.

(iv)The constant function 1 is not in the L2(P)-closure of K0 \ L2(P).

If, in addition, the intersection of the L2(P)-closure of K0 \ L2(P) with L2(P)+ is reduced to f0g the
measure Qopt is equivalent to P.

Proof. (i),(iv): The equivalence of (i) and (iv) follows from lemma 2.1 and theorem 3.1.

As regards (ii) and (iii) denote, for A 2 A, by KA
0 (resp. KA) the subspace of L2(P) spanned by the

simple stochastic integrals on (Ru)u2IR+ with respect to the �ltration (GAu )u2IR+ (resp. by KA
0 and the

constants). We know by proposition 4.4 above that (KA
0 )A2A (resp. (KA)A2A) form a dense subspace

of K0 (resp. K) with respect to the norm of L2(P).

(i))(iii): Simply note that QA;opt is by lemma 2.1 the orthogonal projection of Qopt onto the L2(P)-
closure of KA.

(iii))(ii): Obvious, noting that for B � A

k
dQB;opt

dP
kL2(P) � k

dQA;opt

dP
kL2(P):

(ii))(i): This is an easy Hilbert space argument. For the convenience of the reader we isolate it in the
subsequent lemma 4.9.

The �nal assertion of the theorem follows from a theorem of Stricker ([St 90] th. 2) and the main theorem
1.3.

q.e.d.

4.9 Lemma. Let (Ki)i2I be an upward directed family of subspaces of a Hilbert space H and (xi)i2I
be elements of Ki such that Ki � Kj implies that xi equals the orthogonal projection of xj onto Ki.

If (xi)i2I is bounded in H then (xi)i2I converges with respect to the norm of H to an element x0 2 H
such that the orthogonal projection of x0 onto Ki equals xi.

q.e.d.

Let us pause for a moment and recapitulate what we have achieved (resp. not achieved) in our attempt
to give a satisfactory solution to problem 4.1.
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First of all, we have not yet discretized the continuous process (St)t2IR+ . All we have done is to time-
change the process S to obtain a process Ru = STu which is adapted to the \natural Brownian �ltration"
(Gu)u2IR+ so that we have a unique martingale measure Q0. Then we de�ned the family of \�nite

extensions" (GAu )u2IR+ and gave a method to calculate the variance-optimal measures QA;opt. Finally the

L2(P)-boundedness of the family (QA;opt)A2A guarantees its convergence to the P-absolutely continuous
non-negative local martingale measure Qopt.

If we know in addition that Me(P)\ L2(P) 6= ;, which is guaranteed by Stricker's \no free lunch" type

condition K̂0 \ L2(P)+ = f0g, we may conclude that Qopt is in fact equivalent to P.

We now modify the above construction to obtain the �nite discretizations of S. We apply the most
obvious way of discretising a continuous one-dimensional process by looking at the instances when it had
moved by n�1. We do this at a su�ciently large number of instances, e.g., n3, to make sure that we
follow the process all the time t 2 IR+ as n kinds to in�nity. For n 2 N, de�ne inductively the stopping

times (T (n)
i )n

3

i=0 by T0 = 0 and

T
(n)
i = infft > T

(n)
i�1 j jSt � S

T
(n)
i�1
j � n�1g:

It follows from our assumption lim
t!1

hSit =1 a.s. as well as from the existence of the equivalent martingale

measure Q0 on G that each T
(n)
i is almost surely �nite and it is easy to verify that

lim
n!1

T
(n)
n3 = +1 a.s.

De�ne the process S(n) = (S(n)
t )t2IR+ by

S
(n)
t = S

(n)

T
(n)
i

where 0 � i � n3 is the biggest number such that T (n)
i � t. Denote by R(n) = (R(n)

i )n
3

i=0 the process�
S
(n)

T
(n)
i

�n3
i=0

and by (G
(n)
i )n

3

i=0 the �ltration generated by R(n). Obviously R(n) is a binomial process

(scaled with step-size n�1) and G(n) = G
(n)
n3 consists of 2n

3

atoms each having strictly positive P-measure

(under the above assumption on S). There is a unique equivalent martingale measure Q(n) on G(n) for

R which assigns to each atom the mass 2�n
3
.

Now we de�ne the �nite extensions GAni of the �ltration G(n)i . We let An denote the set of all An =

(H(n)
1 ; : : : ;H(n)

n3 ), where (H
(n)
i )n

3

i=1 is an increasing sequence of �nite �-algebras contained in (F
T
(n)
i

)n
3

i=1.

For each An 2 An one may similarly as (and somewhat easier than) above calculate the variance-optimal

extensions QAn;opt ofQ(n) to the �-algebra GAn = GAnn3 . We refer to [Schw 94a] for an extensive treatment
of the variance-optimal measure in �nite discrete time.

Finally it should be clear how to proceed analogously as above to obtain the subsequent theorem 4.10.

4.10 Theorem. Under the above assumptions the following assertions are equivalent.

(i)The variance-optimal local martingale measure Qopt for the process S relative to the �ltration (Ft)t2IR+

exists and is a P-absolutely continuous probability measure, i.e., in M(P).
(ii)The family ((QAn;opt)An2An

)n2Nremains bounded in L2(P).
(iii)The family ((QAn;opt)An2An

)n2Nconverges in L2(P) as n tends to in�nity and An increases in An. In
this case the limit equals Qopt.

(iv)The constant function 1 is not in the L2(P)-closure of K0 \ L
2(P).
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If, in addition, the intersection of the L2(P)-closure of K0 \ L2(P) with L2(P)+ is reduced to f0g the
measure Qopt is equivalent to P.

We believe, that 4.10 gives quite a satisfactory solution to problem 4.1 in the case of continuous IR-valued
processes S. Note that without the continuity assumption on S there seems to be no hope for a reasonable
solution to 4.1. On the other hand, it should be possible to extend the above construction to the case of
continuous IRd-valued processes. We leave this question as an open problem.
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