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Summary � Let X be an IRd�valued special semimartingale on a probability space
���F � �Ft���t�T � P � with canonical decomposition X � X� 	 M 	 A�
Denote by GT �
� the space of all random variables �� �X�T � where � is a
predictable X�integrable process such that the stochastic integral � �X is
in the space S� of semimartingales� We investigate under which conditi�
ons on the semimartingale X the space GT �
� is closed in L����F � P ��
a question which arises naturally in the applications to �nancial mathe�
matics� Our main results give necessary and�or su
cient conditions for
the closedness of GT �
� in L��P �� Most of these conditions deal with
BMO�martingales and reverse H�older inequalities which are equivalent
to weighted norm inequalities� By means of these last inequalities� we
also extend previous results on the F�ollmer�Schweizer decomposition�
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�� Financial introduction�

Despite its rather mathematical title� this paper is concerned with questions which arise
from a number of optimization problems in �nancial applications� It seems therefore
appropriate to start with a motivating section to explain the background and the
�nancial interpretation of the results� We emphasize that this section will not contain
precise de�nitions and theorems� the mathematical introduction in the next section
will contain more technical details�
Our starting point is a d�dimensional stochastic process X � �Xt���t�T de�ned on a
probability space ���F � P � and adapted to a �ltration IF � �Ft���t�T with a �xed
time horizon T � ������ The process X describes the discounted price evolution of d
risky assets in a �nancial market containing also some riskless asset with discounted
price Y � �� Thus� Ft is the information available at time t and X i

t is the relative
price of asset i at time t� expressed in units of some �xed numeraire� Adaptedness of X
simply means that X i

t is observable at time t� One of the central problems in �nancial
mathematics in such a framework is the pricing and hedging of contingent claims by
means of dynamic trading strategies based on X� The prime example of a contingent
claim is of course a European call option on some asset i with expiration date T and
strike price K� say� The net payo� to its owner at T is obviously the random amount

H��� � max
�
X i

T ����K� �
�

�
�
X i

T ����K
��

�

More generally� a contingent claim will here simply be an FT �measurable random va�
riable H describing the net payo� at T of the �nancial instrument we want to consider�
This means that our claims are �European� in the sense that the date of the payo� is
�xed� but the amount to be paid out is allowed to depend on the whole history of X
up to time T �or even more� if IF contains additional information�� The problems of
pricing and hedging H can then be formulated as follows� What price should the seller
S of H charge the buyer B at time �� And having sold H� how can the seller S insure
himself against the upcoming random loss at time T �
A natural way to approach these questions is to consider dynamic portfolio strategies
of the form ��� �� � ��t� �t���t�T � where � is a d�dimensional predictable process and �
is adapted� In such a strategy� �it describes the number of units of asset i held at time
t� and �t is the amount invested in the riskless asset at time t� Predictability of � is
then a mathematical formulation of the informational constraint that � is not allowed
to anticipate the movement of X� At any time t� the value of the portfolio ��t� �t� is
given by

Vt � ��tXt 	 �t

and the cumulative gains from trade up to time t are

Gt��� �

tZ
�

�s dXs �� �� �X�t�
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To have this expression well�de�ned� we assume that X is a semimartingale� and G���
is then the stochastic integral of � with respect to X� The cumulative costs up to time
t incurred by using ��� �� are given by

Ct � Vt �
tZ

�

�s dXs � Vt �Gt����

A strategy is called self��nancing if its cumulative cost process C is constant in time�
and this is equivalent to saying that its value process V is given by

����� Vt � c 	

tZ
�

�s dXs � c 	 Gt����

where c � V� � C� denotes the initial cost to start the strategy� After time �� such
a strategy is self�supporting� any �uctuations in X can be neutralized by rebalancing
� and � in such a way that no further gains or losses are incurred� Observe that
a self��nancing strategy is completely determined by c and � since the self��nancing
constraint determines V � hence also ��
Now �x a contingent claim H and suppose that there exists a self��nancing strategy
�c� �� whose terminal value VT equals H with probability one� If our market model does
not allow arbitrage opportunities� it is immediately clear that the price of H must be
given by c� and that � furnishes a hedging strategy against H� This was the basic insight
leading to the celebrated Black�Scholes formula for option pricing� see Black�Scholes
������ and Merton ������ who solved this problem for the case where H � �XT �K��

is a European call option and X is a one�dimensional geometric Brownian motion�
The mathematical structure of the problem and its connections to martingale theory
were subsequently worked out and clari�ed by J� M� Harrison and D� M� Kreps� a
detailed account can be found in Harrison�Pliska ������� Following their terminology�
a contingent claim H is called attainable if there exists a self��nancing trading strategy
whose terminal value equals H with probability one� By ������ this means that H can
be written as

����� H � H� 	

TZ
�

�Hs dXs P �a�s��

i�e�� as the sum of a constant H� and a stochastic integral with respect to X� We speak
of a complete market if every contingent claim is attainable� �Recall that we do not
give here precise de�nitions� for a clean mathematical formulation� one has to be rather
careful about the integrability conditions imposed on H and �H��
The importance of the concept of a complete market stems from the fact that it allows
the pricing and hedging of contingent claims to be done in a preference�independent
fashion� However� completeness is a rather delicate property which typically gets lost
if one considers even minor modi�cations of a basic complete model� For instance�
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geometric Brownian motion �the classical Black�Scholes model� becomes incomplete if
the volatility is in�uenced by a second stochastic factor or if one adds a jump compo�
nent to the model� If one insists on a preference�free approach under incompleteness�
one can study the range of possible prices which are consistent with absence of ar�
bitrage in a market containing X� Y and H as traded instruments� see for instance
El Karoui�Quenez ������� An alternative is to introduce subjective criteria according
to which strategies are chosen and option prices are computed� and we shall brie�y
explain two such criteria in the sequel�
For a non�attainable contingent claim� it is by de�nition impossible to �nd a strategy
with �nal value VT � H which is at the same time self��nancing� A �rst possible
approach is to insist on the terminal condition VT � H� since � is allowed to be adapted�
this condition can always be satis�ed by choice of �T � But since such strategies will
not be self��nancing� a �good� strategy should now have a �small� cost process C� To
measure the riskiness of a strategy� the use of a quadratic criterion was �rst proposed
by F�ollmer�Sondermann ������ for the case where X is a martingale and subsequently
extended to the general case in Schweizer ������� Under certain technical assumptions�
such a locally risk�minimizing strategy can be characterized by two properties� its cost
process C should be a martingale �so that the strategy is no longer self��nancing�
but still remains mean�self��nancing�� and this martingale should be orthogonal to the
martingale part M of the price process X� Translating this description into conditions
on the contingent claim H shows that there exists a locally risk�minimizing strategy
for H if and only if H admits a decomposition of the form

����� H � H� 	

TZ
�

�Hs dXs 	 LH
T P �a�s��

where LH is a martingale orthogonal to M � see F�ollmer�Schweizer ������� The de�
composition ����� has been called the F�ollmer�Schweizer decomposition of H� it can
be viewed as a generalization to the semimartingale case of the classical Galtchouk�
Kunita�Watanabe decomposition from martingale theory� Its �nancial importance lies
in the fact that it directly provides the locally risk�minimizing strategy for H� the risky
component � is given by the integrand �H � and � is determined by the requirement that
the cost process C should coincide with H� 	LH � Note also that the special case �����
of an attainable claim simply corresponds to the absence of the orthogonal term LH

T � In
particular cases� one can give more explicit constructions for the decomposition ������
In the case of �nite discrete time� �H and LH can be computed recursively backward in
time� see Schweizer ������� If X is continuous� the F�ollmer�Schweizer decomposition
under P can be obtained as the Galtchouk�Kunita�Watanabe decomposition� computed
under the so�called minimal martingale measure bP � see for instance F�ollmer�Schweizer
�������
One drawback of the preceding method is the fact that one has to work with strategies
which are not self��nancing� To avoid intermediate costs or an unplanned income� a
second approach is therefore to insist on the self��nancing constraint ������ The possible
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�nal outcomes of such strategies are of the form c	GT ��� for some initial capital c � IR
and some strategy component � in the set 
� say� of all integrands allowed in ������
By de�nition� a non�attainable claim H is not of this form� and so it seems natural to
look for a best approximation of H by the terminal value c	GT ��� of some pair �c� ���
The use of a quadratic criterion to measure the quality of this approximation has been
proposed by Bouleau�Lamberton ������ if X is both a martingale and a function of a
Markov process� and by Du
e�Richardson ������ and Schweizer ������� among others�
in more general cases� To �nd such a mean�variance optimal strategy� one therefore
has to project H in L��P � on the space IR	GT �
� of attainable claims� In particular�
this raises the question whether the space GT �
� of stochastic integrals is closed in
L��P �� and this is the main problem studied in this paper�
Before we turn to a more detailed mathematical introduction� let us very brie�y des�
cribe the main results of the paper� We provide necessary and su
cient conditions for
the closedness of GT �
� in L��P �� thus characterizing the existence of mean�variance
optimal hedging strategies for arbitrary contingent claims H� Moreover� we also provi�
de new results on the existence and continuity of the F�ollmer�Schweizer decomposition�
thus ensuring the existence of locally risk�minimizing hedging strategies�

�� Mathematical introduction�

While the previous section is aimed at the �nance�oriented part of our readers� this
section will discuss in more detail the mathematical aspects of the paper� In particular�
we shall here be more careful about de�nitions and terminology� But in order not to
overload this introductory part with too many formal de�nitions� we still refer to the
subsequent sections for unexplained notations�
Consider an IRd�valued semimartingale X � �Xt���t�T de�ned on a �ltered probability

space
�
��F � �Ft���t�T � P

�
with a �xed time horizon T � ������ If X is in S�

loc� then
X is special and admits a canonical decomposition

X � X� 	 M 	 A �

In the present paper� we shall develop an L��theory� and so we introduce the space 

of all predictable X�integrable processes � such that the stochastic integral

G��� ��
Z
�dX �� � �X

is in the space S� of semimartingales� As explained in the previous section� a random
variable of the form H � c 	 GT ��� with c � IR and � � 
 can be interpreted as the
�nal value of a self��nancing trading strategy � which starts with initial capital c� and
so the question arises which random variables H are attainable� i�e�� can be represented
in the above form�
In the typical case of an incomplete �nancial market� the space of attainable random
variables is a proper subspace of L����FT � P �� The problem of determining whether
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the space
GT �
� �� f�� �X�T j � � 
g

is closed in L����FT � P � is the central topic of this paper� Note that if GT �
� or �equi�
valently� the space span�GT �
�� �� spanned by GT �
� and the constant functions is clo�
sed in L��P �� we may form the orthogonal projection from L��P � onto span�GT �
�� ��
and thus decompose a random variable H � L����FT � P � as H � H� 	H�� where H�

is attainable while H� is orthogonal to GT �
� and �� As explained in the �nancial
introduction� this provides a mean�variance optimal hedging strategy for H� But quite
apart from the motivation for the present study arising from these applications in ��
nancial mathematics� one can also consider the problem of characterising the closedness
of GT �
� from a purely mathematical point of view�
In the case where X is a �local� martingale� this question has been studied some time
ago� In fact� the right notion of stochastic integration is designed in such a way that the
stochastic integral of a local martingale is an isometry between Hilbert spaces� and so
the closedness of GT �
� holds true almost by de�nition� see Kunita�Watanabe �������
Actually� there is even a stronger result since Yor ������ has proved that if Y n and Y
are uniformly integrable martingales such that �Y n

��n�IN converges weakly to Y� in L��
and if Y n � �n �X for all n� then there is a predictable process � such that Y � � �X�
It is a natural question� which might or should have been asked �� or �� years ago� to
which extent such results for local martingales generalize to semimartingales�
When X is only a semimartingale� further assumptions must be added to study this
problem� A usual hypothesis in �nancial mathematics is a  no arbitrage! condition�
which roughly states that one cannot obtain a positive gain for free� An important
consequence is that the �nite variation part A of X is absolutely continuous with
respect to the variance process hMi of the martingale part M � see Ansel�Stricker
������� According to Delbaen�Schachermayer �����a�� such an absence of arbitrage
implies that there is a predictable process 	 such that

dAt � d hMit 	t P �a�s� for all t � "�� T ��

and so we shall assume that 	 exists� Moreover� we shall also assume the existence of
the so�called mean�variance tradeo� process of X which is de�ned by

K ��
Z
	�d hMi	�

where � denotes transposition� In a discrete�time framework� Schweizer ������ has
proved that GT �
� is closed if K is uniformly bounded� The same result has been
established in continuous time by Monat�Stricker ������ ������
Uniform boundedness of K is equivalent to requiring that the martingale 	 �M is in
H�� This is su
cient for the closedness of GT �
�� but quite far from being necessary�
see Monat�Stricker ������ for a counterexample� It turns out that the closedness of
GT �
� is rather related to the question of whether 	�M is in BMO and the �intimately
related� question of whether the exponential martingale E��	 �M� or E��	 �M 	N��
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for a suitable martingale N strongly orthogonal to M � satis�es the reverse H�older
condition R��P �� In the case where X is not necessarily continuous� additional care
has to be taken to �nd the right notion for BMO� and it turns out that bmo� is the
right choice�

The main results of this paper are summarized in the subsequent three theorems�

Theorem A� Let X be an IRd�valued semimartingale such that there is an equivalent
local martingale measure Q with dQ

dP
� L��P �� Then the following two assertions are

equivalent �
i� The process 	 �M is a martingale in bmo��
ii� Condition D��P � holds true� i�e�� there is a constant C 
 � such that for all � �
L��M�

k�kL��A� � C k�kL��M� �

If� in addition� X is continuous� then i� and ii� are also equivalent to
iii� GT �
� is complete with respect to the norm k� �XkR��P � � k� �XkL��P � �

Theorem B� Let X be an IRd�valued continuous semimartingale such that there is an
equivalent local martingale measure Q with dQ

dP
� L��P �� The following assertions are

equivalent �
i� GT �
� is closed in L����F � P ��
ii� There is an equivalent local martingale measure Q that satis�es the reverse H�older
inequality R��P ��
iii� The �variance�optimal� local martingale measure Qopt is equivalent to P and satis�
�es R��P ��

Theorem C� Let X be an IRd�valued continuous semimartingale such that there is an
equivalent local martingale measure Q with dQ

dP
� L��P �� The following assertions are

equivalent �
i� GT �
� is closed in L����F � P � and there is a F�ollmer�Schweizer decomposition for
X� i�e�� the projection � onto span�GT �
�� �� with Ker��� � M� is well�de�ned and
continuous on L����F � P ��
ii� The �minimal� martingale measure Qmin de�ned by

dQmin

dP
� E��	 �M�T

is well�de�ned� equivalent to P and satis�es R��P ��

Let us comment on these three theorems� If we restrict our attention to the case of
continuous processes X� they are arranged in ascending order of restrictiveness� i�e��
the �equivalent� conditions of theorem C �resp� theorem B� imply the �equivalent� con�
ditions of theorem B �resp� theorem A�� The central result is theorem B which # under
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the stated hypothesis # gives a necessary and su
cient condition for the closedness of
GT �
�� The proofs of these assertions as well as several rami�cations and complements
will be scattered out through the paper� where we also establish some of the results in
greater generality� We also give several examples �some of them rather complicated�
to show the limitations of the above theorems�
Note that the di�erence between the situations described by theorems B and C� re�
spectively� pertains to the di�erence between the �variance�optimal� and the �mini�
mal� martingale measure� This is another illustration of the phenomenon already en�
countered in Delbaen�Schachermayer �����b� and �����d� that the �variance�optimal

measure� which is of the form dQopt

dP
� E��	 �M 	 N�T for a suitably chosen martin�

gale N strongly orthogonal to M in general has better properties than the �minimal�
martingale measure which is simply given by dQmin

dP
� E��	 �M�T �

This paper is organized as follows� In section �� we describe the model and prove
the results on the R��P � property� This section is written in a very general way and
the theorems are stated in terms of spaces that are stable for stopping� Our results
generalise known results on the reverse H�older inequality� Section � deals with BMO
and�or bmo� martingales as well as the connection with the inequality D��P �� In
section �� we investigate under which conditions the space GT �
� is closed� and in
section �� we explicitly describe the closure of GT �
� in some cases� Finally� section �
extends the de�nition of the F�ollmer�Schweizer decomposition under the assumptions
of section �� and this provides another way of proving the closedness of GT �
��

Some results of this paper form the subject of a note which has been published in the
Comptes Rendus �a l�Acad�emie des Sciences� see DMSSS �������

We thank M� Yor for his interest and help in the preparation of this paper�

�� Preliminaries�

Let us now develop our model� We use the same notations as Schweizer ������� We
recall them here� Let ���F � P � be a probability space and T � ���	�� a �xed horizon�
We suppose that we have a �ltration �Ft���t�T on ���F � P � satisfying the usual con�
ditions� that is �Ft���t�T is right�continuous and complete� and we assume moreover

that F � FT � Let X � �Xt���t�T be an IRd�valued semimartingale in S�
loc� This means

that if
X � X� 	 M 	 A

is the canonical decomposition of X� then M � M�
��loc and the variation jAij of the

predictable �nite variation process of X i is locally square�integrable for each i � �� ���� d�
For all unexplained notations� we refer to Jacod ������ or Protter �������

We recall a de�nition introduced in Schweizer �������
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De�nition ���� X satis�es the structure condition �SC� if there exists a predictable
IRd�valued process 	 � �	t���t�T such that

����� dAt � d hMit 	t P �a�s� for all t � "�� T ��

and

����� Kt ��
Z t

�
	�sd hMis 	s � 	� P �a�s� for all t � "�� T ��

where � denotes the transposition�

We then choose an RCLL version of K and we call it the mean�variance tradeo� �MV T �
process of X�

As easily seen� adding to 	 a process that takes values in the orthogonal complement
of the in�nitesimal range of d hMi gives the same result� Hence the process 	 is only
determined modulo the equivalence class of predictable processes taking almost surely
values in the orthogonal complement of the in�nitesimal range of d hMi� The existence
of 	 as well as the almost sure �niteness of KT is related to arbitrage properties as
shown by Delbaen�Schachermayer �����a�� In the case where X is continuous� it is a
necessary condition for the existence of an equivalent local martingale measure� Also
in the case where X is continuous� the �niteness of KT is independent of the choice of
probability measure� as shown in Delbaen�Shirakawa ������ or Choulli�Stricker �������

Remark ���� For the interpretation of the process K� we refer to Schweizer ������
������

De�nition ��	� A predictable IRd�valued process � � ��t���t�T belongs to L��M� if

E

�Z T

�
��td hMit �t

�
� 	�

We de�ne on the space L��M� the norm k � kL��M� by

k�k�L��M� �� k�� �M�Tk�L��P � � E

�Z T

�
��td hMit �t

�
�

A predictable IRd�valued process � � ��t���t�T belongs to L��A� if the process�Z t

�
j��sdAsj

�
��t�T

is square�integrable�
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We de�ne on the space L��A� the norm k � kL��A� by

k�kL��A� ��

�����
Z T

�
j��sdAsj

�����L��P � �

Finally� 
 is the space de�ned by 
 �� L��M� 	 L��A� � � � 
 is called a L��strategy�

If the structure condition holds� then clearly

k�k�L��A� � E

�	�Z T

�
j��sd hMis 	sj

��

� �

Strictly speaking the Banach space L��M� is the space of equivalence classes of predic�
table processes � with �nite L��M��norm modulo the subspace of predictable processes
� for which the process � �M vanishes almost surely� But we use the usual identi�cation
of processes with the associated equivalence class if no confusion can arise� A similar
remark applies to L��A� and 
�

Remark ��
� If � is X�integrable� we can de�ne the stochastic integral process
Gt��� �� �� �X�t

for all t � "�� T �� Then G��� is a semimartingale in S� if and only if � � 
 and in this
case the canonical decomposition is given by G��� �� � �M 	 � � A�

The spaces GT �
� and G�
� are de�ned by

GT �
� �� f�� �X�T j � � 
g and G�
� �� fG��� j � � 
g�

Note that GT �
� is a space of variables in L��P � and that G�
� is a space of processes�

We next provide several de�nitions and inequalities which will be useful in the sequel�

The following concept has been extensively studied in Delbaen�Schachermayer �������

De�nition ���� We say that X admits an equivalent local martingale measure if there
exists a probability Q equivalent to P such that X is a local martingale under Q�

For the next four de�nitions we refer to Dellacherie�Meyer �������

De�nition ���� The space R��P � is the space of all RCLL adapted processes H such
that

kHkR��P � ��

����� sup
��t�T

jHtj
�����L��P � �� kH�

TkL��P �



��

is �nite�

De�nition ��
� We say that M has the predictable representation property under P �
denoted by PRP �P �� if each martingale N relative to �Ft���t�T and P can be written

N � N� 	 � �M
where N� is F��measurable and � is M �integrable�

De�nition ���� Let Y � �Yt���t�T be a uniformly integrable martingale� Then Y
belongs to BMO if there is a constant C 
 � such that

E"jYT � YS�j� j FS� � C P � a�s�

for every stopping time S�

De�nition ���� Let Y � �Yt���t�T be a locally square�integrable� local martingale�
Then Y belongs to bmo� if there is a constant C 
 � such that

E"hY iT � hY iS j FS� � C P � a�s�

for every stopping time S�

We now introduce a new concept which is related to the concepts presented below in
De�nitions ���� and �����

De�nition ����� We say that X satis�es the inequality D��P � if there is a constant
C 
 � such that

k�kL��A� � C k�kL��M� � 
� � 
�

By a truncation argument� the inequality D��P � extends immediately from � � 
 to
all � � L��M��

The problem whether or not the space GT �
� is closed is intimately related to proper�
ties of BMO�martingales and their exponentials� A good reference for this question
is Dol$eans�Dade�Meyer ������� For continuous martingales the reader can consult
Kazamaki �������

De�nition ����� If L is a uniformly integrable martingale such that L� � � and
LT 
 � P �a�s� then we say that L satis�es the reverse H�older inequality under P �
denoted by Rp�P �� where � � p � 	�� if and only if there is a constant C such that
for every t� we have

E

��
LT

Lt

�p
j Ft



� C�



��

For p � 	�� we require that
LT

Lt
is bounded by C �see de�nition ���� of Kazamaki

��������
We remark that if L satis�es Rp�P �� � � p � �� then for the same constant C as in
the de�nition� we have for every stopping time S that

Lp
S � E"Lp

T j FS� � CLp
S�

In particular the martingale L is bounded in Lp�P �� We remark that a martingale
which satis�es the inequality R��P � is necessarily bounded but there are martingales
which satisfy the inequality R��P � such that inf Lt is not necessarily bounded from
below by a constant 
 
 �� A condition dual to Rp�P � is the inequality Aq�P � �see
de�nition ���� of Kazamaki ��������

De�nition ����� If L is a uniformly integrable martingale such that L� � � and
LT 
 � P �a�s� we say that L satis�es the Muckenhoupt inequality denoted by Aq�P �
for some � � q � 	�� if and only if there is a constant C such that for every t

E

�	� Lt

LT

� �
q�� j Ft


� � C�

If q � �� we require that
Lt

LT
is bounded by C�

Again� we remark that with the same constant C� the inequality holds for arbitrary
stopping times S�

De�nition ���	� Let Z be a positive process� Z satis�es condition 	J
 if there exists
a constant C 
 � such that

�

C
Z� � Z � CZ��

In the �French� paper Dol$eans�Dade�Meyer ������� this condition is called condition
�S� since it involves the jumps ��sauts�� of Z� To avoid confusion with the structure
condition �SC� in De�nition ���� we have relabelled it here as �J��
Let us now recall some de�nitions and notations related to changes of law� If Y is
a semimartingale� Y� � �� then its stochastic exponential� denoted by E�Y �� is the
semimartingale

E�Y �t �� exp
�
Yt � �

�
hY cit

� Y
��s�t

�� 	 %Ys�e
��Ys�

If Z is a semimartingale such that inf��s�T Zs 
 � �for instance if Z is a strictly positive
local martingale�� then its stochastic logarithm� denoted by L�Z�� is the semimartingale

L�Z� ��
�

Z�
� Z�



��

Now let Q be an equivalent probability measure and de�ne

Zt �� EP

�
dQ

dP
j Ft



and bZt � EQ

�
dP

dQ
j Ft



�

�

Zt
�

From Bayes! rule
EQ"f j Ft�Zt � EP "fZT j Ft�

it easily follows that Z satis�es Rp�P � if and only if bZ satis�es Aq�Q� where of course
�

p
	

�

q
� � and � � p � 	��

The following theorem relates BMO and Rp�P � �see Dol$eans�Dade�Meyer ������� pro�
position � and ���

Theorem ���
� The following assertions are equivalent for a strictly positive martin�
gale Z� Z� � ��
��� L�Z� is in BMO�P � and there exists a constant h 
 � such that � 	 %L�Z� � h�
��� L� bZ� is in BMO�Q� and there exists a constant h 
 � such that � 	 %L� bZ� � h�
��� Z satis�es condition �J� and Rp�P � for some p 
 ��
��� bZ satis�es condition �J� and Aq�Q� for some q � 	��
In addition� ��� is satis�ed for � � p �� i� ��� is satis�ed for q � p

p�� �

The next theorem states that the set of exponents p such that Z satis�es Rp�P � is neces�
sarily open� Of course� a similar argument holds for Aq�P � �see Dol$eans�Dade�Meyer
������ proposition ���

Theorem ����� Assume Z is a strictly positive martingale with Z� � �� If Z satis�es
condition �J� and Rp�P � �p 
 ��� then there is p� 
 p such that Z satis�es Rp��P ��

A basic property� that we will need later on� is that if Z satis�es Rp�P � then the
conditional expectation with respect to Q is a continuous operator on Lq�P �� More
precisely� we have �see Dol$eans�Dade�Meyer ������ proposition � and the corollary on
page ��� combined with proposition �� the subsequent result �

Theorem ����� Assume Z is a strictly positive martingale with Z� � �� For � � p �
	�� assertions ��� and ��� below are equivalent
��� Z satis�es Rp�P ��

��� There is a constant C such that for each Q�martingale N � and for q �
p

p� �
and

	 
 �
	qP "N�

T 
 	� � CEP "jNT jq��
Moreover under the additional assumption that Z satis�es condition �J� the weak
inequality ��� implies the following strong inequality



��

��� There is a constant K such that for each Q�martingale N � and for q �
p

p� �

EP "�N�
T �q� � KEP "jNT jq��

Below we will give a generalization of this theorem� As we deal in this paper with
the case p � � only� we do not focus our attention to possible extensions of this
generalization to the case p �� �� p 
 ��

The symbol V denotes a vector space of bounded continuous adapted processes� If
Y � V� we suppose that Y� � �� We require V to be stable for stopping� i�e� if S is a
stopping time and if Y is in V� then Y S � V� For each stopping time S� we denote by VS
the vector space fYS j Y � Vg� The space SV is the space fYT�YS j Y � Vg� We remark
that this notation is consistent with the notation for stopping and starting a process�
We remark that V denotes a vector space of adapted processes while VS and SV denote
spaces of �FS �resp� FT � measurable� random variables� Since V is stable for stopping�
we have for every stopping time S and every set A � FS that �A SV � SV � VT �
Clearly V� � f�g� The set IM�V� denotes the set of all probability measures Q that
are absolutely continuous with respect to P and for which the elements Y � V become
Q�martingales� The symbol IM e�V� is reserved for the elements of IM�V� that are
equivalent to P �
We shall simply write IM e and IM instead of IM e�V� and IM�V� if there is no danger
of confusion�
It is easily seen that if Q is absolutely continuous with respect to P and if L denotes
the c&adl&ag martingale

Lt � EP

�
dQ

dP
j Ft



�

then Q � IM�V� if and only if for every Y � V� the process Y L is a martingale or�
what is the same because V is stable for stopping� E"LTYT � � �� More generally� we
de�ne IM s as the a
ne space of measures � absolutely continuous with respect to P
such that ���� � � and

EP

�
YT

d�

dP



� �

for all Y � V� If we denote by L the c&adl&ag martingale

Lt � EP

�
d�

dP
j Ft



�

then this is equivalent to the property that E"LT � � � and LY is a martingale for each
Y � V� Without further notice� we will identify an absolutely continuous measure �

with its Radon�Nikodym derivative
d�

dP
� In this setting� IM and IM s are closed sets of

L��P � and if IM e is non empty� then it is L��P ��dense in IM �



��

An important role will be played by the element of IM s 	 L� that has minimal L��P ��
norm� which we call the variance optimal measure and which we denote by Qopt�
This measure was previously studied by Schweizer ������ as well as by Delbaen�
Schachermayer �����b�� It is shown there that IM s 	 L��P � is non empty if and only
if the constant function � is not in the L��closure of VT � If we adopt the convention
that a bar denotes the closure in L��P �� then IM s 	 L��P � is non empty if and only if
� �� VT � In this case� there is an element � in IM s 	 L��P � with minimal norm and it
is given by

d�

dP
�

�� f

�� E"f �
�

where f is the orthogonal projection of � onto the closed subspace VT of L��P ��

The L��norm of
d�

dP
is given by����� d�dP
�����L��P � �

�

dist���VT �
�

�

��� E"f �����
�

�

sin�
�

where � is the positive angle between � and VT � Exactly as in theorem ��� of Del�
baen�Schachermayer �����b�� one shows that due to the continuity of elements in V�
the measure � is necessarily nonnegative� i�e� � � IM 	 L��P ��

Lemma ���
� If the variance optimal measure Qopt � IM e�V� exists and the c&adl&ag
martingale L de�ned as

Lt � E

�
dQopt

dP
j Ft



satis�es R��P �� then L satis�es condition �J��

Proof� Since L satis�es R��P �� L is a square integrable martingale� Hence we can
de�ne for each fT � VT the Qopt�martingale

ft �� EQopt "fT j Ft�

Moreover if �fnT � is a sequence in VT converging to fT with respect to the L��P ��norm�
then the sequence �fnt � converges uniformly in t with respect to the norm of L��Qopt�
and hence in probability to �ft�� As each �fnt � is a continuous martingale� the Qopt�
martingale �ft� is continuous whenever fT � VT � In particular if fT is the orthogonal
projection of � onto VT � then �ft� is a continuous Qopt�martingale� Since

LT �
dQopt

dP
�

�� f

�� E"f �

the Qopt�martingale eZt � EQopt "LT j Ft� is continuous too� By Bayes!rule

eZt �
EP

h eZ�
T j Ft

i
Lt

�
EP "L�

T j Ft�

Lt



��

Suppose now that L satis�es R��P �� then

� � EP "L�
T j Ft�

L�
t

� C

and hence
Lt � eZt � CLt�

Since eZt is continuous� it follows that L satis�es condition �J��

In Delbaen�Schachermayer �����b�� it is shown that if IM e 	 L��P � �� 
� then Qopt �
� � IM e� The theorem below investigates the inequality R��P � for � and part of its
proof uses the same method as theirs� For simplicity of notation� we assume that F�

is trivial�

Theorem ����� If V is a space of bounded continuous adapted processes such that
for each Y � V we have Y� � �� if V is stable for stopping �as described above�� if F�

is trivial� then are equivalent
��� The variance optimal measure Qopt � IM e�V� exists and the c&adl&ag martingale L
de�ned as

Lt � E

�
dQopt

dP
j Ft



satis�es R��P ��
��� There is Q � IM e�V� 	 L��P � such that the c&adl&ag martingale Z de�ned as

Zt � E

�
dQ

dP
j Ft




satis�es the inequality R��P ��
��� There is a constant C such that for every Y � V

kY �T kL��P � � C kYTkL��P � �
��� There is a constant C such that for every Y � V and every 	 � �

	P "Y �T 
 	���� � C kYTkL��P � �
��� There is a constant C 
 � such that for every stopping time S� every A � FS and
every UT � SV

k�A � UTkL��P � � CP "A�����

In addition� if one of the above equivalent conditions is ful�lled� then Qopt satis�es
Rp�P � for some p 
 ��

Remarks ����� i� In condition ���� we can of course restrict the inequality to elements
UT in SAV i�e� elements constructed with the stopping time SA � S on A and SA � T



��

on Ac� These elements can be written as �A�YT � YS� where Y � V� We remark that
condition ��� expresses that there is a lower bound �� � arcsinC such that for each
A � FS� the angle between �A and the space SV is bounded below by ���
ii� If in theorem ���� we take for Q an equivalent probability measure that de�nes
a density process that satis�es R��P � but that not necessarily satis�es condition �J��
if for V we take the space of all continuous bounded martingales for Q� then ��� of
theorem ���� extends� at least for continuous martingales� proposition ����� The trick
is that the density process of the variance minimal measure for V satis�es R��P � and
condition �J�'

Proof of theorem ����� It is clear that ��� implies ���� By theorem ���� and lemma
���� � ��� implies ��� and ��� implies ���� the constant C being valid for every Q�
uniformly integrable martingale� The strong inequality in ��� certainly implies the
weak inequality in ���� We now prove the equivalence of ��� and ���� after which we
show that ���� together with ���� implies ����
��� �� ���
This is done by using a re�ection argument� Fix a stopping time S� A � FS and a
process U of the form U � X � XSA � �A�X � XS� where X � V� De�ne � ��
infft j Ut 


�
�
g � T and let

Yt �

�
Ut for t � �
�U� � Ut for t 
 ��

i�e� Y is U re�ected at time �� Then Y � V and

jYT j � jUT j�f��Tg 	 j�� UT j�f��Tg � j�� UT j
since UT � �

�
on f� � Tg� On Ac� we have U � �� hence � � T and YT � � � thus we

obtain jYT j � j�A � UT j� and the weak inequality in ��� implies

k�A � UTkL��P � � kYTkL��P �
� C��

�

�
P
�
Y �
T �

�

�

����
� C��

�
P "� � T ����

�
C��

�
P
�
U�T 


�

�

����
�

On the other hand�

kUT � �AkL��P � �
�

�
P "A 	 fU�T � ���g����

and hence

kUT � �AkL��P � � 
P "A���� where 
 �
�p
�

min

�
C��

�
�
�

�

�
�



��

��� �� ���
For �xed Y � V and 	 
 �� let us de�ne S � infft j jYtj 
 	g� The element
UT � �sign�YS��YT � YS� is clearly in SV and hence for A � fS � Tg � fY �T 
 	g we
have �����A � UT

	

����L��P � � CP "A����

or� what is the same

C	P "Y �T 
 	���� � k	�A � UTkL��P � �

But 	�A � UT � 	�A 	 sign�YS��YT � YS� � YT�Asign�YS� and hence

C	P "Y �T 
 	���� � k	�A � UTkL��P � � kYTkL��P � �

��� �� ���
This is the most technical part� The proof mimics the proof of theorem ��� in Del�
baen�Schachermayer �����b�� Since we do not assume a priori that there is an element
Q � IM e	L��P �� there are some extra technical di
culties� We start with two lemmas�
The �rst should be folklore �see lemma ��� in Delbaen�Schachermayer �����b��� The
second exploits that the angle between �A and SV is bounded from below�

Lemma ����� If U � �Ut���t�T is a non�negative square integrable martingale� if
U� 
 �� if the stopping time � � infft j Ut � �g is predictable and announced by a
sequence of stopping times ��n�n��� then

E

�
U�
�

U�
�n

j F�n



� 	�

on the F���measurable set fU� � �g�

Lemma ����� If condition ��� holds with a constant C � then for each stopping time
S there is an element g � L�

��P � such that E"g j FS� � �� E"g� j FS� � C�� and
E"gU � � � for each U � SV�

Proof of lemma ���� We proceed exactly as in theorem ��� in Delbaen�Schachermayer
�����b�� Let f be the projection of � onto the space SV � For each A � FS� the spaces
�A � SV and �Ac � SV form an orthogonal decomposition of SV and hence f�A is
the orthogonal projection of �A onto SAV � �A � SV � This shows that E"f ��A� �
E"f�Af�A� � E"f�A�A� � E"f�A�� The inequality in condition ��� shows that
k�A � f�Ak�L��P � � C�P "A� and hence E"�A � f�A� � E"�A�� � f��� � C�P "A� for

all A � FS� i�e� �� E"f j FS� � C��
We now de�ne

g �
�� f

�� E"f j FS�
�



��

The computation above shows that E"f � j FS� � E"f j FS� and hence

kgk�L��P � � E

�
�

�� E"f j FS�



� C���

Now� for each A � FS and each U � SV� we have �AU � SV and hence

E"�A��� f�U � � ��

An easy approximation argument on the bounded function

�

�� E"f j FS�

then shows that E"gU � � � for all U � SV�
The positivity of g is shown exactly as in theorem ��� of Delbaen�Schachermayer
�����b��
This completes the proof of lemma �����

Proof of th� ���� continued � Let us come back to the end of the proof of theorem
����� If we denote by f the orthogonal projection of � onto the space VT � then as seen
above� the optimal measure Qopt is nonnegative and is given by

dQopt

dP
�

�� f

�� E"f �
�

The next step is to construct a continuous process that resembles the process eZ as in
Delbaen�Schachermayer �����b�� There is a sequence of elements Y n in V such that���Y n

T � Y n��
T

���L��P � � ��n and such that Y n
T �� f in L��P �� From the weak inequality�

we deduce that X
n��

P

�
sup
��t�T

jY n
t � Y n��

t j 
 ��n


� 	�

and hence the sequence Y n
t converges uniformly in t a�s� to a continuous process that

we denote by ft� Clearly fT � f � De�ne

eZt �
�� ft

�� E"ft�
�

If we denote by L the density process

Lt � EP

�
dQopt

dP
j Ft



� EP " eZT j Ft�

then for each element Y in V� we have that LtYt � EP "LTYT j Ft�� Since LT and Lt

are in L��P �� it follows that also Lt
eZt � EP "LT

eZT j Ft� � EP "L�
T j Ft�� If � denotes

the stopping time � � infft j Lt
eZt � �g� then we have

� �
Z
��T

L�
TdP



��

and hence LT � � on f� � Tg� This implies that L� � � on f� � Tg� From the
continuity of eZ� it follows that necessarily eZ� � �� Suppose now that

A � f eZ� 
 �g 	 f� � Tg
has strictly positive measure� Because LT � eZT � � on f� � Tg we have that fT � �
on A� Hence the function ��� f� ��A � �AV � Let g be the positive element constructed
in lemma ����� for the stopping time �A� Since E"g�A���f� �� � � and since ���f� � 
 �
on A� we have that E"g�A� � �� a contradiction to E"g j F�A� � �� It follows that alsoeZ� � � and hence infft j Lt � �g � infft j eZt � �g � � � We now proceed exactly as in
the proof of theorem ��� of Delbaen�Schachermayer �����b�� The stopping time � is
predictable and announced by a sequence ��n�n��� If

E

�	� LT

L�n

��

j F�n


�
would be greater than C��� then we use the element g constructed for the stopping
time �n and whose existence is given by lemma ����� The element L�ng would give an
element in IM s with smaller L��P ��norm� This reasoning shows that LT 
 � according
to lemma ����� and that for every stopping time S� we have

E

��
LT

LS

��
j FS



� C���

This completes the proof of theorem �����

The existence of an element in IM e 	 L��P � is taken care of by the following theorem
�see Stricker ��������

Theorem ����� If V is a space of bounded continuous adapted processes� if V is stable
for stopping �as described above�� then IM e 	 L��P � is non�empty if and only if

VT 	 L�
��P � � f�g�

One can improve slightly the above theorem as follows �see Yan �������� This result is
formulated in the same language as ��� of theorem �����

Theorem ���	� If V is a space of bounded continuous adapted processes� if V is stable
for stopping �as described above�� then IM e 	 L��P � is non�empty if and only if for
every A � FT � we have �A �� VT �

Proof� Suppose that there is f � VT 	 L�
��P � � P "f 
 �� 
 �� For each such

element� let us denote by Af the set Af � ff 
 �g� If �fn�n�� is a sequence of
such elements then f �

P
��n kfnk��L��P � fn � VT and Af � �n��Afn� Hence there is



��

a maximal set of this form� Call it Af where f is the associated function� Take a
sequence �n strictly decreasing to � such that P "f 
 �n� 
 �� For each n� take �n so
that �n � �

�
��n and choose Y n

T � VT so that kY n
T � fkL��P � � ��n� It then follows that

P "jf � Y n
T j 
 �n� � ��n� Hence Y n

T 
 f � �n 
 �n � �n on a set of measure at least
P "f 
 �n� � ��n� The element ��n � �n���Y n

T � gn is still in VT and satis�es fgn 
 �g
on the set ff 
 �ngnfjY n

T � f j 
 �ng which has measure greater than P "f 
 �n�� ��n�
We stop the process gn when it hits the level �� i�e� V n � �Y n�� where

� � infft j gn � �g

Clearly
�i� V n

T � � on ff 
 �ngnfjY n
T � f j 
 �ng �

�ii� Since Af is maximal� �V �T �� � �Af
�

�iii� �V n
T �� � ��n � �n����Y n

T ���
If n tends to 	�� �i� and �ii� show that �V n

T �� �� �Af
whereas �iii� shows that

k�V n
T ��kL��P � � ��n��n��� k�Y n

T ��kL��P � � ��n��n�����n which tends to �� This shows

that �Af
� VT � This completes the proof of theorem �����

	� The inequality D��P� and its relation to BMO�

Throughout this section� we do not assume that X is continuous�

The inequality D��P � is an assumption which arises naturally when one studies the
closedness of GT �
�� Indeed� to prove that the limit of a sequence �GT ��n��n�� which
converges in L��P � belongs to GT �
�� we would like to show that the sequence ��n�n��
converges to some � in L��M� and L��A�� Now� convergence in L��M� is rather easy
to study since a sequence ��n�n�� converges in L��M� if and only if ���n �M�T �n�� is
a Cauchy sequence in L��P �� Convergence in L��A� is more di
cult to prove� So an
idea to solve this problem is to �nd an assumption under which convergence in L��M�
will imply convergence in L��A�� that is L��M� � L��A� or� equivalently� 
 � L��M��
We �rst show that the inequality D��P � is a su
cient condition for the structure
condition �SC�� see De�nition ����

Lemma 	��� If the inequality D��P � holds� then 	 exists and K is square�integrable�

Proof� The inequality D��P � implies that if � �M � �� then � � A � � so by the mul�
tidimensional Radon�Nikodym theorem �see Delbaen�Schachermayer �����a��� there
exists a predictable IRd�valued process 	 such that dA � d hMi	� For each n� let
�n � 	�fk�k�ng			���n 		 where �n is the predictable stopping time

�n �� inf
�
t j

Z t

�
dj hMi js � n

�
�



��

Clearly �ndA � 	�d hMi	�fk�k�ng			���n		 and D��P � implies that for all n

E

�	�Z
fk�k�ng			���n		

	�d hMi 	
��

� � C�E

�Z
fk�k�ng			���n		

	�d hMi	



� C�E

�	�Z
fk�k�ng			���n		

	�d hMi 	
��

���� �

Since both quantities are �nite� we �nd

E

�	�Z
fk�k�ng			���n		

	�d hMi	
��

���� � C��

When n tends to 	�� we obtain that KT is square�integrable� This completes the
proof of lemma ����

The next lemma gives an equivalent reformulation of D��P ��

Lemma 	��� The inequality D��P � holds if and only if L��M� � L��A�� i�e� if and
only if 
 � L��M��

Proof� Since 
 � L��M� is equivalent to saying that L��M� � L��A�� the �only
if� part is obvious� Conversely� suppose that L��M� � L��A�� By means of the
multidimensional Radon�Nikodym theorem �see Delbaen�Schachermayer �����a��� it
is easy to see that A is absolutely continuous with respect to hMi� So we conclude that
the graph of the identity mapping from L��M� into L��A� is closed in L��M��L��A��
Hence the identity is continuous� and this proves the �if� part�

The existence of 	 and the square�integrability of K are necessary conditions for D��P ��
but far from being su
cient� The necessary and su
cient condition for D��P � given
by the next theorem is substantially stronger�

Theorem 	�	� The inequality D��P � holds if and only if 	 exists and 	 �M is in bmo��

To prove theorem ���� we need an auxiliary result� Recall that h�� denotes the space of

all locally square�integrable local martingales Y null at � such that hY i���T is integrable�

Lemma 	�
� If Z � M� and R � M�
�� then

R
Z�dR is in h�� and����Z Z�dR

����
h�
� �kZTkL�kRkM� �

In particular� choosing R ��
Z
�dM with � � L��M� gives����Z Z��dM

����
h�
� �kZTkL�k�kL��M��



��

Proof� Since �Z
Z�dR

�
T

�
Z T

�
Z�
u�d hRiu �

�
sup

��u�T
jZuj

��

hRiT �

we get ����Z Z�dR
����
h�

�

�����
�Z

Z�dR
� �

�

T

�����L� � �kZTkL�kRkM�

by the Cauchy�Schwarz and Doob inequalities�

Proof of theorem 	�	� �� Suppose �rst that 	 �M is in bmo�� Take any bounded
positive random variable Y and denote by Z an RCLL version of the martingale Zt �
E"Y j Ft�� Fix � � L��M� and set � �� Z�� so that

R
�dM is in h�� by lemma ���� By

Fe�erman!s inequality and the end of lemma ���� we then obtain

E

�
Y
Z T

�
j��d hMi	ju



� E

�Z T

�
Zu�jd�� hMi	ju




� E

�Z T

�
d jh�Z��� �M�	 �Miju



�

p
� k�Z��� �Mkh�� k	 �Mkbmo�

�
p

� kY kL�k	 �Mkbmo�k�kL��M��

Since Y was arbitrary� we conclude that

k�kL��A� �

�����
Z T

�
j��d hMi	ju

�����L� �
p

�k	 �Mkbmo�k�kL��M�

and this proves the �if� part�
�� Now suppose that the inequality D��P � holds� Then� in view of lemma ���� L��M� �

� Moreover� KT � h	 �MiT is in L� by lemma ���� Fix t � "�� T � and a bounded Ft�
measurable random variable V and de�ne � �� 	V �

t�T 

 so that � � 
� since KT � L��
If Y is any bounded random variable� then Y can be written as

Y � E"Y j F�� 	 �� �M�T 	 LT

by the Galtchouk�Kunita�Watanabe projection theorem� where � is in L��M� and L �
M�

� is strongly orthogonal to � �M for every � � L��M�� By the de�nition of 	 and ��
this implies

jE "Y �� �M�T �j �

�����E
�
V
Z T

t
��ud hMiu 	u


�����
� kV kL�

�����

t�T 

���
L��A�

� kV kL�Ck�kL��M�

� kV kL�CkY kL��



��

where the second inequality follows from D��P �� Since Y was arbitrary� we deduce
that

C�kV k�L� � k�� �M�Tk�L� � E

�Z T

t
V �	�ud hMiu 	u



� E

h
V �E "KT �Kt j Ft�

i
�

Since V was arbitrary chosen in L��Ft� P �� we conclude that

E "KT �Kt j Ft� � C� P � a�s��

and so 	 �M is in bmo�� This completes the proof of theorem ����

We now turn to the second part of this section where we return to our question of
closedness of GT �
� in L��P �� Given � � 
� there are two ways to look at the stochastic
integral � � X � either we consider the entire process G��� � �� � X���t�T or we only
look at the �nal result� i�e� the random variable GT ��� � �� �X�T �
If we adopt the �rst point of view� we consider two other norms on 
 � for � � 
� we
de�ne

jjj�jjj � k�kL��M� 	 k�kL��A�
and as in de�nition ��� above

k�kG��� � k� �XkR��P � �

Both concepts de�ne norms on the vector space 
 with the property that these norms
equal � for � � 
 if and only if the process �� �X���t�T vanishes almost surely�
On the other hand� we consider on the vector space GT �
� the norm k � kL��P ��

Consider the diagram

�
� jjj � jjj� i���� �
� k � kG����
j���� �GT �
�� k � kL��P ��

where i denotes the identical map and j the canonical map which associates to � � 

the random variable GT ����
The continuity of i follows from Doob!s inequality and the continuity of j is obvious�
Also note that the de�nition of 
 was designed in such a way that 
 is complete with
respect to jjj � jjj� i�e�� �
� jjj � jjj� is a Banach space� As the maps i and j are surjective�
we deduce from the open mapping theorem that the problem whether 
 is complete
with respect to k � kG��� and whether GT �
� is complete with respect to k � kL��P � is
therefore equivalent to the question whether i� resp� j � i� are open maps�
To take full advantage of this information� we want to know whether j is one�to�one�
i�e� whether� for � � 
� GT ��� � � implies that the entire process G��� vanishes almost
surely� Fortunately� this is the case under a very mild condition�

Lemma 	��� Assume that X is a �not necessarily continuous� semimartingale in S�
loc

which is a local martingale under some equivalent measure Q with square�integrable

density
dQ

dP
� Then the map j is one�to�one�



��

Proof� Let us take � � 
 such that GT ��� � �� If Z is de�ned by

Zt �� E

�
dQ

dP
j Ft



� � t � T

then Z is a strictly positive square�integrable P �martingale and G���Z is a P �local
martingale� Moreover� G���� as well as Z� are in L��P �� by Doob!s inequality� Hence
the maximal function �G���Z�� is P �integrable so that G���Z is a H��P ��martingale�
By hypothesis� GT ��� � � so that the P �martingale G���Z vanishes identically� As
Z is strictly positive almost surely� we conclude that the process G��� also vanishes
almost surely� This completes the proof of lemma ����

Proposition 	��� Assume that X is a �not necessarily continuous� semimartingale in
S�
loc�

�i� The normed space �
� k � kG���� is complete if and only if the map i is an isomor�
phism� i�e� if and only if there is a constant C 
 � such that


� � 
� jjj�jjj � C k�kG��� �

�ii� Assume in addition that there is an equivalent local martingale measure Q for X
with square�integrable density� Then the normed space �GT �
�� k � kL��P �� is complete�

that is� GT �
� is closed in L��P �� if and only if the map j � i is an isomorphism� i�e��
if and only if there is a constant C 
 � such that


� � 
� jjj�jjj � C kGT ���kL��P � �

Proof� Immediate from lemma ��� and Banach!s isomorphism theorem�

Now the question arises whether the property described in part �ii� of proposition ���
is related to the inequality D��P � studied in the �rst part of this section� To answer
this question� it is important to distinguish the continuous case from the general case�
In the former� we get an interesting connection between the closedness of GT �
� in
L��P � and the inequality D��P � �see theorem ��� below�� In the general case� however�
there is no hope for a positive result as shown by example ��� below�

Theorem 	�
� Suppose that X is a semimartingale in S�
loc such that A� the predictable

part of X� is continuous� If j � i � 
 �� GT �
� is one�to�one and if GT �
� is closed
in L��P � then the inequality D��P � is satis�ed�
In particular� D��P � holds true if GT �
� is closed� A is continuous and there is an
equivalent local martingale measure with square�integrable density�

For the proof we need the following easy result�



��

Lemma 	��� Suppose that A is continuous� Let � � 
 and � 
 �� Then there exists
a predictable process � with values in f���	�g such that


t � "�� T ��
����Z t

�
�s�

�
sdAs

���� � ��

Proof of lemma 	��� We can assume that � � A is increasing� If it is not the case�
we multiply ��dA by its sign� Then� we de�ne a sequence �Tn�n�� of stopping times by
setting

T� � � and Tn�� � inf

�
t � Tn j

Z T

�
�

Tn�t

�s��

�
sdAs � �

�
�

Since A is a �nite variation process� the sequence �Tn�n�� is �nite� Finally� we set � � �
on ""T�n� T�n��"" and � � �� elsewhere� This completes the proof of lemma ����

Proof of theorem 	�
� Now let � � 
 and take � as in lemma ���� From Doob!s
inequality

kGT ����kL� � k�kL��M� 	 ��

Therefore� from proposition ���� we deduce

k�kL��M� 	 k�kL��A� � k��kL��M� 	 k��kL��A�
� CkGT ����kL�
� C�k�kL��M� 	 ���

When � tends to �� we obtain the inequality D��P ��

Let us comment on the hypothesis that A is continuous� Of course� this is satis�ed if X
is continuous� But if X has only jumps at totally inacessible stopping times� we still can
see that A remains continuous� On the other hand when X jumps also at predictable
stopping times the assumption that A is continuous is not satisfactory� Indeed suppose
that X jumps at a predictable time � and suppose that A is continuous� Since � is
predictable � this implies E"%X� j F��� � �� But an economic interpretation of A is
related to the so�called �price of risk� process� Assuming that A is continuous at �
would then be interpreted as �the risk at time � is not rewarded�� In economic term
such an assumption would mean that the risk at time � can be �diversi�ed�� a concept
used in many texts but without a precise de�nition�

We now pass to the general case � the subsequent example shows that for processes
with jumps� theorem ��� does not hold true anymore�

Example 	��� There is a bounded stochastic process X � �X�� X�� X�� admitting a
bounded equivalent martingale measure such that
�i� the inequality D��P � fails �
�ii� G��
� is closed in L��P ��



��

First consider the following building block for the construction of the example� Let
� � � � � and de�ne the stochastic process Y � � �Y �

� � Y
�
� � by Y �

� � � and

Y �
� �

��� with probability �
���

� 	 � with probability �
���

so that E"Y �
� � � ��

If �F��F�� denotes the �ltration generated by Y �� then the predictable part of Y � is
given by A�

� � �� A�
� � E"Y �

� � � �� and the martingale part by M �
� � � and

M �
� �

��� with probability �
���

� with probability �
���

An elementary calculation gives

kA�kL��P � � �� kM�kL��P � �
p

��� kY�kL��P � �
p

� 	 ���

As � 
 � tends to �� the ratio kA�kL��P � � kM�kL��P � tends to in�nity while the ratio
�kA�kL��P � 	 kM�kL��P �� � kY�kL��P � tends to one and therefore remains bounded�

How is this related to the inequality D��P � and the closedness of GT �
� in L��P � � Of
course� both properties are satis�ed for Y � as the space 
 is simply one�dimensional
�the only stochastic integrals of Y � are the scalar multiples of Y ��� But the constant
C in the de�nition of D��P � deteriorates as � tends to �� as for each � � 
� � �� ��

k�kL��A�
k�kL��M�

�
kA�

�kL��P �
kM �

�kL��P �
� ���������

On the other hand� the constant in proposition ��� �ii� above does not deteriorate as �
tends to �� as

jjj�jjj
kG����kL��P �

�
kA�

�kL��P � 	 kM �
�kL��P �

kY �
� kL��P �

�
� 	 �������

�� 	 ������
����
�
�

��

Finally� to transform this quantitative phenomenon into a qualitative one� it su
ces
to glue a sequence of the above building blocks together� This is most easily done in
the following way � let X� � X� � �� F� � f
��g �to maintain our usual setting� and
let F� be generated by a partition �Bn�n�� of � such that P "Bn� 
 �� for each n� Fix
a sequence �n 
 � tending to � and de�ne

X� �

��� on a subset of Bn of probability �n
���n

P "Bn�

� 	 �n on a subset of Bn of probability �
���n

P "Bn�

It is straightforward to check that X satis�es the required properties�

We now construct a series of three counter�examples which are arranged in ascending
order of complexity�



��

The �rst example is similar to example ����� of Durrett ������� we also refer to a more
sophisticated example in Kazamaki ������ example �����
The third example uses an idea from Schachermayer ������ and Delbaen�Schacher�
mayer �����d�� We shall try to harmonize the present notation with that of Delbaen�
Schachermayer �����d��
For a continuous semimartingale X with canonical decomposition

X � X� 	 M 	 A � X� 	 M 	 hMi � 	
we shall call the local martingale L � E��	 �M� the density process associated to X�
In order not to obscure the subsequent calculations with irrelevant constants we adopt
the following notation � we write an � bn if there is a constant � � c � � such that
an � cbn� for all n � IN �

Example 	���� For � � p� � 	�� we construct a continuous real semimartingale
X � �Xt�t�	���
 with canonical decomposition X � M 	 A � M 	 hMi � 	 such that
the associated density process L � E��	 �M� has the following properties �
�i� L satis�es the predictable representation property �PRP��
�ii� For � � p � p� the martingale L satis�es Rp�P �� In particular L is bounded in
Lp�P � and the martingale 	 �M is in BMO�
�iii� The martingale L is unbounded in Lp��P � as kL�kLp� �P � � �� In particular�
inequality Rp��P � is not satis�ed for L�

Proof� Let fW denote a one�dimensional standard Brownian motion based on
��� eF � � eFt�t�IR�� P � and fX the semimartingale

fX � fWt � t�

In this case 	 � �� and the associated density process eL � E�fW � simply equals
standard geometric Brownian motion�
The next step will also be used for the examples below � �x two parameters a 
 ��
a �� �� and � � � �min ��� a��� and de�ne inductively a sequence ��n�n�� of stopping
times by letting �� � � and

�n � inf

�
t 
 �n�� j

eLteL�n��

� a or b

�

where we de�ne b ��
�� a�

�� �
� Note that � � b � 	� and b �� �� The martingale

property implies that

� � E"eL�� � � aP "eL�� � a� 	 bP "eL�� � b��

The real number b was chosen such that we obtain
����� P "eL�� � a� � � and P "eL�� � b� � �� ��



��

De�ne the random number N � N��� as

N � inf

�
n j

eL�neL�n��

� b

�

and let � denote the stopping time � � �N � We now stop the processes (X and (L at
time � and indicate this by dropping the tildes� i�e�� L � eL� � X � fX� � and we denote
by F and �Ft�t�	���
 the ��algebra and the �saturated and right�continuous� �ltration
generated by X �or equivalently by L��
By iterating the argument in ����� above one easily obtains that� for n � ��
����� P �� � �n� � ��� ���n�� � �n

and
����� L�L� � ban�� � an on f� � �ng�
Finally note that there are constants c 
 � and C 
 �� depending only on a and ��
such that� for every n � IN and random times S� T taking values in the stochastic
interval ""�n��� �n�� we have that

����� c � LS

LT

� C P �a�s�

Now we �x the parameters a and � by letting a 
 �� e�g� a � �� and � � � � a�� such
that ap�� � �� which is obviously possible as p� 
 �� Let us check that L meets our
requirements �
�i� is rather obvious�
�iii� � it su
ces to simply calculate the Lp��P ��norm of L� � L�

kL�kp�Lp� �P � � E

�� �X
n��

L��f���ng

�p�

�

�X
n��

�an�p��n � 	��

�ii� � as regards Rp�P � for � � p � p� �rst note that the same computation as above
reveals that

kL�kpLp�P � �
�X
n��

�an�p�n ���

Next note that our construction is homogeneous with respect to the multiplicative
structure of IR� in the following sense � if A � F�n is a set of positive measure contained
in f� 
 �ng and if PA denotes the renormalized restriction of P to A� then the process�

Lt��n

L�n

�
t��

�
�
Lt��n

an

�
t��

under PA is identical in law to the original process �Lt�t�� under P � In particular� for
every n � ��

�����
E"Lp

� j F�n �

Lp
�n

� E"Lp
���f�	�ng�

which shows inequality Rp�P � to hold true for all stopping times S of the form S � �n�
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To verify Rp�P � for an arbitrary stopping time S� it is easy to see that we may assume
that there is n � � such that S takes its values �except for in�nity� in ���n��� �n���
Indeed� the sets fS ����n��� �n��g are in FS�
So assume that ""S�� ����n��� �n�� � ""��� and use ����� and ����� above to estimate�����E

�
Lp
�
Lp
S

j FS


������ � c��
����E �

Lp
�

Lp
�n

j FS

�����
�

� c��
����E �

E
�
Lp
�

Lp
�n

j F�n

�
j FS

�����
�

� c��
����E �

Lp
�

Lp
�n

j F�n

�����
�

� c��E"Lp
���

This shows that L satis�es Rp�P �� thus �nishing the proof of the assertions for example
�����

The next step is to construct an example with similar features as the �rst one� but
such that the Lp��P ��norm of L is �nite and only the inequality Rp��P � fails for L�

Example 	���� For � � p� � � we construct a continuous real semimartingale
X � �Xt�t�	���
 with canonical decomposition X � M 	 A � M 	 hMi � 	 such that
the associated density process L � E��	 �M� has the following properties �
�i� L satis�es the predictable representation property �PRP��
�ii� For � � p � p� the martingale L satis�es Rp�P �� In particular L is bounded in
Lp�P � and 	 �M is in BMO�
�iii� The martingale L is bounded in Lp��P �� but L does not satisfy Rp��P ��

Proof� If fW again denotes a standard Brownian motion� de�ne now

fXt �

� fWt for t � "�� ��fWt � �t� �� for t � "���"�

Choose a partition �Ak�k�� of � into sets of F� satisfying P �Ak� � ��k�
Note that the density process eL associated to fX now equals

eLt �

�
� for t � "�� ��

E�fWt � fW�� for t � "���"�

De�ne the stopping times �n and the random number N for the process eL exactly as
above � only for the de�nition of � we apply a small modi�cation� De�ne � to equal
�N�k on each Ak�
With this modi�cation done de�ne again X and L by stopping fX and eL at time � and
consider these processes with respect to the �ltrations they generate�
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The veri�cation of the associated properties of this example now is a straightforward
modi�cation of the above arguments and left to the reader�

The next example� which again is a variation of the same theme� is more tricky� This
time� it is crucial to drop the property that M �or equivalently L� satis�es the predicta�
ble representation property� In this case the density process L � E��	 �M� associated
to X � M 	 hMi �	 is not the only candidate for �the density process of� an equivalent
martingale measure for the semimartingale X � if Z is any positive local martingale�
Z� � �� strongly orthogonal to L such that ZL� the pointwise product process� is not
only a local martingale but a true uniformly integrable martingale� then Z�L� is the
density of a measure Q under which X is a local martingale �see Ansel�Stricker ��������
It was shown in Schachermayer ������ and Delbaen�Schachermayer �����d� that� for
a properly chosen Z� the process ZL may have better properties than the process L�
This also turns out to be the case in the present context in a rather striking way�

Example 	���� For � � p� � � we construct a continuous real semimartingale
X � �Xt�t�	���
 with canonical decomposition X � M 	 A � M 	 hMi � 	 and a
continuous real uniformly bounded martingale Z� strongly orthogonal to M � such that�
for L � E��	�M� denoting the density process associated to X� the following properties
are satis�ed �
�i� The process ZL is a martingale satisfying the predictable representation property
�PRP�� while this property fails for the martingales M � L and Z�
�ii� For � � p � p� the martingale L satis�es Rp�P �� In particular L is bounded in
Lp�P � and 	 �M is in BMO�
�iii� The martingale L is unbounded in Lp��P � as kL�kLp��P � � �� In particular�
inequality Rp��P � fails for L�
�iv� There are constants � � c � C �� such that c � ZL � C � whence the product
martingale ZL satis�es R��P ��

Proof� Choose ���G� �Gt�t�IR�� P � such that there are two independent standard Brow�
nian motions W � and W �� de�ned on this stochastic base� Let L� � E�W �� and
L�� � E�W ����
Fix the parameters a� 
 �� � � �� � �a����� a�� � �a���� and � � ��� � �� We choose
these parameters such that we have �a��p������ � �� which obviously is possible as
p� 
 ��
Now de�ne stopping times �� �n�n�� and �� ��n�n�� by letting � �� � � ��� � � and

� �n�� � inf

�
t 
 � �n j

L�t
L�� �n

� a� or b�
�

and

� ��n�� � inf

�
t 
 � ��n j

L��t
L��� ��n

� a�� or b��
�
�



��

where b� �
�� a���

�� ��
and b�� �

�� a�����

�� ���
�

The idea of the example is to patch the processes L� and L�� together by intertwining
the stochastic intervals ��� �n��� �

�
n�� and ��� ��n��� �

��
n ��� De�ne inductively the random times

��n�n�� and ��n�n��� which are stopping times for the �ltration �Gt�t�IR�� by letting
�� � �� � � and� for� n � ��

�n � �n�� 	 � �n and �n � �n 	 � ��n �

Note that � � �� � �� � �� � �� � �� � � � � � Next de�ne the processes fX� eL and eZ
by specifying their values on the stochastic intervals ���n��� �n�� and ���n� �n�� inductively
for n � �� �� � � � �
If t � t��� � � is such that �n�� 	 t � �n let

fX
n���t � fX
n�� � �W �
� �n���t

�W �
� �n��

�� t�eL
n���t � eL
n�� � L�� �n���t
� L�� �n��

�eZ
n���t � eZ
n�� � ��

If t � t��� � � is such that �n 	 t � �n let

fX�n�t � fX�n � ��eL�n�t � eL�n � ��eZ�n�t � eZ�n � L���n���t
� L���n��

�

Loosely speaking� the processes fX and eL are constant on the intervals of the form
""�n� �n�� and move only on the intervals of the form ""�n��� �n��� where they behave like
W �

t � t and L�t resp� on the corresponding intervals ""� �n��� �
�
n��� Similarly� eZ is constant

on the intervals of the form ""�n��� �n�� and moves on the intervals of the form ""�n� �n��
as L�� does on ""� ��n��� �

��
n ��� De�ne the random numbers N��� and M��� as

N � inf

���n j L�� �n
L�� �n��

� b�
��� � inf

�
n j

eL�neL�n��

� b�
�

and

M � inf

���n j L��� ��n
L��� ��n��

� b��
��� � inf

�
n j

eZ
neZ
n��

� b��
�

and de�ne � � �N � � � �M � �nally� stop the processes fX� eL and eZ at time � � �
and indicate this by dropping the tildes� i�e� X � fX
�� � L � eL
�� � Z � eZ
�� � De�ne
F and �Ft�t�	���
 to be the ��algebra and the �right�continuous� saturated� �ltration
generated by L and Z� Note that neither L nor Z alone generate F and �Ft�t�	���


while the product ZL does generate them�



��

It is rather obvious that L and Z are martingales with respect to the �ltration �Ft�t�	���


and that L is the density process associated to X� Assertion �i� follows from the remark
in the preceding paragraph�
Similarly as in the previous examples note that there are constants c � C � �
depending only on the parameters a�� a��� �� and ��� such that� for each n � � and
random times S� T taking their values in ""�n��� �n�� we have

c � LS

LT
� C� c � ZS

ZT
� C� c � �ZL�S

�ZL�T
� C�

Making the crucial observation that because of a�a�� � � we have that �ZL�
n � � on
f�n � � � �g we conclude that� for arbitrary stopping times S� T we have

c � �ZL�S
�ZL�T

� C�

which readily proves �iv��
To prove �iii� note that

P "� � � � �n� � P "� � � � �n� � �������n

and that the values of L� on f� � � � �ng as well as on f� � � � �ng are �up to
constant factors� equal to �a��n� Hence we may calculate

kL�kp�Lp��P � �

�����
�X
n��

L��
��f��
��ng 	 �f��
�
ng�

�����
p�

Lp��P �
�

�X
n��

�a��np��������n � 	��

which shows �iii�� The analogous calculation for � � p � p� reveals that

kL�kLp�P � ��
and similar arguments as the ones used for the �rst example show that L in fact satis�es
Rp�P �� thus showing �ii��
This �nishes the construction of example �����

We have seen that for the closedness of GT �
� in L��P �� the inequality D��P � is in
general neither necessary nor su
cient� If we study the closedness of G�
� in R��P ��
we have a necessary and su
cient condition when A is continuous�

Theorem 	��	� Let X be an IRd�valued semimartingale such that there is an equi�
valent local martingale measure Q with dQ

dP
� L��P � and such that the predictable

part A of X is continuous� Then the space G�
� is closed in R��P � if and only if the
inequality D��P � holds�

We need an auxiliary result to prove theorem ����� The following lemma is a slight
variant of Proposition � of Yor ������� adapted for our present purposes� The main



��

di�erence is that we do not assume that the local martingale M is continuous� Recall
that the canonical decomposition of X is X � M 	 hMi � 	�

Lemma 	��
� Suppose that N �� 	 �M is in bmo�� If A is continuous� then there is
a constant C such that

E "h� �X 	 ZiT � � C kG��� 	 Zk�R��P �

for all � � 
 and Z � M�
� strongly orthogonal to M �

Proof� De�ne the processes eL �� � �M 	 Z and

L �� eL 	 heL�Ni � eL 	 � � A � � �X 	 Z � G��� 	 Z�

By It)o!s formula�

L�
t � �

Z t

�
Ls� dLs 	 "L�t

and therefore

E "hLiT � � E""L�T �

� �

�
E
h
�L�T ��

i
	 E

�
sup
t�	��T 


����Z t

�
Ls� deLs

����



	 E
��Z

L� jdheL�Nij�
T

��
�

Since A is continuous� we have "eL� � "L� and so the Burkholder�Davis�Gundy inequality
yields

E

�
sup
t�	��T 


����Z t

�
Ls� deLs

����


� CE

�	�Z T

�
L�
s� d"eL�s

� �
�


� � CE
�
L�T "L�

�
�
T

�
�

Moreover� L is in S� and eL is in M�
�� and so

R
L� deL is in h�� by the same argument as

in lemma ���� Hence Fe�erman!s inequality implies

E
������Z L� deL�N�����

T

�
�

p
�kNkbmo�

����Z L� deL����
h�

� CE

�	�Z T

�
L�
s� dheLis

� �
�


�
� CE

�
L�T hLi

�
�
T

�
�

since heLi � hLi by the continuity of A� Putting these estimates together� we obtain

E "hLiT 	 "L�T � � C
�
E
h
�L�T ��

i
	 E

�
L�T

�
"L�

�
�
T 	 hLi

�
�
T

���
� C

�
E
h
�L�T ��

i
	
�
E
h
�L�T ��

i
E""L�T 	 hLiT �

� �
�

�



��

and therefore� from classical results on �nd degree inequalities

E "hLiT � � E""L�T � � CE
h
�L�T ��

i
�

This completes the proof of lemma �����

Proof of theorem 	��	� �if� part� Suppose that D��P � is satis�ed� Let �G��n��n��
a sequence of G�
� which converges in R��P �� Then it is a Cauchy sequence on the
space R��P �� so that

kG��n��G��m�kR��P � � ��

provided that m and n are large enough�
Since D��P � is satis�ed� it follows from lemma ��� that we can de�ne the process N
by Nt �� �	 �M�t and for each � in 
� we have

h� �X�Nit � �� � A�t�

Hence� by lemma ����� we deduce that

E "h��n � �m� �XiT � � ��

for m and n large enough� Since

E "h��n � �m� �XiT � � k�n � �mkL��M� �

the sequence ��n�n�� is a Cauchy sequence in �L��M�� k � kL��M��� so that it converges

in L��M� to a process �� Thanks to D��P �� the convergence of ��n�n�� to � in L��M�
implies the same convergence in L��A�� Finally�

kG��n��G���kR��P � �

����� sup
t�	��T 


j���n � �� �X�tj
�����
L��P �

�
����� sup
t�	��T 


j���n � �� �M�tj
�����
L��P �

	

����� sup
t�	��T 


j���n � �� � A�tj
�����
L��P �

� � k�n � �kL��M� 	 k�n � �kL��A�
from Doob!s inequality� Therefore� the sequence �G��n��n�� converges to G��� in
R��P �� which completes the proof of the �if� part�

�only if� part� Let us now suppose that G�
� is closed in R��P �� Consider the map�
ping

k � �
� k � kL��M� 	 k � kL��A�� �� �G�
�� k � kR��P ��

� ��� G��� � � �X�



��

Then k is one�to�one and continuous by Doob!s inequality� Due to the closedness of
G�
� in R��P �� the inverse mapping is also continuous� so that the norms k � kL��M� 	
k � kL��A� and k � kR��P � are equivalent � there are C� 
 � and C� 
 � such that


� � 
� C��k�kL��M� 	 k�kL��A�� � kG���kR��P � � C��k�kL��M� 	 k�kL��A���

Let � � 
 and � 
 �� and choose a process � as in lemma ���� Then Doob!s inequality
yields

kG����kR��P � �

����� sup
t�	��T 


j����� �X�tj
�����
L��P �

�
����� sup
t�	��T 


j����� �M�tj	 sup
t�	��T 


j����� � A�tj
�����
L��P �

� � k��kL��M� 	 k��kL��A�
� � k�kL��M� 	 ��

Hence

k�kL��M� 	 k�kL��A� � k��kL��M� 	 k��kL��A�
� �

C�
kG����kR��P �

� �

C�

�
� k�kL��M� 	 �

�
When � tends to �� we obtain the inequality D��P �� and this completes the proof of
the �only if� part�


� Necessary and su�cient conditions for the closedness of GT �
��

In this section we will suppose that X is a continuous semimartingale for which an
equivalent local martingale measure with square integrable density exists� The symbol
V stands for the space of stochastic integrals � �X such that � is a simple integrand and
� �X remains bounded� As shown in section �� a necessary condition for the closedness
of GT �
� is that the mapping j � i � 
 �� GT �
� is one�to�one and that D��P � holds�
The following theorem solves the problem of the closedness of GT �
� for continuous
semimartingales completely�

Theorem 
��� Let X denote a continuous semimartingale� then are equivalent �
��� There is an equivalent local martingale measure with square integrable density and
GT �
� is closed in L��P ��
��� There is a square integrable local martingale measure Q that satis�es the inequality
R��P ��



��

��� The variance optimal measure Qopt is in IM e 	 L��P � and satis�es R��P ��
��� �C such that for all Y � V we have kY �T kL��P � � C kYTkL��P ��
��!� �C such that for all � � 
 we have

k�� �X��TkL��P � � k�kG��� � C k�� �X�TkL��P � �

��� �C such that for all Y � V and all 	 � � we have 	P "Y �T 
 	���� � C kYTkL��P ��
��!� �C such that for all � � 
 and all 	 � � we have

	P "�� �X��T 
 	���� � C k�� �X�TkL��P � �
��� �C 
 � such that for every stopping time S and every A � FS we have

k�A � UkL��P � � CP "A���� for every U � SV�
��!� �C 
 � such that for every stopping time S� every A � FS and every � � 
 with
� � ��

S�T 

 we have k�A � �� �X�TkL��P � � CP "A�����

Proof� The theorem is almost a reformulation of the results of section �� A local mar�
tingale measure for X is the same as a martingale measure for V� Since the appropriate
spaces of simple stochastic integrals are dense in the spaces of stochastic integrals� we
simply deduce from theorem ���� that the properties ���� ���� ���� ��!������ ��!�� ����
��!� are all equivalent� Let us now show that ��� implies all the other properties� If
there is an equivalent martingale measure with square�integrable density� then propo�
sition ��� applies and the R��P ��norm and the L��P ��norm are equivalent �both to the
L��M��norm in fact�� As a result one obtains ��!� and hence all the other equivalent
conditions� Conversely if ��� up to ��!� hold� we have to deduce that the space GT �
�
is closed� By assumption there is a local martingale measure with square�integrable
density that satis�es the inequality R��P �� So let Q be this martingale measure and

put E

�
dQ

dP
j Ft



� Lt� Then Lt is necessarily of the form L � E��	 �M 	 U� where

U is a local martingale strongly orthogonal to M � i�e� hM�Ui � � �see for instance
Ansel�Stricker �������� The lemma below shows that �	 �M 	U is in bmo�� Since M
and U are strongly orthogonal� we have h�	 �M 	 Ui � h	 �Mi 	 hUi and hence the
local martingale �	 �M is also in bmo�� which by the way is the same as BMO since
M is continuous� Therefore X satis�es D��P � and the norm on 
 is equivalent to the
L��M��norm� From lemma ���� we deduce that the L��M��norm on 
 is dominated by
the R��P ��norm on G�
�� This norm is by hypothesis equivalent to the L��P ��norm
on GT �
�� We �nally �nd that the norm on 
 is equivalent to the L��P ��norm on
GT �
� and hence by proposition ���� the space GT �
� is closed�
This completes the proof of theorem ��� �modulo the subsequent lemma��

Lemma 
��� If L is a uniformly integrable martingale with LT 
 � and L� � � that
satis�es the inequality R��P �� then necessarily L is of the form E�N� where N is in
bmo��



��

Proof� The process L remains strictly positive and hence the process

�
�

Lu�

�
��t�T

is locally bounded� The square�integrability of the process L implies that the local

martingale N de�ned by dNu �
�

Lu�
dLu is locally square�integrable so that it makes

sense to talk about hNi� The process L is therefore of the form L � E�N� with N
locally square�integrable�
For s � � �xed we de�ne the sequence of stopping times �Tn�n�� by

T� � s� Tn � inf

�
t 
 Tn�� j Lt

LTn��

� �

�

�
� T�

Let C be the R��P � constant of L� i�e� for all t we have

E

��
LT

Lt

��
j Ft



� C��

We �rst show that there is � � �� only depending on C� such that for all n�

P "Tn �� j FTn�� � � ��

This follows easily from the fact that on fTn�� � Tg

� � E

�
LTn

LTn��

j FTn��



� E

�
LTn

LTn��

�fTn�Tg j FTn��



	 E

�
LTn

LTn��

�fTn�Tg j FTn��




The �rst term is smaller then
�

�
P "Tn � T j FTn�� � whereas the second can be estimated

from above using the Cauchy�Schwarz inequality� We obtain

� � �

�
P "Tn � T j FTn�� � 	 C

�
�� P "Tn � T j FTn�� �

����
This implies the existence of � � � such that P "Tn � T j FTn�� � � � and where �
clearly depends only on C�

For t � Tn�� set Ut �
E�N�t

E�N�Tn��

and note that dU � U�dN � Since for t � Tn� �Ut� � �

we have

E
h
hNiTn � hNiTn��

j FTn��

i
� E

h
"N �Tn � "N �Tn�� j FTn��

i
� E

�Z Tn

Tn��

�U�
s�d"N �s j FTn��



� �E

h
U�
Tn j FTn

i
�

It follows that
E
h
hNiTn � hNiTn��

j FTn��

i
� �C��



��

Now we �nally can estimate E "hNiT � hNis j Fs� by the series

X
k��

E
h
hNiTk � hNiTk��

j Fs

i
� X

k��
E
h
E
h
hNiTk � hNiTk��

j FTk��

i
j Fs

i
� X

k��
E
h
E
h
hNiTk � hNiTk��

j FTk��

i
�fTk���Tgj Fs

i
� �C�

X
k��

E
h
�fTk���Tg j Fs

i
�

Since

E
h
�fTk�Tg j Fs

i
� E

h
�fTk���Tg E

h
�fTk�Tg jFTk��

i
j Fs

i
� E"�fTk���Tg� j Fs��

we �nd that E"�fTk���Tg j Fs� � �k�� and hence

E "hNiT � hNis j Fs� � �C�
X
k��

�k � �C�

�� �
�

This completes the proof of lemma ����

�� On the closure of GT �
� in L��P ��

Throughout this section� we do not assume that X is continuous�

When X admits an equivalent local martingale measure Q and when M has the pre�
dictable representation property under P � we shall determine the closure of GT �
� in
L����F � P � � If the density of the equivalent martingale measure is square�integrable�
the closure of GT �
� is the space of square�integrable random variables H such that
EQ"H j F�� � �� On the contrary� when the density of the equivalent local martinga�
le measure is not square�integrable and if we assume moreover that X is continuous�
we can prove that the closure of GT �
� is the whole space L����F � P �� under the
assumption that F� is trivial� These results are related to the results obtained by
Delbaen�Schachermayer �����c�� We start with an auxiliary proposition�

Proposition ���� Suppose that M satis�es the predictable representation property
under P and that there exists an equivalent martingale measure Q for X� Then
��� For every bounded FT �measurable random variable UT � there exists a sequence
��n�n�� � 
 such that �n �X is a bounded Q�martingale and

�EQ"UT j F�� 	 ��n �X�T �n��

converges to UT in L��P � and L��Q��



��

��� L����F�� P � 	 GT �
� � L����F � P ��

Proof� ��� Let UT be a random variable in L��FT �� Since M has the PRP�P �� X
satis�es the PRP�Q� so that there exists a predictable� X�integrable process � such
that

UT � EQ"UT j F�� 	 �� �X�T �

If Ut �� EQ"UT j F�� 	 �� � X�t � EQ"UT j Ft�� then U is uniformly bounded and
therefore� � �X is in S�

loc�P �� So we can de�ne an increasing sequence of stopping times
�Tn�n�� which tends to T and such that �n �� ��

��Tn

 is in 
� From the de�nition of
Tn� the sequence �Un

T �n�� �� �UTn�n�� converges to UT in L��P � and L��Q� because
this sequence is bounded�

��� Let H be a random variable in L����F � P � which is orthogonal to L����F�� P � 	
GT �
�� If UT is a bounded random variable� part ��� allows us to build a sequence
�Un

T �n�� which converges to UT in L��P � and such that Un
T � Un

� 	 ��n � X�T with
�n � 
 and Un

� � L����F�� P �� So

EP "HUT � � lim
n
��EP "HUn

T � � lim
n
��EP "H�Un

� 	 ��n �X�T �� � ��

These equalities imply that H � � P�a�s�� that is

L����F�� P � 	 GT �
� � L����F � P ��

By means of proposition ���� we can easily prove the next result�

Theorem ���� If M satis�es the predictable representation property under P and if
X admits an equivalent local martingale measure Q with a square�integrable density�
then GT �
� � fH � L����F � P � j EQ"H j F�� � �g�

Proof� Let H be a random variable in L����F � P �� such that EQ"H j F�� � �� We
already know that L����F�� P � 	 GT �
� � L����F � P �� so

H � lim
n
�� �Hn

� 	 ��n �X�T � �

where Hn
� � L����F�� P � and �n � 
� Since the density of Q is square�integrable� we

can take the conditional expectation with respect to F� under Q in the last equality
and we obtain

lim
n
��Hn

� � ��

which implies that H is in GT �
��

In the case where the density of the equivalent local martingale measure is no longer
square�integrable � we can also characterize entirely the closure ofGT �
� in L����F � P ��
under the assumption that F� is trivial�



��

Theorem ��	� Let X be a c&adl&ag semimartingale which admits an equivalent local
martingale measure Q� Assume that M satis�es the predictable representation property
under P and that the density of Q is not square�integrable� Then� if F� is trivial�
GT �
� � L����F � P ��

Proof� Denote by H the hyperplane in L��P �

H � fU � L����F � P � j EQ"U � � �g�

As the density of Q is not square�integrable we have that H is dense in L��P � with
respect to the norm�topology induced by k � kL��P � on L��P ��
Proposition ��� implies that GT �
� is k � kL��P � �dense in H� we just have seen that H
is k � kL��P ��dense in L��P � and� of course� L��P � is k � kL��P ��dense in L��P ��

Hence GT �
� is dense in
�
L��P �� k � kL��P �

�
�

Remark ��
� It is easy to construct an example such that theorem ��� fails if we drop
the assumption that F� is trivial�

�� The F�ollmer�Schweizer decomposition and property R��P � for the mini�

mal martingale measure�

Throughout this section we assume X is a continuous semimartingale with canonical
decomposition

X � X� 	 M 	 A�

We extend some results of Schweizer ������ and Monat�Stricker ������ and prove that
X admits a F�ollmer�Schweizer decomposition if and only if the minimal martingale
measure exists and satis�es R��P ��

De�nitions ���� �i� Given a semimartingale X as above� we say that a random
variable H � L� ���F � P � admits a F�ollmer�Schweizer decomposition� denoted by F�S
decomposition in what follows� if it can be written

����� H � H� 	 �� �X�T 	 LT P �a�s�

where H� is an F��measurable random variable� � � 
 and L � �Lt���t�T is a martin�
gale in M�

�� strongly orthogonal to M �
�ii� The semimartingale X admits a F�ollmer�Schweizer decomposition if there are
unique continuous projections ��� �� and �� � L��P � � L��P � such that every H �
L��P � admits a F�ollmer�Schweizer decomposition

H � ���H� 	 ���H� 	 ���H� � H� 	 �� �X�T 	 LT



��

where H� � L����F�� P �� � � 
 and �Lt���t�T is a martingale in M�
�� strongly ortho�

gonal to M �

For the next de�nition we refer to F�ollmer�Schweizer�������

De�nition ���� Suppose X is a continuous semimartingale satisfying the structure
condition �SC�� If �E ��	 �M�t���t�T is a martingale� then the measure Qmin with

density
dQ

dP
�� E ��	 �M�T is called the minimal martingale measure�

Theorem ��	� Suppose X is a continuous semimartingale satisfying the structure
condition �SC�� Then X admits a F�ollmer�Schweizer decomposition if and only if Qmin

exists and satis�es R��P ��

Proof� We �rst prove the �only if� part�
Suppose that X admits a F�ollmer�Schweizer decomposition and denote by ��� ��� ��
the corresponding projections in L��P ��
Let �Tn�n�� be an increasing sequence of stopping times converging stationarily to T
and such that for each n � �� KTn is uniformly bounded� It follows from Schweizer
������ and Monat�Stricker ������ that for every H � L����FTn� P � there is a F�ollmer�
Schweizer decomposition H � H� 	 �� �X�T 	LT such that the following formulae are
valid �
����� H� � ���H� � EQmin�H j F��
����� H� 	 �� �X�t 	 Lt � EQmin�H j Ft� for t � "�� T �
As by assumption� �� is continuous on L��P � and coincides with EQmin�� j F�� on
each L����FTn � P � we obtain that EQmin�� j F�� is a continuous linear functional on
L����FTn � P �� whence �Zmin

t ���t�T �� �E��	 �M�t���t�T is a bounded martingale in
L��P �� Therefore the minimal martingale measure exists and formula ����� holds for
every H � L��P ��
To show the boundedness of the projectors

Pt �� EQmin�� j Ft�

as operators from L����FT � P � to L����Ft� P �� write

Pt � Pt � �� 	 Pt � �� 	 Pt � ���
As regards Pt � �� � �� this operator clearly is uniformly bounded in t� Similarly we
have according to the contraction property for P �martingales


t � "�� T � kPt � ��k � k��k
where k � k denotes the operator norm on L����FT � P �� Finally we claim that there is
a constant C 
 � such that
����� kPt � ��k � Ck��k�



��

Indeed this follows from the fact that� by the assumption of the continuity of the
projection ��� we have that ���L����FT � P �� � GT �
� is closed in L����FT � P �� Hence
we know from proposition ��� that there exists a constant C 
 � such that for each
� � 
 we have

k�� �X��kL��P � � Ck�� �X�TkL��P �
which readily implies ������ This shows the uniform boundedness of the family of
projections

Pt � EQmin�� j Ft��

This uniform boundedness is easily seen to be tantamount to condition R��P � for the
minimal density Zmin �see for instance Dol$eans�Dade�Meyer ������ page �����
Finally the boundedness of the operators Pt also shows that ����� holds true not only
for H � L����FTn� P � but for arbitrary H � L����FT � P �� This completes the proof
of the �only if� part�

Now we prove the �if� part�
We suppose that the minimal density satis�es R��P �� In particular it is a square
integrable martingale� To prove that the decomposition is unique� we can and shall
assume that H � �� If

H� 	
Z T

�
�sdXs 	 LT

is a F�S decomposition of H� then H� � � because H� � EQmin "H j F��� So

Z T

�
�sdXs 	 LT � ��

From the continuity of X� taking the bracket with L in the previous equality yields
LT � �� Finally� � �X is a Q�martingale such that �� �X�T � �� so � � X � �� Since
X is continuous and � �X is a P �semimartingale in S�� the last equality implies that
� � � in L��M�� which completes the proof of the uniqueness�

Now let us prove that X admits a F�ollmer�Schweizer decomposition� Recall that the
minimal density satis�es R��P � and is continuous� so the stochastic logarithm L�Zmin�
is inBMO�P � by theorem ����� 
 � L��M� and D��P � holds� Denote byM�

� the space
of martingales L � M�

� strongly orthogonal to M and consider the Banach space B �
L����F�� P ��
�M�

� equipped with the norm k�H�� �� L�k �� kH�kL��P �	k�kL��M�	

kLTkL��P �� The mapping � � B � L����FT � P � de�ned by ��H�� �� L� �� H� 	 �� �
X�T 	LT is continuous� The uniqueness of the F�ollmer�Schweizer decomposition means
that � is one to one� We know that H� � EQmin�H j F��� Hence kH�kL��P � � kHkL��P �
as Qmin and P coincide on F�� According to lemma ���� we have E�h� �X 	 LiT � �
C k�� �X 	 L��TkL��P � � Since Zmin satis�es R��P � and is continuous� theorem ���� tells
us that k�� �X 	 L��TkL��P � � C k�� �X 	 L�TkL��P � � Hence we obtain
����� kH�kL��P � 	 k�kL��M� 	 kL�TkL��P � � CkH� 	 �� �X�T 	 LTk
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It follows that ��� de�ned on ��B� is continuous and therefore ��B� is complete� From
Schweizer ������ and Monat�Stricker ������ we know that for every n � � we have
that L����FTn� P � � ��B�� Since ��B� is complete� we obtain ��B� � L����FT � P �
and the proof of the theorem is complete�

We end this section with an example which is somewhat di�erent in spirit than the
material presented above� So far we saw results following roughly the pattern � GT �
�
has nice closedness properties i� the semimartingale X � M 	 A is not too far from
being a �local� martingale� i�e� A is somehow small compared to M � But this type of
result only holds true if we add an assumption of type � �X admits an equivalent local
martingale measure�� The next example shows that some hypothesis of the latter type
is indeed indispensable� We shall see that if we turn completely around and consider
the case where M is small compared to A �which typically excludes the existence of an
equivalent local martingale measure for X�� then again GT �
� may be closed�
For example� if �Ft���t�� is the �ltration generated by a standard Brownian motion
and we simply let the process X be strictly increasing and deterministic� e�g� Xt �
arctan�t�� then G��
� equals the entire space L����F�� P � and therefore is of course
closed� This easily follows from the arguments given in the example below� which
presents a slightly more complicated situation� Note that in the subsequent example
there does not exist an equivalent martingale measure for Y and the structure condition
�SC� does not hold true�

Example ��
� Let Yt �� Wt 	 t� where �Wt���t�� is a one�dimensional standard
Brownian motion with natural �ltration �Ft���t��� Now consider the predictable pro�
cess � de�ned by �t � �� 	 t���� and set X �� � � Y � Then the process X extends
to a semimartingale at in�nity and its natural �ltration is �Ft���t�� where F� is the
sigma�algebra generated by ���t��Ft� We claim that G��
� � L����F�� P �� In par�
ticular every random variable H � L����F�� P � has a F�S decomposition� However
this decomposition is not unique and K does not exist�
To prove that G��
� � L����F�� P �� it will su
ce to prove that there is a constant
c 
 � such that for every n � IN and for every f � L����Fn� P � there is an integrand
� � 
 such that
����� �� �X�� � f and k�kL��M� 	 k�kL��A� � c kfkL��P � �
In order to prove this inequality �x an integer n and let �ni�i�� be a strictly incre�

asing sequence of positive integers such that
�X
k��

�n� � � � nk�
���� � �� We set n� ��

n� ���� �� f����

n�n��

� g� �� ����� �M�� and for i � � si �� � 	 n� 	 � � � 	 ni� �
�i� ��

�gi��
ni

����

si�si��

� gi �� ���i� �M��� � ��
�X
i��

��i��
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Then
�����i����

L��A�
� kgi��kL��P � � k�kL��M� � kgikL��P � �

kgi��kL��P �p
ni

� Hence

k�kL��M� 	 k�kL��A� � � kfkL��P �
�X
k��

�n� � � � nk�
�����

Thus inequality ����� is proved and the proof of the example is now complete�


� Conclusion�

This paper gives necessary and su
cient conditions on a discounted asset price X for
the subspace of attainable claims to be closed in the space L��P � of square�integrable
random variables� This closedness is important for applications in �nancial mathe�
matics since it allows the construction of mean�variance optimal hedging strategies
for arbitrary square�integrable contingent claims� Mathematically� our results involve
weighted norm inequalities� and the condition on X �apart from continuity� is that the
variance�optimal local martingale measure for X should be equivalent to the original
measure and satisfy the reverse H�older inequality with exponent �� Our techniques also
allow us to extend existing results on the F�ollmer�Schweizer decomposition� and this
can in turn be used for the construction of locally risk�minimizing hedging strategies�
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