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0. Financial introduction.

Despite its rather mathematical title, this paper is concerned with questions which arise
from a number of optimization problems in financial applications. It seems therefore
appropriate to start with a motivating section to explain the background and the
financial interpretation of the results. We emphasize that this section will not contain
precise definitions and theorems; the mathematical introduction in the next section
will contain more technical details.

Our starting point is a d-dimensional stochastic process X = (X;)o<;<r defined on a
probability space (2, F, P) and adapted to a filtration IF' = (F;)o<;<r with a fixed
time horizon T € (0, 00]. The process X describes the discounted price evolution of d
risky assets in a financial market containing also some riskless asset with discounted
price Y = 1. Thus, F; is the information available at time ¢ and X} is the relative
price of asset 7 at time ¢, expressed in units of some fixed numeraire. Adaptedness of X
simply means that X} is observable at time ¢. One of the central problems in financial
mathematics in such a framework is the pricing and hedging of contingent claims by
means of dynamic trading strategies based on X. The prime example of a contingent
claim is of course a European call option on some asset ¢ with expiration date 7" and
strike price K, say. The net payoff to its owner at 7' is obviously the random amount

H(w) = max (Xj(w) — K,0) = (Xp(w) - K) .

More generally, a contingent claim will here simply be an Fp-measurable random va-
riable H describing the net payoff at 1" of the financial instrument we want to consider.
This means that our claims are “European” in the sense that the date of the payoff is
fixed, but the amount to be paid out is allowed to depend on the whole history of X
up to time 7' (or even more, if IF' contains additional information). The problems of
pricing and hedging H can then be formulated as follows: What price should the seller
S of H charge the buyer B at time 07 And having sold H, how can the seller S insure
himself against the upcoming random loss at time 77

A natural way to approach these questions is to consider dynamic portfolio strategies
of the form (0,7n) = (0, n)o<t<r, where 6 is a d-dimensional predictable process and 7,
is adapted. In such a strategy, 0 describes the number of units of asset 7 held at time
t, and 7, is the amount invested in the riskless asset at time ¢. Predictability of € is
then a mathematical formulation of the informational constraint that # is not allowed
to anticipate the movement of X. At any time ¢, the value of the portfolio (6;,7,) is
given by

Vi=0,X, +m

and the cumulative gains from trade up to time ¢ are

G(0) = /95 dX, =: (0 X),.

0



To have this expression well-defined, we assume that X is a semimartingale, and G(6)
is then the stochastic integral of # with respect to X. The cumulative costs up to time
t incurred by using (0, n) are given by

t
Ct:v;—/esdxs:v;—at(e).
0

A strategy is called self-financing if its cumulative cost process C' is constant in time,
and this is equivalent to saying that its value process V' is given by

t
(0.1) m:c+/9sdxs:c+c:t(e),
0

where ¢ = Vj = () denotes the initial cost to start the strategy. After time 0, such
a strategy is self-supporting: any fluctuations in X can be neutralized by rebalancing
f and 7 in such a way that no further gains or losses are incurred. Observe that
a self-financing strategy is completely determined by ¢ and 6 since the self-financing
constraint determines V', hence also 7.

Now fix a contingent claim H and suppose that there exists a self-financing strategy
(¢, ) whose terminal value Vi equals H with probability one. If our market model does
not allow arbitrage opportunities, it is immediately clear that the price of H must be
given by ¢, and that # furnishes a hedging strategy against H. This was the basic insight
leading to the celebrated Black-Scholes formula for option pricing; see Black/Scholes
(1973) and Merton (1973) who solved this problem for the case where H = (Xp — K)*
is a European call option and X is a one-dimensional geometric Brownian motion.
The mathematical structure of the problem and its connections to martingale theory
were subsequently worked out and clarified by J. M. Harrison and D. M. Kreps; a
detailed account can be found in Harrison/Pliska (1981). Following their terminology,
a contingent claim H is called attainable if there exists a self-financing trading strategy
whose terminal value equals H with probability one. By (0.1), this means that H can
be written as

T
(0.2) H = H,+ /ffl dX; P-as.,
0

i.e., as the sum of a constant H, and a stochastic integral with respect to X. We speak
of a complete market if every contingent claim is attainable. (Recall that we do not
give here precise definitions; for a clean mathematical formulation, one has to be rather
careful about the integrability conditions imposed on H and £*.)

The importance of the concept of a complete market stems from the fact that it allows
the pricing and hedging of contingent claims to be done in a preference-independent
fashion. However, completeness is a rather delicate property which typically gets lost
if one considers even minor modifications of a basic complete model. For instance,



geometric Brownian motion (the classical Black-Scholes model) becomes incomplete if
the volatility is influenced by a second stochastic factor or if one adds a jump compo-
nent to the model. If one insists on a preference-free approach under incompleteness,
one can study the range of possible prices which are consistent with absence of ar-
bitrage in a market containing X, Y and H as traded instruments; see for instance
El Karoui/Quenez (1995). An alternative is to introduce subjective criteria according
to which strategies are chosen and option prices are computed, and we shall briefly
explain two such criteria in the sequel.

For a non-attainable contingent claim, it is by definition impossible to find a strategy
with final value V = H which is at the same time self-financing. A first possible
approach is to insist on the terminal condition Vi = H; since 7 is allowed to be adapted,
this condition can always be satisfied by choice of ny. But since such strategies will
not be self-financing, a “good” strategy should now have a “small” cost process C. To
measure the riskiness of a strategy, the use of a quadratic criterion was first proposed
by Follmer/Sondermann (1986) for the case where X is a martingale and subsequently
extended to the general case in Schweizer (1991). Under certain technical assumptions,
such a locally risk-minimizing strategy can be characterized by two properties: its cost
process C' should be a martingale (so that the strategy is no longer self-financing,
but still remains mean-self-financing), and this martingale should be orthogonal to the
martingale part M of the price process X. Translating this description into conditions
on the contingent claim H shows that there exists a locally risk-minimizing strategy
for H if and only if H admits a decomposition of the form

T
(0.3) H=H+ / TaX,+ LE  Poas,
0

where L is a martingale orthogonal to M; see Follmer/Schweizer (1991). The de-
composition (0.3) has been called the Féllmer-Schweizer decomposition of H; it can
be viewed as a generalization to the semimartingale case of the classical Galtchouk-
Kunita-Watanabe decomposition from martingale theory. Its financial importance lies
in the fact that it directly provides the locally risk-minimizing strategy for H: the risky
component # is given by the integrand £, and 7 is determined by the requirement that
the cost process C should coincide with Hy+ L”. Note also that the special case (0.2)
of an attainable claim simply corresponds to the absence of the orthogonal term L. In
particular cases, one can give more explicit constructions for the decomposition (0.3).
In the case of finite discrete time, £ and L can be computed recursively backward in
time; see Schweizer (1995). If X is continuous, the Follmer-Schweizer decomposition
under P can be obtained as the Galtchouk-Kunita-Watanabe decomposition, computed
under the so-called minimal martingale measure ]3; see for instance Follmer/Schweizer
(1991).

One drawback of the preceding method is the fact that one has to work with strategies
which are not self-financing. To avoid intermediate costs or an unplanned income, a
second approach is therefore to insist on the self-financing constraint (0.1). The possible



final outcomes of such strategies are of the form ¢+ Gy () for some initial capital ¢ € IR
and some strategy component 6 in the set O, say, of all integrands allowed in (0.1).
By definition, a non-attainable claim H is not of this form, and so it seems natural to
look for a best approximation of H by the terminal value ¢ + G (€) of some pair (c, 6).
The use of a quadratic criterion to measure the quality of this approximation has been
proposed by Bouleau/Lamberton (1989) if X is both a martingale and a function of a
Markov process, and by Duffie/Richardson (1991) and Schweizer (1994), among others,
in more general cases. To find such a mean-variance optimal strategy, one therefore
has to project H in £?(P) on the space IR+ G7(©) of attainable claims. In particular,
this raises the question whether the space G7(0©) of stochastic integrals is closed in
L?(P), and this is the main problem studied in this paper.

Before we turn to a more detailed mathematical introduction, let us very briefly des-
cribe the main results of the paper. We provide necessary and sufficient conditions for
the closedness of G7(0©) in L2(P), thus characterizing the existence of mean-variance
optimal hedging strategies for arbitrary contingent claims H. Moreover, we also provi-
de new results on the existence and continuity of the Follmer-Schweizer decomposition,
thus ensuring the existence of locally risk-minimizing hedging strategies.

1. Mathematical introduction.

While the previous section is aimed at the finance-oriented part of our readers, this
section will discuss in more detail the mathematical aspects of the paper. In particular,
we shall here be more careful about definitions and terminology. But in order not to
overload this introductory part with too many formal definitions, we still refer to the
subsequent sections for unexplained notations.

Consider an IR%valued semimartingale X = (X¢)o<i<r defined on a filtered probability
space (Q,f, (Ft) o<t » P) with a fixed time horizon T € (0,00]. If X is in 82, then
X is special and admits a canonical decomposition

X=Xo+M+A.

In the present paper, we shall develop an £2-theory, and so we introduce the space ©
of all predictable X-integrable processes # such that the stochastic integral

G(0) ::/GdX —.0.X

is in the space 8% of semimartingales. As explained in the previous section, a random
variable of the form H = ¢+ Gr(0) with ¢ € IR and 6 € © can be interpreted as the
final value of a self-financing trading strategy # which starts with initial capital ¢, and
so the question arises which random variables H are attainable, i.e., can be represented
in the above form.

In the typical case of an incomplete financial market, the space of attainable random
variables is a proper subspace of £?(Q, Fr, P). The problem of determining whether



the space
Gr(0) :={(0-X)r | 0 € O}

is closed in £?(Q, Fr, P) is the central topic of this paper. Note that if G1(0) or (equi-
valently) the space span(Gr(0), 1) spanned by G(©) and the constant functions is clo-
sed in £?(P), we may form the orthogonal projection from £?(P) onto span(Gr(©), 1)
and thus decompose a random variable H € £*(Q2, Fr, P) as H = H' + H?, where H*
is attainable while H? is orthogonal to G1(©) and 1. As explained in the financial
introduction, this provides a mean-variance optimal hedging strategy for H. But quite
apart from the motivation for the present study arising from these applications in fi-
nancial mathematics, one can also consider the problem of characterising the closedness
of G1(0©) from a purely mathematical point of view.

In the case where X is a (local) martingale, this question has been studied some time
ago. In fact, the right notion of stochastic integration is designed in such a way that the
stochastic integral of a local martingale is an isometry between Hilbert spaces, and so
the closedness of Gr(©) holds true almost by definition; see Kunita/Watanabe (1967).
Actually, there is even a stronger result since Yor (1978) has proved that if Y™ and Y
are uniformly integrable martingales such that (Y2),cn converges weakly to Y, in £,
and if Y = ¢™ - X for all n, then there is a predictable process ¢ such that Y = ¢ - X.
It is a natural question, which might or should have been asked 15 or 20 years ago, to
which extent such results for local martingales generalize to semimartingales.

When X is only a semimartingale, further assumptions must be added to study this
problem. A usual hypothesis in financial mathematics is a ‘no arbitrage’ condition,
which roughly states that one cannot obtain a positive gain for free. An important
consequence is that the finite variation part A of X is absolutely continuous with
respect to the variance process (M) of the martingale part M; see Ansel/Stricker
(1992). According to Delbaen/Schachermayer (1996a), such an absence of arbitrage
implies that there is a predictable process A such that

dA, =d (M), N P-a.s. for all t € [0,T],

and so we shall assume that A\ exists. Moreover, we shall also assume the existence of
the so-called mean-variance tradeoff process of X which is defined by

K= /Xd (M) A,

where ' denotes transposition. In a discrete-time framework, Schweizer (1995) has
proved that Gr(©) is closed if K is uniformly bounded. The same result has been
established in continuous time by Monat/Stricker (1994, 1995).

Uniform boundedness of K is equivalent to requiring that the martingale A - M is in
H®>. This is sufficient for the closedness of G(©), but quite far from being necessary;
see Monat/Stricker (1995) for a counterexample. It turns out that the closedness of
G7(0) is rather related to the question of whether A- M is in BMO and the (intimately
related) question of whether the exponential martingale E(—A- M) or E(—A- M + N),



for a suitable martingale N strongly orthogonal to M, satisfies the reverse Holder
condition Ry(P). In the case where X is not necessarily continuous, additional care
has to be taken to find the right notion for BM O, and it turns out that bmos is the
right choice.

The main results of this paper are summarized in the subsequent three theorems.

Theorem A. Let X be an IR%valued semimartingale such that there is an equivalent
local martingale measure @ with 92 € £2(P). Then the following two assertions are
equivalent :
i) The process A - M is a martingale in bmos.
ii) Condition Dy(P) holds true, i.e., there is a constant C' > 0 such that for all 6 €
L*(M)

1011 204y < CNON 2 ary -

If, in addition, X is continuous, then i) and ii) are also equivalent to
iii) Gr(©) is complete with respect to the norm [|6 - X {2 p) > |0 - X z2(p) -

Theorem B. Let X be an IR%valued continuous semimartingale such that there is an
equivalent local martingale measure () with % € L?(P). The following assertions are
equivalent :

i) Gr(0) is closed in L2(Q, F, P).

ii) There is an equivalent local martingale measure () that satisfies the reverse Holder
inequality Ry(P).

iii) The “variance-optimal” local martingale measure Q7" is equivalent to P and satis-
fies Ry(P).

Theorem C. Let X be an IR%valued continuous semimartingale such that there is an
equivalent local martingale measure () with g—g € L2(P). The following assertions are
equivalent :

i) Gr(0) is closed in £%(Q, F, P) and there is a Follmer-Schweizer decomposition for
X, i.e., the projection m onto span(Gr(©),1) with Ker(r) = M+ is well-defined and
continuous on L£%(Q, F, P).

ii) The “minimal” martingale measure Q™" defined by

dP

is well-defined, equivalent to P and satisfies Ry(P).

Let us comment on these three theorems. If we restrict our attention to the case of
continuous processes X, they are arranged in ascending order of restrictiveness, i.e.,
the (equivalent) conditions of theorem C (resp. theorem B) imply the (equivalent) con-
ditions of theorem B (resp. theorem A). The central result is theorem B which — under



the stated hypothesis — gives a necessary and sufficient condition for the closedness of
Gr(0). The proofs of these assertions as well as several ramifications and complements
will be scattered out through the paper, where we also establish some of the results in
greater generality. We also give several examples (some of them rather complicated)
to show the limitations of the above theorems.

Note that the difference between the situations described by theorems B and C, re-
spectively, pertains to the difference between the “variance-optimal” and the “mini-
mal” martingale measure. This is another illustration of the phenomenon already en-
countered in Delbaen/Schachermayer (1996b) and (1995d) that the “variance-optimal
measure” which is of the form dg;pt =&(—=A-M + N)r for a suitably chosen martin-
gale N strongly orthogonal to M in general has better properties than the “minimal”

martingale measure which is simply given by d?;m =E(—=A-M)r.

This paper is organized as follows. In section 2, we describe the model and prove
the results on the Ry(P) property. This section is written in a very general way and
the theorems are stated in terms of spaces that are stable for stopping. Our results
generalise known results on the reverse Holder inequality. Section 3 deals with BMO
and/or bmos martingales as well as the connection with the inequality Dy(P). In
section 4, we investigate under which conditions the space G7(©) is closed, and in
section 5, we explicitly describe the closure of G7(©) in some cases. Finally, section 6
extends the definition of the Follmer-Schweizer decomposition under the assumptions
of section 4, and this provides another way of proving the closedness of Gr(O).

Some results of this paper form the subject of a note which has been published in the
Comptes Rendus a I’Académie des Sciences; see DMSSS (1994).

We thank M. Yor for his interest and help in the preparation of this paper.

2. Preliminaries.

Let us now develop our model. We use the same notations as Schweizer (1994). We
recall them here. Let (Q, F, P) be a probability space and T € (0, +00] a fixed horizon.
We suppose that we have a filtration (F;),.,. on (2, F, P) satisfying the usual con-
ditions, that is (F;)y<,cp is right-continuous and complete, and we assume moreover
that F = Fr. Let X = (X;)y<,<p be an IR%valued semimartingale in S7,.. This means
that if o

X=X+ M+A

is the canonical decomposition of X, then M € M, and the variation |A’| of the
predictable finite variation process of X’ is locally square-integrable for each i = 1, ..., d.
For all unexplained notations, we refer to Jacod (1979) or Protter (1990).

We recall a definition introduced in Schweizer (1994).



Definition 2.1. X satisfies the structure condition (SC') if there exists a predictable
IR"-valued process A = (\;)y<,<q such that

(2.1) dA; =d(M), N\, P-as. forallte[0,T],
and

t
22) K, ;:/ Nd (M) A, < +00  P-as. for all t € [0,T],
0

where " denotes the transposition.

We then choose an RCLL version of K and we call it the mean-variance tradeoff (MV'T)
process of X.

As easily seen, adding to A a process that takes values in the orthogonal complement
of the infinitesimal range of d (M) gives the same result. Hence the process A is only
determined modulo the equivalence class of predictable processes taking almost surely
values in the orthogonal complement of the infinitesimal range of d (M). The existence
of X\ as well as the almost sure finiteness of K is related to arbitrage properties as
shown by Delbaen/Schachermayer (1996a). In the case where X is continuous, it is a
necessary condition for the existence of an equivalent local martingale measure. Also
in the case where X is continuous, the finiteness of Kt is independent of the choice of
probability measure, as shown in Delbaen/Shirakawa (1996) or Choulli/Stricker (1996).

Remark 2.2. For the interpretation of the process K, we refer to Schweizer (1994,
1995).

Definition 2.3. A predictable R“-valued process 6 = (6;),.,, belongs to L*(M) if

E (/OT 6ld (M>t9t> < 400

We define on the space L*(M) the norm || . || 2.5y by

T
10y = 10 M)y = ([ 010 01, ).

A predictable R%-valued process = (6;),,p belongs to L?(A) if the process
; <t<
( / |9;dAs|> is square-integrable.
0 0<t<T
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We define on the space L*(A) the norm || . || 24 by

T
101224y = || [ 105 As]
(4) 0

L£2(P)

Finally, © is the space defined by © := L*(M) N L*(A) ; § € © is called a L2strategy.

If the structure condition holds, then clearly

(f T|e;d<M>sAs|)2] .

Strictly speaking the Banach space L*(M) is the space of equivalence classes of predic-
table processes 0 with finite L?(M )-norm modulo the subspace of predictable processes
6 for which the process #- M vanishes almost surely. But we use the usual identification
of processes with the associated equivalence class if no confusion can arise. A similar
remark applies to L?(A) and ©.

||9||i2(A) =L

Remark 2.4. If 6 is X-integrable, we can define the stochastic integral process

Gt(G) = (9 . X)t
for all ¢ € [0,T]. Then G(f) is a semimartingale in S§? if and only if # € © and in this
case the canonical decomposition is given by G(0) :=6- M + 6 - A.

The spaces Gr(0) and G(O) are defined by

Gr(©) == {(0-X)r | 0 € O} and G(0) := {G(6) | 0 € O

Note that G7(©) is a space of variables in £2(P) and that G(©) is a space of processes.
We next provide several definitions and inequalities which will be useful in the sequel.
The following concept has been extensively studied in Delbaen/Schachermayer (1994).

Definition 2.5. We say that X admits an equivalent local martingale measure if there
exists a probability ) equivalent to P such that X is a local martingale under Q).

For the next four definitions we refer to Dellacherie/Meyer (1980).

Definition 2.6. The space R?(P) is the space of all RCLL adapted processes H such
that

= [[Hzll z2(p)

1 H |2 (p) =
0
£2(P)

sup |Ht|
<t<T
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is finite.

Definition 2.7. We say that M has the predictable representation property under P,
denoted by PRP(P), if each martingale N relative to (F;)o<i<r and P can be written

N=Ny+0-M

where Ny is Fy-measurable and € is M-integrable.

Definition 2.8. Let Y = (Y})o<;<r be a uniformly integrable martingale. Then Y
belongs to BM O if there is a constant C' > 0 such that

EllYr —Ys_ | Fs] < C P —as.

for every stopping time S.

Definition 2.9. Let Y = (Y})o<i<r be a locally square-integrable, local martingale.
Then Y belongs to bmos if there is a constant C' > 0 such that

E((Y);—(Y)g | Fs] <C P —as.

for every stopping time S.

We now introduce a new concept which is related to the concepts presented below in
Definitions 2.11 and 2.12.

Definition 2.10. We say that X satisfies the inequality Do(P) if there is a constant
C > 0 such that
||9||L2(A) S O ||9||L2(M) ) VG € @

By a truncation argument, the inequality Dy(P) extends immediately from 6 € O to
all 0 € L2(M).

The problem whether or not the space Gr(©) is closed is intimately related to proper-
ties of BMO-martingales and their exponentials. A good reference for this question
is Doléans-Dade/Meyer (1979). For continuous martingales the reader can consult
Kazamaki (1994).

Definition 2.11. If L is a uniformly integrable martingale such that L, = 1 and
Ly > 0 P-a.s, then we say that L satisfies the reverse Holder inequality under P,
denoted by R,(P), where 1 < p < +o00, if and only if there is a constant C' such that

for every t, we have
E ( > | F < C
Lt = .




12

L
For p = 400, we require that TT is bounded by C' (see definition 3.1. of Kazamaki

t
(1994)).

We remark that if L satisfies R,(P), 1 < p < oo, then for the same constant C' as in
the definition, we have for every stopping time S that

L% < E[I}. | Fs] < CIE.

In particular the martingale L is bounded in £P(P). We remark that a martingale
which satisfies the inequality Ro(P) is necessarily bounded but there are martingales
which satisfy the inequality R, (P) such that inf L; is not necessarily bounded from
below by a constant 6 > 0. A condition dual to R,(P) is the inequality A,(P) (see
definition 2.2. of Kazamaki (1994)).

Definition 2.12. If L is a uniformly integrable martingale such that L, = 1 and
Ly >0 P-as, we say that L satisfies the Muckenhoupt inequality denoted by A,(P)
for some 1 < g < 400, if and only if there is a constant C' such that for every ¢

[

“l

1
q

Ly sl ce
(LT> |tJ—

L
If ¢ =1, we require that L—t is bounded by C.
T

Again, we remark that with the same constant C, the inequality holds for arbitrary
stopping times S.

Definition 2.13. Let Z be a positive process. Z satisfies condition (.J) if there exists
a constant C' > 0 such that

1
—7Z_ < 7Z<(CZ_.
o4-S4s

In the (French) paper Doléans-Dade/Meyer (1979), this condition is called condition
(S) since it involves the jumps (“sauts”) of Z. To avoid confusion with the structure
condition (SC) in Definition 2.1, we have relabelled it here as (J).

Let us now recall some definitions and notations related to changes of law. If V is
a semimartingale, Yy, = 0, then its stochastic exponential, denoted by £(Y), is the
semimartingale

E(Y), = exp (Yt 2! <yc>t> T (1+AY,)e 2%,

2 0<s<t

If Z is a semimartingale such that info<;<r Z; > 0 (for instance if Z is a strictly positive
local martingale), then its stochastic logarithm, denoted by £(7), is the semimartingale

£(Z) = =

=— 7
7
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Now let () be an equivalent probability measure and define

dQ

- 1
Zt Ep [—|ft] andZt:EQ

7| =5

ldP
From Bayes’ rule
Eqlf | FillZy = Ep[fZr | F]

it easily follows that Z satisfies R,(P) if and only if Z satisfies A,(Q) where of course

1 1
—+—-—=1and 1 < p < +o0.
P q

The following theorem relates BMO and R, (P) (see Doléans-Dade/Meyer (1979), pro-
position 5 and 6).

Theorem 2.14. The following assertions are equivalent for a strictly positive martin-
gale Z, Zy = 1:

(1) £L(Z) is in BMO(P) and there exists a constant h > 0 such that 1 + AL(Z) > h.
(2) £(Z) is in BMO(Q) and there exists a constant b > 0 such that 1+ AL(Z) > h.
(3) Z satisfies condition (J) and R,(P) for some p > 1.

(4) Z satisfies condition (J) and A,(Q) for some ¢ < +oc.

In addition, (3) is satisfied for 1 < p < oo iff (4) is satisfied for ¢ = _25.
The next theorem states that the set of exponents p such that Z satisfies R,(P) is neces-
sarily open. Of course, a similar argument holds for A,(P) (see Doléans-Dade/Meyer
(1979) proposition 4).

Theorem 2.15. Assume Z is a strictly positive martingale with Zy = 1. If Z satisfies
condition (J) and R,(P) (p > 1), then there is p’ > p such that Z satisfies R, (P).

A basic property, that we will need later on, is that if Z satisfies R,(P) then the
conditional expectation with respect to @) is a continuous operator on LI(P). More
precisely, we have (see Doléans-Dade/Meyer (1979) proposition 2 and the corollary on
page 318 combined with proposition 4) the subsequent result :

Theorem 2.16. Assume Z is a strictly positive martingale with Zy = 1. For 1 < p <
+00, assertions (1) and (2) below are equivalent
(1) Z satisfies R,(P).

(2) There is a constant C' such that for each @-martingale N, and for ¢ =
A>0

P and
1

NP[N} > A] < CEp[|Nrl9.

Moreover under the additional assumption that Z satisfies condition (J) the weak
inequality (2) implies the following strong inequality
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(3) There is a constant K such that for each Q-martingale N, and for ¢ = .

p—1

Ep[(N7)?] < KEp[|Np|].

Below we will give a generalization of this theorem. As we deal in this paper with
the case p = 2 only, we do not focus our attention to possible extensions of this
generalization to the case p # 2, p > 1.

The symbol V denotes a vector space of bounded continuous adapted processes. If
Y €V, we suppose that Yy = 0. We require V to be stable for stopping, i.e. if S is a
stopping time and if Y isin V, then Y¥ € V. For each stopping time S, we denote by Vg
the vector space {Ys | Y € V}. The space gV is the space {Y;r—Ys | Y € V}. We remark
that this notation is consistent with the notation for stopping and starting a process.
We remark that V denotes a vector space of adapted processes while Vg and ) denote
spaces of (Fg -resp. Fr- measurable) random variables. Since V is stable for stopping,
we have for every stopping time S and every set A € Fg that 14, ¢V C sV C Vr.
Clearly Vy = {0}. The set IM (V) denotes the set of all probability measures ) that
are absolutely continuous with respect to P and for which the elements Y € V become
()-martingales. The symbol IM¢(V) is reserved for the elements of M (V) that are
equivalent to P.

We shall simply write IM¢ and M instead of IM¢(V) and IM (V) if there is no danger
of confusion.

It is easily seen that if ) is absolutely continuous with respect to P and if L denotes
the cadlag martingale

dQ
dP
then @@ € IM (V) if and only if for every Y € V, the process YL is a martingale or,
what is the same because V is stable for stopping, E[L;Yr] = 0. More generally, we
define IM? as the affine space of measures p absolutely continuous with respect to P

such that x(2) =1 and
d
Ep [YT—M] —0

Lt:EP[ |ft]7

dP
for all Y € V. If we denote by L the cadlag martingale

d
LtzEplﬁml,

then this is equivalent to the property that E[Ly] = 1 and LY is a martingale for each
Y € V. Without further notice, we will identify an absolutely continuous measure p

d
with its Radon-Nikodym derivative d—]/i In this setting, M and IM? are closed sets of
L'(P) and if IM*® is non empty, then it is £'(P)-dense in M.
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An important role will be played by the element of IM* N £? that has minimal £?(P)-
norm, which we call the variance optimal measure and which we denote by Q°".

This measure was previously studied by Schweizer (1995) as well as by Delbaen/
Schachermayer (1996b). Tt is shown there that IM* N £?(P) is non empty if and only
if the constant function 1 is not in the £2-closure of Vr. If we adopt the convention
that a bar denotes the closure in £?(P), then IM* N £L?(P) is non empty if and only if
1 ¢ Vr. In this case, there is an element g in IM* N £%(P) with minimal norm and it

is given by
dp  1—f
dP 1 - E[f]’
where f is the orthogonal projection of 1 onto the closed subspace Vy of L2(P).

d
The £2-norm of £ is given by

1 1 1

ey dist(LVr) (1 - BIf))? sing’

dP
dp
dP

where ¢ is the positive angle between 1 and V7. Exactly as in theorem 3.1 of Del-
baen/Schachermayer (1995b), one shows that due to the continuity of elements in V,
the measure p is necessarily nonnegative, i.e. u € IM N L*(P).

Lemma 2.17. If the variance optimal measure Q7" € IM¢(V) exists and the cadlag

martingale L defined as
onpt
dP

satisfies Ro(P), then L satisfies condition (J).

L= 5

Proof. Since L satisfies Ry(P), L is a square integrable martingale. Hence we can
define for each fr € Vp the Q°'-martingale

ft = EQopt [fT | ft]

Moreover if (f?) is a sequence in Vr converging to fr with respect to the £2(P)-norm,
then the sequence (f}') converges uniformly in ¢ with respect to the norm of £'(Q")
and hence in probability to (f;). As each (f/") is a continuous martingale, the Q-
martingale (f;) is continuous whenever fr € Vp. In particular if f7 is the orthogonal
projection of 1 onto Vr, then (f;) is a continuous Q°!-martingale. Since

:onpt_ ].—f

br==p= 1— E[f]

the Q'-martingale Z, = Egew [Ly | F3] is continuous too. By Bayes’rule

Z_EP[Z%|‘E]_EP[L?F|}}]
‘e L, B L,
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Suppose now that L satisfies Ry(P), then

2
Li
and hence N
L, < Z, <CL.

Since Z, is continuous, it follows that L satisfies condition (J).

In Delbaen/Schachermayer (1995b), it is shown that if IM® N L2(P) # (), then Q' =
p € IM€. The theorem below investigates the inequality Ry(P) for 1 and part of its
proof uses the same method as theirs. For simplicity of notation, we assume that Fy
is trivial.

Theorem 2.18. If V is a space of bounded continuous adapted processes such that
for each Y € V we have Y = 0, if V is stable for stopping (as described above), if F
is trivial, then are equivalent

(1) The variance optimal measure Q" € IM¢(V) exists and the cadlag martingale L

defined as
onpt

satisfies Ry(P).
(2) There is Q@ € IM¢(V) N L?(P) such that the cadlag martingale Z defined as

aQ
i

Lt:E

z-5| 501 7]

satisfies the inequality Ry(P).
(3) There is a constant C' such that for every Y € V

Y7l c2py < C Y7l 22y -
(4) There is a constant C' such that for every Y € V and every A >0
APY7 > N2 < C Yzl oy -

(5) There is a constant C' > 0 such that for every stopping time S, every A € Fg and
every Ur € gV
114 = Urllga(py > CPIA]2.

In addition, if one of the above equivalent conditions is fulfilled, then Q°" satisfies
R,(P) for some p > 2.

Remarks 2.19. i) In condition (5), we can of course restrict the inequality to elements
Ur in g,V i.e. elements constructed with the stopping time Sy = S on A and Sy =T
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on A°. These elements can be written as 14(Y7 — Ys) where Y € V. We remark that
condition (5) expresses that there is a lower bound ¢y = arcsin C' such that for each
A € Fg, the angle between 1, and the space gV is bounded below by ¢y.

ii) If in theorem 2.18 we take for () an equivalent probability measure that defines
a density process that satisfies Ro(P) but that not necessarily satisfies condition (J),
if for ¥V we take the space of all continuous bounded martingales for @, then (3) of
theorem 2.18 extends, at least for continuous martingales, proposition 2.16. The trick
is that the density process of the variance minimal measure for V satisfies Ry(P) and
condition (J)!

Proof of theorem 2.18. It is clear that (1) implies (2). By theorem 2.15 and lemma
2.17 , (1) implies (3) and (2) implies (4), the constant C' being valid for every Q-
uniformly integrable martingale. The strong inequality in (3) certainly implies the
weak inequality in (4). We now prove the equivalence of (4) and (5), after which we
show that (5), together with (4), implies (1).

(4) = (5)

This is done by using a reflection argument. Fix a stopping time S, A € Fg and a
process U of the form U = X — X% = 1,(X — X¥) where X € V. Define v :=
inf{t | Uy > 5} AT and let

v — U, for t<v
7Y 22U, - U, for t>u,

i.e. Y is U reflected at time v. Then Y € V and

|YT| — |UT|1{z/:T} —|— |]. - UT|1{1/<T} S |]. - UT|

since Ur < 3 on {v =T}. On A¢, we have U = 0, hence v =T and Y7 = 0 ; thus we

obtain |Yr| < |14 — Ur|, and the weak inequality in (4) implies
114 = Urll2py = (Y7l 2py
1 1 1/2
> C7'=p [Y* > —}
- 2 T 72
-1

CTP[V < T)'/?

v

-1
- Y p

5 Ur > =

1 1/2
2] '

On the other hand,

PIAN{Uz <1/2}]7

DN | =

||UT - 1A||£2(P) 2

and hence

1 . (Ct1
|Ur — 1all 2p) 2> SP[A]Y? where § = ﬁmln (T’ 5) .
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(5) = (4)

For fixed Y € V and A > 0, let us define S = inf{t | |Y;|] > A}. The element
Ur = —sign(Ys)(Yr — Ys) is clearly in ¢V and hence for A = {S < T} = {Y > A} we
have

> O'P[A]Y?

L2(P)

or, what is the same
CAP[YE > A2 < |[]ALy = Uzl pa ) -
But A14 — Up = A14 + sign(Ys)(Yr — Ys) = Yr1asign(Ys) and hence
CAP[YF > \"Y? < [|A14 — Urll g2y < Y7l 22py -

(5) = (1)

This is the most technical part. The proof mimics the proof of theorem 1.3 in Del-
baen/Schachermayer (1996b). Since we do not assume a priori that there is an element
Q € M¢NL*(P), there are some extra technical difficulties. We start with two lemmas.
The first should be folklore (see lemma 3.4 in Delbaen/Schachermayer (1995b)). The
second exploits that the angle between 1,4 and gV is bounded from below.

Lemma 2.20. If U = (U)o<i<r is a non-negative square integrable martingale, if
Uy > 0, if the stopping time 7 = inf{¢ | U; = 0} is predictable and announced by a
sequence of stopping times (7,),>1, then

U;
E lUTZ | .7-}”] — 400

on the F,_-measurable set {U, = 0}.

Lemma 2.21. If condition (5) holds with a constant C', then for each stopping time
S there is an element g € L£%(P) such that Elg | Fs] = 1, E[g* | Fs] < C~2 and
ElgU] =0 for each U € gV.

Proof of lemma 2.2. We proceed exactly as in theorem 3.1 in Delbaen /Schachermayer
(1995b). Let f be the projection of 1 onto the space gV. For each A € Fg, the spaces
14 . gV and 14 . gV form an orthogonal decomposition of ¢V and hence f1l, is
the orthogonal projection of 14 onto g,V = 14 . gV. This shows that E[f%1,] =
E[f14af14] = E[f1414] = E[f14]. The inequality in condition (5) shows that
|14 _f]'AHi?(P) > C?P[A] and hence E[14 — f14] = E[14(1 — f)?] > C?P[A] for
all A e Fg,ie. 1 —E[f | Fs] > C%

We now define

_ =7
TTACEF A
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The computation above shows that E[f? | Fs] = E[f | Fs| and hence

2 =F | —————— | <O
||g||£ (P) B [1—E[f | fs]] <C

Now, for each A € Fg and each U € gV, we have 1,U € ¢V and hence
E[14(1 = /U] = 0.
An easy approximation argument on the bounded function
1
1— E[f | Fs
then shows that E[gU] =0 for all U € V.
The positivity of ¢ is shown exactly as in theorem 3.1 of Delbaen/Schachermayer

(1995h).
This completes the proof of lemma 2.21.

Proof of th. 2.18 continued : Let us come back to the end of the proof of theorem
2.18. If we denote by f the orthogonal projection of 1 onto the space Vr, then as seen
above, the optimal measure Q°?! is nonnegative and is given by

d* _ 1-f
dP  1-E[f]

The next step is to construct a continuous process that resembles the process Z as in
Delbaen/Schachermayer (1995b). There is a sequence of elements Y™ in V such that

HYC,@ R A ) < 37" and such that Y* — f in £?(P). From the weak inequality,

we deduce that

7 - 2] <

n>1  LO<t<T

and hence the sequence Y;” converges uniformly in ¢ a.s. to a continuous process that
we denote by f;. Clearly fr = f. Define

oo 1= h
1 - E[fi]
If we denote by L the density process
onpt
dP

then for each element Y in V, we have that L;Y; = Ep[LrYr | F]. Since Ly and Ly
are in L*(P), it follows that also L,Z, = Ep[LyZr | Fi] = Ep[L7 | F]. If 7 denotes
the stopping time 7 = inf{¢ | L,Z; = 0}, then we have

0= / [2dP
7<T

L,=Ep [ | ft] = Ep[Zr | Fi]
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and hence Ly = 0 on {7 < T'}. This implies that L, = 0 on {7 < T'}. From the
continuity of Z, it follows that necessarily Z, > 0. Suppose now that

A={Z.>0}n{r < T}

has strictly positive measure. Because Ly = Zp = 0 on {r < T} we have that fr =1
on A. Hence the function (1 — f,;)14 € ., V. Let g be the positive element constructed
in lemma 2.21. for the stopping time 74. Since E[g14(1—f,)] = 0 and since (1—f;) > 0
on A, we have that E[gl4] = 0, a contradiction to E[g | F,,] = 1. It follows that also
Z. =0 and hence inf{t | L, = 0} = inf{t | Z, = 0} = 7. We now proceed exactly as in
the proof of theorem 1.3 of Delbaen/Schachermayer (1996b). The stopping time 7 is
predictable and announced by a sequence (7,),>1. If

2
L
(i) 1]
would be greater than C'=2, then we use the element ¢ constructed for the stopping
time 7, and whose existence is given by lemma 2.21. The element L, g would give an

element in IM* with smaller £?(P)-norm. This reasoning shows that Ly > 0 according
to lemma 2.20, and that for every stopping time S, we have

e|(7) 1

This completes the proof of theorem 2.18.

E

< 2.

The existence of an element in IM®¢ N £L?(P) is taken care of by the following theorem
(see Stricker (1990)).

Theorem 2.22. If V is a space of bounded continuous adapted processes, if V is stable
for stopping (as described above), then IM*® N £2?(P) is non-empty if and only if

Vi 0 L2(P) = {0}.

One can improve slightly the above theorem as follows (see Yan (1980)). This result is
formulated in the same language as (5) of theorem 2.18.

Theorem 2.23. If V is a space of bounded continuous adapted processes, if V is stable
for stopping (as described above), then IM* N L?(P) is non-empty if and only if for
every A € Fr, we have 14 ¢ Vr.

Proof. Suppose that there is f € Vp N LA(P) , P[f > 0] > 0. For each such
element, let us denote by A; the set Ay = {f > 0}. If (f,)n>1 is a sequence of
such elements then f = > 27" ||fn||221(P) fn € Vr and Ay = Up>1Ay,. Hence there is
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a maximal set of this form. Call it A; where f is the associated function. Take a
sequence 1, strictly decreasing to 0 such that P[f > n,] > 0. For each n, take ¢, so
that £, < 37, and choose Y € Vr so that ||V — fllz2p) < &5 It then follows that
P[|f = Y| > e,] < &2. Hence YJ* > f —¢e, > n, — &, on a set of measure at least
P[f > n,] — 2. The element (n, —,) 'Y} = g, is still in V; and satisfies {g, > 1}
on the set {f > 1, }\{|Y# — f| > £,} which has measure greater than P[f > n,] — 2.
We stop the process g, when it hits the level 1, i.e. V"™ = (Y™)” where

T =1inf{t | g, > 1}

Clearly

(i) Vi =1on {f >m}\{|Y7 — f| > en} ;

(ii) Since Ay is maximal, (V7)* <14, ;

(111) (Vj{b)i S (77n - 6n)il(YVT@)i'

If n tends to +oo, (i) and (ii) show that (V)" — 1, whereas (iii) shows that
||(V{J)_||£2(Il§ (M0 —n) " NOYE) "Nl z2(py < (112 —€0)~'es: which tends to 0. This shows
that 14, € Vr. This completes the proof of theorem 2.21.

3. The inequality D»(P) and its relation to BMO.
Throughout this section, we do not assume that X is continuous.

The inequality Dy(P) is an assumption which arises naturally when one studies the
closedness of Gp(0). Indeed, to prove that the limit of a sequence (G7(6")),>o which
converges in L£L?(P) belongs to G1(©), we would like to show that the sequence (8™),>0
converges to some 6 in L*(M) and L?(A). Now, convergence in L?(M) is rather easy
to study since a sequence (6"),>¢ converges in L*(M) if and only if ((0™ - M)7)n>0 is
a Cauchy sequence in £(P). Convergence in L*(A) is more difficult to prove. So an
idea to solve this problem is to find an assumption under which convergence in L?(M)
will imply convergence in L?(A), that is L?(M) C L*(A) or, equivalently, © = L*(M).
We first show that the inequality Dy(P) is a sufficient condition for the structure
condition (SC); see Definition 2.1.

Lemma 3.1. If the inequality Dy(P) holds, then \ exists and K is square-integrable.
Proof. The inequality Dy(P) implies that if § - M = 0, then 6 - A = 0 so by the mul-
tidimensional Radon-Nikodym theorem (see Delbaen/Schachermayer (1996a)), there

exists a predictable IR%-valued process A such that dA = d (M) X. For each n, let
0" = A1yn|<ninfo,m[ Where 7, is the predictable stopping time

- inf{t| /Otd| (M), zn}.
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Clearly 0"dA = N'd <M> )‘1{||A||§n}ﬂ[[0,rn[[ and DQ(P) implies that for all n

2 -
( / Nd (M) )\> < CE / Nd (M) )\]
{INI<n}nfo,m {INI<n [0

E

< COF (/ Xd(M)A)
PYEA IO ]

Since both quantities are finite, we find

2
E ( / Nd (M) A)
(N[0

When n tends to 400, we obtain that Kp is square-integrable. This completes the
proof of lemma 3.1.

1/2

< C2.

The next lemma gives an equivalent reformulation of Dy(P).

Lemma 3.2. The inequality D,(P) holds if and only if L?2(M) C L?*(A), i.e. if and
only if © = L?(M).

Proof. Since © = L?(M) is equivalent to saying that L*(M) C L?*(A), the “only
if” part is obvious. Conversely, suppose that L?(M) C L?(A). By means of the
multidimensional Radon-Nikodym theorem (see Delbaen/Schachermayer (1996a))) it
is easy to see that A is absolutely continuous with respect to (M). So we conclude that
the graph of the identity mapping from L?(M) into L*(A) is closed in L*(M) x L*(A).
Hence the identity is continuous, and this proves the “if” part.

The existence of A and the square-integrability of K are necessary conditions for Dy(P),
but far from being sufficient. The necessary and sufficient condition for Dy(P) given
by the next theorem is substantially stronger.

Theorem 3.3. The inequality Do(P) holds if and only if A exists and A- M is in bmo,.

To prove theorem 3.3, we need an auxiliary result. Recall that h} denotes the space of

all locally square-integrable local martingales Y null at 0 such that (Y)IT/ % s integrable.

Lemma 3.4. If Z € M? and R € M2, then [ Z_dR is in hj and

H/ZdRth < 2 Znl 22| R || e

In particular, choosing R := /HdM with 6 € L*(M) gives

H/Z_HdMth < 201 Zr | 22110l 22 o) -
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Proof. Since

(Jzam), = [z am. < oy 1) 4o

H/ZdR = H</ ZdR>j

by the Cauchy-Schwarz and Doob inequalities.

we get

< 20 Zzll 2 | Rllae
ﬁl

Proof of theorem 3.3. 1) Suppose first that A - M is in bmoy. Take any bounded
positive random variable Y and denote by Z an RCLL version of the martingale Z; =
E[Y | ). Fix 6§ € L*(M) and set ¢ :== Z_0 so that [(dM is in h} by lemma 3.4. By
Fefferman’s inequality and the end of lemma 3.4, we then obtain

ElY/OTw’d(M)Mu] = El/OTZuldH’WMIu]

E [/OTdK(Z&)-M,A-MHu]

V21|(Z-6) - My 1N - Moo,

<
< VBNVl - Ml 1911200

Since Y was arbitrary, we conclude that

T
|I9|IL2<A>=H [ 100 M| < VBIA Ml 1]22000

£2

and this proves the “if” part.

2) Now suppose that the inequality Dy(P) holds. Then, in view of lemma 3.2, L*(M) =
©. Moreover, K7 = (\- M), is in £' by lemma 3.1. Fix ¢ € [0, 7] and a bounded ;-
measurable random variable V' and define 1) := AV'1y, 7y so that ¢ € O, since K7 € L.
If Y is any bounded random variable, then Y can be written as

Y =E[Y | Fo|+ (- M)y + Ly

by the Galtchouk-Kunita-Watanabe projection theorem, where £ is in L?(M) and L €
M3 is strongly orthogonal to 6 - M for every 6 € L?(M). By the definition of A and 1,
this implies

[E[Y (¢ - M)r]]

‘E [V /tT £ d (M), )\u]

<
< VIlle2Cligl 2
< |Vl ClY e,
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where the second inequality follows from D,(P). Since Y was arbitrary, we deduce
that

CHVIE: 2 - M)rlle = £ | [ Va0, 0] = B[V e - K| 7).

Since V' was arbitrary chosen in £?(F;, P), we conclude that
ElKy— K, | F]<C? P-—as.,
and so A - M is in bmos. This completes the proof of theorem 3.3.

We now turn to the second part of this section where we return to our question of
closedness of G7(©) in £?(P). Given § € O, there are two ways to look at the stochastic
integral 6 - X : either we consider the entire process G(6) = (0 - X )o<;<r or we only
look at the final result, i.e. the random variable Gr(0) = (6 - X)r.
If we adopt the first point of view, we consider two other norms on © : for € O, we
define

101 = 11011 2 (ary + 11011 2

and as in definition 2.6 above
||9||G(@) =6 - X||R2(P)

Both concepts define norms on the vector space © with the property that these norms
equal 0 for § € © if and only if the process (# - X )o<;<r vanishes almost surely.
On the other hand, we consider on the vector space Gr(©) the norm || . ||£2(P)

Consider the diagram

©,1- 1) —— ©,1 - llae) s (Gr(0),. lz2(r))

where 7 denotes the identical map and j the canonical map which associates to 6 € ©
the random variable G'r(6).

The continuity of ¢ follows from Doob’s inequality and the continuity of j is obvious.
Also note that the definition of © was designed in such a way that © is complete with

respect to | . ||, i.e., (©,]| . ||) is a Banach space. As the maps i and j are surjective,
we deduce from the open mapping theorem that the problem whether © is complete
with respect to || . ||y and whether G'r(©) is complete with respect to || . || z2(py is

therefore equivalent to the question whether i, resp. j o4, are open maps.

To take full advantage of this information, we want to know whether j is one-to-one,
i.e. whether, for § € ©, Gr(f) = 0 implies that the entire process G/(#) vanishes almost
surely. Fortunately, this is the case under a very mild condition.

Lemma 3.5. Assume that X is a (not necessarily continuous) semimartingale in S7_
which is a local martingale under some equivalent measure () with square-integrable

d
density % Then the map j is one-to-one.
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Proof. Let us take 6 € © such that Gy (f) = 0. If Z is defined by

dQ

Zy=F|—
! LP

|J—“t] 0<t<T

then Z is a strictly positive square-integrable P-martingale and G(0)Z is a P-local
martingale. Moreover, G()* as well as Z* are in L?(P), by Doob’s inequality. Hence
the maximal function (G(0)Z)* is P-integrable so that G(6)Z is a H'(P)-martingale.
By hypothesis, Gp(f) = 0 so that the P-martingale G(0)Z vanishes identically. As
Z is strictly positive almost surely, we conclude that the process G(6) also vanishes
almost surely. This completes the proof of lemma 3.5.

Proposition 3.6. Assume that X is a (not necessarily continuous) semimartingale in
82

loc*
(i) The normed space (O, || . [|5e)) is complete if and only if the map i is an isomor-

phism, i.e. if and only if there is a constant C' > 0 such that
voeo, |0] <Clflge)-

(ii) Assume in addition that there is an equivalent local martingale measure @ for X
with square-integrable density. Then the normed space (G7(©),]| . [|z2(p)) is complete,
that is, Gr(©) is closed in L2(P), if and only if the map j o ¢ is an isomorphism, i.e.,
if and only if there is a constant C' > 0 such that

voeo, o] <cC ||GT(9)||£2(P)‘

Proof. Immediate from lemma 3.5 and Banach’s isomorphism theorem.

Now the question arises whether the property described in part (ii) of proposition 3.6
is related to the inequality Dy(P) studied in the first part of this section. To answer
this question, it is important to distinguish the continuous case from the general case.
In the former, we get an interesting connection between the closedness of G7(0©) in
L?(P) and the inequality Dy(P) (see theorem 3.7 below). In the general case, however,
there is no hope for a positive result as shown by example 3.9 below.

Theorem 3.7. Suppose that X is a semimartingale in S7,, such that A, the predictable
part of X, is continuous. If joi : © — G7(O) is one-to-one and if Gr(O) is closed
in £?(P) then the inequality Dy(P) is satisfied.

In particular, Dy(P) holds true if Gr(©) is closed, A is continuous and there is an
equivalent local martingale measure with square-integrable density.

For the proof we need the following easy result.
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Lemma 3.8. Suppose that A is continuous. Let 8 € © and n > 0. Then there exists
a predictable process ¢ with values in {—1, 41} such that

t
vt € [0, 7], ‘/ e 0 dA,| <.
0

Proof of lemma 3.8. We can assume that # - A is increasing. If it is not the case,
we multiply #'dA by its sign. Then, we define a sequence (7},),>¢ of stopping times by
setting

T
To=0 and T, =inf {t >T, | /0 1y7, 4 (s)0,dAs > 77} )

Since A is a finite variation process, the sequence (7},),> is finite. Finally, we set ¢ =1
on [Ty, Tony1] and € = —1 elsewhere. This completes the proof of lemma 3.8.

Proof of theorem 3.7. Now let 0§ € © and take £ as in lemma 3.8. From Doob’s
inequality
|G (e0)][c2 < (10l 2(pr) + -

Therefore, from proposition 3.6, we deduce

10 2oy + 1102y = €00 L2(ary + 11E01 12
ClGr(e0)| c2

CUON 201y + 1)

When 7 tends to 0, we obtain the inequality Dy (P).

IA A

Let us comment on the hypothesis that A is continuous. Of course, this is satisfied if X
is continuous. But if X has only jumps at totally inacessible stopping times, we still can
see that A remains continuous. On the other hand when X jumps also at predictable
stopping times the assumption that A is continuous is not satisfactory. Indeed suppose
that X jumps at a predictable time 7 and suppose that A is continuous. Since 7 is
predictable , this implies E[AX, | F,_] = 0. But an economic interpretation of A is
related to the so-called “price of risk” process. Assuming that A is continuous at 7
would then be interpreted as “the risk at time 7 is not rewarded”. In economic term
such an assumption would mean that the risk at time 7 can be “diversified”, a concept
used in many texts but without a precise definition.

We now pass to the general case : the subsequent example shows that for processes
with jumps, theorem 3.7 does not hold true anymore.

Example 3.9. There is a bounded stochastic process X = (Xp, X, X) admitting a
bounded equivalent martingale measure such that

(i) the inequality Do(P) fails ;

(ii) Go(O) is closed in L2(P).
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First consider the following building block for the construction of the example. Let
0 < e <1 and define the stochastic process Y = (Y, YY) by Y = 0 and

ve _ -1 with probability 3
' 7 1 1+4¢ with probability Z—JQFE

so that E[Y7] = 1.
If (Fo, F1) denotes the filtration generated by Y, then the predictable part of Y= is
given by A; =0, A] = E[Yf] = 1, and the martingale part by M = 0 and

M = ) W%th probab%l?ty é
£ with probability 5=

An elementary calculation gives
[Aillg2py =1, 1Ml 2y = V2e, Vil g2 (py = V1 + 2.

As £ > 0 tends to 0, the ratio [|A;||zop) / [[Mil[z2(p) tends to infinity while the ratio
(IA1ll g2y + 1Mill g2(py) / [IY1llz2(py tends to one and therefore remains bounded.
How is this related to the inequality Dy(P) and the closedness of G (©) in L%(P) ? Of
course, both properties are satisfied for Y as the space © is simply one-dimensional
(the only stochastic integrals of Y© are the scalar multiples of Y¢). But the constant
C' in the definition of Dy(P) deteriorates as ¢ tends to 0, as for each # € ©, 6 # 0,

ey _ 14y _ 1
[P P

On the other hand, the constant in proposition 3.6 (ii) above does not deteriorate as €
tends to 0, as

161l _ 1AT | c2gpy + IME [ 2 py 1+ (26)Y/2

= > 1.
||G1(0)||/~'2(P) HYIE”,L‘z(P) (1 + 28)1/2 =0

Finally, to transform this quantitative phenomenon into a qualitative one, it suffices
to glue a sequence of the above building blocks together. This is most easily done in
the following way : let Xo = Xy =0, Fy = {0, Q} (to maintain our usual setting) and
let F; be generated by a partition (B,),>1 of Q such that P[B,] > 0, for each n. Fix
a sequence &, > 0 tending to 0 and define

. — -1 on a subset of By, of probability ;=2-P[B,]
7 11+4e, onasubsetof B, of probability 2+2€n [B,]

It is straightforward to check that X satisfies the required properties.

We now construct a series of three counter-examples which are arranged in ascending
order of complexity.
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The first example is similar to example 7.5.3 of Durrett (1984); we also refer to a more
sophisticated example in Kazamaki (1994, example 3.4).

The third example uses an idea from Schachermayer (1993) and Delbaen/Schacher-
mayer (1995d). We shall try to harmonize the present notation with that of Delbaen/
Schachermayer (1996d).

For a continuous semimartingale X with canonical decomposition

X=Xo+M+A=Xo+ M+ (M)-\

we shall call the local martingale L = £(—\ - M) the density process associated to X.
In order not to obscure the subsequent calculations with irrelevant constants we adopt
the following notation : we write a, = b, if there is a constant 0 < ¢ < oo such that
a, = cb,, for all n € IN.

Example 3.10. For 1 < py < 400, we construct a continuous real semimartingale
X = (X{)teo,00] With canonical decomposition X = M + A = M + (M) - A such that
the associated density process L = £(—\ - M) has the following properties :

(i) L satisfies the predictable representation property (PRP).

(ii) For 1 < p < po the martingale L satisfies R,(P). In particular L is bounded in
LP(P) and the martingale A - M is in BMO.

(iii) The martingale L is unbounded in LP°(P) as ||Los||opy = o0. In particular,
inequality R,,(P) is not satisfied for L.

Pr09f. B Let W denoteN a one-dimensional standard Brownian motion based on
(Q,F, (F)iemr,, P) and X the semimartingale

Y:Wt—t

In this case A = —1 and the associated density process L = S(VT/) simply equals
standard geometric Brownian motion.

The next step will also be used for the examples below : fix two parameters a > 0,
a#1,and 0 <y <min (1,a™") and define inductively a sequence (7,),>o of stopping
times by letting 7o = 0 and

L
Tn:inf{t>7'n_1| _ :aorb}
L

Tn—1

1—ay

where we define b := . Note that 0 < b < 400 and b # 1. The martingale

property implies that

1 = F[L,,] = aP[L, = a] + bP[L, = ).

The real number b was (:Nhosen such that we obtain

(3.1) P[L; =a]=vand P[L, =b=1—1.
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Define the random number N = N(w) as

L
N:inf{n| L :b}
LTnfl

and let 7 denote the stopping time 7 = 7. We now stop the processes X and L at
time 7 and indicate this by dropping the tildes, i.e., L = L™, X = X7, and we denote
by F and (Fi)scjo,00) the o-algebra and the (saturated and rlght contlnuous) filtration
generated by X (or equivalently by L).

By iterating the argument in (3.1) above one easily obtains that, for n > 1,

(3:2) P(r=m)=(1-77""=7"
and
(3.3) LoL, =ba""~a" on{r=rm,}.

Finally note that there are constants ¢ > 0 and C' > 0, depending only on a and v,
such that, for every n € IN and random times S, T taking values in the stochastic
interval [1,,_1, 7,] we have that

L
(3.4) c < L_S <C P-as.

T
Now we fix the parameters @ and v by letting @ > 1, e.g. @ = 2, and 0 < v < a~! such

that aP°y = 1, which is obviously possible as py > 1. Let us check that L meets our
requirements :

(i) is rather obvious,

(iii) : it suffices to simply calculate the £P°(P)-norm of L, = L,

00 Po 00
(Z LT]-{TTn}> ] ~ Z(a”)poyn = 4-00.
n=1

n=1

1 Loc [0 (py = B

(ii) : as regards R,(P) for 1 < p < py first note that the same computation as above
reveals that

||L00||IZP(P) ~ Z(an)p’)’n < 0.

n=1
Next note that our construction is homogeneous with respect to the multiplicative

structure of IR, in the following sense : if A € F,, is a set of positive measure contained
in {r > 7,,} and if P4 denotes the renormalized restriction of P to A, then the process

Lty s, _ (Lt+m )
LTn tZU a/n tZU

under P, is identical in law to the original process (L;);>o under P. In particular, for
every n > 1,

(3.5)
which shows inequality R,(P) to hold true for all stopping times S of the form S = 7,.

E[Lp ]1{T>Tn}7
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To verify R,(P) for an arbitrary stopping time S, it is easy to see that we may assume
that there is n > 1 such that S takes its values (except for infinity) in |7,—1, 7]
Indeed, the sets {S €]r,_1,7,]} are in Fs.

So assume that [S] C]7, 1, 7,] U [oo] and use (3.4) and (3.5) above to estimate

L? rLP
E #.o|f5‘| < c | E oo|f5]
H [Lg o) ‘Lgn oo
o
_ ~E E{L;? |fm] |fs}
, [LP.
< ¢ YFE ¥z |.7:Tn}
< ¢ 'E[LY).

This shows that L satisfies R,(P), thus finishing the proof of the assertions for example
3.10.

The next step is to construct an example with similar features as the first one, but
such that the £P°(P)-norm of L is finite and only the inequality R, (P) fails for L.

Example 3.11. For 1 < py < oo we construct a continuous real semimartingale
X = (X{)teo,00] With canonical decomposition X = M + A = M + (M) - A such that
the associated density process L = £(—\ - M) has the following properties :

(i) L satisfies the predictable representation property (PRP).

(ii) For 1 < p < po the martingale L satisfies R,(P). In particular L is bounded in
£7(P) and \- M is in BMO.

(iii) The martingale L is bounded in £P°(P), but L does not satisfy R, (P).

Proof. If W again denotes a standard Brownian motion, define now

= W, for te[0,1]
X, ={ —
Wy—(t—1) for te][l, o0l

Choose a partition (Ag)g>1 of Q2 into sets of F; satisfying P(Ag) = 27",
Note that the density process L associated to X now equals

z . 1 . s for t e [0,1]
T EW, = Wy) for t el o0l

Define the stopping times 7,, and the random number N for the process L exactly as
above ; only for the definition of 7 we apply a small modification. Define 7 to equal
Tnak on each Ag. N

With this modification done define again X and L by stopping X and L at time 7 and
consider these processes with respect to the filtrations they generate.
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The verification of the associated properties of this example now is a straightforward
modification of the above arguments and left to the reader.

The next example, which again is a variation of the same theme, is more tricky. This
time, it is crucial to drop the property that M (or equivalently L) satisfies the predicta-
ble representation property. In this case the density process L = £(—\- M) associated
to X = M + (M) - X is not the only candidate for (the density process of) an equivalent
martingale measure for the semimartingale X ; if Z is any positive local martingale,
Zy = 1, strongly orthogonal to L such that ZL, the pointwise product process, is not
only a local martingale but a true uniformly integrable martingale, then Z. L, is the
density of a measure ) under which X is a local martingale (see Ansel/Stricker (1992)).
It was shown in Schachermayer (1993) and Delbaen/Schachermayer (1996d) that, for
a properly chosen Z, the process ZL may have better properties than the process L.
This also turns out to be the case in the present context in a rather striking way.

Example 3.12. For 1 < py < oo we construct a continuous real semimartingale
X = (Xt)teo,00) With canonical decomposition X = M + A = M + (M) - X and a
continuous real uniformly bounded martingale Z, strongly orthogonal to M, such that,
for L = £(—\-M) denoting the density process associated to X, the following properties
are satisfied :

(i) The process ZL is a martingale satisfying the predictable representation property
(PRP), while this property fails for the martingales M, L and Z.

(ii) For 1 < p < po the martingale L satisfies R,(P). In particular L is bounded in
LP(P) and A - M is in BMO.

(iii) The martingale L is unbounded in LP°(P) as ||Le|/cro(py = 00. In particular,
inequality R,,(P) fails for L.

(iv) There are constants 0 < ¢ < C' < oo such that ¢ < ZL < C' ; whence the product
martingale ZL satisfies Roo(P).

Proof. Choose (2, G, (Gi)icmr, , P) such that there are two independent standard Brow-
nian motions W' and W" defined on this stochastic base. Let L' = £(W') and

L"=&gWw").

Fix the parameters @’ > 1, 0 < 7/ < (¢/)7!, " = (¢/)7" and 0 < 7" < 1. We choose
these parameters such that we have (a')P°y'y” = 1, which obviously is possible as
po > 1.

Now define stopping times (7;,),>0 and (7, ),>0 by letting 7g = 77’ = 0 and

L/
n+1—1nf{t>7' |L’ —a'orb'}

and
1

L
no_ - n t "
Tn+1_1nf{t>7n = orb” s,
.
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I 1— g"~"
7 andpt =27

1 _ 71 1 _ ’Y”

The idea of the example is to patch the processes L' and L” together by intertwining

the stochastic intervals |7)_,, 7] and |7/_;, 7/]. Define inductively the random times

n—1>"n n—17"'n

(Tn)n>0 and (op)n>0, which are stopping times for the filtration (G;)icmr,, by letting
o9 = 1 = 0 and, for, n > 1,

where V' =

! n
Tp =0p_1+7, and o, =7,+7,.

Note that 0 = 79 = 09 < 71 < 01 < 7o < .... Next define the processes Y, L and Z
by specifying their values on the stochastic intervals o, 1, 7,] and |7,, 0,] inductively
forn=1,2,...:

If t = t(w) > 0 is such that o, 1 +t < 7, let

Xoy 14t — Xopy = (WTI,’L_l-I-t o W;J—l) —

o / ’
L0'n71+t - Lo'n71 - LT;L_1+t - LT;L_17

Z(rn_1+t - Z - 0

On—1

If t =t(w) > 0 is such that 7, + ¢t < oy, let

XTn+t_XTn - 07

zTn‘i“t - z'f—n - 07

Z7n+t - ZTn = L:n71+t - L:nfl'

Loosely speaking, the processes X and L are constant on the intervals of the form
[0, 0n] and move only on the intervals of the form [o,,_1, 7,], where they behave like

W/ —t and L! resp. on the corresponding intervals [7’_,,7"]. Similarly, Z is constant

n—1>"n
on the intervals of the form [o,_1,7,] and moves on the intervals of the form [, 0]

as L" does on [7)/_,, 7/"]. Define the random numbers N(w) and M (w) as

L, L
N:inf{n|L,T" :b'}:inf{n|im :b'}
T/ Tn—1

//” Z
M = inf{n | L:”’i = b//} - inf{n | Zgn: — b”}

and define 7 = 7y, 0 = oy ; finally, stop the processes Y, L and Z at time o A T
and indicate this by dropping the tildes, i.e. X = X", L = L7 Z = Z°". Define
F and (Fi)icp,00) to be the o-algebra and the (right-continuous, saturated) filtration
generated by L and Z. Note that neither L nor Z alone generate F and (F;):c[o,00]
while the product ZL does generate them.

and
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It is rather obvious that L and Z are martingales with respect to the filtration (F;):c(0,00]
and that L is the density process associated to X. Assertion (i) follows from the remark
in the preceding paragraph.

Similarly as in the previous examples note that there are constants ¢ < C' < o0
depending only on the parameters a', a”, v and ~” such that, for each n > 1 and
random times S, T taking their values in [o,,_1, 0,] we have

cgﬁgc, cgégc, ¢ < (ZL)s <C.
Ly Zr (ZL)r

Making the crucial observation that because of a’a” = 1 we have that (ZL),, = 1 on
{0, < T Ao} we conclude that, for arbitrary stopping times S, T" we have

(ZL)s
‘= Zh)yr

<C,

which readily proves (iv).
To prove (iii) note that

PlrANo =]~ PlrAo=o,]~ (vy")"
and that the values of Ly, on {7t Ao = 7,} as well as on {7 Ao = 0,} are -up to

constant factors- equal to (a’)". Hence we may calculate

po

Z LT/\O'(]'{T/\O':Tn} + 1{7/\0:(%})

n=1

Lecloir) = ~ 3 (@) () = o,
n=1

£Po(P)
which shows (iii). The analogous calculation for 1 < p < py reveals that
||Loo||£p(p) < 0

and similar arguments as the ones used for the first example show that L in fact satisfies
R,(P), thus showing (ii).
This finishes the construction of example 3.12.

We have seen that for the closedness of Gr(©) in L£2(P), the inequality Dy(P) is in
general neither necessary nor sufficient. If we study the closedness of G(©) in R?(P),
we have a necessary and sufficient condition when A is continuous.

Theorem 3.13. Let X be an IR%valued semimartingale such that there is an equi-
valent local martingale measure @ with %2 € £2(P) and such that the predictable
part A of X is continuous. Then the space G(0) is closed in R?(P) if and only if the

inequality Ds(P) holds.

We need an auxiliary result to prove theorem 3.13. The following lemma is a slight
variant of Proposition 2 of Yor (1985), adapted for our present purposes. The main
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difference is that we do not assume that the local martingale M is continuous. Recall
that the canonical decomposition of X is X = M + (M) - \.

Lemma 3.14. Suppose that N := A - M is in bmo,. If A is continuous, then there is
a constant C' such that

E[0- X + Z)7] < C|G(0) + Zllga(p)
for all € © and Z € M2 strongly orthogonal to M.

Proof. Define the processes L:=0-M+ Z and
L:=L+(LNY=L+60-A=0-X+2Z=G0)+Z

By It6’s formula,
t
[2=2 / Ly_dL, + (L],
0

and therefore
E[(L)r] = E[L]r]
< 2 (E [(L*) [ sup

anf| B[, ]).
t€[0,T]

Since A is continuous, we have [L] = [L] and so the Burkholder-Davis-Gundy inequality
yields

E[sup < CE (/ L2.d E]s>1 <CE [L;[L]ﬂ.

tel0,T

Moreover, L is in 82 and L is in M2, and so [ L_ dL is in h} by the same argument as
in lemma 3.4. Hence Fefferman’s inequality implies

e(fs )

T:| S \/§||N||bm02

( [ d<i>s>%

< OB |Li(Dy),

since <Z> = (L) by the continuity of A. Putting these estimates together, we obtain

1
2

E[(Dr+[Lls] < C (E (L] +E [Lé‘p ([Llé + <L>T>D
< o (B[] + (2 @] 2+ o))
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and therefore, from classical results on 2"¢ degree inequalities
E[(Lyr] = E[[Lls] < CE[(L})*] .
This completes the proof of lemma 3.14.

Proof of theorem 3.13. “if” part. Suppose that D,(P) is satisfied. Let (G(6"))n>0
a sequence of G(©) which converges in R?(P). Then it is a Cauchy sequence on the
space R?(P), so that

1G(0") = G(O0") [l r2(py < e,

provided that m and n are large enough.
Since Dy (P) is satisfied, it follows from lemma 3.1 that we can define the process N
by N; := (A M), and for each 6 in ©, we have

(0-X,N),=(0-A),.
Hence, by lemma 3.14, we deduce that
B((0" - 6™) - X),] <<,
for m and n large enough. Since
E((0" —0™) - X>T] = [|6" — HmHL?(M) )

the sequence (6"),>¢ is a Cauchy sequence in (L*(M), ]| . l22(a)), SO that it converges
in L?(M) to a process §. Thanks to D,(P), the convergence of ("), to 6 in L*(M)
implies the same convergence in L?(A). Finally,

1G(6") = G(O)lr2(py = | sup [((6" —6) - X),]

tG[O,T] £2(P)
< | sup [((6" = 0)- M) [)f  +]| sup |((0" —0) - A)
t€[0,7] £2(P) t€[0,T] L2(P)

< 20" = Ol p2ary + 16" = Oll 124

from Doob’s inequality. Therefore, the sequence (G(6™)),>¢ converges to G(f) in
R?(P), which completes the proof of the “if” part.

“only if” part. Let us now suppose that G(©) is closed in R?*(P). Consider the map-
ping

koo (O Nlzan 11 lr2ay) — (GO),]] -
 —
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Then £ is one-to-one and continuous by Doob’s inequality. Due to the closedness of
G(©) in R?(P), the inverse mapping is also continuous, so that the norms [| . [|;2(p) +
|- Iz2(ay and || . ||ge(py are equivalent : there are Cy > 0 and Cy > 0 such that

V0 € ©, Cilll0ll >y + 101l 2a)) < IGO)I=2py < ColllOll g2 gy + 10l 2(4))-
Let # € © and n > 0, and choose a process ¢ as in lemma 3.8. Then Doob’s inequality

yields

sup [((¢0) - X).|

t€[0,T]

1G(€0)]l %2 (py

L2(P)
< || sup [((¢0) - M)i|+ sup [((ef) - A)
te[0,7T te[0,T] £2(P)
< 2[[ebl 2y + 10 L2
< 20100 2ary + -
Hence
102 ary + 101 22ay = NEONL20ary + €0 124
1
< a||G(69)HR2(P)
1
<

& (2080200 + )

When 7 tends to 0, we obtain the inequality Dy(P), and this completes the proof of
the “only if” part.

4. Necessary and sufficient conditions for the closedness of Gr(O).

In this section we will suppose that X is a continuous semimartingale for which an
equivalent local martingale measure with square integrable density exists. The symbol
V stands for the space of stochastic integrals #- X such that  is a simple integrand and
6 - X remains bounded. As shown in section 3, a necessary condition for the closedness
of Gr(O) is that the mapping joi : © — Gr(0©) is one-to-one and that Dy(P) holds.
The following theorem solves the problem of the closedness of G (©) for continuous
semimartingales completely.

Theorem 4.1. Let X denote a continuous semimartingale, then are equivalent :

(1) There is an equivalent local martingale measure with square integrable density and
Gr(0) is closed in L2(P).

(2) There is a square integrable local martingale measure () that satisfies the inequality
Ry(P).
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(3) The variance optimal measure Q°" is in IM*® N L?(P) and satisfies Ry(P).
(4) 3C such that for all Y € V we have [|Y;||z2py < C [|Y7| 22y
(4’) 3C such that for all # € © we have

16 - X7 2oy = 18l < CHNE - Xall gy

(5) 3C such that for all Y € V and all A > 0 we have AP[Y7 > A2 < C||Yr| o).
(57) 3C such that for all # € © and all A > 0 we have

AP[(0- X)7 > N2 < CN(0 Xl eagry -
(6) 3C' > 0 such that for every stopping time S and every A € Fg we have
114 = Ull g2y = CPIA]'? for every U € sV.

(6’) 3C' > 0 such that for every stopping time S, every A € Fg and every § € © with
0 = 01y5,7) we have [[14 — (0 - X)7|z2(p) > C P[A]'/2.

Proof. The theorem is almost a reformulation of the results of section 2. A local mar-
tingale measure for X is the same as a martingale measure for ). Since the appropriate
spaces of simple stochastic integrals are dense in the spaces of stochastic integrals, we
simply deduce from theorem 2.18 that the properties (2), (3), (4), (4"),(5), (5"), (6),
(67) are all equivalent. Let us now show that (1) implies all the other properties. If
there is an equivalent martingale measure with square-integrable density, then propo-
sition 3.6 applies and the R?(P)-norm and the £2(P)-norm are equivalent (both to the
L?(M)-norm in fact). As a result one obtains (4’) and hence all the other equivalent
conditions. Conversely if (2) up to (6’) hold, we have to deduce that the space G (©)
is closed. By assumption there is a local martingale measure with square-integrable
density that satisfies the inequality Ro(P). So let () be this martingale measure and
put £ [% | ft] = L;. Then L, is necessarily of the form L = E(—\ - M + U) where
U is a local martingale strongly orthogonal to M, i.e. (M,U) = 0 (see for instance
Ansel /Stricker (1992)). The lemma below shows that —A- M + U is in bmoy. Since M
and U are strongly orthogonal, we have (=A- M +U) = (A - M) + (U) and hence the
local martingale —\ - M is also in bmos, which by the way is the same as BMO since
M is continuous. Therefore X satisfies Dy(P) and the norm on © is equivalent to the
L*(M)-norm. From lemma 3.14 we deduce that the L?(M)-norm on © is dominated by
the R?(P)-norm on G(O). This norm is by hypothesis equivalent to the £2(P)-norm
on Gr(©). We finally find that the norm on © is equivalent to the £2(P)-norm on
Gr(0) and hence by proposition 3.6, the space Gp(0) is closed.

This completes the proof of theorem 4.1 (modulo the subsequent lemma).

Lemma 4.2. If L is a uniformly integrable martingale with Ly > 0 and Ly = 1 that
satisfies the inequality Ry(P), then necessarily L is of the form £(N) where N is in
bmos.
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1
Proof. The process L remains strictly positive and hence the process ( )
u=/ o<t<T

is locally bounded. The square-integrability of the process L implies that the local
martingale N defined by dN, = L—dLu is locally square-integrable so that it makes

sense to talk about (N). The proc:ess L is therefore of the form L = £(N) with N
locally square-integrable.
For s > 0 fixed we define the sequence of stopping times (1},),>0 by

L 1
TOZS, Tn:mf{t>Tn1|L ¢ <—}/\T

Let C be the Ry(P) constant of L, i.e. for all ¢ we have

5|(7) 1=

We first show that there is v < 1, only depending on C, such that for all n,

< 2

PIT, < oo | Fr,_,] <~.

This follows easily from the fact that on {7, ; < T}

L L
=F [LTn 1 | an—I] =FE [L & 17, <y | an—l] +F [L & li7,—1} | j:Tn_ll

n—1 n—1

1
The first term is smaller then §P[Tn < T | Fr, ,] whereas the second can be estimated

from above using the Cauchy-Schwarz inequality. We obtain
1 1/2
1< 5P <T| Fr, ]+ C (1= P[T, <T| Fr,_,])

This implies the existence of v < 1 such that P[T,, < T | Fr, ,] < 7 and where ~y
clearly depends only on C'.
E(N
Fort > 1T, _1 set U, = # and note that dU = U_dN. Since fort < T, 2U;_ > 1
Tn—l

we have
E[(N)g, = N}y, | Frio)] = E[[Nlr, = [Nlr,_.| Fr,..]
< p|[" wran. |z,
< 4E[U}, | Fr].

It follows that
E [<N>Tn - <N>Tn_1 | an—l] < 402-
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Now we finally can estimate E [(N), — (N), | Fs] by the series

S E[NYy, =Ny | F] < S EE[N) —(N)y | Fr ] |

k>0 k>0
< Y E[E[(Nyy, = (N)py | P ] L emy] 7]
k>0
S 402 Z E |:1{Tk,1<T} | fs] .
k>0
Since

Elery | | = E |l <ny E [Lpeery [Fn | | F
< E[I{Tk,1<T}7 | fs],

we find that E[I{Tk71<T} | Fs] < ~*~1 and hence

2
El(N)p— (N, | £ <40* ¥ o+ < 2
k>0 1=y

This completes the proof of lemma 4.2.

5. On the closure of Gr(©) in L*(P).
Throughout this section, we do not assume that X is continuous.

When X admits an equivalent local martingale measure ¢) and when M has the pre-
dictable representation property under P, we shall determine the closure of Gr(©) in
L2(Q, F, P) . If the density of the equivalent martingale measure is square-integrable,
the closure of G7(0) is the space of square-integrable random variables H such that
Eg[H | Fo] = 0. On the contrary, when the density of the equivalent local martinga-
le measure is not square-integrable and if we assume moreover that X is continuous,
we can prove that the closure of Gr(©) is the whole space £%(Q, F,P), under the
assumption that JFy is trivial. These results are related to the results obtained by
Delbaen/Schachermayer (1996¢). We start with an auxiliary proposition.

Proposition 5.1. Suppose that M satisfies the predictable representation property
under P and that there exists an equivalent martingale measure () for X. Then
(1) For every bounded Fr-measurable random variable Uy, there exists a sequence
(6™)n>0 € O such that §" - X is a bounded ()-martingale and

(Eq[Ur | Fol + (0" - X)1)

n>0

converges to Ur in £?(P) and L£*(Q).
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(2) £L2(Q, Fy, P) + G1(©) = LX(Q, F, P).

Proof. (1) Let Uy be a random variable in £>°(Fr). Since M has the PRP(P), X
satisfies the PRP(Q) so that there exists a predictable, X-integrable process 6 such
that
UT == EQ[UT | fo] + (9 . X)T

If Uy := Eg[Ur | Fol+ (0 - X); = EglUr | F, then U is uniformly bounded and
therefore, #- X is in §?,.(P). So we can define an increasing sequence of stopping times
(T )n>0 which tends to T" and such that 6" := 01jo 1,7 is in ©. From the definition of
T,, the sequence (UL), o, := (Ur,)n>o0 converges to Ur in L*(P) and L£2(Q) because
this sequence is bounded.

(2) Let H be a random variable in £?(Q, F, P) which is orthogonal to £?(Q, Fy, P) +
Gr(0). If Ur is a bounded random variable, part (1) allows us to build a sequence
(U)n>o0 which converges to Uy in £?(P) and such that U = Uf + (0" - X)r with
6" € © and U} € L*(Q, Fo, P). So

These equalities imply that H =0 P—a.s., that is

L£2(Q, Fy, P) + Gr(0) = L*(Q, F, P).

By means of proposition 5.1, we can easily prove the next result.

Theorem 5.2. If M satisfies the predictable representation property under P and if
X admits an equivalent local martingale measure () with a square-integrable density,

then Gr(©) = {H € L2, F, P) | EolH | ) = 0}.

Proof. Let H be a random variable in £*(Q, F, P), such that Eg[H | F] = 0. We
already know that £2(Q, Fo, P) + Gr(0) = L*(Q, F, P), so

H= lim (Hy+ (0" X)),
where H} € L2(Q2, Fy, P) and 6" € ©. Since the density of @ is square-integrable, we
can take the conditional expectation with respect to Fy under @) in the last equality

and we obtain
lim Hy =0,

n—-+00

which implies that H is in G (©).

In the case where the density of the equivalent local martingale measure is no longer
square-integrable , we can also characterize entirely the closure of Gr(©) in £%(Q, F, P),
under the assumption that F; is trivial.
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Theorem 5.3. Let X be a cadlag semimartingale which admits an equivalent local
martingale measure (). Assume that M satisfies the predictable representation property
under P and that the density of () is not square-integrable. Then, if Fy is trivial,

Gr(0) = L*(Q, F, P).
Proof. Denote by H the hyperplane in £°(P)
H={Uec L% F,P)| EgU] =0}.

As the density of ) is not square-integrable we have that H is dense in £>(P) with
respect to the norm-topology induced by |[| . || z2(p) on L>(P).

Proposition 5.1 implies that G7(©) is || . [|z>(p) -dense in H, we just have seen that #
is || . [|z2(p)-dense in £>(P) and, of course, L2(P) is || . [|;2(p)-dense in L2(P).

Hence G (©) is dense in (£2(P), | - ||£2(P)).

Remark 5.4. It is easy to construct an example such that theorem 5.3 fails if we drop
the assumption that F is trivial.

6. The Follmer-Schweizer decomposition and property R,(P) for the mini-
mal martingale measure.

Throughout this section we assume X is a continuous semimartingale with canonical
decomposition
X=Xo+M+A.

We extend some results of Schweizer (1994) and Monat/Stricker (1995) and prove that
X admits a Follmer-Schweizer decomposition if and only if the minimal martingale
measure exists and satisfies Ry(P).

Definitions 6.1. (i) Given a semimartingale X as above, we say that a random
variable H € £%(Q, F, P) admits a Follmer-Schweizer decomposition, denoted by F-S
decomposition in what follows, if it can be written

(61) H = H() + (6 . X)T + LT P-a.s.

where Hj is an Fy-measurable random variable, £ € © and L = (L) ., is a martin-
gale in M3, strongly orthogonal to M. o

(ii) The semimartingale X admits a Féllmer-Schweizer decomposition if there are
unique continuous projections 7y, 7 and my : L%(P) — L%(P) such that every H €
L?(P) admits a Follmer-Schweizer decomposition

H:WU(H)+7T1(H)+7T2(H) :H0+(9X)T+LT
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where Hy € L?(Q, Fy, P), 0 € © and (L;)o<i<7 is a martingale in M3, strongly ortho-
gonal to M.

For the next definition we refer to Follmer/Schweizer(1991).

Definition 6.2. Suppose X is a continuous semimartingale satisfying the structure
condition (SC). If (£ (=A- M),)o<t<r is a martingale, then the measure Q™" with

density P E (=X M), is called the minimal martingale measure.

Theorem 6.3. Suppose X is a continuous semimartingale satisfying the structure
condition (SC). Then X admits a Follmer-Schweizer decomposition if and only if Q™"
exists and satisfies Ry(P).

Proof. We first prove the ”"only if” part.

Suppose that X admits a Follmer-Schweizer decomposition and denote by mg, mq, o
the corresponding projections in L2(P).

Let (T,,)n>0 be an increasing sequence of stopping times converging stationarily to T’
and such that for each n > 0, Ky, is uniformly bounded. It follows from Schweizer
(1994) and Monat/Stricker (1995) that for every H € £L2(2, Fr,, P) there is a Follmer-
Schweizer decomposition H = Hy + (0 - X))z + Ly such that the following formulae are
valid :

(62) HO = 7T0(H) = EQmin (H | fg)

(6.3) Hoy+ (0 - X)i+ L, = Egmin(H | F) for t € [0,T]

As by assumption, mp is continuous on L*(P) and coincides with Egmin (- | Fo) on
each £L2(Q, Fr,, P) we obtain that Egmi (- | Fp) is a continuous linear functional on
L3, Fr,, P), whence (Z/"™)o<i<r := (E(=X - M);)o<i<r is a bounded martingale in
L?(P). Therefore the minimal martingale measure exists and formula (6.2) holds for
every H € L*(P).

To show the boundedness of the projectors

Pt = EQmin(' | ft)
as operators from L%(Q, Fr, P) to L?(Q, F;, P), write
Pt:PtOT0+PtO7TI+PtO7TQ.

As regards P, o my = mg this operator clearly is uniformly bounded in ¢. Similarly we
have according to the contraction property for P-martingales

vt € 0,T] || P om < ||m|

where || - || denotes the operator norm on £2(2, Fr, P). Finally we claim that there is
a constant C' > 0 such that
(6.4)  [[Prom|l < Cflm]l.
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Indeed this follows from the fact that, by the assumption of the continuity of the
projection 7, we have that 7 (£*(Q, Fr, P)) = Gr(0©) is closed in £%(2, Fr, P). Hence
we know from proposition 3.6 that there exists a constant C' > 0 such that for each
6 € © we have

10 - X) Nl e2py < Ol - X) ]l c2(p)

which readily implies (6.4). This shows the uniform boundedness of the family of
projections
Pt - EQmm( | ft)

This uniform boundedness is easily seen to be tantamount to condition Ry(P) for the
minimal density Z™" (see for instance Doléans-Dade/Meyer (1979) page 318).
Finally the boundedness of the operators P; also shows that (6.3) holds true not only
for H € L*(Q, Fr,, P) but for arbitrary H € L*(Q2, Fr, P). This completes the proof
of the ”only if” part.

Now we prove the ”if” part.

We suppose that the minimal density satisfies Ro(P). In particular it is a square
integrable martingale. To prove that the decomposition is unique, we can and shall
assume that H = 0. If

T
Hy + / 0.dX, + Ly
0

is a F-S decomposition of H, then Hy = 0 because Hy = Egmin[H | Fo]. So

T
/ 0,dX, + Ly = 0.
0

From the continuity of X, taking the bracket with L in the previous equality yields
Ly = 0. Finally, 0 - X is a @-martingale such that (0 - X)r =0, so #- X = 0. Since
X is continuous and 0 - X is a P-semimartingale in S?, the last equality implies that
6 =0 in L?*(M), which completes the proof of the uniqueness.

Now let us prove that X admits a Follmer-Schweizer decomposition. Recall that the
minimal density satisfies Ry (P) and is continuous, so the stochastic logarithm L£(Z™")
isin BMO(P) by theorem 2.14, © = L?(M) and Dy(P) holds. Denote by Mg the space
of martingales . € M3 strongly orthogonal to M and consider the Banach space B =
L2(Q, Fo, P) x © x My equipped with the norm ||(Hy, 0, L)|| := [|Hol| z2(p) + 10| L2ar) +
|L7|| z2(py- The mapping ¢ : B — L*(, Fr, P) defined by ¢(Ho,0,L) := Hy + (0 -
X)r+ Ly is continuous. The uniqueness of the Follmer-Schweizer decomposition means
that ¢ is one to one. We know that Hy = Eqmin(H | Fo). Hence |[Hol| z2(p) < [[H]| 2(p)
as Q™™ and P coincide on Fy. According to lemma 3.14 we have E((§ - X + L)) <
C[(0 - X + L)} z2(p) - Since Z™in satisfies Ro(P) and is continuous, theorem 2.16 tells
us that ||(6 - X + LS*TH@(P) <@ X + L)7|zo(py - Hence we obtain

(65)  Hollcapy + 18y + i lesgry < ClHo + (0 Xz + L
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It follows that ¢~ defined on ¢(B) is continuous and therefore ¢(B) is complete. From
Schweizer (1994) and Monat/Stricker (1995) we know that for every n > 0 we have
that £%(Q, Fr,, P) C ¢(B). Since ¢(B) is complete, we obtain ¢(B) = L*(Q, Fr, P)
and the proof of the theorem is complete.

We end this section with an example which is somewhat different in spirit than the
material presented above. So far we saw results following roughly the pattern : G (©)
has nice closedness properties iff the semimartingale X = M + A is not too far from
being a (local) martingale, i.e. A is somehow small compared to M. But this type of
result only holds true if we add an assumption of type : “X admits an equivalent local
martingale measure”. The next example shows that some hypothesis of the latter type
is indeed indispensable. We shall see that if we turn completely around and consider
the case where M is small compared to A (which typically excludes the existence of an
equivalent local martingale measure for X), then again G'r(©) may be closed.

For example, if (F;)o<i<oo is the filtration generated by a standard Brownian motion
and we simply let the process X be strictly increasing and deterministic, e.g. X; =
arctan(t), then G (0) equals the entire space £?((2, F.., P) and therefore is of course
closed. This easily follows from the arguments given in the example below, which
presents a slightly more complicated situation. Note that in the subsequent example
there does not exist an equivalent martingale measure for Y and the structure condition
(SC) does not hold true.

Example 6.4. Let Y, := W, + ¢, where (W})o<i<s is a one-dimensional standard

Brownian motion with natural filtration (F;)o<t<eo. Now consider the predictable pro-

cess ¢ defined by ¢, = (1 +¢*)"! and set X := ¢-Y. Then the process X extends

to a semimartingale at infinity and its natural filtration is (F;)o<i<e Where Fo is the

sigma-algebra generated by Up<;<ooFy. We claim that G (©) = L£2(Q, Fu, P). In par-

ticular every random variable H € L2(2, F, P) has a F-S decomposition. However

this decomposition is not unique and K does not exist.

To prove that G (©) = L2(Q, Fu, P), it will suffice to prove that there is a constant

¢ > 0 such that for every n € IN and for every f € L*(Q, F,, P) there is an integrand

0 € © such that

(6:6) (8- X)ao= f and [0]l2 + 1020y < € s

In order to prove this inequality fix an integer n and let (n;);>; be a strictly incre-
o0

asing sequence of positive integers such that Z(nl .. .nk)’1/2 < o0o. We set ng :=
k=1
n, 0O = fé Apniag go:= (0 M)y and for i > 1 s, :=1+n; +...+n;, 09 =

Gi—1 ,_ i 2 G
_—ld) 11]]5i:5i+1]]’ 9i = (9() M), 0:= ZH( ).
1=0

ny;
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_ lgi1llz2p)

Then 69, = llgitllcaey s 160z = llgill ooy = =322 Hence

1011 2ary + 101l 20y < 2[1f ]2y Do (11 - ) M2
k=0

Thus inequality (6.6) is proved and the proof of the example is now complete.

7. Conclusion.

This paper gives necessary and sufficient conditions on a discounted asset price X for
the subspace of attainable claims to be closed in the space £2(P) of square-integrable
random variables. This closedness is important for applications in financial mathe-
matics since it allows the construction of mean-variance optimal hedging strategies
for arbitrary square-integrable contingent claims. Mathematically, our results involve
weighted norm inequalities, and the condition on X (apart from continuity) is that the
variance-optimal local martingale measure for X should be equivalent to the original
measure and satisfy the reverse Holder inequality with exponent 2. Our techniques also
allow us to extend existing results on the Follmer-Schweizer decomposition, and this
can in turn be used for the construction of locally risk-minimizing hedging strategies.
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