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ABSTRACT. For H!-bounded sequences of martingales, we introduce a technique,
related to the Kade¢-Pelczynski -decomposition for L! sequences, that allows us
to prove compactness theorems. Roughly speaking, a bounded sequence in H! can
be split into two sequences, one of which is weakly compact, the other forms the
singular part. If the martingales are continuous then the singular part tends to zero
in the semi-martingale topology. In the general case the singular parts give rise to
a process of bounded variation. The technique allows to give a new proof of the
optional decomposition theorem in Mathematical Finance.

1. INTRODUCTION

Without any doubt, one of the most fundamental results in analysis is the
theorem of Heine-Borel:
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Theorem 1.1. From a bounded sequence (z,)n>1 € R® we can extract a conver-
gent subsequence (Tp, )k>1-

If we pass from R? to infinite-dimensional Banach spaces X this result does
not hold true any longer. But there are some substitutes which often are useful.
The following theorem can be easily derived from the Hahn-Banach theorem and
was wellknown to S. Banach and his contemporaries. (see [DRS93] for related
theorems)

Theorem 1.2. Given a bounded sequence (z,)n>1 in a reflexive Banach space X
(or, more generally, a relatively weakly compact sequence in a Banach space X)
we may find a sequence (Yn)n>1 of convex combinations of (xn)n>1,

Yn € cOnV(Ln, Tnyt,---),

which converges with respect to the norm of X.

Note — and this is a “Leitmotiv” of the present paper — that, for sequences
(zn)n>1 in a vector space, passing to convex combinations usually does not cost
more than passing to a subsequence. In most applications the main problem is to
find a limit £y € X and typically it does not matter whether zy = limy z,, for
a subsequence (zn, )r>1 or zo = lim, y, for a sequence of convex combinations
Yn € CcONV(ZLp, Tpg1,---)-

If one passes to the case of non-reflexive Banach spaces there is - in general -
no analogue to theorem 1.2 pertaining to any bounded sequence (z,)p>1, the main
obstacle being that the unit ball fails to be weakly compact. But sometimes there
are Hausdorff topologies on the unit ball of a (non-reflexive) Banach space which
have some kind of compactness properties. A noteworthy example is the Banach
space L'(Q, F,P) and the topology of convergence in measure.

Theorem 1.3. Given a bounded sequence (fn)n>1 € L*(Q,F,P) then there are
convex combinations

gn € conv(fn, fati,---)

such that (gn)n>1 converges in measure to some go € L'(Q, F,P).

The preceding theorem is a somewhat vulgar version of Komlos’ theorem
[Ko67]. Note that Komlos’ result is more subtle as it replaces the convex combi-
nations (gn)n>1 by the Cesaro-means of a properly chosen subsequence (fn,)r>1

of (fn)nZl-

But the above “vulgar version” of Komlos’ theorem has the advantage that
it extends to the case of L!'(Q, F,P; E) for reflexive Banach spaces E as we shall
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presently see (theorem 1.4 below), while Komlos’ theorem does not. (J. Bourgain
[Bou 79] proved that the precise necessary and sufficient condition for the Komlos
theorem to hold for E-valued functions is that L2(2, F, P; E) has the Banach-Saks
property; compare [G80] and [S81]).

Here is the vector-valued version of theorem 1.3:

Theorem 1.4. If E is a reflexive Banach space and (fn)n>1 a bounded sequence
in LY(Q, F,P; E), we may find convex combinations

gn € conv(fn, fasl,---)

and go € L'(Q, F,P; E) such that (gn)n>1 converges to fo almost surely, i.e.,

lim [|gn(w) — go(w)|lz =0 for a.e. w € Q.
n—o0

The preceding theorem seems to be of folklore type and to be known to
specialists for a long time (compare also [DRS93]). We shall give a proof in section
2 below.

Let us have a closer look at what is really happening in theorems 1.3 and 1.4
above by following the lines of Kadet and Pelczynski [KP65]. These authors have
proved a remarkable decomposition theorem which essentially shows the following
(see th. 2.1 below for a more precise statement): Given a bounded sequence (fp)n>1
in L'(Q,F,P) we may find a subsequence (fn,)r>1 which may be split into a
“regular” and a “singular” part, f,, = f + fs , such that (f] )g>1 is uniformly
integrable and (f )r>1 tends to zero almost surely.

Admitting this result, theorem 1.3 becomes rather obvious: As regards the
“regular part” (f}, )k>1 we can apply theorem 1.2 to find convex combinations
converging with respect to the norm of L! and therefore in measure. As regards
the “singular part” (f) )r>1 we do not have any problems as any sequence of
convex combinations will also tend to zero almost surely.

A similar reasoning allows to deduce the vector-valued case (th. 1.4 above)
from the Kade&-Petczynski decomposition result (see section 2 below).

After this general prelude we turn to the central theme of this paper. Let
(My)ier, be an R%valued cadlag local martingale based on (2, F, (F;)ier, :P)

and (H")n>1 a sequence of M-integrable processes, i.e., predictable R%valued
stochastic processes such that the integral

t
(H”-M)t:/ H™dM,
0
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makes sense for every t € R, and suppose that the resulting processes ((H™ -
M);)ier, are martingales. The theme of the present paper is: Under what condi-
tions can we pass to a limit HO ? More precisely: by passing to convex combinations
of (H™),>1 (still denoted by H™) we would like to insure that the sequence of mar-
tingales H™ - M converges to some martingale N which is of the form N = H?- M.

Our motivation for this question comes from applications of stochastic cal-
culus to Mathematical Finance where this question turned out to be of crucial
relevance. For example, in the work of the present authors as well as in the recent
work of D. Kramkov ([DS 94], [K 96]) the passage to the limit of a sequence of
integrands is the heart of the matter. We shall come back to the applications of
the results obtained in this paper to Mathematical Finance in section 5 below.

Let us review some known results in the context of the above question. The
subsequent theorem 1.5, going back to the foundations of stochastic integration
given by Kunita and Watanabe [KW 67], is a straightforward consequence of the
Hilbert space isometry of stochastic integrands and integrals (see, e.g., [P90], p.
153 for the real-valued and Jacod [Ja80] for the vector-valued case).

Theorem 1.5. (Kunita — Watanabe) Let M be an R%-valued cadlag local martin-
gale, (H™),>1 be a sequence of M -integrable predictable stochastic processes such
that each (H™- M) is an L?-bounded martingale and such that the sequence of ran-
dom variables ((H™ - M)oo)n>1 converges to a random variable fo € L*(Q,F,P)
with respect to the norm of L>.

Then there is an M-integrable predictable stochastic process H® such that
H° - M is an L?-bounded martingale and such that (H® - M)y, = fo.

It is not hard to extend the above theorem to the case of L?, for 1 < p < .
But the extension to p = 1 is a much more delicate issue which has been settled
by M. Yor [Y 78], who proved the analogue of theorem 1.5 for the case of #' and
L.

Theorem 1.6. (Yor) Let (H™),>1 be a sequence of M -integrable predictable sto-
chastic processes such that each (H™-M) is an H'-bounded (resp. a uniformly inte-
grable) martingale and such that the sequence of random variables (H™-M)oo)n>1
converges to a random variable fo € H*(Q, F,P) (resp. fo € L*(Q, F,P)) with re-
spect to the H'-norm (resp. L'-norm); (or even only with respect to the o(H',BMO)
(resp. o(L', L>)) topology).

Then there is an M-integrable predictable stochastic process H® such that
H® - M is an H!-bounded (resp. uniformly integrable) martingale and such that
(HO : M)oo = fO-
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We refer to Jacod [Ja80], Theoréme 4.63, p.143 for the H!'-case. It essentially
follows from Davis’ inequality for #!-martingales. The L!-case (see [Y78]) is more
subtle. Using delicate stopping time arguments M. Yor succeeded in reducing the
L' case to the H' case. In section 4 we take the opportunity to translate Yor’s
proof into the setting of the present paper.

Let us also mention in this context a remarkable result of Memin ([M80],
th. V.4) where the process M is only assumed to be a semi-martingale and not
necessarily a local martingale and which also allows to pass to a limit H® - M of a
Cauchy sequence H" - M of M-integrals (w.r. to the semimartingale topology).

All these theorems are closedness results in the sense that, if (H™ - M) is a
Couchy-sequence with respect to some topology, then we may find H° such that
(H® - M) equals the limit of (H™ - M).

The aim of our paper is to prove compactness results in the sense that, if
(H™ - M) is a bounded sequence in the martingale space H!, then we may find
a subsequence (n)r>1 as well as decompositions H™ ="K ¥ 4 sK* 5o that the
sequence "K* - M is relatively weakly compact in H' and such that the singular
parts *K* . M hopefully tend to zero in some sense to be made precise. The regular

parts "K* . M then allow to take convex combinations that converge in the norm
of H!.

It turns out that for continuous local martingales M the situation is nicer
(and easier) than for the general case of local martingales with jumps. We now
state the main result of this paper, in its continuous and in its general version
(theorem A and B below).

Theorem A. Let (M™),>1 be an H!-bounded sequence of real-valued continuous
local martingales.

Then we can select a subsequence, which we still denote by (M™),>1, as well
as an increasing sequence of stopping times (Tp)n>1, such that P[T,, < oo] tends
to zero and such that the sequence of stopped processes ((M")T")T»1 is relatively
weakly compact in H'. -

If all the martingales are of the form M™ = H™ - M for a fized continuous
local martingale taking values in R®, then the elements in the H'-closed convex
hull of the sequence ((M™)™) are also of the form H - M.

n>1
As a consequence we obtain the existence of convex combinations

K™ € conv{H™, H"*! ...}
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such that K™1[g 7, - M tends to a limit H® - M in #'. Also remark that the
remaining “singular” parts K™1yz, o]+ M tend to zero in a stationary way, i.e. for
almost each w € Q the set {t | In > ng, K # 0} becomes empty for large enough
no. As a result we immediately derive that the sequence K™ - M tends to H® - M
in the semi-martingale topology.

If the local martingale M is not continuous the situation is more delicate. In
this case we cannot obtain a limit of the form H - M and also the decomposition
is not just done by stopping the processes at well selected stopping times.

Theorem B. Let M be an R-valued local martingale and (H ™)n>1 be a sequence
of M-integrable predictable processes such that (H™ - M)p>1 is an H' bounded
sequence of martingales.

Then there is a subsequence, for simplicity still denoted by (H™)p>1, an in-
creasing sequence of stopping times (T )n>1, a sequence of convex combinations
L" =3 ks alH* as well as a sequence of predictable sets (E™),>1 such that

(1) E™ C [0,T,] and T, increases to oo,
(2) the sequence (H™ 1 1, )n(Em)e - M)
©) anl 1g» <d,
(4) the convex combinations Y., ak H¥1[o 1, 1n(En)e - M converge in H' to a
stochastic integral of the form H° - M, for some predictable process H°,
(5) the convex combinations V, = >, . afLHkllTn,oo[UEn - M converge to a
cadlag optional process Z of finite variation in the following sense: a.s. we
have that Z; = lims;}t,seQ limy,—00(V)s for each t € Ry,

(6) the brackets [(H® — L™) - M, (H® — L") - M) tend to zero in probability.
If, in addition, the set

n>1 18 weakly relatively compact in HL,

{A(H" -M)7 |n €N, T stopping time}

resp.
{|]AH" -M)r| |n €N, T stopping time}

is uniformly integrable, e.g. there is an integrable function w > 0 such that
AH" -M)>—-w resp. |[A(H"-M)| <w, a.s.

then the process (Zy)icr., is decreasing (resp. vanishes identically).

For general martingales, not necessarily of the form H" - M for a fixed local
martingale M, we can prove the following theorem:
6



Theorem C. Let (M™),>; be an H'-bounded sequence of R®*-valued martingales.
Then there is a subsequence, for simplicity still denoted by (Mp)n>1 and an in-
creasing sequence of stopping times (T,,)n>1 with the following properties:

(1) T, increases to oo,

(2) the martingales N* = (M™)™ — AM7, 11, 00f + C™ form a relatively
weakly compact sequence in H'. Here C™ denotes the compensator (dual
predictable projection) of the process AMr, 11, oo,

(3) there are convex combinations . al N* that converge to an H', mar-
tingale N° in the norm of H' -

(4) there is a cadlag optional process of finite variation Z such that almost
everywhere for each t € R: Z; = lim > o limy 00 X psn akCk.

If, in addition, the set

t,s

{A(M™)7 :n € N;T stopping time}

resp.
{|AM™)r| :n € ;T stopping time}

is uniformly integrable, e.g. there is an integrable function w > 0 such that
A(M™) > —w  resp. |A(M™)]| <w, a.s.
then the process (Z)icr., is increasing (resp. vanishes identically).

Let us comment on these theorems. Theorem A shows that in the continuous
case we may cut off some ”small” singular parts in order to obtain a relatively
weakly compact sequence ((M™)T"),>1 in H!. By taking convex combinations we
then obtain a sequence that converges in the norm of H!. The singular parts are
small enough so that they do not influence the almost sure passage to the limit.
Note that — in general — there is no hope to get rid of the singular parts. Indeed,
a Banach space E such that for each bounded sequence (z,)n>1 € E there is a
norm-convergent sequence Y, € conv(Ty, Tni1,.-..) is reflexive; and, of course, H*
is only reflexive if it is finite-dimensional.

The general situation of local martingales M (possibly with jumps) described
in theorem B is more awkward. The convex combinations (3., &k H¥11o 1, jn(gn)e-
M)y>1 converge in H' but for the “singular” parts (V"),>1 we cannot assert that
they tend to zero. Nevertheless there is some control on these processes. We may
assert that the processes (V"),>1 tend, in a certain pointwise sense, to a pro-
cess (Zi)ier, of integrable variation. We shall give an example (section 3 below)
which illustrates that in general one cannot do better than that. But under spe-
cial assumptions, e.g., one-sided or two-sided bounds on the jumps of the processes
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(H™-M), one may deduce certain features of the process Z (e.g., Z being monotone
or vanishing identically). It is precisely this latter conclusion which has applica-
tions in Mathematical Finance and allows to give an alternative proof of Kramkov’s
recent “optional decomposition theorem” [K95] (see theorem 5.1 below).

To finish the introduction we shall state the main application of theorem
B. Note that the subsequent statement of theorem D does not use the concept of
‘H!(P)-martingales (although the proof heavily relies on this concept) which makes
it more applicable in general situations.

Theorem D. Let M be an R-valued local martingale and w > 1 an integrable
function.

Given a sequence (H")p,>1 of M-integrable R%-valued predictable processes
such that
(H™ - M); > —w, for all n,t,

then there are convex combinations
K™ € conv{H" H",...},
and there is a super-martingale(Vy)icr, , Vo < 0, such that

(1) lim  lim (K" -M),=V; forte R, a.s.,

s;)t,sEQ+ n—00

and an M -integrable predictable process H® such that
(ii) (H°- M), — Vi)ier, is increasing.

In addition, H® - M is a local martingale and a super-martingale.

Loosely speaking, theorem D says that for a sequence (H™ - M),>1, obeying
the crucial assumption of uniform lower boundedness with respect to an integrable
weight function w, we may pass — by forming convex combinations — to a limiting
supermartingale V in a pointwise sense and — more importantly — to a local
martingale of the form (H° - M) which dominates V.

The paper is organized as follows: Section 2 introduces notation and fixes
general hypotheses. We also give a proof of the Kade¢-Pelczynski decomposition
and we recall basic facts about weak compactness in #'. We give additional (and
probably new) information concerning the convergence of the maximal function
and the convergence of the square function. Section 3 contains an example. In
section 4, we give the proofs of theorems A, B, C and D. We also reprove M. Yor’s
theorem 1.6. In section 5 we reprove Kramkov’s optional decomposition theorem.
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2. NOTATIONS AND PRELIMINARIES

We fix a filtered probability space (2, F,(F;)ier,,P), where the filtration
(Ft)tcr.. satisfies the “usual assumptions” of completeness and right continuity.
We also assume that F equals F,. In principle, the letter M will be reserved for
a cadlag R%valued local martingale. We assume that My = 0 to avoid irrelevant
difficulties at ¢ = 0.

We denote by O (resp. P) the sigma-algebra of optional (resp. predictable)
subsets of IR x ). For the notion of an M-integrable JR?-valued predictable process
H = (H;):icr, and the notion of the stochastic integral

H-M:/ H,dM,
0

we refer to [P90] and to [Ja80]. Most of the time we shall assume that the process
H - M is a local martingale (for the delicacy of this issue compare [E78] and [AS
92]) and, in fact, a uniformly integrable martingale.

For the definition of the bracket process [M, M| of the real-valued local mar-
tingale M as well as for the o-finite, nonnegative measure d[M, M] on the o-algebra
O of optional subsets of Q x R, we also refer to [P90]. In the case d > 1 the
bracket process [M, M] is defined as a matrix with components [M¢, M7] where
M = (M*',...,M%). The process [M, M] takes values in the cone of nonnegative
definite d x d matrices. This is precisely the Kunita-Watanabe inequality for the
bracket process. One can select representations so that for almost each w € 2 the
measure d[M, M| induces a o-finite measure, denoted by d[M, M],,, on the Borel-
sets of R4 (and with values in the cone of d x d nonnegative definite matrices).

For an R%valued local martingale X, Xy = 0, we define the #!-norm by

X lls = || (Trace(iX, X]oo)* llzs(0.72) = B l(/oo d (Trace([X,X1) ] < oo

and the L!'-norm by
IX||z: = Sl%pEHXTH < oo,

where |.| denotes a fixed norm on R?, where the sup is taken over all finite stopping
times 7" and which, in the case of a uniformly integrable martingale X, equals

1X|lz1 = B[ Xoo|] < o0
9



The Davis’ inequality for %' martingales ([RY94], theorem IV.4.1, see also
[M76]) states that there are universal constants, ¢; and ¢z (only depending on the
dimension d), such that for each #' martingale X we have:

all Xl < Xl < el XSz,
where X = sup;<,, |X¢| denotes the maximal function.

We denote by H! = HY(Q, F, (Ft)ier,,P) and L' = LY(Q, F, (F)icr, . P)
the Banach spaces of real-valued uniformly integrable martingales with finite 7!-
or L'-norm respectively. Note that the space L'(Q, F, (Fi)icr,,P) may be iso-
metrically identified with the space of integrable random variables L!(Q, F,P) by
associating to a uniformly integrable martingale X the random variable X .

Also note that for a local martingale of the form H - M we have the formula

1
|H - M|y = [|[H - M, H - M]Z, [|L1(2,7.p)

=K l(/ooo Hd[M, M]th) ;] ,

where H' denotes the transpose of H.

We now state and prove the result of Kade¢-Pelczynski [KP65] in a form that
will be useful in the rest of our paper.

Theorem 2.1. (Kadeé-Pelczynski ) If (fn)n>1 is an L'-bounded sequence in the
positive cone L1+(Q,}' ,P), and g is a nonnegative integrable function, then there
is a subsequence (ni)r>1 as well as an increasing sequence of strictly positive
numbers (Br)k>1 such that By, tend to co and (fn, N (Br(g+ 1)), is uniformly
integrable. The sequence (fn, A (Br(g+1))),>, s then relatively weakly compact
by the Dunford-Pettis theorem. -

Proof. We adapt the proof of [KP 65]. Without loss of generality we may sup-
pose that the sequence (fn)n,>1 is bounded by 1 in L'-norm but not uniformly
integrable, i.e.,

E[fn] <1; 6(8) = s%pE[fn —faAB(g+1)] < o0; 0<d(c0) = inf 5(8)

(it is an easy exercise to show that d(co) = 0 implies uniform integrability). For
k=1and g = 1 we select ny so that E[f,, — fn, A B1(g + 1)] > d(c0)/2.
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Having chosen ny,ns,...,ni_1 as well as 1, B2, ..., Br—1 we put B = 28,_1 and
we select ng > ng_1 so that E[f,, — fn, A Br(g +1)] > (1 —27%)§(c0). The
sequence (fn, A Br(g+1)),~, is now uniformly integrable. To see this, let us fix
K and let k(K) be defined as the smallest number k such that 8, > K. Clearly
kE(K) — oo as K tends to oo. For | < k(K) we then have that f,, A Bi(g+1) =
fru A Bi(g+ 1) AK(g+ 1), whereas for I > k(K) we have

Blfu, A Si(0-+1) = fu A filg + 1) A K (g + 1)
=E[fn, = fu AK(g+1)] = Elfn, = fr ABi(g +1)]
<4 - (30 - 5509

4(o0)
2k(K)

< 6(c0) — 6(K) +

The latter expression clearly tends to 0 as K — oo.
q.e.d.

Corollary 2.2. If the sequence By, is such that fn, A Br(g+ 1) is uniformly inte-
grable, then there also exists a sequence vy such that % tends to infinity and such

that the sequence fn, AYk(g+ 1) remains uniformly integrable.

Proof. In order to show the existence of v, we proceed as follows. The sequence

b = Br(g + 1)1y, >pu(g+1)}

tends to zero in L!(P), since the sequence f,, A (g + 1) is uniformly integrable
and P[fn, > Br(g+1)] < i — 0. Let now oy, be a sequence that tends to infinity

but so that ayhy still tends to 0 in L'(P). If we define 74 = a3, we have that

Jrw Ak(9+1) < frp ABr(g +1) + aghy,

and hence we obtain the uniform integrability of the sequence f,, Av(g+ 1).
g.e.d.

Remark 2.3. In most applications of the Kade¢-Pelczynski decomposition theorem,
we can take g = 0. However in section 4, we will need the easy generalisation to the
case where g is a non-zero integrable nonnegative function. The general case can in
fact be reduced to the case g = 0 by replacing the functions f,, by f,/(g+1) and by

replacing the measure P by the probability measure Q defined as dQ = ]é{ggill)] dP.

Remark 2.4. We will in many cases drop indices like nj and simply suppose that
the original sequence (f,),>1 already satisfies the conclusions of the theorem.
11



In most cases such passing to a subsequence is allowed and we will abuse this
simplification as many times as possible.

Remark 2.5. The sequence of sets {f, > Bn(g+ 1)} is, of course, not necessarily a
disjoint sequence. In case we need two by two disjoint sets we proceed as follows.
By selecting a subsequence we may suppose that Y ., P[fn > Bn(g9 + 1)] < &,
where the sequence of strictly positive numbers (ex)r>1 is chosen in such a way
that [, fr dP < 27% whenever P[B] < ;. It is now easily seen that the sequence
of sets (An)n>1 defined by A, = {fn > Bn(g+ 1)} \ Upspn{fr > Br(g+1)} will do
the job.

As a first application of the Kadeé¢-Pelczynski decomposition we prove the
vector-valued Komlos-type theorem stated in the introduction:

Theorem 2.6. If E is o reflexive Banach space and (fr)n>1 a bounded sequence
in LY(Q, F,P; E) we may find convex combinations

gn € COHV(fn,fn+1, . )

and go € LY(Q, F,P; E) such that (gn)n>1 converges to go almost surely, i.e.,

nh%néO [|gn(w) — go(w)||E =0, for a.e. w e Q.

Proof. By the remark made above there is a subsequence, still denoted by (fn)n>1
as well as a sequence (Ap)p>1 of mutually disjoint sets such that the sequence
| fnl|14: is uniformly integrable. By a well known theorem on L'(€, F,P; E) of a
reflexive space E, [DUT7], see also [DRS93], the sequence (f,14:)n>1 is therefore
relatively weakly compact in L'(Q, F,P; E). Therefore (see theorem 1.2 above)
there is a sequence of convex combinations h,, € conv{frlac, fnt11 AS oee 1,
hn =2 k>n a'ﬁb frl 4g such that h, converges to a function gg with respect to the
norm of L'(Q, F,P; E). Since the sequence f,14, converges to zero a.s. we have
that the sequence g, = >, ak fi, converges to go in probability. If needed one
can take a further subsequence that converges a.s., i.e., ||gn(w) — go(w)|| = tends to
zero for almost each w.

q.e.d.

The preceding theorem allows us to give an alternative proof of lemma 4.2
in Kramkov, [K95].

Lemma 2.7. Let (N"),>1 be a sequence of adapted cadldg stochastic processes,
Ng =0, such that
E[var N"] < 1, n €N,
12



where var N™ denotes the total variation of the process N™.

Then there is a sequence R™ € conv(N™,N™"t1. ) and an adapted cadlag
stochastic process Z = (Zy)icr, such that

Evar Z] < 1

and such that almost surely the measure dZ, defined on the Borel sets of R, is
the weak™ limit of the sequence dR}'. In particular we have that

Zy = lim lim sup R} = lim lim inf RY.
s;»t n—00 s;>t n—00

Proof. We start the proof with some generalities of functional analysis that will
allow us to reduce the statement to the setting of theorem 1.4.

The space of finite measures M on the Borel sets of R, is the dual of the
space Cp of continuous functions on Ry = [0, 00, tending to zero at infinity. If
(fr)k=1 is a dense sequence in the unit ball of Cy, then for bounded sequences
(Bn)n>1 in M, the weak* convergence of the sequence u, is equivalent to the
convergence, for each k, of [ fj, du,. The mapping ®(u) = (27% [ fi, dp)r>1 maps
the space of measures into the space [2. The image of a bounded weak* closed
convex set is closed in I2. Moreover on bounded subsets of M, the weak* topology
coincides with the norm topology of its image in I2.

For each n the cadlag process N™ of finite variation can now be seen as a
function of Q into M, mapping the point w onto the measure dN}*(w). Using
theorem 1.3, we may find convex combinations P™ € conv(N" N"*t1 . ) P" =
> k>n @ N*¥ such that the sequence >, af var(IN*) converges a.s.. This implies
that a.s. the sequence P™(w) takes its values in a bounded set of M. Using theorem
1.4 on the sequence (®(P")), , we find convex combinations R" = 3", Bk P* of
(P*) s, such that the sequence ®(dR") = ®(3,,, S1dP/}) converges a.s.. Since
a.s. the sequence of measures dR™(w) takes its values in a bounded set of M, the
sequence dR}'(w) converges a.s. weak* to a measure dZ;(w). The last statement is
an obvious consequence of the weak* convergence. It is also clear that Z is optional
and that E[var(Z)] < 1.

q.e.d.

Remark 2.8. If we want to obtain the process Z as a limit of a sequence of processes
then we can proceed as follows. Using once more convex combinations together
with a diagonalisation argument, we may suppose that R} converges a.s. for each
rational s. In this case we can write that a.s. Z; = limS?t’se@ lim,, oo RZ. We will

use such descriptions in section 4 and 5.
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Remark 2.9. Even if the sequence N™ consists of predictable processes, the process
Z need not be predictable. Take e.g. T a totally inaccessible stopping time and
let N™ describe the point mass at T + % Clearly this sequence tends, in the sense
described above, to the process 1[r, [, i-e. the point mass concentrated at time
T, a process which fails to be predictable. Also in general, there is no reason that
the process Z should start at 0.

Remark 2.10. Tt might be useful to observe that if T is a stopping time such that
Z is continuous at T', i.e. AZy =0, then a.s. Zy = lim R7.

We next recall well known properties on weak compactness in H'. The results
are due to Dellacherie, Meyer and Yor, (see [DMY78]).

Theorem 2.11. For a family (M*);cr of elements of H' the following assertions
are equivalent:
(1) the family is relatively weakly compact in H'
(2) the family of square functions ([M",M"]ééZ)iE] is uniformly integrable
(3) the family of mazimal functions (M?)%,)icr is uniformly integrable.
q.e.d.

This theorem immediately implies the following:

Theorem 2.12. If (N"), ., is a relatively weakly compact sequence in HL, if
(H™),>1 15 a uniformly bounded sequence of predictable processes with H™ — 0
pointwise on Ry x Q, then H™ - N™ tends weakly to zero in H?!.

Proof. We may and do suppose that |[H™| < 1 and ||[N"||4: < 1 for each n. For
each n and each € > 0, we define E™ as the predictable set E™ = {|H"| > ¢}.
We split the stochastic integrals H™ - N™ as (1= H™") - N™ + (1(gn)cH") - N™. We
will show that the first terms form a sequence that converges to 0 weakly. Because
obviously || (1(gn)eH™) - N™|l32 < ¢, the theorem follows.

From the previous theorem it follows that the sequence (H"1g» - N™), ., is
already weakly relatively compact in H!. Clearly 1z — 0 pointwise. It follows
that F™ = Ug>n E™ decreases to zero as n tends to co. Let N be a weak limit point
of the sequence ((H*¥1px) - N¥), _ . We have to show that N = 0. For each k > n
we have that 1p= - ((Hk].E'k) -Nk) = (Hk].Ek) - N*. From there it follows that
1= - N = N and hence by taking limits as n — oo, we also have N = 13- N = 0.

q.e.d.

Related to the Davis’ inequality, is the following lemma, due to Garsia and
14



Chou, (see [G73] p. 34-41 and [N75] p.198 for the discrete time case); the contin-
uous time case follows easily from the discrete case by an application of Fatou’s
lemma. The reader can also consult [M76] p 351, (31.6) for a proof in the contin-
uous time case.

Lemma 2.13. There is a constant ¢ such that, for each H'-martingale X, we
have

X, X]oo
E[%] < cl| X |l

o0

This inequality together with an interpolation technique yields:

Theorem 2.14. There is a constant C such that for each H'-martingale X and
for each 0 < p < 1 we have:

1/2 * (11/2
11X, X112, < ClIXI3: IIXOOIIZ_LP-

Proof. The following series of inequalities is an obvious application of the preceding
lemma and Holder’s inequality for the exponents 2 and 32. The constant c is the

same as in the preceding lemma.
X, Xoo ) *
5] _ *\ 5 y X Joo
B[ xd] -5 |a? (B=) ]

o0

E[52]) Elow=) ™

o0

5 5 S
< X5 lIXG N s

IN

Hence 1/2 1/9
I, XTI < XX -

q.e.d.

Corollary 2.15. If X" is a sequence of H!'-martingales such that || X3 is
bounded and such that (X™)._ tends to zero in probability, then [X™, X" tends
to zero in probability.

1
In fact, for each p < 1, (X™)%, as well as [X™, X" 3 tend to zero in the
quasi-norm of LP(Q), F,P).
15



Proof. Fix 0 < p < 1. Obviously we have by the uniform integrability of the
sequence ((X™)% )77, that || (X™)%, [| ;2 converges to zero. It then follows from

the theorem that also [X", X" — 0 in probability.
q.e.d.

Remark 2.16. It is well known that, for 0 < p < 1, there is no connection be-
tween the convergence of the maximal function and the convergence of the bracket,
[MZ38], [BG70], [M94]. But as the theorem shows, for bounded sets in H' the situa-
tion is different. The convergence of the maximal function implies the convergence
of the bracket. The result also follows from the result on convergence in law as
stated in corollary 6.7, p. 342 in [JS87] . This was kindly pointed out to us by A.
Shiryaev. The converse of our corollary 2.15 is not true as the example in the next
section shows. In particular the relation between the maximal function and the
bracket is not entirely symmetric in the present context.

Remark 2.17. In the case of continuous martingales there is also an inverse in-
equality of the type
Xx)?
o C.E i T
[X7 X]OO
The reader can consult [RY94], ex. 4.17 and 4.18 p. 160.

3. AN EXAMPLE

Example 3.1. There is a uniformly bounded martingale M = (My)scjo,1) and a
sequence (H™),>1 of M-integrands satisfying

||HnM||'H1 Sla fOTTLEN,

and such that
(1) for each t € [0,1] we have

lim (H" - M); = —t/2 a.s.

n—oo

(2) [H™ - M,H™ - M) — 0 in probability.

Proof. Fix a collection ((En,k)%:ll)nzl of independent random variables,

—2-" with probability (1 —4~")
Enk =

2"(1—4-") with probability 4~"
16



so that E[ep, ;] = 0. We construct a martingale M such that at times

2%k -1

Tk = ST neN k=1,...,2"1,

M jumps by a suitable multiple of e, 1, e.g.
M= > 8 enu, t €[0,1],
(nyk):tn,kst

so that M is a welldefined uniformly bounded martingale (with respect to its
natural filtration).

Defining the integrands H" by

21:—1

H" = Z SnX{tn’k}, neN,
k=1
we obtain, for fixed n € N,

(H"-M)i= > enn

k:t,,,k <t
so that H™- M is constant on the intervals [2’;;1 , 2’;[1 [ and, on a set of probability

2’;;1, 2’;# [. Also on a set
27!—1

of probability bigger than 1—2~" we have that [H™-M,H"-M]; =Y ,_, 272" =
2-n-1,

bigger that 1 — 27", H - M equals —2% on the intervals |

From the Borel-Cantelli lemma we infer that, for each ¢ € [0, 1], the random
variables (H™ - M); converge almost surely to the constant function —¢/2 and that
[H" - M,H™ - M]; tend to 0 a.s., which proves the final assertions of the above
claim.

We still have to estimate the #!'-norm of H" - M:
2n—1
IH™ - Ml < 5 llenmellie
k>1
=2" 271 — 47 427 (1 —47") - 47" < 1.

q.e.d.
Remark 3.2. What is the message of the above example? First note that passing to

convex combinations (K"),>1 of (H"),>1 does not change the picture: we always
17



end up with a sequence of martingales (K™ - M),,>1 bounded in %' and such that
the pointwise limit equals Z; = —t/2. Of course, the process Z is far from being a
martingale.

Hence, in the setting of theorem B, we cannot expect (contrary to the setting
of theorem A) that the sequence of martingales (K" - M),>1 converges in some
pointwise sense to a martingale. We have to allow that the singular parts °K™ - M
converge (pointwise a.s.) to some process Z; the crucial information about Z is
that Z is of integrable variation and — in the case of jumps uniformly bounded
from below as in the preceding example — decreasing.

4. A SUBSTITUTE OF COMPACTNESS FOR BOUNDED SUBSETS OF H!.

This section is devoted to the proof of theorems A, B, C, D as well as Yor’s
Theorem 1.6.

Because of the technical character of this section, let us give an overview of its
contents. We start with some generalities that allow the sequence of martingales to
be replaced by a more suitable subsequence. This (obvious) preparation is done in
the next paragraph. In subsection a, we then give the proof of Theorem A, i.e. the
case of continuous martingales. Because of the continuity, stopping arguments can
easily be used. We stop the martingales as soon as the maximal functions reach a
level that is given by the Kade¢-Pelczynski decomposition theorem. Immediately
after the proof of Theorem A, we give some corollaries as well as a negative result
that shows that boundedness in H! is needed instead of the weaker boundedness
in L'. We end the subsection a with a remark that shows that the proof of the
continuous case can be adapted to the case where the set of jumps of all the
martingales form a uniformly integrable family. Roughly speaking this case can be
handled in the same way as the continuous case. Subsection b then gives the proof
of Theorem C. We proceed in the same way as in the continuous case, i.e. we stop
when the maximal function of the martingales reaches a certain level. Because
this time we did not assume that the jumps are uniformly integrable we have to
proceed with more care and eliminate their big parts (the “singular” parts in the
Kadet-Pelczynski decomposition). Subsection ¢ then treats the case where all the
martingales are stochastic integrals, H™ - M, with respect to a given d-dimensional
local martingale M. This part is the most technical one as we want the possible
decompositions to be done on the level of the integrands H™. We cannot proceed
in the same way as in Theorem C, although the idea is more or less the same. Yor’s
theorem is then (re)proved in subsection d. Subsection e is devoted to the proof
of Theorem D. The reader who does not want to go through all the technicalities
can limit her first reading to subsections a, b, d and only read the statements of
the theorems and lemmata in the other subsections ¢ and e.

18



By (M™),>1 we denote a bounded sequence of martingales in H'. Without
loss of generality we may suppose that ||[M™|3: < 1 for all n. By the Davis’
inequality this implies the existence of a constant ¢ < oo such that for all n:
E[(M™)*] < ¢. From the Kade¢-Pelczynski decomposition theorem we deduce the
existence of a sequence (f,)n>1, tending to oo and such that (M™)* A B, is uni-
formly integrable. The reader should note that we replaced the original sequence
by a subsequence. Passing to a subsequence once more also allows to suppose that
> ﬁ% < oo. For each n we now define

T, = inf{t | |M]*| > Bn}.

Clearly P[1,, < 00] < BLn for some constant c. If we let T}, = inf>,, 7 we obtain an
increasing sequence of stopping times (7,)n>1 such that P[T, < oo] < >, -, ﬁ—ck
and hence tends to zero. Let us now start with the case of continuous martingales.

4.1. Proof of theorem A. The case when the martingales M™ are contin-
UOUS.

Because of the definition of the stopping times T},, we obtain that ((M™)T)* <
(M™)* AB,, and hence the sequence ((M™)™),,>1 forms a relatively weakly compact
sequence in H!. Also the maximal functions of the remaining parts M™ — (M™)T»
tend to zero a.s.. As a consequence we obtain the existence of convex combinations
N™ =Y, ak(M*)Te that converge in H!-norm to a continuous martingale M°.
We also have that R = 3, afM* converge to M in the semi-martingale
topology and that (M° — R™)*_ tends to zero in probability. From corollary 2.15 in
section 2 we now easily derive that [M° — R", M? — R"], as well as (M° — R")%,
tend to zero in LP, for each p < 1.

If all the martingales M™ are of the form H™ - M for a fixed continuous R’-
valued local martingale M, then of course the element M? is of the same form.
This follows from Yor’s theorem 1.6, stating that the space of stochastic integrals
with respect to M, is a closed subspace of H!. This concludes the proof of theorem
A.

g.e.d.

Corollary 4.1. If (M™"), ., is a sequence of continuous H!-martingales such that
sup ||M"™||3: < o0 and M2 — 0 in probability,
n

then M™ tends to zero in the semi-martingale topology. As a consequence we have
that (M™)" — 0 in probability.

Proof. Of course we may take subsequences in order to prove the statement. So
let us take a subsequence as well as stopping times as described in theorem A.
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The sequence (M ”)T" is weakly relatively compact in H' and since M7 tends

to zero in probability (because P[T}, < oc] tends to zero and M2 tends to zero

in probability), we easily see that M7 tends to zero in L'. Doob’s maximum
*

inequality then implies that ((M ”)T") tends to zero in probability. It is then

obvious that also (M™)* tends to zero in probability.

*
Because ((M ”)T") tends to zero in probability and because this sequence

is uniformly integrable, we deduce that the sequence (M ”)T" tends to zero in H!.
The sequence M™ therefore tends to zero in the semi-martingale topology.
q.e.d.

Remark 4.2. The above corollary, together with Theorem 2.14, show that M™
tends to zero in HP (i.e. (M™)" tends to zero in LP) and in h? (i.e. [M",M”]éé2
tends to zero in LP) for each p < 1. For continuous local martingales however, H?
and hP are the same.

Remark 4.3. That we actually need that the sequence M™ is bounded in H!, and
not just in L!, is illustrated in the following “negative” result.

Lemma 4.4. Suppose that (M™), ., is a sequence of continuous, nonnegative,
uniformly integrable martingales such that My = 1 and such that M2 — 0 in
probability. Then ||M™||31 — o0.

Proof. For 3 > 1 we define o, = inf{t | MJ* > 8}. Since
| —E[M" ] =ﬂlP’[a<oo]+/ Mz,
{(Mm)*<p}

we easily see that lim,,_, o, Plo, < o] = 1/8. It follows from the Davis’ inequality
that limy, |[M"(|31 > ¢ lim, [;° Plo, > B]dB = cc.
q.e.d.

Remark 4.5. There are two cases where theorem A can easily be generalised to the
setting of H'-martingales with jumps. Let us describe these two cases separately.
The first case is when the set

{AM} |n >1, o astopping time}

is uniformly integrable. Indeed, using the same definition of the stopping times 7},
we arrive at the estimate

(M™);, < (M™)* A B, + |AME |
20



Because of the hypothesis on the uniform integrability of the jumps and by the

selection of the sequence 3, we may conclude that the sequence ((M ")T") . is
n>1

relatively weakly compact in 7!. The corollary generalises in the same way.

The other generalisation is when the set
(M2 |n> 1)
is uniformly integrable. In this case the set
{M] |n >1, o astopping time}

is, as easily seen, also uniformly integrable. The maximal function of the stopped
martingale (M™)™" is bounded by

((M")T")* < max ((M™)* A B, | M2 |) .

It is then clear that they form a uniformly integrable sequence. It is this situation
that arises in the proof of M. Yor’s theorem.

4.2. Proof of theorem C. The case of an H!'-bounded sequence M™ of
cddldg martingales.

We again turn to the general situation. In this case we cannot conclude that
the stopped martingales (M")™ form a relatively weakly compact set in H!.
Indeed the size of the jumps at times T}, might be too big. In order to remedy
this situation we will compensate these jumps in order to obtain martingales that
have “smaller” jumps at these stopping times T},. For each n we denote by C™
the dual predictable projection of the process (AM™)r, 11, o[- The process C™
is predictable and has integrable variation

E[var C"] < E[[(AM™)r, |] < 2c.

The Kadeé-Pelczynski decomposition 2.1 above yields the existence of a se-
quence 7, tending to oo, >, nin < oo and such that (varC™) A n, forms a
uniformly integrable sequence (again we replaced the original sequence by a sub-
sequence). For each n we now define the predictable stopping time o, as

on = inf{t | var C{* > nn}.
Because the process C™ stops at time T, we necessarily have that o,, < T}, on the

set {0, < 00}.
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We remark that when X is a martingale and when v is a predictable stopping
time, then the process stopped at v— and defined by Xy = X; for t < v and
X, =X,_ for t > v, is still a martingale.

Let us now turn our attention to the sequence of martingales
N™ = ((M™)T — (AM™) 7, 17, oo —C™)) "

The processes N" can be rewritten as

On On—
N = (™)) = (A (M™),, 1,000 = (AM™) 1, (g moe) 1T, ool +(C™ ™7
or which is the same:

N™ = (Mn)Tn/\an _ (A (Mn))T"/\U" 1[Tn/\a'n,oo[ + (C’n,)a'n_ .

The maximal functions satisfy
(N™)* < (M™)* A Bn + (var C™) Ay

and hence form a uniformly integrable sequence. It follows that the sequence N™
is a relatively weakly ¢ compact sequence in H!. Using the appropriate convex
combinations will then yield a limit M° in H!.

The problem is that the difference between M™ and N™ does not tend to zero
in any reasonable sense as shown by example 3.1 above. Let us therefore analyse
this difference:

M™ - N" =
M™ — (M™™" 4 (AM™) 1, pw 12 Aow 00] — (CT)7™

The maximal function of the first part

(= (rry™ 7))

tends to zero a.s. because of P[T}, < oo] and P[0, < o0] both tending to zero. The
same argument yields that the maximal function of the second part

((AM")T,. Aon LT Ao ,00[) )

also tends to zero. The remaining part is (—C™)?~~. Applying theorem 1.4 then
yields convex combinations that converge in the sense of theorem 1.4 to a cadlag
process of finite variation Z.
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Summing up, we can find convex coefficients (af),. such that the martin-
gales Y-y, ar N™ will converge in #'-norm to a martingale M° and such that,

at the same time, >, akC™ converge to a process of finite variation Z, in the
sense described in lemma 2.7.

In the case where the jumps AM™ are bounded below by an integrable func-
tion w, or more generally when the set

{A(M")E | n > 1 ( stopping time}

is uniformly integrable, we do not have to compensate the negative part of these
jumps. So we replace (AM™) = by the more appropriate ((AM™)7-)". In this case
their compensators C™ are increasing and therefore the process Z is decreasing.

The case where the jumps form a uniformly integrable family is treated in
the remark after the proof of theorem A. The proof of theorem C is therefore
completed.

g.e.d.

4.3. Proof of theorem B. The case where all martingales are of the form
M"™=H"-M.

This situation requires, as we will see, some extra work. We start the con-
struction as in the previous case but this time we work with the square functions,
i.e., the brackets instead of the maximal functions.

Without loss of generality we may suppose that M is an H'- martingale.
Indeed let (11n)n>1be a sequence of stopping times that localises the local martin-
gale M in such a way that the stopped martingales M*#= are all in H'. Take now
a sequence of strictly positive numbers a,, such that »  a,||M#" |31 < oo, put
1o = 0 and replace M by the H!'-martingale:

Za" (MFn — MHn=1)
n>1
The integrands have then to be replaced by the integrands
1
Z a_Hnl]Mk—th] :
>1 0k

In conclusion, we may assume w.l.g., that M is in H'.

Also without loss of generality we may suppose that the predictable inte-
grands are bounded. Indeed for each n we can take k,, big enough so that

| (H"1mn > h,y) - Mllpn <27
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It is now clear that it is sufficient to prove the theorem for the sequence of inte-
grands H1{|gn|<x,}- SO we suppose that for each n we have |[H"| < k.

We apply the Kadeé-Pelczynski construction of theorem 2.1 with the func-
tion g = (Trace([M, M ]Oo))l/ ?. Without changing the notation we pass to a sub-
sequence and we obtain a sequence of numbers f,,, tending to oo, such that the
sequence

[H™ - M,H" - M]'/> A B ((Trace([M, M]s))"/? + 1)

is uniformly integrable.

The sequence of stopping times T}, is now defined as:

T, =inf{t | [H" - M,H" - M]}"*> > B,((Trace([M, M]),)*/* + 1)}.

In the general case the sequence of jumps A (H™ - M™),. is not uniformly
integrable and so we have to eliminate the big parts of these jumps. But this
time we want to stay in the framework of stochastic integrals with respect to M.
The idea is, roughly speaking, to cut out of the stochastic interval [0,7,], the
predictable support of the stopping time T,,. Of course we then have to show that
these supports form a sequence of sets that tends to the empty set. This requires
some extra arguments.

Since |A(H™ - M), | < [H™-M,H™- M]};é2 we obtain that the sequence
|AGH™ - M), | A pn((Trace((M, Mloo))'/* +1)

is uniformly integrable. As in the proof of the Kade¢-Pelczynski theorem we then
find a sequence 7, > B, such that gﬁ — oo and such that the sequence

|AH™ - M), | A Yo (Trace([M, M]oo)'/? + 1)
is still uniformly integrable. As a consequence also the sequences
|A(H™ - M),| A Bn(Trace([M, M]r,)"/* + 1)

and
|A(H™ - M)z, | Avn(Trace([M, M]z,)"/* + 1)
are uniformly integrable.

By passing to a subsequence we may suppose that

(1) the sequences 83,, v, are increasing,
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(2) Yot BLn < o0 and hence ) P[T, < 0] < o0,
(3) 2 - o,
(4) for each n we have

I‘Lnﬂn+1(d + 1)2 < 1
Ynt1 T d+1)¥

which can be achieved by choosing inductively a subsequence, since v, /8,
becomes arbitrarily large.

We now turn the sequence of stopping times T}, into a sequence of stopping

times having mutually disjoint graphs. This is done exactly as in part a above.

Since P[T,, < oo] tends to zero, we may, taking a subsequence if necessary, suppose
that

lim E [sup[Hj - M, H 'M]éézlubn{Tmoo} =0.

We now replace each stopping time T), by the stopping time 7, defined by

{Tnian<kaorallk>n,
Tn =

oo otherwise.

For each n let T}, be defined as

7= { To i [A(H™ - M), | > ya((Trace((M, M])"? + 1),

oo otherwise.

For each n let F™ be the compensator of the process 17, oo

We now analyse the supports of the measures dF”. The measure d\ =
> o1 3dF, will serve as a control measure. The measure A satisfies EAo] <
oo by the conditions above. Let ¢™ be a predictable Radon-Nikodym derivative
" = %. It is clear that for each n we have E™ = {¢™ # 0} C [0,T},]. The idea
is to show the following assertion:

Claim 4.6. ) ., 1g~ <d, dX a.s.. Hence there are predictable sets, still denoted

by E™, such that 3, <, 1g» < d everywhere and such that E™ = {¢" # 0}, dX
a.S..

We will give the proof at the end of this section.
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For each n we decompose the integrands H™ = K™ + V™ + W™ where:

K™ =17, 1(mm)-H
Vn = ].Ean
Wn == ]']Tn,OO[Hn'

Since P[T}, < oc] tends to zero, we have that the maximal functions (W™ - M),
tend to zero in probability.

We now show that the sequence K™ - M is relatively weakly compact in H?.
The brackets satisfy

[K™- M, K™ - M]./?
n n 1/2 1/2 n n o al/21 .
S[H MaH M]oo A’Yn([MaM]oo +1)+[H MaH M]oo 1{Tn7éTn}'

The first term defines a uniformly integrable sequence, the second term defines a
sequence tending to zero in L1. It follows that the sequence [K™- M, K™ - M ](lx/)2 is
uniformly integrable and hence the sequence K™ - M is relatively weakly compact
in H!.

There are convex combinations (af)x>n such that (}°, ok K*) - M converges
in H! to a martingale which is necessarily of the form H® - M. We may of course
suppose that these convex combinations are disjointly supported, i.e. there are
indices 0 = ng < n1 < no... such that a;? is 0 for £ < nj_; and k£ > n;.
We remark that if we take convex combinations of (3, akK*) - M, then these
combinations still tend to H® - M in H!. We will use this remark in order to
improve the convergence of the remaining parts of H".

Let us define L™ = Y, akH*. Clearly ||L™ - M||31 < 1 for each n. From
theorem 1.3, it follows that there are convex combinations (nf)x>n, disjointly sup-

ported, such that 3=, nf[LF - M, L¥F - M]Y? converges a.s.. Hence we have that

sup, Y., mE[L* - M, Lk M]Y? < oo a.s. We also may suppose that max; 7t — 0
as n — o0o. From Minkowski’s inequality for the bracket it follows that also

sup,, [(XpnEL¥) - M, (3, nELF) - M] /2 < 50 a.s.. Because the convex combina-
tions were disjointly supported we also obtain a.s. and for R" =3, k> j ay, Vi

1/2
sup [R" - M,R" - 1/2 < sup l(Z nkLk> ) <ZnﬁLk> M] < o0.
n P -

From the fact that the convex combinations were disjointly supported and from
> n1e» < d, we conclude that for each point (t,w) € R, x Q, only d vectors
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s=2nt!

R"(t,w) can be nonzero. Let us put P" =) 2 " R5. Tt follows that a.s.

s=2"+1
s=2mt1
/ P™d[M,M|P" < d / > 27°"R*d[M, MR’
s=2"+41
s=2nt1
<d2m Z 27"[R® - M, R® - Mo
s=2"+41

<d27"sup[R’ - M,R’ - Ml

— 0.

k:2’n+1 _ .
If we now put U = Y, —5. 1 27" Y, nF >, ok H', we arrive at convex com-

binations U™ = >~ AL H! such that

(1) the convex combinations A\X are disjointly supported

(2) (S, AEK*®) - M — HO- M in A

(3) [(ZpAEVF) - M, (3, AeVF) - M]__ — 0 in probability

(4) [(ZpMWk) - M, (35, XeW*k) - M]_ — 0 in probability, and even
(5) ((,AEW*k) - M)* — 0 in probability.

As a consequence we obtain that [(U™ — H®) - M, (U™ — H°) - M|__ — 0 in prob-
ability, and hence in LP(Q, F,P) for each p < 1.

We remark that these properties will remain valid if we take once more convex
combinations of the predictable processes U™. The stochastic integrals (-, AEV¥)-
M need not converge in the semi-martingale topology as the example in section 3
shows. But exactly as in the case b we will show that after taking once more convex
combinations, they converge in a pointwise sense, to a process of finite variation.

We consider the martingales (}-, A¥V*) - M. For each n let D™ be the com-
pensator of (3°, AEA(H*- M), 117, co[- This is a predictable process of integrable
variation . Moreover E[var D"] < Y, AKE[|A(H* - M) 7, |] <23, XE||HF- M|y <
2. We now apply the Kadec¢-Pelczynski decomposition technique to the sequence
var D™ and we obtain, if necessary by passing to a subsequence, a sequence of num-
bers > EL" < oo such that var D™ A €™ is uniformly integrable. Again we define
predictable stopping times S,, = inf{t | var(D™)! > £"}. We stop the processes at
time (S,—) since this will not destroy the martingale properties. More precisely
we decompose Y, AFV* . M as follows:
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SONVE. M =
k

Sn—
(Z AVE. M - (Z NSAHY - M1, 117, o — Dn> ) first term
k k

Sn_
+ (Z MNAHE - M7, Ly oo — D") second term
k
Sn—
+ (Z AR -M) - (Z Ak -M) third term.
k k

Since ([D",D"]S"_)l/2 < 2 (var D™)®"" < (var D") A €, we obtain that the
first term defines a relatively weakly compact sequence in H!. Indeed, for each n

we have [T,,] C E™ C [0,T},] and hence:

[first term, first term]:/?

<Y VE- M VR MTL? 4 (D", DY
< [Hn ) Man ) M]1/2 Aﬂn([M7M]OO + 1)
+[H" - M,H" - M]'"*17 4 +[D", D" NE™.

It follows that the first term defines a weakly relatively compact sequence in H!.
But the first term is supported by the set UkZHEk, which tends to the empty set if
n — 00. From theorem 2.12; it then follows that the sequence defined by the first
term tends to zero weakly. The appropriate convex combinations will therefore
tend to 0 in the norm of H!.

The second term splits in

SONEAHY - M) 1, o
k

whose maximal functions tend to zero a.s. and the processes (D")%»~. On the
latter we can apply theorem 1.4, which results in convex combinations that tend
to a process of finite variation. The third term has a maximal function that tends
to zero since

ZP[Uan ({Tk < OO} U {Sn < OO})] < 00.
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Modulo the proof of the claim above, the proof of theorem B is complete. So
let us now prove the claim.

It is sufficient to show that for an arbitrary selection of d + 1 indices ny <
-+ < ngy1 we necessarily have that E = N, g1 E™ = 0, dX a.s.. For each k we
look at the compensator of the processes

(0800 ) g 7o (557 300,)

Let TE™ (resp. “E™) be the supports of the compensators of these processes.
For each of the 2¢+1 sign combinations e, = +/— we look at the set ﬂzﬁ DL
If the set E is nonempty, then at least one of these 2¢+! sets would be nonempty
and without loss of generality we may and do suppose that this is the case for
er = + for each k.

For each k we now introduce the compensator C* of the process
1/2
((Trace([M, M]Tnk)) + 1)1{A(an M)z, >0}1[Tnk ,o0[*

The processes H™ are d-dimensional processes and hence for each (t,w) we
find that the vectors H;™(w) are linearly dependent. Using the theory of linear
systems and more precisely the construction of solutions with determinants we
obtain d + 1 predictable processes (a*)g—1...q11 such that

(1) for each (t,w) at least one of the numbers a*(¢,w) is nonzero
(2) Y pafH™ =0
(3) the processes a* are all bounded by 1.

We emphasize that these coefficients are obtained in a constructible way and that
we do not need a measurable selection theorem!

We now look at the compensator of the processes
AH™ - M)g, Lae-myn,, >4 1, ool

This compensator is of the form g-*dC" for a predictable process g'*. Because
of the construction of the coefficients, we obtain that for each I < d + 1:

Zgl’kaﬁ =0.

: d+1 : 1k
The next step is to show on the set Nt} TE™, the matrix (g )l,k§d+1
is non-singular. This will then give the desired contradiction, because the above
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linear system would only admit the solution a* = 0 for all k¥ < d + 1. Because of
the definition of the stopping times T},, we immediately obtain that g&* > ~,, .
For the non diagonal elements we distinguish the cases I < k and ! > k. For
I < k we use the fact that on T, < oo, we have that T}, < Tp,. It follows that

A (H™ 'M)Tn,‘ < 206p, ((Trace([M, M]Tnl))§ + 1> and hence |g*| < By, .

1/2
If I > k then |A (H™ 'M)Tn,‘ < Kn, (((Trace([M, M]Tnl)) + 1) and hence

|g"*| < Kn, - We now multiply the last column of the matrix g""* with the fraction
Brigyq (d+1)°
Tngga

the diagonal element at place (d+1,d+1) is equal to 1 and that the other elements

of the last row and the last column are bounded in absolute value by m. We

continue in the same way by multiplying the column d by m and the row
nd

ﬂlw and then we multiply the last row by . The result is that
md41

d by ﬁ"dv(

other elements on row d and column d are bounded by(di—l)g. We note that the

%1)2. The result is that the element at place (d,d) is 1 and that the
elements at place (d,d + 1) and (d + 1,d) are further decreased by this procedure
so that the bound ﬁ will remain valid. We continue in this way and we finally
obtain a matrix with 1 on the diagonal and with the off diagonal elements bounded
by ﬁ. By the classical theorem, due to Hadamard [G66], p. 454 Satz 1, such
a matrix with dominant diagonal is non-singular. The proof of the claim is now
completed and so are the proofs of the theorems A,B and C.

g.e.d.

4.4. A proof of M.Yor’s theorem 1.6 for the L'-convergent case.

We now show how the ideas of the proof given in [Y78] fit in the general
framework described above. We will use the generalisation of theorem A to pro-
cesses with jumps (see the remarks following the proof of theorem A). In the next
theorem we suppose that M is a d-dimensional local martingale.

Theorem 4.7. Let (H™)p>1 be a sequence of M-integrable predictable stochastic
processes such that each (H™ - M) is a uniformly integrable martingale and such
that the sequence of random wvariables ((H™ - M)oo)n>1 converges to a random
variable fo € L'(Q, F,P) with respect to the L'-norm; (or even only with respect
to the o (L, L>)) topology).

Then there is an M-integrable predictable stochastic process H® such that
H° - M is a uniformly integrable martingale and such that (H° - M) = fo.

Proof. If f,, converges only weakly to fo then we take convex combinations in
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order to obtain a strongly convergent sequence. We therefore restrict the proof to
the case where f,, converges in L'-norm to fy. By selecting a subsequence we may
suppose that ||f,||z1 < 1 for each n and that ||f, — fol|lz: < 47 ™. Let N be the
cadlag martingale defined as Ny = E[fo | F;]. From the maximal inequality for
L'-martingales it then follows that:

Psup|(H" - M), — Ny| > 27" <27™
t

The Borel-Cantelli lemma, then implies that

supsup [(H™ - M)¢| < 00 a.s..
t n

For each natural number k& we then define the stopping time T}, as:
T, =inf {t | there is n such that |(H™ - M){| > k}.

Because of the uniform boundedness in ¢ and n we obtain that the sequence T}
satisfies P[T}, < oo] — 0. Also the sequence T}, is clearly increasing. For each k and
each n we have that

I(H™ - M) lg2 <k + (H™ - M), || 1.

Since the sequence f,, = (H™ - M)__ is uniformly integrable (it is even norm conver-
gent), we have that also the sequence of conditional expectations, ((H™ - M), ), >,

is uniformly integrable and hence the sequence ((H™-M)Tx) is weakly rel-

n>1
atively compact in H!. Taking the appropriate linear combinations will give a
limit in H! of the form K* - M with K* supported by [0,7}] and satisfying
(K*.M) = NTx. We now take a sequence (km)m>1 such that | Nz, — fol <27™.
If we define

H° = K" + Z Kt ]']Tkm_l,Tkm]’

m>2

we find that H® - M is uniformly integrable and that (H° - M)y = fo.
q.e.d.

4.5. The proof of theorem D.

The basic ingredient is theorem C. Exactly as in M.Yor’s theorem we do not
have — a priori — a sequence that is bounded in H'. The lower bound w only
permits to obtain a bound for the L' norms and we need again stopping time
arguments. This is possible because of a uniform bound over the time interval,
exactly as in the previous part. The uniformity is obtained as in [DS94] lemma
4.5.
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Definition 4.8. We say that an M -integrable predictable process H is w- admis-
sible for some nonnegative integrable function w if H - M > —w, i.e. the process
stays above the level —w.

Remark 4.9. the concept of a-admissible integrands, where a > 0 is a deterministic
number, was used in the paper [DS94] where a short history of this concept is given.
The above definition generalizes the admissibility as used in [DS94] in the sense
that it replaces a constant function by a fixed nonnegative integrable function w.
The concept was also used by the second named author in [S94], Proposition 4.5.

Exactly as in [DS94] we introduce the cone

Ci,w = {f | there is a w — admissible integrand H such that f < (H - M)} .

Theorem 4.10. Let M be o R*-valued local martingale and w > 1 an integrable
function.

Given a sequence (H™),>1 of M-integrable real-valued predictable processes
such that

(H"-M)¢ > —w, for all n,t,
there are convexr combinations
K™ € conv{H" H",...},
and there is a super-martingale (V;)icr, ,Vo = 0, such that

lim lim (K"-M),=V; forte R, ,a.s.,

s3t,5€Qy VTP
and an M -integrable predictable process H® such that
((H°- M), —Vy)ier, is increasing.
In addition, H® - M is a local martingale and a super-martingale.

Before proving theorem D we shall deduce a corollary which is similar in
spirit to ([DS 94], th. 4.2) and which we will need in section 5 below. For a semi-
martingale S we denote by M¢(S) the set of all probability measures Q on F
equivalent to P, such that S is a local martingale under Q.
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Corollary 4.11. Let S be an R®- valued semi-martingale such that Me(S) # 0
and w > 1 a weight function such that there is some @ € M(S) with Eg[w] < c0.

Then the convez cone C4 ,, is closed in L°(Q, F,P) with respect to the topology
of convergence in measure.

Proof of corollary 4.11. As the assertion of the corollary is invariant under equiva-
lent changes of measure we may assume that the original measure P is an element
of M¢(S) for which Ep[w] < o0, i.e., we are in the situation of theorem C above.
As in the proof of theorem B we also may assume that S is in #!(P) and therefore
a P-uniformly integrable martingale.

Let
fn = (Hn 'S)oo —hn

be a sequence in C1 ., where (H"),>1 is a sequence of w — admissible integrands
and hy > 0. Assuming that (f,),>1 tends to a random variable fy in measure we
have to show that fo € C 4.

It will be convenient to replace the time index set [0, oo[ by [0, 0c] by closing S
and H"-S at infinity, which clearly may be done as the martingale (S;)icr, as well
as the negative parts of the supermartingales ((H™-S);):cr, are P-uniformly inte-
grable. Identifying the closed interval [0, oo] with the closed interval [0, 1], and iden-
tifying the processes S and H™ - S with process which remain constant after time
t = 1, we deduce from theorem D that we may find K™ € conv(H", H"*1,...), a
w — admissible integrand H® and a process (V;)ier + such that

(i) lim lim (K"-S), =V, as. fort € Ry

szit,se@+ n—eo

lim (K™ - S) oo = Vo,

n—oo
(ii) ((H°-8)y — Vi)teRyufoo} s increasing.
In particular ((K™-S)oo)n>1 converges almost surely to the random variable

Us, which is dominated by (H? - S)w.

As (fn)n>1 was assumed to converge in measure to fo we deduce that fo <
(HO . S)ooa ie. fo € Cl,w-
q.e.d.

To pave the way for the proof of theorem D we start with some lemmas.
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Lemma 4.12. Under the assumptions of theorem D there is a sequence of convex

combinations
K™ € conv{H™ H"*1 ...},

and a sequence (L™),>1 of w — admissible integrands and there are cadlag super-
martingales V = (Vi )ier, and W = (W;)ier, with W —V increasing such that

Vi= lim lim (K"- M), forte Ry, a.s.
sZ>t,s€Q+ n—oo

Wy=lim lim (L™ M), forte Ry, a.s.
sit,sEQ+ =00

and such that W satisfies the following mazimality condition: For any sequence
(L™)n>1 of w — admissible integrands such that

Wi= lim lim (L™ M),

s3t,5€Qy VTP
and W — W increasing we have that W = W.

Proof. By theorem 1.3 we may find K™ € conv{H",H"*! ...} such that, for
every t € Qy, the sequence ((K™ - M)¢)n>1 converges a.s. to a random variable
Vi. As w is assumed to be integrable we obtain that the process (V;)ico L isa
supermartingale and therefore its cadlag regularisation,

V= lim V, te Ry

sznf,sEQ_;_
is an a.s. welldefined cadlag supermartingale.

Let W denote the family of all cadlag super-martingales W = (W;);er,. such
that W —V is increasing and such that there is a sequence (L"), >1 of w—admissible
integrands such that

Wt = lim lim (Ln . M)s for t € .R+

s%t,sEQ.;. n—oo

is a.s. well-defined.

Introducing — similarly as in [K 96] — the order W! > W2 on W, if W1 —W,
is increasing, we may find a maximal element W € W, with an associated sequence
(L™)n>1 of w — admissible integrands.

Indeed, let (W®)qer be a maximal chain in W with associated sequences
of integrands (L*"),>1; then (W2 )acr is an increasing and bounded family of
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elements of L'(Q, F,P) and therefore there is an increasing sequence (e;)j>1 such
that (Wsd);>1 increases to the essential supremum of (W2 )aer. The cadlag super-
martingale W = lim; Wi is welldefined and we may find a sequence (L% ");>1,
which we reliable by (L™),>1, so that

Wy= lim  lim (L™ - M),.

sz>t,s€Q+ n—oo

Clearly W satisfies the required maximality condition
q.e.d.

Lemma 4.13. Under the assumptions of the preceding lemma 4.12 we have that
for T € R, the mazimal functions

((L™- M) = (L™ - M))7 =fggl(L"-M)t — (L™ - M)

tend to zero in measure as m, M — OO.

Proof. The proof of the lemma will use — just as in ([DS94] lemma 4.5) and [K 96]
— the “buy low - sell high” argument motivated by the economic interpretation
of L™ as trading strategies (see [DS94], remark 4.6).

Assuming that the assertion of the lemma is wrong there is T € Ry,a > 0

and sequences (ny,my)r>1 tending to oo such that

P [sup((L™ — L™*) - M) > a| > a.
t<T

Defining the stopping times
Ty =inf{t <T:((L™ — L™)-M); > a}
we have P[T}, <T] > a.

Define LF as
LF = L™ 11 11 + L™ 1y oo

so that L* is a w — admissible predictable integrand.

Denote by dj, the function indicating the difference between L™ - M and
L™ - M at time Ty, if Ty < 00, i.e.,

dy = (L™ — L™*) - M) 71, 1{1, <00}
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Note that, for t € R,

(L* - M)y = (L™ - M)elgery + (L™ - M) + d*)1gsmy

By passing to convex combinations 3777, ;L7 of L¥ we therefore get that,
for each t € Qy,

O oyl - M)y = (Do L™ - M)dyery + (O oy L™ - M) yysm,y + Df
i=k i=k J=k

where (Df)g>1 = (Z]Oi k0@ 1511 )k>1 is a sequence of random variables which
converges almost surely to a random variable D; so that (D¢)¢cq, is an increasing
adapted process which satisfies P[D7r > 0] > 0 by ([DS 94], lemma A1.1).

Hence (f/k)kzl is a sequence of w — admissible integrands such that, for all

t € Q,(L* - M), converges almost surely to W; = W; + Dy, and P[D7 > 0] > 0,
a contradiction to the maximality of W finishing the proof.

q.e.d.

Lemma 4.14. Under the assumptions of theorem D and lemma 4.12 there is a
subsequence of the sequence (L™),>1, still denoted by (L")n>1, and an increasing
sequence (Tj)j>1 of stopping times, Tj < j and P[T; = j] > 1 — 279, such that,
for each j, the sequence of processes ((L™ - M)Ti~),>1 is uniformly bounded and
the sequence (L™ - M)7i),,>1 is a bounded sequence of martingales in H' (P).

Proof. First note that, fixing j € N, C > 0 and defining the stopping times
U, =inf{t: |(L"- M) > C} N j,

the sequence ((L™ - M)U»),,>1 is bounded in H'(P). Indeed, this is a sequence of
super-martingales by [AS 92], hence

E[|(L" - M)y, |] < 2E[((L" - M)u,) ] < 2(C + E[w)),

whence
E[|A(L™ - M)y, |] < 2(C + Ew]) + C.

As the maximal function (L™ - M)y, is bounded by C + [A(L" - M)y, | we
obtain a uniform bound on the L'-norms of the maximal functions ((L"-M)}; Yn>1,
showing that ((L" - M)U"),> is a uniformly bounded sequence in H!(P).
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If we choose C' > 0 sufficiently big we can make P[U,, < j] small, uniformly
in n; but the sequence of stopping times (Up)n>1 still depends on n and we have
to replace it by just one stopping time 7); which works for all (L");>1 for some
subsequence (ny)r>1; to do so, let us be a little more formal.

Assume that Tp = 0,71, ...,Tj—1 have been defined as well as a subsequence,
still denoted by (L™)n>1, such that the claim is verified for 1,...,j — 1; we shall
construct T;. Applying lemma 4.13 to T = j we may find a subsequence (n)r>1
such that, for each k,

P [((L”w M) — (L™ - M) > 2—’“] < 9~ (k+i+2),

Now find a number C; € IR large enough such that
B[(@m - M); > 0] <276+
and define the stopping time T by

T; =inf{t : sup|(L™ - M)¢| > C; + 1} Aj
k

so that T; < j and
PITj=4]>1-27.

Clearly |(L™-M);| < Cj+1fort < T}, whence ((L"%-M)%5 ~)}>1 is uniformly
bounded.

We have that T; < U,, for each k, where Uy, is the stopping time defined
above (with C' = C;+1). Hence we deduce from the ' (P)-boundedness of ((L™ -
M)Yx)g>1 the H!(P)-boundedness of (L™ - M)Ti. This completes the inductive
step and finishes the proof of lemma 4.14.

q.e.d.

Proof of theorem D. Given a sequence (H™),>1 of w—admissible integrands choose
the sequences K™ € conv(H"™, H"*! ...) and L™ of w — admissible integrands and
the super-martingales V' and W as in lemma 4.12. Also fix an increasing sequence
(Tj)j>1 of stopping times as in lemma 4.14.

We shall argue locally on the stochastic intervals ]T;_1,T}]. Fix j € N and
let
L™l = L™y, 151
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By lemma 4.14 there is a constant C; > 0 such that (L™7),>; is a sequence
of (w + Cj;) — admissible integrands and such that (L™ - M),>1 is a sequence
of martingales bounded in H'(P) and such that the jumps of each L™J - M are
bounded downward by w — 2C};. Hence — by passing to convex combinations, if
necessary — we may apply theorem B to split L™/ into two disjointly supported
integrands
L™ =r[™J3 45L™J and we may find an integrand H%J supported by [Tj_1,T}]
such that

(i) Jim. (L™ = H*?) - M2 py = 0
(ii) (Zj)y = lim lim (°L™7 - M),
qit,q€@+ neo

where Z; is a well-defined adapted cadlag increasing process.

Finally we paste things together by defining H® = 373, H% and Z =
> %1 Zj- By lemma 4.12 we have that

W,= lim (L"-M),

sZ>t,s€Q+
is a well-defined super-martingale. As
Z=(H"-M)-W

is an increasing process and as (H°-M) is a local martingale and a super-martingale

by [AS 92] we deduce from the maximality of W that H? - M is in fact equal to

W. Hence (H® - M) — V is increasing and the proof of theorem D is finished.
g.e.d.

5. APPLICATION.

In this section we apply the above theorems to give a proof of the “Optional
Decomposition Theorem” due to N. El Karoui, M.-C. Quenez [KQ95], D. Kramkov
[K96], Follmer-Kabanov [FK95], Kramkov [K96a] and Follmer-Kramkov [FKr96].
We refer the reader to these papers for the precise statements and for the different
techniques used in the proofs.

We generalise the usual setting in finance in the following way. The process S
will denote an R%-valued semi-martingale. In finance theory, usually the idea is to
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look for measures QQ such that under QQ the process S becomes a local martingale.
In the case of processes with jumps this is too restrictive and the idea is to look
for measures QQ such that S becomes a sigma-martingale. A process S is called
a Q sigma-martingale if there is a strictly positive, predictable process ¢ such
that the stochastic integral ¢ - S exists and is a Q martingale. We remark that it
is clear that we may require the process ¢ - S to be an H! martingale and that
we also may require the process ¢ to be bounded (compare [DS 96]). As easily
seen, local martingales are sigma-martingales. In the local martingale case the
predictable process ¢ can be chosen to be decreasing and this characterises the
local martingales among the sigma-martingales. The concept of sigma martingale
is therefore more general than the concept of local martingale. The set M¢(S)
denotes the set of all equivalent probability measures Q on F such that S is a
Q-sigma-martingale. It is an easy exercise to show that the set M¢(S) is a convex
set. We suppose that this set is nonempty and we will refer to elements of M¢(S)
as equivalent sigma martingale measures. We refer to [DS96] for more details and
for a discussion of the concept of sigma martingales. We also remark that if S is
a semi martingale and if ¢ is strictly positive, bounded and predictable, then the
sets of stochastic integrals with respect to S and with respect to ¢-S are the same.
This follows easily from the formula H - S = % -(¢-9).

Theorem 5.1 (Optional Decomposition Theorem). Let S = (S;)icr, be an
R*-valued semi-martingale, such that the set M¢(S) # 0, and V = (V)icr, o
real valued semi-martingale, Vo = 0 such that, for each Q € M¢(S), the process V
s a Q-local-super-martingale.

Then there is an S-integrable R%-valued predictable process H such that (H -
S) —V is increasing.

5.2 Remark. The Optional Decomposition Theorem is proved in [KQ95] in the
setting of IR-valued continuous processes. The important — and highly non-trivial
— extension to not necessarily continuous processes was achieved by D. Kramkov
in his beautiful paper [K96]. His proof relies on some of the arguments from [DS94]
and therefore he was forced to make the following hypotheses: The process S is
assumed to be a locally bounded R%valued semi-martingale and V' is assumed to
be uniformly bounded from below. Later H. Follmer and Y. Kabanov [FK95] gave
a proof of the Optional Decomposition Theorem based on Lagrange-multiplier
techniques which allowed them to drop the local boundedness assumption on S.
Very recently Follmer and Kramkov, [FKr96] gave another proof of this result.

In the present paper our techniques — combined with the arguments of D.
Kramkov — allow us to abandon the one-sided boundedness assumption on the
process V' and to pass to the — not necessarily locally bounded — setting for the
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process S.

For the economic interpretation and relevance of the Optional Decomposition
Theorem we refer to [KQ95] and [K96].

We start the proof with some simple lemmas. The first one — which we state
without proof — resumes the wellknown fact that a local martingale is locally in
HL.

5.3 Lemma. For a P-local-super-martingale V we may find a sequence (T});>1 of
stopping times increasing to infinity and P-integrable functions (w;);>1 such that
the stopped supermartingales Vi satisfy

V| < w; a.s., for j € N.
q.e.d.

The next lemma is due to D. Kramkov ([K96], lemma 5.1) and similar to
lemma 4.12 above.

5.4 Lemma. In the setting of the Optional Decomposition Theorem 5.1 there is
o semi-martingale W with W — V' increasing, such that W is a Q-local-super-
martingale, for each Q € M®(S) and which is mazimal in the following sense: for
each semi-martingale W with W — W increasing and such that W is a Q-local-
super-martingale, for each Q € M*(S), we have W = W.

g.e.d.

Proof of the Optional Decomposition Theorem 5.1. For the given semi-martingale
V we find a maximal semi-martingale W as in the preceding lemma 5.4. We shall
find an S-integrable predictable process H such that we obtain a representation
of the process W as the stochastic integral over H, i.e.,

W=H-S
which will in particular prove the theorem.

Fix Qy € M*®(S) and apply lemma 5.3 to the Q)-local-super-martingale W to
find (T});>1 and w; € L*(Q,F, Q). Note that it suffices — similarly as in [K96] —
to prove theorem 5.1 locally on the stochastic intervals ]T;_1,T;]. Hence we may
and do assume that |W| < w for some Qp-integrable weight-function w > 1. Since
S is a sigma-martingale for the measure (), we can by the discussion preceding the
theorem 5.1, and without loss of generality, assume that S is an H!(Qo) martingale.
So we suppose that the weight function w also satisfies |S| < w, where |.| denotes
any norm on R
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Fix the real numbers 0 < u < v and consider the process *W? “starting at u
and stopped at time v”, i.e.,

UT/V —
Wi = Wirne = Winu,

which is a Q-local-super-martingale, for each Q € M¢(S), and such that |*W?| <
2w.

Claim 5.5. There is an S-integrable 2w — admissible predictable process “H"Y,
which we may choose to be supported by the interval Ju,v], such that

(H-S)oo = ("H-S), > f="W} = "W,

Assuming this claim for a moment, we proceed similarly as D. Kramkov
([K96], proof of th. 2.1.): fix n € N and denote by 7 (n) the set of time indices

T(n) ={3;:0<j<n2")

and denote by H™ the predictable process
n2™
H" = Z (7—1)2 H]2 ,
i>1

where we obtain ~D27"HJ2™" ag a 2w — admissible integrand as above with

u=(j—1)27" and v = j27". Clearly H" is a 2w — admissible integrand such that
the process indexed by 7 (n)

((H" . S)j2—n - jz—n)jzo,... ,n2n
is increasing.

By applying theorem D to the Qy-local martingale S — and by passing to
convex combinations, if necessary — the process

Wy= lim lim (H"-S),

s?t,s€Q+ n—00

is welldefined and we may find a predictable S-integrable process H such that
H - S — W is increasing; as W — W is increasing too, we obtain in particular that
H - S — W is increasing.

As H-S > W we deduce from [AS92] that, for each Q € M¢(S),H - S isa
@Q-local martingale and a Q-super-martingale. By the maximality condition of W
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we must have H - S = W thus finishing the proof of the Optional Decomposition
Theorem 5.1.

We still have to prove the claim. This essentially follows from corollary 4.11.

Let us define Ly to be the space of all measurable functions g such that £
is essentially bounded. This space is the dual of the space Liv_l((@o) of functions
g such that Eg,[w|g]] < oo. By the Banach-Dieudonné theorem or the Krein-
Smulian theorem (see [DS94] for a similar application), it follows from corollary
4.11 that the set

B ={h||eh| <w and eh € C4 2, for some ¢ > 0},

is a weak* closed convex cone in L$° (the set Ci 2, was defined in 4.8 above).
Now as easily seen, if the claim were not true, then the said function f is not
in B. Since B — Ly, C B we have by Yan’s separation theorem ([Y80]), that
there is a strictly positive function h € L} _, such that Eqg, [hf] > 0 and such that
Eg,[hg] < 0 for all g € B. If we normalise h so that Eg,[h] = 1 we obtain an
equivalent probability measure Q, dQ = hdQy such that Ep[f] > 0. But since S is
dominated by the weight function w, we have that the measure Q is an equivalent
martingale measure for the process S. The process W is therefore a local-super-
martingale under Q. But the density h is such that Eg[w] < oo and therefore
the process “W7?, being dominated by 2w, is a genuine super-martingale under Q.
However this is a contradiction to the inequality Eg[f] > 0. This ends the proof
of the claim and the proof of the optional decomposition theorem.

g.e.d.

5.6 Remark. Let us stress out that we have proved above that in theorem 5.1 for
each process W with W — V increasing, W a Q-local-super-martingale for each
Q € M¢(S) and W being maximal with respect to this property in the sense of
lemma 5.4, we obtain the semi-martingale representation W = H - S.

5.7 Remark. Referring to the notation of the proof of the optional decomposition
theorem and the claim made in it , the fact that the cone B is weak* closed in L
yields a duality equality as well as the characterisation of maximal elements in the
set of w-admissible outcomes. These results are parallel to the results obtained in
the case of locally bounded price processes. We refer to a our forthcoming paper
[DS96] for more details.
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