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Abstract. The theme of providing predictable criteria for absolute continuity and for mutual sin-
gularity of two density processes on a �ltered probability space is extensively studied, e.g., in the
monograph by J. Jacod and A. N. Shiryaev [JS]. While the issue of absolute continuity is settled
there in full generality, for the issue of mutual singularity one technical di�culty remained open
([JS], p210): \We do not know whether it is possible to derive a predictable criterion (necessary
and su�cient condition) for P

0

T
? PT , : : : ". It turns out that to this question raised in [JS] which

we also chose as the title of this note, there are two answers: on the negative side we give an easy
example, showing that in general the answer is no, even when we use a rather wide interpretation of
the concept of \predictable criterion". The di�culty comes from the fact that the density process of
a probability measure P with respect to another measure P

0 may suddenly jump to zero.
On the positive side we can characterize the set, where P

0 becomes singular with respect to P |
provided this does not happen in a sudden but rather in a continuous way | as the set where the
Hellinger process diverges, which certainly is a \predictable criterion". This theorem extends results
in the book of J. Jacod and A. N. Shiryaev [JS].

1. Introduction

We adopt the notation of [JS], which means that we are given two �xed probability measures
P; P 0 on a �ltered space (
; (Ft)t2R+;F) with right continuous �ltration and F =

W
tFt, Q =

P+P 0

2 , z and z0 denote the density processes of P and P 0, relative to Q. We de�ne the process

(Yt)t�0 by Yt =
p
ztz

0
t and let h = h(12 ) denote the Hellinger process of order 1

2 , i. e., the
predictable increasing process h such that h0 = 0 and

(1) M = Y + Y� � h

is a Q-martingale. For a stopping time T we denote by PT and P 0T the restrictions of P and P 0

to FT . We shall investigate the following question:

1.1 Problem. Under which conditions can we assert that P 0T � PT or P 0T ? PT? More gener-
ally, can we �nd a Hahn-decomposition of 
 into two sets, such that P 0T is absolutely continuous
(resp. singular) with respect to PT on these sets?

The answer to this question should be in terms of a \predictable criterion". By this concept
we mean that the answer should be in terms of the values of a predictable process, such as the
Hellinger process h, evaluated at time T .

Before proceeding to answering this question we pause for some remarks: In order to avoid
irrelevant complications at t = 0 we suppose that P0 � P 00. We de�ne the stopping time S as the
�rst moment when either z or z0 vanishes,

(2) S = infft : zt = 0 or z0t = 0g:

Noting that (1) determines the Hellinger process h only up to time S, we de�ne h to be
constant after S, i. e., we consider the \Hellinger process in the strict sense" in the terminology
of [JS]. We also introduce the Hellinger process h(0)t of order 0 as the compensator of the process
1I[[S;1[[ .

Now we review the known results: there is a very satisfactory answer to our problem as regards
the question of absolute continuity:

Key words and phrases. continuity and singularity of probability measures, Hellinger processes, stochastic
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1.2 Theorem. ([JS], Thm IV 2.6) In the above setting we have, for every stopping time T ,

P 0T � PT , P 0(GT ) = 1;

where GT = fhT <1g\ fh(0)T = 0g.

Note that the set GT is de�ned in terms of the values of the two predictable processes h and
h(0) at time T . To compare this result with the situation of mutual singularity below we make the
following (trivial) reformulation: denote by H the predictable, increasing, [0;1]-valued process
Ht = ht +1� h(0)t (where 1 � 0 = 0). Then

P 0T � PT , P 0(HT <1) = 1;

For the question of mutual singularity (or, more generally, for the question of the Hahn-
decomposition) the situation is more subtle, the di�culty arising from the fact that zt may jump
to zero as we shall presently see. Of course, we can always get rid of this di�culty by shifting it
into the assumptions of a theorem: we thus obtain the subsequent result which directly follows
from ([JS], lemma IV 2.12 a), b) and d)):

1.3 Theorem. In the above setting suppose in addition that

P 0T
�
S � T and z

S�
> z

S
= 0

�
= 0:

Then the restriction of P 0T to fhT < 1g is absolutely continuous with respect to PT while the
restriction of P 0T to fhT =1g is singular with respect to PT .

In particular
P 0T ? PT , P 0(hT =1) = 1:

Our main task in this note is to analyze what we still can say when we don't use the simplifying
assumption that zt is not allowed to jump to zero; unfortunately there is no hope for a complete
analogue to theorem 1.2, as the following elementary example, which will be constructed in section
3 below, shows.

1.4 Example. There is a �ltered space (
; (Ft)2t=0;F) equipped with two probability measures
P and P 0 with the following property:

There is no [0;1]-valued predictable process H such that, for every stopping time T ,

P 0T ? PT , P 0(HT =1) = 1:

In fact 
 may be chosen to consist only of 4 elements.
Despite this discouraging example we can formulate an interesting positive result, where we

shift the problem, that zt may jump to zero from the assumption (as in theorem 1.3 above) into
the conclusion of the theorem:

1.5 Theorem. Under the assumption that P0 � P 00 we have, for every stopping time T ,

(3) fS � T; z
S�

= 0g = fhT =1g P 0�a:s:

The set on the left hand side may be interpreted as the set where P 0T is singular with respect to
PT , but in such a way that, as t% S � T , this singularity was not obtained by a \sudden jump",
but rather in a continuous way. The assertion of the theorem is that | even in the presence
of jumps of zt to zero | it is precisely this set which is characterized by the divergence of the
Hellinger process.

Remark. We tried to formulate Thm 1.5 in a manner that suits best for comparison with the
results in [JS], but there are other ways to state it. Actually, the assertion of Thm 1.5 is equivalent
to the assertion

(30) fz
S�

= 0g = fhS =1g P 0�a:s:
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To verify (3)) (30), we take T := S, and (30)) (3) follows from

fS � T; z
S�

= 0g = fS � T; hS =1g = fS � T; hT =1g = fhT =1g P 0�a:s:

where we used the constancy of h from time S on and the fact that hT <1 for T < S, P 0�a:s:,
which follows e.g. from ([JS], Thm IV 1.18).

Theorem 1.5 and example 1.4 answer the question raised in [JS] right after corollary IV 2.8
and also sharpen the assertions of ([JS], lemma IV 2.12). Our proof is quite di�erent from the
methodology used in [JS]: it uses a close monitoring of those paths of zt, for which zS� = 0, and
an extension of the Borel-Cantelli lemma due to P. L�evy. Although the proof is elementary it is
somewhat labourious and technical.

The paper is organized as follows: In section 2 we give the proof of theorem 1.5 and in section
3 we construct example 1.4.

2. Proof of theorem 1.5

The inclusion f0 < S � T; z
S�

= 0g � fhT =1g, P 0-a.s. is proved in ([JS], lemma IV 2.12a).
The reverse inclusion can be deduced from ([JS], lemma IV 2.12b+d) in the case, where z isn't
allowed to jump to 0 up to time T , i. e., under the assumption of theorem 1.3

(4) P 0T
�
0 < S � T; z

S�
> z

S
= 0

�
= 0:

It remains to prove

(5) f0 < S � T; z
S�

= 0g � fhT =1g P 0�a:s:

without assuming (4). As our proof will rely heavily on the fact that the local martingale M
given by (1) is a Q-martingale, we are aiming at Q-almost sure results. So the �rst thing to do
is replace (5) by

(50) f0 < S � T; z
S�

= 0 or z0
S�

= 0g � fhT =1g Q�a:s:;

which is indeed equivalent to (5). We need the following lemma:

Lemma 2.1. Let (At)t2[0;1[ be an adapted increasing process on a �ltered space (
; (Ft);F ; IP),
(Wn)n2Nan increasing sequence of stopping times, such that for all n 2 N

(6) IP
�
Wn�1 <1; IP

�
AWn

�AWn�1
� �jFWn�1

�
< �

�
� 2�n; for some � > 0:

Then

(7)
1\
n=1

fWn <1g � fA1 =1g IP�a:s:

Proof. Let Bn = fWn < 1g; B =
T1
n=1fWn < 1g; En = fAWn

� AWn�1
� �g and �n =

IP
�
EnjFWn�1

�
: If IP [B] = 0, (7) is trivially satis�ed, so we assume IP [B] = a > 0. Since

Bn & B, we have

IP [�n < �jB] �
IP [�n < �;Bn]

IP [B]
� a�12�n:

The Borel-Cantelli lemma yields IP [�n � � i:o:jB] = 1, therefore

B �

(
nX
k=1

�k !1

)
IP�a:s:
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By Levy's extension of the Borel-Cantelli lemmas (cf. [S], p518 or [W], Thm 12.15)(
1X
k=1

�k =1

)
=

(
1X
k=1

1IEk =1

)
IP�a:s:;

and the observation AWn
� �

Pn

k=1 1IEk completes the proof. �

Remark. Given � > 0 and a nonnegative random variable X, de�ned on a probability space
(
;F ; IP), we point out the following simple implications

IE [X ^ 2] � 3� ) IP [X ^ 2 � �] � � ) IE [X ^ 2] � �2;

which justify replacing hypothesis (6) by the equivalent hypothesis

(60) IP
�
Wn�1 <1; IE

�
(AWn

� AWn�1
) ^ 2jFWn�1

�
< �0

�
� 2�n; for some �0 > 0:

We now proceed to the proof of theorem 1.5. First we de�ne an increasing sequence of stopping
times (Un)n2Nby

U0 = 0; Un = inf

�
t : Un�1 � t � T; zt 6= 0; z0t 6= 0;

�
zt

z
Un�1

;
z0t

z0
Un�1

�
6�
�
1
2 ; 2

��
; for n � 1

where inf ; :=1. This de�nition ensures, that

(8) 0 � Y�� � 2YUn�1 Q-a.s. for stopping times � 2]]Un�1; Un]]

and that on the set fUn <1g we have
z
Un

z
Un�1

� 1
2 or

z
Un

z
Un�1

� 2 or
2�z

Un

2�z
Un�1

� 1
2 or

2�z
Un

2�z
Un�1

� 2.

Therefore
z
Un
2 C(z

Un�1
) Q-a.s. on the set fUn <1g;

where

(9) C(x) :=
�
0; x2 _ 2x� 2

�
[
�
2x^ 1 + x

2 ; 2
�
:

If Q[
T1
n=1fUn <1g] > 0, then for any �0 > 0

(10) Q[z
Un
2 ]0; �0[[ ]2� �0; 2[

��Un <1 ]! 1; as n!1;

since on the set
T1
n=1fUn < 1g the sequence (z

Un
)n2Nconverges Q-a.s. to a random variable,

which takes values in the two element set f0; 2g (other values are not possible by the de�nition
of (Un)n2N), and since Q[Un <1]! Q[

T1
n=1fUn <1g] as n!1. In particular, we have

n
0 < S � T; z

S�
= 0 or z0

S�
= 0

o
=

1\
n=1

fUn <1g Q-a.s.,

so (50) and thus theorem 1.5 will follow from lemma 2.1, if we can establish the truth of the
subsequent lemma 2.2. �

Lemma 2.2. There exists  > 0 such that

Q
�
Un�1 <1; IE

�
(hUn � hUn�1 ) ^ 2jFUn�1

�
< 2

�
! 0

as n!1.

Proof. Suppose to the contrary that, for any 0 <  < 1, there is a constant � = �() > 0 and for
in�nitely many n (depending on ) an FUn�1 -measurable set En�1 = En�1() � fUn�1 < 1g,
such that Q [En�1] � � and on En�1 we have

(11) Q
�
hUn � hUn�1 � jFUn�1

�
< :
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For given small �0 > 0 (to be chosen later), we can and will assume by passing again to a
subsequence and invoking (10), that

(12) z
Un�1

2 ]0; �0[[ ]2� �0; 2[

on an FUn�1 -measurable subset of En�1 of Q-probability at least �

2 , which we again denote by
En�1.

We then de�ne a sequence of stopping times (Vn)n2Nby

Vn = inf
�
t : Un�1 � t; ht � hUn�1 � 

	
;

so that (11) implies

(13) IE
�
1IfVn<UngjFUn�1

�
<  Q-a.s. on En�1:

The de�nition of (Vn)n2Nensures, that

(14) hVn � hUn�1 < 2 Q-a.s. ;

since the jumps of h are bounded by 1 (see, e. g. [JS], IV 1.30).
In order to get grip of h, we employ the Doob-Meyer decomposition of the supermartingale Y

given by (1)
Y =M � Y� � h

where h is the Hellinger process of order 1
2 in the strict sense and M is a uniformly integrable

martingale (cf. [JS], IV 1.18). Taking the di�erence Yt � YUn�1 , and dividing by YUn�1 , we
formally arrive at

Yt

YUn�1
= 1 +

1

YUn�1

�
Mt �MUn�1

�
�

"�
Y�

YUn�1
� h

�
t

�

�
Y�

YUn�1
� h

�
Un�1

#
:

This can be looked upon as the Doob-Meyer decomposition of the supermartingale

Y
(n)
t := 1Ift�Un�1g + 1Ift>Un�1g

Yt

YUn�1

on the set ft > Un�1g, which we rewrite as

Y (n) =M (n) � Y
(n)
� � h(n);

with M
(n)
t := 1 + 1

YUn�1

�
Mt �MUn�1

�
1Ift>Un�1g and h

(n)
t :=

�
ht � hUn�1

�
1Ift>Un�1g. The

martingaleM (n) is again uniformly integrable and starts at 1. In the sequel all expectations are
taken with respect to Q. We are going to derive a contradiction in computing expectations at
time Un ^ Vn conditional on FUn�1 :

IE
h
Y

(n)
Un^Vn

jFUn�1

i
= IE

h
M

(n)
Un^Vn

jFUn�1

i
� IE

h
Y
(n)
� � h

(n)
Un^Vn

jFUn�1

i
:

From corollary 2.1 below (which is a kind of \uniformly strict" Jensen inequality for the concave

function f(x) =
p
x(2� x)) it follows that for properly chosen �0 (cf. (12)) there exists � > 0

such that on the set En�1 we have Q-a.s.

IE
h
Y

(n)
Un
jFUn�1

i
� 1� �+ �Q

�
Un =1jFUn�1

�
:

This yields

IE
h
Y
(n)
Un^Vn

jFUn�1

i
= IE

h
Y

(n)
Un
jFUn�1

i
� IE

h
Y

(n)
Un

1IfVn<UngjFUn�1

i
+ IE

h
Y
(n)
Vn

1IfVn<UngjFUn�1

i
�
�
1� �+ �Q

�
Un =1jFUn�1

��
+ 2;

where the estimate of the third term employs (8) and (13).
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Furthermore (8), (13) and (14) yield

IE

��
Y
(n)
� � h

�
Un^Vn

�
�
Y
(n)
� � h

�
Un�1

���FUn�1
�
� 2IE

�
(hUn^Vn � hUn�1 )jFUn�1

�
= 2IE

�
(hVn � hUn�1 )1IfVn<UngjFUn�1

�
+ 2IE

�
(hUn � hUn�1 )1IfVn�UngjFUn�1

�
� 4 + 2

also Q-a.s. on the set En�1. Thus we obtain Q-a.s. on the set En�1

1� �+ �Q
�
Un =1jFUn�1

�
� 1� 8;

which, if  is small enough ( = �
10 will do), can only be true for �nitely many n, since

Q
�
Un =1; Un�1 <1jFUn�1

�
! 0 in Q-probability. This is the desired contradiction. �

In order to have a means of discussing the problem of replacing h in Theorem 1.5 by certain
Hellinger-like processes (we will address this problem in more detail in the remark after corollary
2.1), we introduce some classes of concave functions, and prove a lemma, which is a \uniformly
strict" version of Jensen's inequality for one of these classes of functions.

De�nition 2.1. Let F0 be the class of concave functions f : [0; 2] ! R
+, satisfying f(0) = 0

and

(15) 1�
a

2
� 2�b > 0; 1 + b� 2a > 0;

where we denote

(16) a = lim sup
x!0

xf 0(x)

f(x)
; b = lim inf

x!0

xf 0(x)

f(x)
:

Let moreover F2 = ff(�) : f(2 � �) 2 F0g and F = F0 \ F2.

Note, that this classes are not empty. The set of admissible values of (a; b) in (15) is in fact
a subset of ]0; 1[2 containing the set f(a; b) : 0 < a = b < 1g. Practical members of F are the
functions f(x) = x�(2 � x)�, where 0 < �; � < 1.

Lemma 2.3. Let f 2 F0. Then there exist �f > 0 and �f > 0 such that for all � 2]0; �f ] the
inequality

IE [f(X)]

f(�)
� 1� �fp

holds for any random variable X ranging in [0; 2] and satisfying

IEX = �; IP [X 2 D(�)] = p > 0;

where D(�) =]0; 2[n]�2 ; 2�[.

Proof. Since f is concave, the a�ne function `(x) = f(�)+f 0(�)(x��) satis�es f(x) � `(x) and
f(�) = `(�). On the set D(�) we even have f(x) � `(x)�m(�) with

m(�) = min
�
`(�

2
) � f(�

2
); `(2�)� f(2�)

�
:

Therefore

IE [f(X)] � IE
�
`(X) �m(�)1IfX2D(�)g

�
= `(�) �m(�)IP [X 2 D(�)] = f(�) �m(�)p:

It remains to show that m(�)
f(�)

is bounded away from 0 uniformly as � ! 0: By (16) we have

�f 0(�) � af(�) (1 + o(1)) and f 0(�)
f(�) �

b
�
(1 + o(1)). Integrating the latter inequality from �

2 to �

yields ln f(�)
f( �

2
) � b ln 2 (1 + o(1)) and thus f(�2 ) � 2�bf(�) (1 + o(1)). Therefore, as �! 0,

`(
�

2
) � f(

�

2
) = f(�) �

�

2
f 0(�)� f(

�

2
) �

�
1�

a

2
� 2�b + o(1)

�
f(�);

and similarely `(2�) � f(2�) � (1 + b� 2a + o(1)) f(�). We have derived

m(�)

f(�)
� min(1�

a

2
� 2�b; 1 + b� 2a) + o(1):

Choosing now �f = 1
2 min(1 � a

2 � 2�b; 1 + b� 2a) and �f such, that the function g(x) implied
by the symbol o(1) in the last inequality satis�es jg(x)j � �f for x 2]0; �f ] makes the proof
complete. �



A PREDICTABLE CRITERION 7

Corollary 2.1. There exist � > 0 and �0 > 0 such that for all � 2]0; �0] [ [2 � �0; 2[ and for
any random variable X ranging in [0; 2] and satisfying

IEX = �; IP [X 2 C(�)] = p > 0;

where C(�) is given by (9), we have

IE

"s
X(2�X)

�(2� �)

#
� 1� �p:

Proof. This follows from Lemma 2.3 and the fact that f(2 � x) = f(x).

Remark. For given concave function f we can de�ne a supermartingale Yt = f(zt) = Mt + At,
and ask, if the increasing process H, de�ned via Y = M � Y� � H and required to be 0 at 0
and constant after S (cf.(2)), can replace the Hellinger process h of order 1

2
in Theorem 1.5, i.e.,

satis�es

(17) fYS� = 0g = fHS =1g Q�a:s:

for any Q{martingale (zt)
1
t=0 with z0 = 1 and 0 � zt � 2. Note that the Hellinger process h(12)

(resp. h(�), for 0 < � < 1) corresponds to the choice f(z) = z�(2� z)1��.

One obvious condition, f must satisfy, is f(0) = f(2) = 0. Otherwise Ht, given by
R t
0
dAs
Ys�

,

would be �nite Q�a:s: on at least one of the sets fz
S�

= 0g resp. fz
S�

= 2g.
Another necessary condition for (17) is f 0(0) = f 0(2) = 1. To see this, take zt = 1 + Bt^S ,

where (Bt) is a standard Brownian motion with respect to Q and S = infft � 0 : jBtj = 1g,
and take f(x) = 1 � jx � 1j, which satis�es f 0(0) = 1. The Tanaka formula then reveals that
Ht = Lt^S , where L denotes the local time at 0 of (Bt). Now S < 1 Q-a.s. and therefore also
HS <1 Q-a.s., but Y

S�
= f(z

S�
) = 0 Q-a.s.

The methods of our paper su�ce to prove the �-part of (17) for concave functions f belonging
to the class F. In particular equations (8) and (14) remain true for f 2 F. The �-part of (17)
for f 2 F can be proved as in ([JS], lemma IV 2.12 a). Thus, in (17), H can in particular be
one of the Hellinger processes of order �, for 0 < � < 1. However, there are concave functions
satisfying f(0) = f(2) = 0 and f 0(0) = f 0(2) = 1, but not contained in F, such as f(x) =

x(2� x) ln(x
e
) ln(2�x

e
) and f(x) =

�
ln( x2e ) ln(

2�x
2e )

��1
.

We do not know whether for general concave functions f the conditions

f(0) = f(2) = 0; f 0(0) = f 0(2) =1

are also su�cient for (17) to hold, and leave this question for future research.

3. Example 1.4

Here we write down the example refered to in 1.4. Let (
; (Ft)2t=0;F) and two probability
measures P; P 0 be given by


 =f!1; !2; !3; !4g;

F0 =f;;
g;

F1 =�(f!1g; f!2g; f!3; !4g);

F2 =F = �(f!1g; f!2g; f!3g; f!4g);

P (!1) = 2P (!3) =
2
3 ;

P 0(!2) = 2P 0(!4) =
2
3
:

In this case we have S = 1If!1; !2g+ 2 � 1If!3; !4g.
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Claim. There is no [0;1]-valued predictable process H such that, for every stopping time T ,

P 0T ? PT , P 0(HT =1) = 1:

Proof. Assume that there is. Then H1 � const <1, P 0-a.s., since F0 is trivial and P 01 6? P1. On
the other hand HS � 1, P 0-a.s., since PS ? P 0S . Now on the set fS = 1g, which has positive
P 0-measure, we have conicting de�nitions of H1. This contradicts our assumption. �
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