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Abstract. L. Dubins, J. Feldman, M. Smorodinsky and B. Tsirelson gave an example of an
equivalent measure Q on standard Wiener space such that each adapted Q-Brownian motion
generates a strictly smaller �ltration then the original one. The construction of this important
example is complicated and technical.

We give a variant of their construction which di�ers in some of the technicalities but
essentially follows their ideas, hoping that some readers may �nd our presentation easier to
digest than the original papers.

1. Introduction

This paper grew out of the author's attempt to understand the construction of the
admirable paper [DFST 96] as well as its extensions given in[FT 96] and [F 96].

Here is their main result:

1.1 Theorem. (Dubins, Feldman, Smorodinsky, Tsirelson):
Let B = (Bt)t�0 be a standard Brownian motion de�ned on a stochastic base (
;F ;P)
and its natural �ltration (Ft)t�0.

For " > 0, there is a probability measure Q on F , equivalent to P, with 1 � " � dQ
dP �

1 + " and such that for every (Ft)t�0-adapted process B0 = (B0t)t�0 which is a standard
Brownian motion under Q (relative to the �ltration (Ft)t�0), the process B0 generates a
strictly smaller �ltration than (Ft)t�0.

We refer to [SY 81], [RY 91], p. 336, [RY 94] p. 210 and [DFST 96] for an account
on the signi�cance of this theorem, which settled a 15-year-old question related to the
Girsanov-transformation.

Let us also mention that recently B. Tsirelson [T 97] (see also [EY 98] and [BEKSY 98])
gave another example of a �ltered probability space (
;F ; (Ft)t�0;P), namely the space
generated by a Walsh-martingale, which displays similar features as the present example
(
;F ; (Ft)t�0; Q): both examples are �ltered probability spaces of \instant dimension 1"
and not generated by a Brownian motion; the example in [T 97] is even robust under
an equivalent change of measure (while the present one, of course, is not). These two
examples are, nevertheless, di�erent in spirit: roughly speaking in the present example the
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argument is based on the independence of the increments of Brownian motion while the
example from [T 97] is based on the di�erence of Walsh-martingales and Brownian motion,
when these processes hit zero.

The author frankly admits that he found it quite hard to understand the construction
in [DFST 96]. After having paved his own way through the construction he thought that
it might be helpful to the probability community to write up his understanding of the
construction in order to give a somewhat di�erent presentation of the example. However,
no claims of originality are made (we just translate the ideas from [DFST 96] into a slightly
alternative language) and we are not even sure whether our construction is \simpler" (of
course, it seems simpler to the author; as usual in Mathematics, everything that you know
how to do, seems simple to you). There are some technical di�erences in the construction
of the present paper, as compared to [DFST 96]: �rstly, we include the strengthening of the
construction obtained in [FT 96], i.e., the control on the L1-norm rather than on the L2-

norm of the Radon-Nikodym-derivative dQ
dP , from the very beginning into our construction

(at little extra cost). This is natural, as the splitting into two steps (as in [DFST 96] and
[FT 96]) apparently is only due to the way these authors gradually improved their example.
Secondly we isolate a crucial step of the construction of [DFST 96] into the elementary
combinatorial lemma 2.7 below, which | at least to the author | also allows for some
intuitive understanding.

As regards the �nal strengthening by J. Feldman [F 96] we don't have any contribution:
let us just note that this strengthening can be put on top of our example exactly in the
same way as it was originally put on top of the example from [DFST 96] and [FT 96].

We have made an e�ort to keep our presentation entirely selfcontained; but, of course,
we strongly recommend the reader to have a copy of [DFST 96] at hand.

My sincere thanks go to J. Feldman and M. Smorodinsky for a pleasant conversation
on this topic and in particular to M. Smorodinsky for an inspiring talk in June 1997 at the
Schr�odinger Institute, Vienna, as well as to M. Emery and M. Yor for making me familiar
with the content of the papers [T 97], [EY 98] and [BEKSY 98] and in particular to M.
Emery for a lot of help and advice in the �nal redaction of the paper. After the completion
of a �rst version of the present paper, M. Emery also has given a further variant of the
construction of [DFST 96] as well as some more general results [BE 99].

2. The Example

Let X = (X0; X1; � � � ) be a real valued stochastic process de�ned on a stochastic base
(
;F ;P). We shall look at the process \in reverse order", i.e., we de�ne the �ltration
(Fn)

1
n=0 to be

Fn = �(Xn; Xn+1; � � � ):

In the present paper we always shall assume that X is tail-trivial, i.e., that the sigma-
algebra F1 =

T1
n=0 Fn only consists of sets of probability zero or one.

The subsequent de�nition describes the way in which the independence of Brownian
increments will come into play. As we have learned from M. Smorodinsky the idea behind
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this de�nition goes back to P. L�evy (in [V 95], p. 756 it is referred to as the L�evy-Bernstein-
Rosenblatt problem):

2.1 Definition (compare [S 98]). A parametrisation of the process X is given by a

two-dimensional process ( ~X;Y ) = ( ~Xn; Yn)
1
n=0 de�ned on a stochastic base (~
; ~F; ~P) and

a sequence (fn)
1
n=1 of deterministic Borel-measurable functions de�ned on [0; 1]�R

N such
that

(i) the processes X and ~X are identical in law,
(ii) the sequence (Yn)

1
n=0 is a sequence of i.i.d. random variables uniformly distributed

on [0; 1] and such that Yn is independent of ( ~Xi)
1
i=n+1,

(iii) the equation

~Xn�1(!) = fn�1(Yn�1(!); ~Xn(!); ~Xn+1(!); � � � )

holds true, for each n � 1 and almost each !.

We call the parametrisation generating if, in addition, for each n, the random variable
Xn is �(Yn; Yn+1; � � � )-measurable.

We have been somewhat pedantic in the above de�nition, as regards the joining of
the processes X and Y , by distinguishing between the processes X and ~X to have a safe
ground for the subsequent, rather subtle, considerations about the sigma-algebras which
are generated by Y and ~X rather than by Y and X (the latter being, strictly speaking,
de�ned on di�erent stochastic bases). But, if no confusion can arise, we shall follow the

common habit in probability theory and write X instead of ~X.
Assertion (iii) requires that, for each n, there is a deterministic rule, prescribed by the

functions fn�1, such that, for almost each !, we may determine the value Xn�1(!) from
the history (Xn(!); Xn+1(!); � � � ) and the \innovation" Yn�1(!), the latter coming from
a sequence of independent random variables. It is easy to see that any real-valued process
X (in fact, any process taking its values in a polish space) admits a parametrisation. The
notion of a generating parametrisation captures the intuitive idea of a parametrisation
which is chosen in such a way that we can determine (a.s.) the value of Xn(!) by only
looking at the history (Yn(!); Yn+1(!); � � � ) of the \innovations".

It is rather obvious that a process X admitting a generating parametrisation has to be
tail-trivial: indeed, suppose to the contrary that there is a set A 2 F1 =

T1
n=0Fn with

0 < P[A] < 1 and suppose that X admits a generating parametrisation: then the set A
is in �(X0; X1; � � � ) and is independent of (Yn)

1
n=0 and therefore not in �(Y0; Y1; � � � ), a

contradiction to the requirements of de�nition 2.1.
But the converse does not hold true, i.e., a tail-trivial process X does not, in general,

allow a generating parametrisation. This highly non-trivial and remarkable fact was �rst
proved by A. Vershik [V 70], [V 73]. We refer to ([DFST 96], p. 885) and [S 98] for a
presentation of this example.

In fact, the construction given in [DFST 96] and its presentation in the present paper is
just an example displaying the phenomenon of a tail trivial f�1;+1g-valued process X not
admitting a generating parametrisation and such that, in addition, the process (Xn)

1
n=0

is obtained from an i.i.d. sequence ("n)
1
n=0 of Bernoulli-variables de�ned on (
;F ;P) by

putting a slightly altered equivalent measure Q on (
;F).
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We start by giving an easy motivating example which should help to develop some
intuition for the concept of a generating parametrisation (we have learned it from M.
Smorodinsky and found it illuminating despite its simplicity). As the example is not
needed for the sequel the reader may just as well skip it.

Example. (compare [V 95], p. 756) Let 0 � � < 1
2 and de�ne the f�1;+1g-valued

Markov process (Xn)
1
n=0 via the transition probabilities

P
�
Xn�1 = +1jXn = +1

�
=

1

2
+ �;

P
�
Xn�1 = �1jXn = +1

�
=

1

2
� �;

P
�
Xn�1 = +1jXn = �1

�
=

1

2
� �;

P
�
Xn�1 = �1jXn = �1

�
=

1

2
+ �;

for each n. Clearly this well-de�nes a stationary tail-trivial Markov process (Xn)
1
n=0.

A possible way to de�ne a parametrisation of this process goes as follows: let (Yn)
1
n=0

be an i.i.d. sequence of random variables uniformly distributed in [0; 1]. De�ne, for m 2 N ,

the process
�
X

(m)
n

�m
n=0

by letting X
(m)
m = 1 and, for n = 1; : : : ;m,

X
(m)
n�1 = fn�1(Yn�1; X

(m)
n ) =

8>>>><
>>>>:

1I(0; 1
2
+�)(Yn�1)� 1I( 1

2
+�;1)(Yn�1)

if X
(m)
n = 1

1I(0; 1
2
��)(Yn�1)� 1I( 1

2
��;1)(Yn�1)

if X
(m)
n = �1

One easily checks that, for n � 0 �xed, the sequence of random variables
�
X

(m)
n

�1
m=n

converges almost surely to a random variable Xn and the sequence (Xn)
1
n=0 satis�es the

above Markov transition probabilities as well as the relations

Xn�1 = fn�1(Yn�1; Xn) =

8>>><
>>>:

1I(0; 1
2
+�)(Yn�1)� 1I( 1

2
+�;1)(Yn�1)

if Xn = 1

1I(0; 1
2
��)(Yn�1)� 1I( 1

2
��;1)(Yn�1)

if Xn = �1

Let us verify explicitly that this parametrisation is generating: let n 2 N and ! 2 
 be
such that Yn(!) =2 (12 � �;

1
2 + �). In this case Yn(!) determines already Xn(!), regardless

of the history (Xn+1(!); Xn+2(!); � � � ). But from now on we know everything about the
trajectory (Xn(!); Xn�1(!); � � � ; X0(!)) by only looking at (Yn(!); Yn�1(!); � � � ; Y0(!)):
the number Xn�1(!) then is a deterministic function of the numbers Yn(!) and Yn�1(!),
and so on.
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More formally, for each n, the sigma-algebra �(Yn; Yn+1; � � � ) contains the sigma-algebra
�(Xn) on the set

An =
[
i�n

�
Yi =2

�
1

2
� �;

1

2
+ �

��
:

Noting that P[An] = 1, for each n 2 N , we deduce that Xn is �(Yn; Yn+1; � � � )-
measurable, which readily shows that the above parametrisation is generating. �

We now give the basic example which relates the assertion of theorem 1.1 with the
notion of a generating parametrisation.

2.2 Lemma. Let (Bt)t�0 be a Brownian motion de�ned on (
;F ;P) equipped with its
natural �ltration (Ft)t�0, and let Q be a probability measure on F equivalent to P.

Fix a sequence (tn)
1
n=0 strictly decreasing to zero and de�ne the process (Xn)

1
n=0 by

letting

Xn =

�
+1 if Btn �Btn+1 � 0

�1 if Btn �Btn+1 < 0

Suppose that there is an (Ft)t�0-adapted process (B0t)t�0 de�ned on (
;F) which is a
Brownian motion under Q, and such that (B0t)t�0 generates the �ltration (Ft)t�0.

Then the process X = (Xn)
1
n=0 under the measure Q admits a generating parametrisa-

tion.

Proof. Let ( ~Yn)
1
n=0 be the sequence of random variables, de�ned on (
;F ; Q),

~Yn =
�
B0t � B0tn+1

�
tn+1�t�tn

; n = 0; 1; � � �

where ~Yn takes its values in the polish space C[tn+1; tn]. As the law of ~Yn is di�use we

may �nd Borel-isomorphisms (in)
1
n=0 from C[tn+1; tn] to [0; 1] such that Yn = in � ~Yn is

uniformly distributed on [0; 1], which furnishes an i.i.d. sequence (Yn)
1
n=0 of uniformly

distributed [0; 1]-valued random variables under the measure Q.
Note that, for each n 2 N , the sigma-algebras �((Yk)k�n) and �((B

0
t)0�t�tn) coincide,

and by assumption are equal to Ftn .
It follows that, de�ning the random variables 'n and  n by

'n =
�
(Bt � Btn+1)tn+1�t�tn ; Xn+1; Xn+2; : : :

�
 n = (Yn; Xn+1; Xn+2; : : :)

taking their values in C[tn+1; tn]� f�1;+1gN and [0; 1]� f�1;+1gN respectively, 'n and
 n generate the same sigma-algebras (up to null-sets) on 
, if we equip the respective
target spaces with their Borel sigma-algebras. In particular, we may �nd a nullset N in

 such that, for !; !0 2 
nN , we have 'n(!) = 'n(!

0) i� we have  n(!) =  n(!
0). We

infer that we may de�ne a Borel map Fn = Fn(yn; xn+1; xn+2; : : : ) from [0; 1]�f�1;+1gN

to C[tn+1; tn] � f�1;+1gN inducing 'n �  
�1
n (to be precise: we de�ne Fn by letting

Fn �  n(!) = 'n(!), for ! 2 
nN , and extend Fn in a Borel-measurable (but otherwise
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arbitrary) way from the range  n(
) to the entire space [0; 1]� f�1;+1gN). De�ning fn
to be the sign of the �rst coordinate (i.e., the C[tn+1; tn]-coordinate) of the function Fn,
evaluated at tn, we have found the parametrisation

Xn = fn(Yn; Xn+1; Xn+2; : : : ):

The sequence (fn)
1
n=0 therefore de�nes a parametrisation of the process (Xn)

1
n=0 and it

is clear that the parametrisation is generating, as by hypothesis
�(Yn; Yn+1; : : : ) = Ftn , for each n 2 N . �

Remark. We have used the concept of generating parametrisation, as in [S 98], instead
of the concept of substandard processes, i.e., processes admitting a standard extension, as in
[DFST 96], because we �nd the former notion more intuitive. Both concepts are equivalent
and may be mutually translated one into the other (compare also [S 98]).

The message of lemma 2.2 is that the proof of theorem 1.1 may be reduced to a coin-
tossing game, indexed by the negative numbers.

2.2a Corollary. In order to prove theorem 1.1 it su�ces to give a proof for the subse-
quent assertion:

Denote by � the Haar probability measure on the Borel sigma-algebra B of X =
f�1;+1gN and by "n : X ! f�1;+1g the n'th coordinate projection. For " > 0, there is

a probability measure � on X with 1� " � d�
d� � 1 + " and such that the process ("n)

1
n=1,

as de�ned on (X;B; �), does not admit a generating parametrisation.

Proof. Using the notation of lemma 2.2 consider X = (Xn)
1
n=1 de�ned there as a

measurable map from (
;F) to (X;B). Assuming that there is a measure � on X satisfying
the above assertion de�ne the measure Q on F by letting

dQ

dP
(!) =

d�

d�
(X(!)); for ! 2 
:

This de�nition is done in such a way that the process ("n)
1
n=1, de�ned on (X;B; �) and

the process (Xn)
1
n=1, de�ned on (
;F ; Q) are identical in law. By assumption, ("n)

1
n=1

does not admit a generating parametrisation under �, hence (Xn)
1
n=1 does not admit

one either under Q. It follows from lemma 2.2 that (Ft)t�0 cannot be generated by a
Q-Brownian motion (B0t)t�0. �

The remainder of the paper will be dedicated to construct a measure � on X satisfying
the assertion of the above corollary.

The principal component of the construction is given in the subsequent lemma.
Let us �x some notation: for n 2 N , we denote by Xn the space f�1;+1gn and by �n,

or just �, if there is no danger of confusion, the uniform probability distribution on Xn. By
("i)

n
i=1 we denote the coordinate functions on Xn. Note that ("i)

n
i=1 is an i.i.d. sequence

of Bernoulli-variables if we equip Xn with the probability measure �n.
A little notational warning: in the subsequent lemma the time i = 1; � � � ; p will \run

into the future" as opposed to the setting above, and | when speaking about a stopping
time | we shall refer to the �ltration (Fi)

p
i=0, where Fi = �("1; � � � ; "i).
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2.3. Lemma. Let p 2 N ; 1
8 > � > �=4 > � > 0, and de�ne the density process

Z = (Zi)
p
i=0 on (Xp; �p) by Z0 = 1,

Zi=Zi�1 = 1 + �"i; i = 1; � � � ; p

and the stopping time T by

T = inf
�
1 � i � p : Zi =2 [1� (�� �(1 + �)); 1 + (�� �(1 + �))]

	
^ p:

Denote by �̂ and � respectively the probability measures on Xp with Radon-Nikodym
derivatives

d�̂

d�
= Zp and

d�

d�
= ZT :

We then have:

(i) �[T < p] < 4p�2

�2 ,

(ii) 1� � � d�
d� � 1 + �

(iii) for every pair (f�i )
p
i=1 and (f�i )

p
i=1 of parametrisations of the coordinate process

("1; � � � ; "p) under the measures � and � respectively we have that

P
�
(f�i )

p
i=1 = (f�i )

p
i=1

�
�
�
1�

�

2

�p
+

4p�2

�2

Before aboarding the proof we want to clarify | again somewhat pedantically |
the precise meaning of assertion (iii): we equip 
 = Xp � [0; 1]p = f�1;+1gp � [0; 1]p

with measure P = � 
 m, where m denotes the p-fold product of Lebesgue-measure on
[0; 1]. We denote by X1; � � � ; Xp; Y1; � � � ; Yp the projections to the coordinates of 
 and by
(x1; � � � ; xp; y1; � � � ; yp) the elements of 
. By the parametrisations (f�i )

p
i=1 and (f�i )

p
i=1

we mean deterministic functions f�i (yi; xi�1; � � � ; x1) and f�i (yi; xi�1; � � � ; x1) such that
the processes (f�i (Yi; Xi�1; � � � ; X1))

p
i=1 and (f�i (Yi; Xi�1; � � � ; X1))

p
i=1 are versions of the

coordinate processes ("i)
p
i=1 de�ned on (Xp; �) and (Xp; �) respectively.

Proof of Lemma 2.3. (i) Writing the de�ning equation of (Zi)
p
i=0 as

Zi+1 � Zi = Zi�"i

we see that Z is a martingale with respect to the measure � and that

kZT � 1k2L2(�) = kZT
p � Z0k

2
L2(�)

=

pX
i=1

kZT
i � ZT

i�1k
2
L2(�)

� p[�(1 + (�� �(1 + �)))]2 � 2p�2:
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Here we denoted by ZT = (ZT
i )

p
i=0 the stopped process ZT = (Zi^T )

p
i=0. Noting that on

fT < pg we have that jZT � Z0j > �� �(1 + �) we get

�[T < p] �
2p�2

(�� �(1 + �))2
�

4p�2

�2
:

(ii) is rather obvious as we have de�ned T in such a way that ZT is certain to stay
within [1� �; 1 + �].

(iii) We �rst reason with the measure �̂ instead of � and we shall write f �̂i for a
parametrisation of ("i)

p
i=1 under �̂. Note that, for every 1 � i � p and every x1; � � � ; xi�1

we have that

P[f �̂i = 1jX1 = x1; � � � ; Xi�1 = xi�1] =
1 + �

2

and P[f�i = 1jX1 = x1; � � � ; Xi�1 = xi�1] =
1

2

Hence, conditionally on each setfX1 = x1; : : : ; Xi�1 = xi�1g the event ff �̂i = f�i g
depends only on Yi and has probability at most 1 � �

2 . Using the independence of the
random variables Y1; : : : ; Yi we therefore get

P[f �̂i = f�i jX1; : : : ; Xi�1; Y1; : : : ; Yi�1] � 1�
�

2

which gives

P[(f �̂j )
i
j=1 = (f�j )

i
j=1] � (1�

�

2
)P[(f �̂j )

i�1
j=1 = (f�j )

i�1
j=1]

and therefore
P[(f �̂i )

p
i=1 = (f�i )

p
i=1] � (1�

�

2
)p:

To pass from �̂ to � note that on the set fT = pg the measures � and �̂ coincide which,
using (i), readily implies the inequality

P
�
(f�i )

n
i=1 = (f�i )

n
i=1

�
�
�
1�

�

2

�p
+

4p�2

�2
: �

The message of the above lemma is quite counter-intuitive and surprising, at least to
the author (when choosing the parameters such that the bounds in (i) and (iii) are close
to zero and in (ii) close to one): on one hand side (ii) asserts that the random variables
(X1; � � � ; Xp) = ("1; � � � ; "p) have a very similar joint distribution under � and under �; on
the other hand (iii) implies that if we try to parameterise the process (X1; � � � ; Xp) under
� and � respectively then, for each parametrisation (f�i )

p
i=1; (f

�
i )

p
i=1, there are only few !'s

such that f�i (Yi(!); Xi�1(!); � � �X1(!)) = f�i (Yi(!); Xi�1(!); � � �X1(!)), for i = 1; � � � ; p.
Loosely speaking: although the result of the random variable (X1; � � � ; Xn) is likely to be
the same under � as well as under � we cannot materialise this probable coincidence by a
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sequential pathwise procedure parametrised by independent increments on the coordinates
i = 1; � � � ; p.

A similar interpretation of the above lemma goes as follows: There is a Borel-measurable
transformation T : (Xp � [0; 1]; �
m) �! Xp such that T (�
m) = � and such that

P[T (X1; � � � ; Xp; Y ) = (x1; � � � ; xp)jX1 = x1; � � � ; Xp = xp] � 1� �;

for each (x1; � � � ; xp) 2 Xp, where P denotes �
m. This is just a straightforward reinter-

pretation of the assertion d�
d� � 1� �. In particular we have

P[T (X1; � � � ; Xp; Y ) = (X1; � � � ; Xp)] � 1� �:

On the other hand, (iii) can be interpreted as the fact that for every Borel-measurable
transformation T : Xp � [0; 1]p �! Xp which maps � 
 mp to � and in addition, is
�(X1; � � � ; Xi�1; Yi) �! �(X1; � � � ; Xi) measurable, for each i = 1; � � � ; p, we have

P [T (X1; � � � ; Xp; Y1; � � � ; Yp) = (X1; � � � ; Xp)] �
�
1�

�

2

�2
+

4p�2

�2
:

At the danger of being repetitive, let us rephrase this once more in terms of a mind
experiment: suppose you are told the laws � and � as above and you are given a machine
which produces an i.i.d. sequence (Y1; � � � ; Yp) of [0; 1]-valued uniformly distributed random
variables. De�ne (w.l.g.) the functions

f�i (Yi) =

�
+1 if Yi 2 [0; 12 ]

�1 if Yi 2 ]12 ; 1]

so that (Xi)
p
i=1 = (f�i (Yi))

p
i=1 is a fair sequence of p coin tosses. Now you are asked

to de�ne a (deterministic) mechanism which associates to every outcome (x1; � � � ; xp) =
(X1(!); � � � ; Xp(!)), possibly using the information of the underlying random numbers
(y1; � � � ; yp) = (Y1(!); � � � ; Yp(!)), a \manipulated" outcome (�x1; � � � ; �xp) = T (x1; � � � ; xp;

y1; � � � ; yp) such that the process ( �X1; � � � ; �Xp) has law � and, in addition, this applica-

tion of \corriger la fortune" should only be applied rather seldomly, i.e. P[( �X1; � � � �Xp) 6=
(X1; � � � ; Xp)] should be small. The question is: can you do this? The answer depends on
the interpretation of what we mean by \deterministic mechanism". If we are allowed to �rst
wait until we know the entire realisation (x1; � � � ; xp), the answer is yes, as the map T con-

structed above, (�x1; � � � ; �xp) = T (x1; � � � ; xp; y) satis�es P[( �X1; � � � ; �Xp) 6= (X1; � � � ; Xp)] <
� (as random source Y we may, e.g., take the fractional part of the random variable 2Y1).
But if we are con�ned to make our choice \in real time" (compare ([T 97], def. 1.1 and
the subsequent discussion) for a precise de�nition of this notion), i.e., we have to decide
whether we let �xi = xi or �xi 6= xi after having only seen the outcomes x1; � � � ; xi�1 and
using the information yi, then the answer is no: assertion (iii) above implies that for
each such rule (fi(yi; xi�1; � � � ; xi))

p
i=1 producing a process ( �Xi)

p
i=1 under the law �, the

probability that we have to change xi into �xi 6= xi, for at least one i, is close to one.

For the proof of theorem 1.1 we shall apply the above lemma in a slightly more technical
form which we describe in the next lemma.
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2.4 Lemma. Let p; �; � be as in lemma 2.3 above and suppose we are given in addition
0 < � < 1.

Let (�i)
p
i=1; (�

0
i)
p
i=1 be two elements in f�1;+1gp such that

#
�
i : �i 6= � 0i

	
� �p:

De�ne two density processes Z;Z 0 by letting Z0 = Z 00 = 1 and

Zi=Zi�1 = 1 + �i�"i; Z 0i=Z
0
i�1 = 1 + � 0i�"i

and two stopping times T and T 0 by

T = inff1 � i � p : fZi =2 [1� (�� �(1 + �)); 1 + (�� �(1 + �))]g ^ p

T 0 = inff1 � i � p : fZ 0i =2 [1� (�� �(1 + �)); 1 + (�� �(1 + �))]g ^ p

and by �; �̂; �0; �̂0 the measures with densities

d�̂

d�
= Zp;

d�

d�
= ZT ;

d�̂0

d�
= Z 0p;

d�0

d�
= Z 0T 0 :

We then have

(i) �[T < p; T 0 < p] < 8p�2

�2
,

(ii) 1� � � d�
d� � 1 + � and 1� � � d�0

d� � 1 + �,

(iii) for every pair (f�i )
p
i=1 and (f�

0

i )pi=1 of parametrisations of the coordinate process
("1; � � � ; "p) under the measures � and �0 respectively we have that

P
�
(f�i )

p
i=1 = (f�

0

i )pi=1
�
� (1� �)�p +

8p�2

�2

The proof of lemma 2.4 is analogous to that of 2.3 and therefore skipped.

We now indicate for which values of the parameters p; �; �; � we shall apply lemma 2.4
in our subsequent inductive construction indexed by k = k0; k0 + 1; � � � ; in the sequel we
shall (almost) always remain the following relations between the integers k; n and p:

n = 2k

p = 2k�1 = n=2:

This rather peculiar notation comes from the fact that we want to stick as close as
possible to the notation in [DFST 96], who used the symbols k and n in a similar way as
we do and, on the other hand, we want to avoid constant use of the notation k � 1 and
n=2 for quantities which will constantly be used.
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2.5 Corollary. For k 2 N we shall choose

p = pk = 2k�1;

� = �k = p
� 1

4

k ;

� = �k = k�2;

� = �k = k�32�k=2:

Using these parameters in lemma 2.4 we obtain, for k su�ciently large, the estimates

(ii) 1� k�2 � d�
d�

� 1 + k�2 and 1� k�2 � d�0

d�
� 1 + k�2

(iii) P[(f�i )
p
i=1 = (f�

0

i )pi=1] � 5k�2:

Proof. We have to estimate the quantities (1��)�p and 8p�2

�2 in assertion (iii) of lemma
2.4:

(1���)
��p� = (1�k�32�k=2)2

k�1�2�
k�1
4 � (1�2�k=2)2

3k
4 = ((1�2�k=2)2

k=2

)2
k=4

� e�2
k=4

and
8p�2

�2
=

8k�62k�1 � 2�k

k�4
= 4k�2: �

We have used in the above proof the symbol � to describe an approximate equality and
we shall freely continue to do so when it is clear that the asymptotic approximations work
good enough to prove the desired estimates.

We now can formulate the result which parallels the \Fundamental Lemma" of ([DFST
96], p. 894):

2.6 Fundamental Lemma. For k large enough, there is a family (�j)
22n

j=1 = (�j)
22

k+1

j=1

of probability measures on Xn = X2k such that

(ii) 1� k�2 �
d�j
d�

� 1 + k�2; j = 1; � � � ; 22n;

(iii) for every pair j 6= j0 and parametrisations (f
�j
i )ni=1 and (f

�j0
i )ni=1 of the coordinate

process (X1; � � � ; Xn) on Xn under the measures �j and �j0 respectively, we have

P

h
(f

�j
i )ni=1 = (f

�j0

i )ni=1

i
� 6k�2:

Of course, the idea to prove the fundamental lemma is to apply lemma 2.4 and corollary
2.5, where we let n = p (in contrast to our above agreement on notation p = n=2; the
reason why we �nally have to take p = n=2 will soon become clear): we would like to �nd
22n many di�erent sequences �i(j)

n
i=1 taking their values in f�1;+1g, where 1 � j � 22n,

such that, for every �xed pair j 6= j0, we have, for at least n3=4 many i's, that �i(j) 6= �i(j
0).

We advise the reader to convince her- or himself that | if such a choice (�i(j))
n
i=1)

22n

j=1

11



were indeed possible | it were straightforward to deduce the fundamental lemma from
lemma 2.4.

However, life is not always as nice and easy as we would like it to be: there is no sequence
(�i(�))

n
i=1 of f�1;+1g-valued functions on a set of cardinality 22n such that, for j 6= j0, we

have �i(j) 6= �i(j
0) for at least n3=4 many i's. In fact, such a sequence (�i(�))

n
i=1 cannot

even separate the points of a set of cardinality 22n (it needs 2n functions to do this job);
hence there always will be some j 6= j0 such that �i(j) = �i(j

0), for all i = 1; � � � ; n.
So we have to proceed in a more sophisticated way: note that | in spite of the above

sad news | for a typical choice of j 6= j0 there will be approximately n=2 many (i.e., much
more than the required n3=4 many) i's such that �i(j) 6= �i(j

0) if we take (�i)
n
i=1 to be an

independent sequence of functions de�ned on (X2n; �2n) assuming the values +1 and �1
with probability 1

2
(we now identify the set fj : 1 � j � 22ng with X2n equipped with

measure �2n). The basic idea is to consider not only one sequence (�i)
p
i=1 (from now on

we are generous and use only p = n
2 many functions) but a large collection ((�ri )

p
i=1)

2p

r=1 of
such sequences, which we may think of as applying an i.i.d. sequence (�i)

p
i=1 as above to

2p many random permutations of the set X2n. If we do this it seems quite intuitive that
for the overwhelming majority of pairs j 6= j0 we have that for most of the 1 � r � 2p we
have �ri (j) 6= �ri (j

0) for at least n3=4 many i's.
The subsequent combinatorial lemma, whose proof is based on the above ideas, shows

that we even can replace the term for the overwhelming majority of pairs j 6= j0 by the
term for each pair j 6= j0.

2.7 Combinatorial Lemma. Letting p = 2k�1 and n = 2k, for k su�ciently large,
there is a family ((�ri (�))

p
i=1)

2p

r=1 of f�1;+1g-valued functions de�ned on the set X2n =
f�1;+1g2n such that, for each pair j 6= j0 in X2n, we have

#fr : #fi : �ri (j) 6= �ri (j
0)g � n3=4g

2p
� 1� p�1=2:

The proof of the lemma relies on elementary combinatorics and is somewhat lengthy.
Also we suspect that there are much stronger results known in the combinatorial literature
(but not known to the author). For these reasons we banned the proof of the combinatorial
lemma 2.7 to the appendix.

Proof of the Fundamental Lemma 2.6. We shall de�ne the measures (�j)
22n

j=1 on

Xn by de�ning the density processes (Zj
i )

n
i=1 with respect to the measure � on Xn.

For the �rst p = n=2 coordinates, we don't do anything! We simply let

Zj
i = 1; for i = 1; � � � ; p; j = 1; � � � ; 22n:

The �rst p = n=2 coordinates are only used to create 2p many atoms in �(X1; � � � ; Xp)
de�ned by fX1 = �1; � � � ; Xp = �1g, for all choices of �1, where X1; � � � ; Xp denote the
�rst p coordinate functions on Xn. We enumerate these atoms by I1; � � � ; Ir; � � � ; I2p .

Identifying the set fj : 1 � j � 22ng with X2n apply lemma 2.7 to choose the functions
(�ri (j))

p
i=1 satisfying

#fr : #fi : �ri (j) 6= �ri (j
0)g � n3=4g

2p
� 1� p�1=2:

12



Now de�ne, for 1 � j � 22n, and p � i < n,

�
Zj
i+1=Z

j
i

�
�Ir = 1 + �ri (j)�"i; r = 1; � � � ; 2p

where from now on the parameters p; �; �; � are understood to denote the parameters
pk; �k; �k; �k de�ned in corollary 2.5. We again stop the density processes at time

Tj = inf
�
1 � i � n : Zj

i =2 [1� (�� �(1 + �)); 1 + (�� �(1 + �))]
	
^ n

and de�ne
d�j
d�

= Zj
Tj
:

Assertion (ii) of the fundamental lemma now follows from assertion (ii) of corollary 2.5.
To prove (iii) �x j 6= j0: on at least (1�p�1=2)2p many of the atoms Ir the (renormalized)

restrictions of �j and �j0 to the atom Ir satis�es the hypotheses of lemma 2.4 and corollary

2.5. Hence, for any pair of parametrisations (f
�j
i )ni=1 and (f

�j0

i )ni=1 of the coordinate
process (X1; � � � ; Xn) under the measures �j and �j0 respectively we have

P[(f
�j
i )ni=1 = (f

�j0

i )ni=1j(X1; � � � ; Xp) 2 Ir] � 5k�2

for at least (1� p�1=2)2p = (1� 2�
k�1
2 )2p many r0s. Hence

P[(f
�j
i )ni=1 = (f

�j0

i )ni=1] � 5k�2 + 2�
k�1
2

which shows assertion (iii) and �nishes the proof of the Fundamental Lemma. �

Proof of Theorem 1.1. Similarly as in [DFST 96] we only have to paste the in-
gredients together which are provided by the Fundamental lemma, in order to construct
a probability measure � on X = f�1;+1gN satisfying the requirements of corollary 2.2a:
choose k0 to be large enough such that, for k � k0, the assertions of the Fundamental
Lemma hold true and such that

1Y
k=k0

(1 + k�2) < 1 + " and
1Y

k=k0

(1� 6k�2) >
3

4
;

where 1
2 > " > 0 is taken from the statement of Corollary 2.2a.

Let X be the compact space

X =
1Y

k=k0

X2k =
1Y

k=k0

f�1;+1g2
k

;

and de�ne, for k � k0, the Markov transition probabilities (�xk+1)xk+12X2k+1 to be the
family of probability measures on X2k given by the Fundamental Lemma 2.6, where we

13



identify the set fj : 1 � j � 22
k+1

g with the set fxk+1 : xk+1 2 X2k+1g by an arbitrary
bijection.

Denote by Vxk+1(xk) the Radon-Nikodym derivative of �xk+1 with respect to Haar mea-
sure �2k on X2k , i.e.

Vxk+1 =
d�xk+1
d�2k

;

and by Z the density function on X,

Z(x) =
1Y

k=k0

Vxk+1(xk)

where x = (xk)
1
k=k0

2 X. By assertion (ii) of the fundamental lemma 2.6 and the above
choice of k0 we have kZ � 1k1 < " and the measure � on X de�ned by

d�

d�
= Z

is the unique probability measure on the Borel sets of X inducing the transition probabilities
(�xk+1)xk+12X2k+1 .

We still have to show that the coordinate process on X, which we now denote by X,
under the measure � does not admit a generating parametrisation, which will �nish the
proof of theorem 1.1 by corollary 2.2a. So, �x a parametrisation

��
~Xk;i

�2k
i=1

�1
k=k0

=
��
fk;i(Yk;i; ~Xk;i+1; : : : ; ~Xk;2k ; ~Xk+1;1; : : : )

�2k
i=1

�1
k=k0

:

of the process X, where we now are careful to write ~X instead of X (compare de�nition
2.1 and the subsequent discussion). Assuming that the parametrisation is generating let
us work towards a contradiction.

To alleviate notation, we write yk and xk (resp. Yk and Xk or ~Xk if we refer to random

variables) for the elements yk = (yk;i)
2k

i=1 and xk = (xk;i)
2k

i=1 in X2k , and fk for the X2k -

valued function fk = (fk;i)
2k

i=1. We then may write the parametrisation as

( ~Xk)
1
k=k0 =

�
fk(Yk; ~Xk+1; ~Xk+2; : : : )

�1
k=k0

;

with the interpretation, that the components (fk;i)
2k

i=1 are de�ned inductively (for i =
2k; 2k � 1; : : : ; 1) by the above more explicit formula, letting xk;i = fk;i(yk;i; xk;i+1; : : : ,
xk;2k ; xk+1; : : : ).

To further alleviate notation, note that by the construction of the measure � on X the
random variable ~Xk = fk(Yk; ~Xk+1; ~Xk+2; : : : ) is independent of ~Xk+2; ~Xk+3; : : : , condi-

tionally on ~Xk+1. We therefore may assume w.l.g. that the parametrisation is of the
form

~Xk = fk(Yk; ~Xk+1); k = k0; k0 + 1; : : : :

14



We now de�ne, similarly as in [S 98], inductively the Borel functions (gk)
1
k=k0

by

gk0(yk0 ; xk0+1) =fk0(yk0 ; xk0+1)

gk0+1(yk0 ; yk0+1; xk0+2)=gk0(yk0 ; fk0+1(yk0+1; xk0+2))

...

gk(yk0 ; : : : ; yk; xk+1) =gk�1(yk0 ; : : : ; yk�1; fk(yk; xk+1))

so that, for each k, the random variable gk(Yk0 ; : : : ; Yk; ~Xk+1) equals the random variable
~Xk0 a.s.; the function gk describes how we may determine the random variable ~Xk0 from

the \past" ~Xk+1 and the \innovations" Yk; Yk�1; : : : ; Yk0 .

Claim. For k � k0 and xk+1 6= x0k+1, where xk+1 and x
0
k+1 are �xed elements of X2k+1 ,

we have

~P
�
gk(Yk0 ; : : : ; Yk; xk+1) 6= gk(Yk0 ; : : : ; Yk; x

0
k+1)

�
>

kY
j=k0

�
1� 6j�2

�
>

3

4
;

where ~P denotes, as in de�nition 2.1, the probability under which (Yk)
1
k=k0

is an i.i.d.
sequence uniformly distributed on [0; 1].

To verify the claim we proceed inductively on k = k0; k0 + 1; : : : : for k = k0 the claim
follows from the construction and assertion (iii) of the Fundamental Lemma 2.6. Now
suppose that the claim holds true for k � 1; applying assertion (iii) of the Fundamental
Lemma again we obtain that, for xk+1 6= x0k+1,

~P
�
fk(Yk; xk+1) 6= fk(Yk; x

0
k+1)

�
> 1� 6k�2:

Applying the inductive hypothesis on all pairs (xk; x
0
k); xk 6= x0k in Xk that are assumed

by (fk(Yk; xk+1); fk(Yk; x
0
k+1)) we have proved the above claim.

Now we shall use the assumption that the parametrisation (fk)
1
k=k0

is generating to

obtain the desired contradiction: if ~Xk0 is �(Yk0 ; Yk0+1 ; : : : )-measurable we may �nd k � k0
and a Borel function G(yk0 ; : : : ; yk) such that

~P
h
~Xk0 = G(Yk0 ; : : : ; Yk)

i
>

7

8
;

or, written di�erently,

~P
h
gk(Yk0 ; : : : ; Yk;

~Xk+1) = G(Yk0 ; : : : ; Yk)
i
>

7

8
:

As, for each xk+1 2 X2k+1 , we have (1� ") � 2�2
k+1

� ~P[ ~Xk+1 = xk+1] � (1 + ")2�2
k+1

,

and (Yk0 ; : : : ; Yk) is independent of ~Xk+1 under P, it follows that there are at least two
elements xk+1 6= x0k+1 in X2k+1 such that
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~P
�
gk(Yk0 ; : : : ; Yk; xk+1) =G(Yk0 ; : : : ; Yk)

�
>

3

4
;

and ~P
�
gk(Yk0 ; : : : ; Yk; x

0
k+1) =G(Yk0 ; : : : ; Yk)

�
>

3

4
;

which implies

~P
�
gk(Yk0 ; : : : ; Yk; xk+1) = gk(Yk0 ; : : : ; Yk; x

0
k+1)

�
>

1

2
:

This contradiction to the above claim �nishes the proof of theorem 1.1. �

Appendix

We now prove the combinatorial lemma 2.7. We consider the space X = Xp2p =

f�1;+1gp2
p

= f�1;+1g2
k�122

k�1

equipped with uniform distribution P = �. We denote
by x = ((xri )

p
i=1)

2p

r=1 the elements of X and by ((�ri )
p
i=1)

2p

r=1 the coordinate functions.

A.1 Lemma. For k large enough, p = 2k�1; n = 2k, and �xed x0 2 X, the set

A =

(
x 2 X : there are more than p�1=22pmany r0s for which

there are less than n3=4 many i0s with �ri (x0) 6= �ri (x)

)

satis�es �[A] < 2�2
p

.

Proof of lemma A.1. We may assume w.l.g. that x0 = (1; 1; � � � ; 1) so that �ri (x0) 6=
�ri (x) i� �

r
i (x) = �1.

Claim. For �xed 1 � r � 2p and

Ar = fx : for less than n3=4many i0s we have �ri (x) = �1g

we have
P[Ar] � 2�p=2:

To show the claim we �rst estimate the probability of the set

Br = fx : for exactly n3=4many i0s we have �ri (x) = �1g

(assuming that n3=4 is an integer). Using the estimate
�
n
k

�
� nk we get

P[Br] =

�
p

n3=4

�
2�p � 2�p(p)(2p)

3=4

= (2�1p2
3=4p�1=4)p:
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Noting that the term in the bracket tends to 1
2 , as p increases, we obtain

P[Br] � 2�
2p
3 ; for k � k0:

Finally we can estimate

P[Ar ] = (2p)3=4P[Br] � 2�p=2; for k � k0;

which proves the claim.
Using the assertion of the claim we can estimate the probability of the event

B =

(
x 2 X : there are precisely p�1=22p many r0s for which

there are less than p3=4 many i0s with �ri (x) = �1

)
:

Applying the inequality
�
n
k

�
� ( enk )

k we obtain

P[B] �

�
2p

p�1=22p

�
� P[Ar]

p�1=22p

�

�
e

p�1=2

�p�1=22p

�
�
2�p=2

�p�1=22p

=
�
ep1=22�p=2

�p�1=22p
� 2�p

1=22p :

This allows us to estimate

P[A] � 2p � P[B]

� 2p � 2�p
1=22p

=
�
(2p)2

�p

2�p
1=2
�2p

:

Noting that, for k tending to in�nity, the term in the outer bracket tends to zero, and
therefore is eventually less than 1

2 , we �nished the proof. �

Proof of lemma 2.7. Let X = Xp2p and ((�ri )
p
i=1)

2p

r=1 be as above and carry out the
following inductive procedure: choose an arbitrary element x1 2 X and remove from X the
set

A(x1) =

(
x 2 X; x 6= x1 : there are more than p�1=22p many r0s for which

there are less than p3=4 many i0s with �ri (x1) 6= �ri (x)

)
:

The remaining set XnA(x1) has probability bigger than 1� 2�2
p

and therefore is non-
empty, so that we can choose x2 2 XnA(x1).

Now remove the set A(x2), which is de�ned similarly, and choose x3 2 XnfA(x1) [
A(x2)g. Continuing in an obvious way we may continue the procedure to obtain 22n = 24p

many elements (xj)
22n

j=1 before this procedure stops. (In fact we could even obtain in this

way 22
p

many elements xj , which shows in particular how far the assertion of lemma 2.7

is from being sharp). Identifying the points (xj)
22n

j=1 with X2n = f�1; 1g2n and restricting

the functions ((�ri )
p
i=1)

2p

r=1, to this set, the proof of lemma 2.7 now is complete. �
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