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Abstract

This paper accompanies a previous one [KS99] by D. Kramkov and the
present author. While in [KS99] we considered utility functions U : R+ → R

satisfying the Inada conditions U ′(0) = ∞ and U ′(∞) = 0, in the present
paper we consider utility functions U : R → R which are finitely valued, for
all x ∈ R, and satisfy U ′(−∞) =∞ and U ′(∞) = 0. A typical example of this
situation is the exponential utility U(x) = −e−x.

In the setting of [KS99] the following crucial condition on the asymptotic

elasticity of U , as x tends to +∞, was isolated: lim supx→+∞
xU ′(x)
U(x)

< 1. This
condition was found to be necessary and sufficient for the existence of the
optimal investment as well as other key assertions of the related duality theory
to hold true, if we allow for general semi-martingales to model a (not necessarily
complete) financial market.

In the setting of the present paper this condition has to be accompanied
by a similar condition on the asymptotic elasticity of U , as x tends to −∞,
namely, lim infx→−∞

xU ′(x)
U(x)

> 1. If both conditions are satisfied — we then say
that the utility function U has reasonable asymptotic elasticity — we prove an
existence theorem for the optimal investment in a general locally bounded semi-
martingale model of a financial market and for a utility function U : R→ R ,
which is finitely valued on all of R; this theorem is parallel to the main result
of [KS99]. We also give examples showing that the reasonable asymptotic
elasticity of U also is a necessary condition for several key assertions of the
theory to hold true.
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1 Introduction

The present work accompanies the previous paper [KS99] by D. Kramkov and
the author. For the motivation and history of the utility maximization as well
as for references and notation we refer in the sequel to [KS99] without further
notice.

In the present paper the setting differs from that of [KS99] in the following
respect: we consider a utility function U : R→ R, which is defined and finitely
valued everywhere on the real line; in addition we make the usual assumptions
that U is smooth (i.e. continuously differentiable), increasing, strictly concave
and s.t.

U ′(∞) := lim
x→∞

U ′(x) = 0 and U ′(−∞) := lim
x→−∞

U ′(x) =∞. (1)

As in [KS99] the financial market is modeled by a d-dimensional semi-
martingale S = ((Sit)1≤i≤d)0≤t≤T describing the discounted price process of d
risky traded assets. For the bond price process we let Bt ≡ 1. In the present
paper we also assume that the semi-martingale S is locally bounded and this
assumption will be crucial for the present methodology (see remark 2.6 below).

Definition 1.1 A probability measure Q ∼ P (resp. Q � P ) is called an
equivalent (resp. absolutely continuous) local martingale measure if S is a local
martingale under Q.

The family of equivalent (resp. absolutely continuous) local martingale mea-
sure will be denoted by Me(S) (resp. Ma(S)). We assume throughout this
paper that

Me(S) 6= ∅. (2)

Note that - under the present assumption that S is locally bounded - this
definition coincides with definition 2.1 in [KS99]: indeed, it is easy to verify
that a locally bounded semi-martingale S is a local martingale under Q iff
definition 2.1 of [KS99] is satisfied, i.e., each positive process X of the form
Xt = X0 +

∫ t
0
HudSu with X0 ∈ R+ is a local Q-martingale (compare [E80]

and [AS94]).
After this rather harmless task of fixing the proper definition ofMe(S) and

Ma(S) we now pass to a more delicate issue, namely the concept of admissible
trading strategies which is appropriate in the present context. Recall the
subsequent definition from [DS94] which essentially is the same concept as
used in [KS99]:
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Definition 1.2 A predictable S-integrable process H is an admissible trading
strategy if the stochastic integral (H · S)t =

∫ t
0
HudSu is uniformly bounded

from below.
For x ∈ R, we denote by Xb(x) the set of processes

Xt = x+ (H ·S)t, 0 ≤ t ≤ T, (3)

where H runs through the admissible trading strategies.

We have used the super-script b to indicate that the processes in Xb(x) are
uniformly bounded from below. However, in the present context of maximizing
expected utility for a utility function U(x) which is finitely valued, for all x ∈ R,
it is natural to consider processes (Xt)0≤t≤T such that Xt is not necessarily
uniformly bounded from below, if one wants to have a chance to find the
maximizer of the utility maximization problem (6) below.

We adopt the following concept

Definition 1.3 For x ∈ R, define the set CbU(x) by

CbU(x) = {GT ∈ L0(Ω,FT , P ) : GT ≤ XT

for some X ∈ Xb(x) and E[|U(GT )|] <∞}, (4)

and let CU(x) denote the set

CU(x) = {FT ∈ L0(Ω,FT , P ;R ∪ {∞}) : U(FT ) is in

the L1(P )-closure of {U(GT ) : GT ∈ CbU(x)}}. (5)

Let us interpret the above concept: CbU(x) consists of all random variables
GT such that U(GT ) is P -integrable (so that the expected utility may be
defined) and such that GT is dominated by some final wealth XT which may be
achieved by an economic agent with initial endowment x and a finite credit line,
by trading on the stock S. Note that we don’t impose integrability conditions
on GT but only on U(GT ). (Recall that L0(Ω,FT , P ) denotes the set of all
(equivalence classes of) FT -measurable R-valued random variables.)

In the next step we enlarge the set Cb
U(x) by considering the closure of the

random variables U(GT ), where the closure is taken with respect to the norm
of L1(Ω,FT , P ). As U defines a bijection between R and R, in the case when
U(∞) =∞, and a bijection between R∪{+∞} and ]−∞, U(∞)], in the case
when U(∞) < ∞, we can write these random variables as U(FT ), where FT
are FT -measurable random variables, possibly assuming the value +∞ in the
case U(∞) <∞.

Speaking in economic terms, CU(x) describes all random variables FT mod-
eling (possibly infinite) wealth at time T such that the utility U(FT ) may be
approximated by the utility U(GT ), where GT ranges through the set of ran-
dom variables dominated by XT , for some X in Xb(x), with respect to the
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norm of L1(P ); this norm is natural as our optimization criterion (6) below
pertains to maximizing expected utility.

The subscript T in the notation FT pertains to the FT -measurability of this
random variable and the fact that it describes a quantity related to time T .
But the reader should note that FT was not defined as the terminal random
variable of some process (Ft)0≤t≤T which in turn should be given by some
stochastic integral on the process S (or as a random variable dominated by
such an object).

The rationale behind this approach is the following: we believe that the nat-
ural domain for the utility maximization problem (6) below should be chosen
to be some closure of the set of terminal values XT resulting from processes X
in Xb(x): indeed, economic considerations suggest that one only should allow
quantities which may be approximated (in some sense to be specified) by the
situation describing economic agents with finite credit lines, which precisely is
the idea behind the definition of Xb(x).

The set CU(x) is the largest conceivable set obeying this criterion (it is the
closure of CbU(x) with respect to the weakest conceivable topology if we are
interested in expected utility). Of course, we could impose additional restric-
tions to make this set smaller, such as requiring that the random variables FT
are of the form FT = x+ (H ·S)T for some “reasonable” integrand H.

We deliberately don’t do this at the present stage, but rather formulate
our optimization problem over the “big” set CU(x). It will turn out that —

under appropriate assumptions — the optimal solution F̂T (x) ∈ CU(x) to the
optimization problem (6) will automatically be the terminal value of an integral
on the process S, which — a posteriori — gives a more satisfactory solution
than restricting a priori the possible domain of optimization.

We now have prepared the ingredients for the definition of the optimization
problem studied in this paper:

{E[U(FT )], FT ∈ CU(x)} −→ max ! (6)

We still observe that it follows from the definition of CU(x) that we have
the equality

sup
FT∈CU (x)

E[U(FT )] = sup
GT∈CbU (x)

E[U(GT )]. (7)

As in [KS99] we denote by u the value function

u(x) = sup
FT∈CU (x)

E[U(FT )], (8)

which now is defined on the entire real line R. Throughout the paper we
assume

u(x) < U(∞) := lim
x→∞

U(x), for some x ∈ R, (9)
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to exclude trivial cases (see remark 3.7 below for a thorough discussion of this
assumption). Noting that a convex combination of admissible integrands is
an admissible integrand we deduce from (7) that u is a concave function on
R; hence assumption (9) readily implies that u(x) is finitely-valued for each
x ∈ R. (For the fact that u(x) > −∞, for all x ∈ R, simply note that Bt ≡ 1
implies that u(x) ≥ U(x) > −∞.)

We note in passing that, under assumption (9), for X ∈ Xb(x), we automat-
ically have that E[|U(XT )|] <∞, which would allow to simplify the definition
(4) of CbU(x): by requiring that GT ≤ XT , for some X ∈ Xb(x) and GT is
uniformly bounded from below we automatically have E[|U(GT )|] <∞. This
shows in particular that, under assumption (9), the set CbU(x) does not depend
on U .

We now turn to the central notion of this paper, which is the counterpart
of the concept of the asymptotic elasticity AE(U) = lim sup

x→∞

xU ′(x)
U(x)

as defined

in [KS99], where +∞ now is replaced by −∞:

Definition 1.4 For a utility function U : R→ R the asymptotic elasticity at
−∞ is defined as

AE−∞(U) = lim inf
x→−∞

xU ′(x)

U(x)
. (10)

To keep in line with the above notation we shall write AE+∞(U) for the

quantity lim supx→+∞
xU ′(x)
U(x)

, which was denoted by AE(U) in [KS99].

One easily checks that under assumption (1) the asymptotic elasticity at
−∞ is a well-defined number in [1,∞], and that this number is invariant under
affine transformations of U . Recall from [KS99] that AE+∞(U) is a well-
defined number in [−∞, 1], which is invariant under affine transformations of
U , provided U(∞) remains strictly positive.

Here are some examples: For the exponential utility U(x) = 1 − e−x we
obtain AE−∞(U) = ∞ and AE+∞(U) = 0; for utility functions of the form
U(x) = −|x|α, as x → −∞, where α > 1 is a fixed constant, we obtain
AE−∞(U) = α; finally, for utility functions of the form U(x) = x ln(−x),
as x → −∞, we obtain AE−∞(U) = 1. Recall from [KS99] that for utility
functions of the form U(x) = x

ln(x)
, as x→∞, we have AE+∞(U) = 1.

The economic interpretation of the asymptotic elasticities AE+∞(U) and
AE−∞(U) is very similar: it is the limit of the ratio between the marginal

utility U ′(x) and the average utility U(x)
x

, as x→∞ or x→ −∞ respectively.
The extreme cases AE+∞(U) = 1 and AE−∞(U) = 1 correspond to the case
when the marginal utility in the limit equals the average utility, as x → ∞
and x → −∞ respectively. From an economic point of view this property
of a utility function seems unreasonable (in both cases x → ∞ and x →
−∞). Economic intuition suggests that the marginal utility U ′(x) should be
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substantially smaller than the average utility U(x)
x

, as x→∞, and substantially
bigger as x→ −∞. This leads us to the following definition.

Definition 1.5 A utility function U : R → R satisfying (1) has reasonable
asymptotic elasticity if AE+∞(U) < 1 and AE−∞(U) > 1.

Although this is not the issue of the present paper, in order to keep the
definitions in [KS99] consistent with the present paper we propose to say that
a utility function U : R+ → R satisfying the Inada conditions U ′(0) =∞ and
U ′(∞) = 0 has reasonable asymptotic elasticity if AE+∞(U) < 1.

With this notation we shall see that the condition of reasonable asymptotic
elasticity is the crucial condition for the existence of the optimal solution to
the maximization problem (6): for the case of utility functions U : R+ → R

satisfying the Inada conditions this was shown in [KS99] and for the case of
utility functions U : R→ R satisfying (1) this is the main result of the present
paper (theorem 2.2 below).

To formulate the dual problem to (6) we define the conjugate function V (y)
of the function U(x) by

V (y) = sup
x∈R

(U(x)− xy), y > 0, (11)

which, under condition (1), is a smooth, convex function satisfying

V (0) = U(∞), V (∞) =∞, V ′(0) = −∞, V ′(∞) =∞. (12)

We have the relation U ′ = (−V ′)−1 and we denote by I the inverse function
(U ′)−1 (which is equal to −V ′) (compare [R70], [KLSX91], [KS99]).

We also note the formula

V (y) = U(I(y))− yI(y), (13)

which will be used several times below.
To give a concrete example: for U(x) = −e−x we obtain V (y) = y(ln(y)−1),

U ′(x) = e−x and V ′(y) = ln(y).
A by now classical route to solve the (primal) optimization problem (6) is

to pass to the dual problem (see, e.g., [B73], [P86], [KLSX91]):

v(y) = inf
Q∈Ma(S)

E

[
V

(
y
dQ

dP

)]
. (14)

Again the question arises about the appropriate domain over which the dual
optimization problem is minimized. “Morally speaking” the proper set consists
of the equivalent martingale probability measures for the process S: by this we
mean that under sufficiently strong hypotheses (e.g., requiring that Ω is finite
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(compare [P97])) the duality between (6) and (14) works out perfectly if one
minimizes in (14) over the set of equivalent martingale measures only (i.e., the
set of probability measures Q, equivalent to P , such that S is a Q-martingale).

But in order to obtain general results one has to enlarge this set: already
definition 1.1 of Me(S) and Ma(S) refer to the concept of local martingales
rather than martingales. In [KS99] a further enlargement of the set Me(S)
was necessary in order to obtain good duality results: we had to introduce a
certain class Y(1) of supermartingales extending the class of density processes
of equivalent local martingale measures.

It turns out, however, that this latter enlargement is not necessary in the
present setting: we shall see that the optimal solution to the dual problem is
automatically attained by a probability measure; in fact, in many cases we can
assert that the optimal solution necessarily is in Me(S), i.e., equivalent to P .
But there are also cases where we cannot assert this and have to consider the
larger set Ma(S).

Clearly we could adopt the same philosophy as in the formulation of the
primal problem (6): we could first formulate the dual problem by optimizing
over some “big” set (such as in [KS99]) containing Ma(S) and subsequently
show that the optimal solution lies already in Me(S) or Ma(S) respectively.
But for the dual problem we refrain from doing so as we consider it only as a
technical gimmick for solving the primal problem, which is the question of our
original concern.

For all these reasons we decided to formulate (14) as an optimization prob-
lem over Ma(S).

The fact that — under appropriate conditions — the optimal solution to
(14) is attained for an element Q̂ ofMe(S) orMa(S) respectively was already
obtained in the paper [BF99] of F. Bellini and M. Fritelli (see remark 2.4
below).

Let us end the introduction by an overview of the paper: the basic theme
is to find conditions under which the formal duality between (6) and (14) can
be turned into precise theorems, and to identify the optimal solutions to these
two optimization problems and their mutual relations.

In section 2 we shall prove two theorems on these lines: the (easier) case
of a complete financial market is dealt with in theorem 2.1 while the case of
an incomplete financial market is treated in theorem 2.2 which is the main
result of the paper. For the latter theorem to hold true we crucially need the
assumption of reasonable asymptotic elasticity of the utility function U . The
question to which extent a theorem analogous to theorem 2.1 of [KS99] holds
true, dealing with the case of incomplete markets and possibly unreasonable
asymptotic elasticity, is left to future research.

In section 3 we give some examples showing what may go wrong if one
drops the assumption of reasonable asymptotic elasticity, and in section 4 we
give some characterizations of the property AE−∞(U) > 1. These results turn
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out to be rather straightforward variations of the theme treated in [KS99], and
are therefore presented as briefly as possible.

2 The Main Results

We shall approximate the utility function U : R → R satisfying (1) by an
increasing sequence U (n) of utility functions such that U (n)(x) = −∞, for
x ≤ −(n+ 1), in order to relate the present setting to the results from [KS99]:
Then clearly the optimization problem with respect to U (n) is essentially the
same as the one treated in [KS99], modulo the shift of the singularity of U (n)

from zero to −(n+ 1). For the sake of clarity we resume the situation in some
detail:

Fix a utility function U satisfying (1) and an increasing sequence (U (n))∞n=1

of strictly concave, smooth utility functions, U (n) ≤ U , such that U (n) coincides
with U on [−n,+n]. On the negative end of the real line we require that
U (n)(x) > −∞ for x > −(n + 1) and limx↘−(n+1) U

(n)(x) = −∞; on the
positive end of the real line we impose the requirement AE+∞(U (n)) < 1. If
U already satisfies AE+∞(U) < 1, we don’t have to modify U on R+ and
therefore assume in this case that U (n)(x) = U(x), for x ≥ 0.

In the case when U has reasonable asymptotic elasticity and U(0) > 0, we
choose the U (n)’s in addition in such a way that the estimates in corollary 4.2
below hold true, uniformly in n ∈ N. This technical issue will be used in step 4
of the proof of theorem 2.2 and it is easy to verify that this is always possible.

Denote by V (n) the conjugate function of U (n) and observe that U (n) and
V (n) increase stationarily to U and V respectively.

The function Ũ (n)(x) = U (n)(x − (n + 1)) is finitely valued for x > 0, and
satisfies the requirements of theorem 2.2 of [KS99]; therefore, fixing x > 0, and

using the notation of [KS99], there exists a unique optimal solution X̃(n)(x) =
x+ (Hn ·S) ∈ X(x) to the optimization problem

ũ(n)(x) = sup
X∈X(x)

E
[
Ũ (n)(XT )

]
, x > 0. (15)

Note that it does not matter in the above optimization problem whether we
optimize over the set X(x) of non-negative processes as introduced in [KS99]
or the set Xb(x) as defined in 1.2 above: the assumption Me(S) 6= ∅ implies
that for a process of the form X = x + (H · S) which is uniformly bounded
from below and such that XT ≥ 0 we already have Xt ≥ 0, for all 0 ≤ t ≤ T
(compare [DS94] for this easy fact).

Hence by a simple shift on the real line, for x > −(n + 1), the process

X̂(n)(x) := X̃(n)(x+n+1)− (n+1) is the optimal solution to the optimization
problem

u(n)(x) = sup
X∈Xb(x)

E
[
U (n)(XT )

]
, x > −(n+ 1). (16)
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Clearly we have

u(n)(x) = ũ(n)(x+ n+ 1), x > −(n+ 1). (17)

Passing to the dual problem, fix x > −(n + 1) and let y = (u(n))′(x) =

(ũ(n))′(x+n+ 1). Denoting by Ṽ (n) (resp. ṽ(n)) the conjugate function to Ũ (n)

(resp. ũ(n)) and letting Ỹ
(n)
T (y) = (Ũ (n))′(X̃

(n)
T (x + n + 1)) = (U (n))′(X̂

(n)
T (x))

we infer from theorem 2.2 of [KS99] that Ỹ
(n)
T (y) is an element of D(y) (this

definition is recalled after (20) below) and that it satisfies

ṽ(n)(y) = inf
YT∈D(y)

E
[
Ṽ (n) (YT )

]
= E

[
Ṽ (n)

(
Ỹ

(n)
T (y)

)]
, y > 0. (18)

To relate Ṽ (n) and ṽ(n) to the conjugate functions V (n) and v(n) of U (n) and
u(n) respectively, observe the simple equalities

V (n)(y) = Ṽ (n)(y) + (n+ 1)y, (19)

v(n)(y) = ṽ(n)(y) + (n+ 1)y,

which directly follow from the conjugacy relations.
Hence we obtain

v(n)(y) = inf
YT∈D(y)

E
[
Ṽ (n)(YT )

]
+ (n+ 1)y (20)

= E
[
Ṽ (n)

(
Ỹ

(n)
T (y)

)]
+ (n+ 1)y

= E
[
V (n)

(
Ỹ

(n)
T (y)

)]
+ (n+ 1)

(
y − E

[
Ỹ

(n)
T (y)

])
.

The last formula merits some comment: recall from [KS99] that Y(y) con-
sists of the non-negative supermartingales (Yt)0≤t≤T starting at Y0 = y and
such that XtYt is a supermartingale, for each X ∈ X(1), and that D(y) de-
notes the set of all non negative random variables dominated by some terminal
value YT , where Y ranges through Y(y). In particular E[YT ] ≤ y and we have
equality iff YT/y is the Radon-Nikodym derivative of some Q ∈ Ma(S), in
which case Yt = E[dQ

dP
|Ft].

If E[Ỹ
(n)
T (y)] = y then the above formula reduces to the pleasant equality

v(n)(y) = E
[
V (n)

(
Ỹ

(n)
T (y)

)]
, (21)

the formula one would expect naively. In general, however, the additional term
(n+ 1) (y −E[Ỹ

(n)
T (y)]) has to be added; for an interpretation of this term as

the action of the singular part of the optimal solution Ỹ (n)(y) on the function
V (n) we refer to [CSW99].
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Summing up what we have obtained so far for the dual problem to the
primal problem (16): using the notation from [KS99], the conjugate function
v(n) to the value function u(n) defined in (16) is given by

v(n)(y) = inf
YT∈D(y)

E
[
V (n)(YT )

]
+ (n+ 1) (y − E[YT ]) , y > 0, (22)

and, for y = (u(n))′(x), the unique optimal solution to (22) is given by Ŷ
(n)
T :=

Ỹ
(n)
T ∈ D(y) via the formula

Ŷ
(n)
T (y) =

(
U (n)

)′ (
X̂

(n)
T (x)

)
. (23)

We now can formulate the theorem pertaining to the case of complete
financial markets:

Theorem 2.1 (complete case) Assume that (1) and (9) hold true and that
Me(S) = {Q} where Q is a probability measure equivalent to P . Then

(i) The value function u(x) defined by (8) is a continuously differentiable
concave function defined and finitely valued on the real line R; the value
function v(y) defined by (14) is finitely valued, for at least one y > 0;
it is continuously differentiable and strictly convex on the interior of the
interval {y : v(y) <∞}. The functions u and v are conjugate, i.e.

v(y) = sup
x∈R

[u(x)− xy], y > 0, (24)

u(x) = inf
y>0

[v(y) + xy], x ∈ R.

(ii) Denote by ]α, β[⊆ R+ the (possibly empty) interior of the interval {y :
v(y) < ∞} and denote by ]a, b[⊆ R the (possibly empty) image of the
interval ]α, β[ under the map −v′. For a real number x in the closure of
]a, b[, let y = u′(x); the optimal solution FT (x) ∈ CU(x) to (6) exists, is
unique and given by the formula

FT (x) = I

(
y
dQ

dP

)
. (25)

The random variable FT (x) equals the terminal value X̂T (x) of a uni-

formly integrable Q-martingale (X̂t(x))0≤t≤T starting at X̂0(x) = x,

which is of the form X̂(x) = x + (H ·S), for a predictable S-integrable
process H.

If ]α, β[ is not empty, then, for x ∈ R\[a, b], the optimal solution to (6)
does not exist.
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(iii) The value function u(x) is strictly concave on ]a, b[ and affine on the
(possibly empty) intervals ]−∞, a] and [b,∞[.

(iv) For y in the closure of ]α, β[ and x in the closure of ]a, b[ we have the
relations

v′(y) = E

[
dQ

dP
V ′
(
y
dQ

dP

)]
, (26)

xu′(x) = E
[
X̂T (x)U ′

(
X̂T (x)

)]
,

where in the boundary case y = α (resp. y = β) the term v′(y) has to be
interpreted as a right (resp. left) derivative.

Proof Consider the sequence of value functions v(n) : R+ → R introduced at
the beginning of this section. As Me(S) = {Q} we clearly have

v(n)(y) = E

[
V (n)

(
y
dQ

dP

)]
, (27)

and

v(y) = E

[
V

(
y
dQ

dP

)]
. (28)

It follows from the monotone convergence that, for y > 0, v(n)(y) increases
to v(y); as regards (u(n)(x))∞n=1, for x ∈ R, it is obvious that this sequence
increases to a limit - let us denote it by u(∞)(x) - for which we have u(∞)(x) ≤
u(x) as u(n)(x) ≤ u(x), for each n ∈ N.

To verify that u(∞)(x) indeed equals u(x), fix x ∈ R and find, for ε > 0,
GT ∈ CbU(x) such that u(x) < E[U(GT )] + ε. If XT is the terminal value of a
process X ∈ Xb(x) such that GT ≤ XT we have u(x) < E[U(XT )] + ε < ∞
where the last inequality follows from (9). As XT is uniformly bounded from
below we have that E[U (n)(XT )] is finite, for n sufficiently large, and by the
monotone convergence theorem, this sequence converges to E[U(XT )], which
readily implies that u(x) < u(n)(x) + 2ε, for n large enough.

Summing up: we have shown that u(n) and v(n) increase monotonically to
u and v respectively. As u(n) and v(n) are conjugate it follows that u and v are
conjugate too.

Next we observe that (u(x))x∈R is a finitely valued, concave non-decreasing
function. Noting that the inequality u(x) ≥ U(x) implies that u(∞) = U(∞),
we deduce from (9) that u(x) < u(∞), for each x ∈ R, which implies that u is
strictly increasing. Hence there is at least one y > 0 such that, for c sufficiently
large, the affine function h(x) = c+ yx dominates the function u(x); hence we
have that {y > 0 : v(y) <∞} is a non-empty interval and we denote by α ≥ 0
and β ≤ ∞ the left and right endpoints of this interval.

11



We also deduce from the strict convexity of V that v is strictly convex on
]α, β[ and therefore — using elementary properties of the duality relation of
conjugate functions — that u is continuously differentiable on R.

We now shall distinguish the cases that ]α, β[ is degenerate or not:
Case 1: 0 ≤ α < β ≤ ∞.

To verify formula (26) for v′(y) and y ∈]α, β[, let (yn)∞n=1 be a sequence in
]α, β[ converging monotonically to y. We then have

lim
n→∞

v(yn)− v(y)

yn − y
= lim

n→∞

E
[
V
(
yn

dQ
dP

)]
− E

[
V
(
y dQ
dP

)]
yn − y

(29)

= lim
n→∞

E

[
dQ

dP
V ′
(
ỹn
dQ

dP

)]
= E

[
dQ

dP
V ′
(
y
dQ

dP

)]
where we have used the mean-value theorem of differential calculus and ỹn =
ỹn(ω) is a random variable taking values in the interval between y and yn; the
last equality follows from the continuity of V ′ and the monotone convergence
theorem, noting that, if (yn)∞n=1 monotonically converges to y, the sequence of
random variables (ỹn)∞n=1 does so too.

Hence we have proved that

v′(y) = E

[
dQ

dP
V ′
(
y
dQ

dP

)]
, for y ∈]α, β[, (30)

which shows in particular that v is a continuously differentiable function on
]α, β[.

Letting −b = limy↘α v
′(y) and −a = limy↗β v

′(y), observe that −v′ induces
a bijection between ]α, β[ and ]a, b[.

What happens at the boundary points α and β? We only discuss the left
limit point α ≥ 0, the case of the right limit point β being analogous: if the
left limit

v(α+0) := lim
y↘α

v(y) (31)

is finite, then we have

v(α+0) = E

[
V

(
α
dQ

dP

)]
= v(α). (32)

Similarly, if the left limit

v′(α+0) := lim
y↘α

v′(y) (33)

is finite, then we have

v′(α+0) = E

[
dQ

dP
V ′
(
α
dQ

dP

)]
. (34)

12



In the case v(α) < ∞ we also have v′(α+0) = v′r(α), where v′r(α) denotes the
right derivative of v at α, while, in the case v(α) =∞ we obtain v′(α+0) =∞
which also can be interpreted as a right derivative of v at α.

To verify the above assertions observe that (34) follows immediately from
(30) and the monotone convergence theorem using the monotonicity of V ′.
The assertion (32) similarly follows from the finiteness of v(y) = E

[
V
(
y dQ
dP

)]
on ]α, β[ and a slight adaptation of the monotone convergence theorem: first
note that, in the case α = 0, the formula v(0) = E

[
V
(
0dQ
dP

)]
= V (0) trivially

holds true, hence we may assume that α > 0. Writing ymin = argminV (y) =
U ′(0), split Ω into the sets A1 = {αdQ

dP
> ymin}, A2 = {αdQ

dP
< ymin/2} and

A3 = {αdQ
dP
∈ [ymin/2, ymin]}. We then verify

lim
n→∞

E

[
V

(
yn
dQ

dP
χAi

)]
= E

[
V

(
y
dQ

dP
χAi

)]
, i = 1, 2, 3. (35)

In the cases i = 1 and i = 2 we apply the monotone convergence theorem,
where we consider n large enough such that yn < 2α. In the case i = 3 we
apply Lebesgue’s theorem, for n large enough such that yn < 2α, noting that
V is bounded on [ymin/2, 2ymin].

We have thus proved assertions (32) and (34) and the subsequent remark
on the right derivative v′r(α) now follows too.

For x ∈ R ∩ [a, b] and y = u′(x) ∈ [α, β] we define

X̂T (x) := I

(
y
dQ

dP

)
(36)

so that

EQ

[
X̂T (x)

]
= E

[
dQ

dP
I

(
y
dQ

dP

)]
= −v′(y) = x. (37)

By the preceding discussion the above equality also holds true in the lim-
iting cases 0 < α = y and y = β < ∞, provided that v′(y) is finite (where in
these boundary cases v′(y) has to be interpreted as the right or left derivative
of v at α and β respectively).

Using the hypotheses Me(S) = {Q} we may apply the martingale rep-

resentation theorem (see [Y78]): equality (37) implies that X̂T (x) is the ter-

minal value of a uniformly integrable Q-martingale
(
X̂t(x)

)
0≤t≤T

starting at

X̂0(x) = x.

We still have to verify that X̂T (x) =: FT (x) is in CU(x); we shall show

that there is in a sequence X(n)(x) ∈ Xb(x) such that U(X
(n)
T (x)) converges to

U(X̂T (x)) in the norm of L1(P ).

For x ∈ R and, for n ∈ N, verifying n > −x, define X
(n)
T (x) by

X
(n)
T (x) = (X̂T (x) ∨ (−n))− δnχ{X̂T>x} (38)

13



where δn ≥ 0 is chosen in such a way that EQ[X
(n)
T (x)] = x. Clearly X

(n)
T (x) is

bounded from below by−n. By the martingale representation theorem X
(n)
T (x)

is the terminal value of a uniformly integrable Q-martingale X(n)(x) ∈ Xb(x).

As EQ[X̂T (x)] = x it follows that δn decreases to zero; this easily implies

that E[|U(X̂T (x))− U(X
(n)
T (x))|] tends to zero.

To see that X̂T (x) really is the optimal solution to (6) we note that, for
x ∈ R ∩ [a, b]and y = u′(x), we have

E
[
U
(
X̂T (x)

)]
= (39)

= E

[
U

(
I

(
y
dQ

dP

))]
= E

[
U

(
I

(
y
dQ

dP

))]
− yE

[
dQ

dP
I

(
y
dQ

dP

)]
+ yE

[
dQ

dP
I

(
y
dQ

dP

)]
= E

[
V

(
y
dQ

dP

)]
+ yx

= v(y) + yx

= u(x).

The uniqueness of X̂(x) is a consequence of the strict concavity of U and the

fact that X̂(x) may be written as X̂(x) = x+(H·S) follows from Yor’s theorem
(see [Y78] and [J79] for the vector valued case). Finally, the strict concavity of
u on the interval ]a, b[ now follows from the existence of the optimal solutions

X̂(x), for x ∈ [a, b] ∩ R by using Scholium 5.1 of [KS99]. The latter result
also implies that, for x ∈ R\[a, b], the optimal solution FT ∈ CU(x) does not
exist. Indeed, the fact that u is affine on the intervals ] −∞, a] and [b,∞[ is
a straightforward consequence of the conjugacy of u and v. Supposing that
there exists x < a (or x > b) such that X̂(x) exists, then by considering

(X̂(x) + X̂(a))/2 (or (X̂(x) + X̂(b))/2) and using the argument of Scholium

5.1 one arrives at a contradiction to u
(
x+a

2

)
= u(x)+u(a)

2
(or u

(
x+b

2

)
= u(x)+u(b)

2
).

We still have to show the second formula in (26)

xu′(x) = E
[
U ′
(
X̂T (x)

)
X̂T (x)

]
, x ∈ [a, b] ∩ R. (40)

But (40) simply is a reformulation of formula (30) observing that x = −v′(y),

u′(x) = y, X̂T (x) = −V ′
(
y dQ
dP

)
and U ′(X̂T (x)) = y dQ

dP
.

Case 2: 0 < α = β <∞.
First we note that this case may indeed occur due to the lack of reasonable

asymptotic elasticity (see proposition 3.5 below).
In this case we have v(α) < ∞, while v(y) = ∞, for all y 6= α. Assertions

(ii) and (iv) then are vacuous and assertions (i) and (iii) are trivially satisfied
as — by the conjugacy of u and v — the function u(x) is affine in x ∈ R.

14



The proof of theorem 2.1 now is complete.

We now turn to the case of incomplete markets, i.e., when Me(S) is not
reduced to a singleton {Q}.

Theorem 2.2 (incomplete case, reasonable asymptotic elasticity)
Assume that (1), (2) and (9) hold true and that U has reasonable asymptotic
elasticity. Then

(i) The value functions u and v are finitely valued, strictly concave (resp.
convex), differentiable functions defined on R (resp. R+); they are con-
jugate and satisfy

u′(∞) = 0, v′(0) = −∞ (41)

u′(−∞) =∞, v′(∞) =∞

The value function u has reasonable asymptotic elasticity.

(ii) For y > 0, the optimal solution Q̂(y) ∈ Ma(S) to the dual problem (14)

exists, is unique and the map y 7→ Q̂(y) is continuous in the variation
norm.

(iii) For x ∈ R the optimal solution F̂T (x) ∈ CU(x) to the primal problem (7)
exists, is unique and is given by

F̂T (x) = I

(
y
dQ̂(y)

dP

)
, (42)

where u′(x) = y.

(iv) If Q̂(y) ∈ Me(S) and x = −v′(y), then F̂T (x) equals the terminal value

X̂T (x) for a process of the form X̂t(x) = x + (H ·S)t, where H is pre-

dictable and S-integrable, such that X̂ is a uniformly integrable martin-
gale under Q̂(y).

(v) We have the formulae

v′(y) = E

[
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

)]
, (43)

xu′(x) = E
[
X̂T (x)U ′

(
X̂T (x)

)]
,

where the usual rule 0 · ∞ = 0 is applied, if the integrands are of this
form.
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Proof of theorem 2.2 Without loss of generality we assume that U(0) > 0
so that V (y) > 0, for all y > 0. Let U (n), V (n), u(n) and v(n) be defined as in
the beginning of this section. Recall that we have chosen U (n) such that the
estimates of corollary 4.2 hold true, uniformly in n ∈ N.

We break the proof into several steps:

Step 1: limn→∞ v
(n)(y) < ∞, for each y > 0, and the function v(∞)(y) =

limn→∞ v
(n)(y) is bounded on compact subsets of ]0,∞[. If (yn)∞n=1 tends to

y > 0, then v(n)(yn) tends to v(∞)(y).

First note that (v(n)(y))∞n=1 is bounded for at least one y > 0: indeed,
similarly as in the proof of theorem 2.1 we deduce from the fact that u(x) <
U(∞), for each x ∈ R, that the conjugate function to u is finite for at least
one y > 0. As u(n) ≤ u, for all n ∈ N, and v(n) is conjugate to u(n) we have
limn→∞ v

(n)(y) <∞.
Using theorem 2.2 of [KS99] we may find Q(n) ∈ Me(S) such that

supnE
[
V (n)

(
y dQ

(n)

dP

)]
< ∞. Now we use the assumption that U has rea-

sonable asymptotic elasticity. It follows from corollary 4.2 below and the dis-
cussion at the beginning of this section that, for y > 0, we can find a constant
C > 0, s.t. the estimate

lim
n→∞

v(n)(y) ≤ lim
n→∞

E

[
V (n)

(
y
dQ(n)

dP

)]
(44)

≤ sup
n
CE

[
V (n)

(
y
dQ(n)

dP

)]
<∞,

holds true uniformly in n ∈ N and y ranging in a compact subset of ]0,∞[ (the
constant C depending on this compact subset of ]0,∞[). This also implies the
last assertion of step 1 in view of the convexity and monotone convergence of
the functions v(n).

Step 2: Denote by
(
Ŷ

(n)
T (yn)

)∞
n=1
∈ D(yn) the optimal solution to the opti-

mization problem (22) and let (yn)∞n=1 tend to y > 0.

Then
(
Ŷ

(n)
T (yn)

)∞
n=1

converges in the norm of L1(Ω,FT , P ) to a random

variable ŶT (y) which satisfies

y = E
[
ŶT (y)

]
. (45)

From (22) we have the formula

v(n)(yn) = E
[
V (n)

(
Ŷ

(n)
T (yn)

)]
+ (n+ 1)

(
yn − E

[
Ŷ

(n)
T (yn)

])
. (46)
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As
(
v(n)(yn)

)∞
n=1

tends to v(∞)(y) < ∞, as V (n) ≥ 0 and E
[
Ŷ

(n)
T (yn)

]
≤ yn,

we immediately obtain that

lim
n→∞

(
yn − E

[
Ŷ

(n)
T (yn)

])
= 0 (47)

In fact, we have a stronger result, namely

v(∞)(y) = lim
n→∞

E
[
V (n)

(
Ŷ

(n)
T (yn)

)]
, (48)

or — what by (46) amounts to the same —

lim
n→∞

(n+ 1)
(
yn − E

[
Ŷ

(n)
T (yn)

])
= 0. (49)

Indeed, if (49) were wrong, we could find α > 0 such that, for infinitely
many n ∈ N,

(n+ 1)
(
yn − E

[
Ŷ

(n)
T (yn)

])
> α. (50)

Find ε > 0 such that supk v
(k)(yk) <

α(1−ε)
4ε

, and find n > m such that (50)
holds true and λ = ym

yn
is close enough to 1 so that (151) below (see corollary

4.2) is satisfied uniformly for all V (n), and such that
(
n+ 1− (m+ 1)ym

yn

)
>

(n+ 1)/2 and v(n)(yn) < v(m)(ym) + α/4 hold true to estimate

v(m)(ym) ≤ E

[
V (m)

(
ym
yn
Ŷ

(n)
T (yn)

)]
+ (m+ 1)

(
ym − E

[
ym
yn
Ŷ

(n)
T (yn)

])
≤ E

[
V (n)

(
ym
yn
Ŷ

(n)
T (yn)

)]
+ (m+ 1)

ym
yn

(
yn − E

[
Ŷ

(n)
T (yn)

])
≤ (1 + ε)E

[
V (n)

(
Ŷ

(n)
T (yn)

)]
+ (n+ 1)

(
yn − E

[
Ŷ

(n)
T (yn)

])
−
(
n+ 1− (m+ 1)

ym
yn

)(
yn − E

[
Ŷ

(n)
T (yn)

])
≤ (1 + ε)v(n)(yn)− α/2
< v(m)(ym), (51)

a contradiction showing (48).

To show that the sequence
(
Ŷ

(n)
T (yn)

)∞
n=1

converges in the norm of L1(P )

we adopt a strategy which will turn out to be useful several times in the
subsequent proof: we shall show that this sequence is uniformly integrable
and Cauchy in the topology of convergence in measure; this will readily imply

the convergence of
(
Ŷ

(n)
T (yn)

)∞
n=1

in the norm of L1(P ) to a random variable

ŶT (y) ∈ L1(P ).
We start with the uniform integrability:
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So suppose that
(
Ŷ

(n)
T (yn)

)∞
n=1

fails to be uniformly integrable, i.e., there

is α > 0 such that, for each C > 0,

lim sup
n→∞

E
[
Ŷ

(n)
T χ{Ŷ (n)

T ≥C}

]
> α (52)

It follows from the inequality

V (n)(z) ≥ U (n)(−n) + nz (53)

and the assumption U (n)(−n) > −∞ that

lim
z→∞

V (n)(z)

z
≥ n. (54)

Fix n ∈ N, find C(n) > 0 such that V (n)(z) ≥ (n − 1)z, for z ≥ C(n), and
find m > n such that

E[Ŷ
(m)
T (ym)χ{Ŷ (m)

T (ym)≥C(n)}] > α. (55)

Using (22),

v(m)(ym) ≥ E
[
V (m)

(
Ŷ

(m)
T (ym)

)]
(56)

≥ E
[
V (n)

(
Ŷ

(m)
T (ym)

)]
≥ E

[
V (n)

(
Ŷ

(m)
T (ym)

)
χ{Ŷ (m)

T (ym)≥C(n)}

]
≥ E

[
(n− 1)Ŷ

(m)
T (ym)χ{Ŷ (m)

T (ym)≥C(n)}
]

≥ (n− 1)α,

which contradicts the boundedness of
(
v(m)(ym)

)∞
m=1

showing the uniform in-

tegrability of
(
Ŷ

(n)
T (yn)

)∞
n=1

.

To show that
(
Ŷ

(n)
T (yn)

)∞
n=1

is Cauchy with respect to the topology of

convergence in measure, suppose to the contrary that there is α > 0 such that
there are arbitrarily large n and m verifying

P
[
|Ŷ (n)
T (yn)− Ŷ (m)

T (ym)| > α
]
> α (57)

As V (n) increases to V stationarily on compact subsets of ]0,∞[ and, in
the case V (0) <∞, stationarily on compact subsets of [0,∞[, we may use the
boundedness of (v(n)(yn))∞n=1 to find N ∈ N and a compact set K contained in
{y ≥ 0 : V N(y) = V (y) <∞} such that, for n ≥ N ,

P
[
Ŷ

(n)
T (yn) 6∈ K

]
< α/3. (58)
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By the strict convexity of V and the compactness of K we may find η > 0
such that, for y1, y2 ∈ K, |y1 − y2| > α, we have

V

(
y1 + y2

2

)
≤ V (y1) + V (y2)

2
− η. (59)

Find ε > 0 small enough such that v(k)(yk) <
αη
6ε

, for all k ∈ N, and find
n > m ≥ N , such that (57) holds true, v(n)(yn) < v(m)(ym)+ αη

3
, and such that

λ = ym
yn

is close enough to 1 so that λ < 1 + ε and (151) holds true uniformly

for all V (n) to estimate

v(m)(ym) ≤ (60)

≤ E

[
V (m)

(
ym
yn
Ŷ

(n)
T (yn) + Ŷ

(m)
T (ym)

2

)]

+(m+ 1)

(
ym − E

[
ym
yn
Ŷ

(n)
T (yn) + Ŷ

(m)
T (ym)

2

])

≤
(
E

[
V (m)

(
ym
yn
Ŷ

(n)
T (yn)

)]
+ (m+ 1)

(
ym −

ym
yn
E
[
Ŷ

(n)
T (yn)

])
+E

[
V (m)

(
Ŷ

(m)
T (ym)

)]
+ (m+ 1)

(
ym − E

[
Ŷ

(m)
T (ym)

]))
/2− αη

3

≤
(
E

[
V (n)

(
ym
yn
Ŷ

(n)
T (yn)

)]
+ (n+ 1)

ym
yn

(
yn − E

[
Ŷ

(n)
T (yn)

])
+E

[
V (m)

(
Ŷ

(m)
T (ym)

)]
+ (m+ 1)

(
ym − E

[
Ŷ

(m)
T (ym)

]))
/2− αη

3

≤
(
(1 + ε)v(n)(yn) + v(m)(ym)

)
/2− αη

3

≤ v(m)(ym)− αη

6
.

This contradiction shows that (Ŷ
(n)
T (yn))∞n=1 is Cauchy in measure and

therefore converges in the norm of L1(P ) to a random variable which we denote

by ŶT (y).
Equation (45) now follows from (47).

Step 3: For (yn)∞n=1 tending to y > 0, the sequence
(
V (n)(Ŷ

(n)
T (yn))

)∞
n=1

tends

to V (ŶT (y)) in the norm of L1(Ω,FT , P ).

For y > 0, the probability measure Q̂(y) defined by dQ̂(y)
dP

= ŶT (y)/y is an
element of Ma(S) and the unique minimizer to the dual optimization problem
(14).

The value function v defined in (14) satisfies v(y) = v(∞)(y) =

E[V (ŶT (y))], and this function is strictly convex.

The maps y 7→ Q̂(y) and y 7→ V (ŶT (y)) are continuous in the variation
norm.
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Clearly the measure Q̂(y) defined above is a probability measure absolutely
continuous with respect to P .

To verify that S is a local martingale under Q̂(y), first note that, using

the proposition 3.1 of [KS99] and the notation introduced there, ŶT (y) ∈ D(y)

as ŶT (y) is the limit in probability of the elements y
yn
Ŷ

(n)
T (yn) ∈ D(y). If Z

denotes the density process Zt = E[dQ̂(y)
dP
|Ft] and τ is a stopping time such

that the stopped process Sτ = (11]]0,τ ]] ·S) is bounded, it follows from the defi-
nition of D(y) that ZtS

τ
t as well as −ZtSτt are supermartingales and therefore

martingales; by the local boundedness assumption on S this implies that S is
a local martingale under Q̂(y).

To check that Q̂(y) is indeed the minimizer of (14) it suffices to show that

v(∞)(y) ≥ E[V (ŶT (y))] which follows from (48) and Fatou’s lemma

v(∞)(y) = lim
n→∞

E[V (n)(Ŷ
(n)
T (yn))] (61)

≥ E[ lim
n→∞

V (n)(Ŷ
(n)
T (yn))]

= E[V (ŶT (y))] ≥ v(y).

As limn→∞ v
(n)(y) = v(∞)(y) ≤ v(y) we have equalities above and obtain in

particular that
v(∞)(y) = v(y). (62)

The strict convexity of v now follows from the strict convexity of the function
V and the convexity of the set Ma(S).

Noting that
(
V (n)(Ŷ

(n)
T (yn))

)∞
n=1

is a sequence of positive random variables

in L1(P ) converging to V (ŶT (y)) in measure and such that the expectations

E[V (n)(Ŷ
(n)
T (yn))] converge to the expectation E[V (ŶT (y))], we deduce that(

V (n)(Ŷ
(n)
T (yn))

)∞
n=1

converges to V (ŶT (y)) in the norm of L1(P ).

The continuity of the map y 7→ Q̂(y) is a straight-forward consequence of
the results of step 2: indeed, it suffices to show that for (yk)

∞
k=1 tending to

y > 0 we have
lim
k→∞
‖ŶT (yk)− ŶT (y)‖L1(P ) = 0. (63)

Choosing an increasing sequence (nk)
∞
k=1 such that

lim
k→∞
‖ŶT (yk)− Ŷ (nk)

T (yk)‖L1(P ) = 0 (64)

the result follows from step 2.
The continuity of y 7→ V (ŶT (y)) follows in the same way from the conver-

gence of
(
V (n)(Ŷ

(n)
T (Yn))

)∞
n=1

in the variation norm.
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Step 4: The map y 7−→ dQ̂(y)
dP

V ′
(
y dQ̂(y)

dP

)
is continuous in the vari-

ation norm. In fact, for (yn)∞n=1 tending to y > 0, the sequence(
Ŷ

(n)
T (yn)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

tends to ŶT (y)V ′(ŶT (y)) in the variation norm.

The sequence
(
ŶT (y)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

converges to ŶT (y)V ′(ŶT (y)) in

measure and the positive parts tend to the positive part in the variation norm;
(this is just a preliminary result as we shall only be able in step 6 below to
show that the negative parts converge in the variation norm too).

By corollary 4.2 (ii) below there is a constant C such that

y
∣∣∣(V (n)

)′
(y)
∣∣∣ ≤ CV (n)(y), for y ≥ 0, (65)

uniformly in n ∈ N, where, in the case y = 0, we adopt the rule 0 ·∞ = 0.

Hence the sequence of random variables
(
Ŷ

(n)
T (yn)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

is dominated in absolute value by the L1-convergent sequence(
CV (n)(Ŷ

(n)
T (yn))

)∞
n=1

and therefore uniformly integrable. By the con-

tinuity of the map y 7→ yV ′(y), which holds true, for y > 0, and,
in the case V (0) = U(∞) < ∞, for y ≥ 0 too, we also have that(
Ŷ

(n)
T (yn)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

converges in measure to ŶT (y)V ′(ŶT (y)), and

therefore in the norm of L1(P ).
The first assertion of step 4 now follows from the second one by the same

easy argument as at the end of step 3 above.
We now turn to the last assertion of step 4. The convergence in measure of

the sequence
(
ŶT (y)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

towards ŶT (y)V ′(ŶT (x)) being again

obvious, we have to prove the uniform integrability of the positive parts

ŶT (y)
(
V (n)

)′ (
Ŷ

(n)
T (yn)

)
+

= (66)

= ŶT (y)
(
V (n)

)′ (
Ŷ

(n)
T (yn)

)
χ{(V (n))′(Ŷ

(n)
T (yn))≥0}, for n ∈ N.

To do so, it clearly will suffice to show the uniform integrability of the
double sequence

Ŷ
(m)
T (ym)

(
V (n)

)′ (
Ŷ

(n)
T (yn)

)
χ{(V (n))′(Ŷ

(n)
T (yn))≥0}, m,n ∈ N, m ≥ n. (67)

For this we use the inequality

Ŷ
(m)
T (ym)

(
V (n)

)′ (
Ŷ

(n)
T (yn)

)
χ{(V (n))′(Ŷ

(n)
T (yn))≥0} ≤ (68)

≤ max
{
Ŷ

(m)
T (ym)

(
V (m)

)′ (
Ŷ

(m)
T (ym)

)
χ{(V (n))′(Ŷ

(n)
T (yn))≥0} ,

Ŷ
(n)
T (yn)

(
V (n)

)′ (
Ŷ

(n)
T (yn)

)
χ{(V (n))′(Ŷ

(n)
T (yn))≥0}

}
, m,n ∈ N, m ≥ n,
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which is easily verified by distinguishing pointwise the cases Ŷ
(m)
T (ym) ≥

Ŷ
(n)
T (yn) and Ŷ

(m)
T (ym) < Ŷ

(n)
T (yn).

As the family of functions on the right hand side of (68) is uniformly inte-
grable we have finished the proof of step 4.

Step 5: We have the formula

v′(y) = E

[
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

)]
, for y > 0. (69)

To prove this formula first observe that the term on the right hand side
is a continuous function of y > 0 by step 4. As regards the term on the left
hand side we deduce from the convexity of v that the derivative v′(y) exists,
for all but countably many y’s. Hence it will suffice to show (69) under the
additional assumption that v′(y) exists.

To do so we proceed similarly as in the proof of theorem 2.1 above (compare
also [KS99], lemma 3.10). Let (yn)∞n=1 be a sequence tending to y > 0 such
that v′(y) exists.

We shall show the two inequalities

lim sup
n→∞

v(yn)− v(y)

yn − y
≤ E

[
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

)]
and (70)

lim inf
n→∞

v(yn)− v(y)

yn − y
≥ E

[
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

)]
. (71)

First we observe that it will suffice to show the above inequalities where the

terms v(yn)−v(y)
yn−y are replaced by v(n)(yn)−v(n)(y)

yn−y . Indeed, observe that, for y > 0

such that v′(y) exists, we easily deduce form the convexity and the monotone
convergence of the v(n)’s that

lim
n→∞

v(yn)− v(y)

yn − y
= lim

n→∞

v(n)(yn)− v(n)(y)

yn − y
. (72)
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To prove (70) we therefore fix y > 0 such that v′(y) exists and estimate

lim sup
n→∞

v(yn)− v(y)

yn − y
= (73)

= lim
n→∞

v(n)(yn)− v(n)(y)

yn − y

≤ lim sup
n→∞

E
[
V (n)

(
yn
y
Ŷ

(n)
T (y)

)]
− E

[
V (n)

(
Ŷ

(n)
T (y)

)]
yn − y

≤ lim sup
n→∞

E

 Ŷ (n)
T (y)(V (n))′

(
ỹn
y
Ŷ

(n)
T (y)

)
y


= E

[
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

)]
,

where, as in the proof of theorem 2.1, we have applied the mean value the-
orem of differential calculus and the random variables ỹn take values be-
tween y and yn. The last equality follows from the fact that the sequence

Ŷ
(n)
T (y)(V (n))′( ỹn

y
Ŷ

(n)
T (y)) tends to the random variable y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)
al-

most surely and — using corollary 4.2 (i) and (ii) uniformly in n ∈ N be-
low — is dominated in absolute value by the uniformly integrable sequence(
CV (n)(Ŷ

(n)
T (y))

)∞
n=1

, for some constant C > 0.

As regards (71) fix again y > 0 such that v′(y) exists and estimate

lim inf
n→∞

v(yn)− v(y)

yn − y
= (74)

= lim
n→∞

v(n)(yn)− v(n)(y)

yn − y

≥ lim inf
n→∞

E
[
V (n)

(
Ŷ

(n)
T (yn)

)]
− E

[
V (n)

(
y
yn
Ŷ

(n)
T (yn)

)]
yn − y

= lim inf
n→∞

E

 Ŷ (n)
T (yn)(V (n))′

(
ỹn
yn
Ŷ

(n)
T (yn)

)
yn


= E

[
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

)]
,

where in the last equality follows as in (73) above, this time using the uniform

integrability of the sequence
(
CV (n)(Ŷ

(n)
T (yn))

)∞
n=1

.

Step 6: For a sequence (yn)∞n=1 converging to y > 0, the sequence
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(
ŶT (y)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

converges towards ŶT (y)V ′(ŶT (y)) in the varia-

tion norm.

Observe that

E
[
ŶT (y)(V (n))′(Ŷ

(n)
T (yn))

]
= −EQ̂(y)

[
X̂

(n)
T (xn)

]
y ≥ −xny (75)

where xn = −(v(n))′(yn) and where we have used that the processes X(n),

which start at X
(n)
0 = xn and are integrals on S and uniformly bounded from

below, are Q̂(y)-supermartingales.
Similarly as in step 5 note that by the smoothness of v we have limn→∞ xn =

limn→∞−(v(n))′(yn) = −v′(y) = x.

Hence the sequence
(
ŶT (y)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

converges to

ŶT (y)V ′(ŶT (y)) in the norm of L1(P ), as it converges in measure, the
positive parts are uniformly integrable and for the expectations we have the
inequality

lim inf
n→∞

E
[
ŶT (y)

(
V (n)

)′ (
Ŷ

(n)
T (yn)

)]
(76)

≥ lim
n→∞

(−xny) = −xy = v′(y)y

= E
[
ŶT (y)V ′

(
ŶT (y)

)]
.

Hence (76) implies that the sequence ŶT (y)
(
V (n)

)′ (
Ŷ

(n)
T (yn)

)
converges in

the norm of L1(P ).

Step 7: For x ∈ R, denote by X̂
(n)
T (x) ∈ Xb(x) the optimal solution to the

primal problem (16).

The sequence
(
U(X̂

(n)
T (x))

)∞
n=1

converges in the variation norm to a ran-

dom variable U(F̂T (x)), where F̂T (x) is a ] −∞,∞]-valued random variable,
belonging to CU(x).

We have
lim
n→∞

u(n)(x) = u(x) = E
[
U
(
F̂T (x)

)]
, (77)

hence F̂T is the unique maximizer to the primal problem (6). Its relation to

the minimizer Q̂(y) of the dual problem (14) is given, for u′(x) = y, by

F̂T (x) = I
(
ŶT (y)

)
= I

(
y
dQ̂(y)

dP

)
. (78)

We also have that u and v are conjugate, as u(n) and v(n) are so, and u(n)

and v(n) converge monotonically to u and v, respectively.
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Fix x ∈ R and deduce from (23) that X̂
(n)
T (x) is given by

X̂
(n)
T (x) = I(n)

(
Ŷ

(n)
T (yn)

)
(79)

where yn is determined via (u(n))′(x) = yn. To show that (yn)∞n=1 converges
to y, observe that the concave functions u(n) increase to a function, which we
denote by u(∞), and which is conjugate to v = v(∞). As we have seen that v
is strictly convex on R+, the conjugate function u(∞) is smooth and therefore
(u(n))′ converges to (u(∞))′ pointwise (in fact, uniformly on compact subsets of
R), which proves that yn 7→ y := −v′(x).

Next we show that

lim
n→∞

∥∥∥U (X̂(n)
T (x)

)
− U (n)

(
X̂

(n)
T (x)

)∥∥∥
L1(P )

= 0 (80)

Indeed, otherwise we could find α > 0 such that the above expression is
bigger than α, for infinitely many n’s, which gives rise to the following estimate
for infinitely many n’s

u(n+1)(x) ≥ E
[
U (n+1)

(
X̂

(n)
T (x)

)]
(81)

= E
[
U
(
X̂

(n)
T (x)

)]
≥ E

[
U (n)

(
X̂

(n)
T (x)

)]
+ α

= u(n)(x) + α,

where in the equality above we have used that U (n+1)(x) coincides with U(x),

for x ≥ −(n+ 1) and that X̂
(n)
T (x) ≥ −(n+ 1). This contradiction to (9 shows

(80).
Hence we obtain from steps 3 and 4

lim
n,m→∞

E
[∣∣∣U (X̂(n)

T (x)
)
− U

(
X̂

(m)
T (x)

)∣∣∣] = (82)

= lim
n,m→∞

E
[∣∣∣U (n)

(
X̂

(n)
T (x)

)
− U (m)

(
X̂

(m)
T (x)

)∣∣∣]
= lim

n,m→∞
E
[∣∣∣U (n)

(
I(n)

(
Ŷ

(n)
T (yn)

))
− U (m)

(
I(m)

(
Ŷ

(m)
T (ym)

))∣∣∣]
≤ lim

n,m→∞

(
E
[∣∣∣U (n)

(
I(n)

(
Ŷ

(n)
T (yn)

))
− Ŷ (n)

T (yn)I(n)
(
Ŷ

(n)
T (yn)

)
−
(
U (m)

(
I(m)

(
Ŷ

(m)
T (ym)

))
− Ŷ (m)

T (ym)I(m)
(
Ŷ

(m)
T (ym)

))∣∣∣]
+ E

[∣∣∣Ŷ (n)
T (yn)I(n)

(
Ŷ

(n)
T (yn)

)
− Ŷ (m)

T (ym)I(m)
(
Ŷ

(m)
T (ym)

)∣∣∣])
= lim

n,m→∞

(
E
[∣∣∣V (n)

(
Ŷ

(n)
T (yn)

)
− V (m)

(
Ŷ

(m)
T (ym)

)∣∣∣]
+ E

[∣∣∣Ŷ (n)
T (yn)I(n)

(
Ŷ

(n)
T (yn)

)
− Ŷ (m)

T (ym)I(m)
(
Ŷ

(m)
T (ym)

)∣∣∣])
= 0,
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So
(
U(X̂

(n)
T (x))

)∞
n=1

converges in the norm of L1(P ) to a random variable

which we may write as U(F̂T (x)), where F̂T (x) is in CU(x) by the very definition
of this set.

As E[U(F̂T (x))] = u(∞)(x) we also have shown that u = u(∞).
The formula

F̂T (x) = I
(
ŶT (y)

)
(83)

now follows from

X̂
(n)
T (x) = I(n)

(
Ŷ

(n)
T (yn)

)
, n ∈ N, (84)

where on both sides we pass to the limits in the topology of convergence in
measure.

Step 8: We have the formula

xu′(x) = E
[
F̂T (x)U ′

(
F̂T (x)

)]
. (85)

Indeed, just as in the proof of theorem 2.1 this formula now is just a
reformulation of formula (69).

Step 9: u(x) has reasonable asymptotic elasticity

Indeed, by corollary 4.2 we have that, for each λ > 0, there is a constant
C > 0 such that

V (λy) ≤ CV (y), for y > 0, (86)

and in view of the identity v(y) = E[V (ŶT (y))] established in (61) this in-
equality passes over to the value function v:

v(λy) ≤ Cv(y), for y > 0. (87)

It follows from proposition 4.1 below and [KS99], lemma 6.1 that the latter
inequality implies the reasonable asymptotic elasticity of u and therefore in
particular the assertions (41).

Step 10: Supposing that Q̂(y) is equivalent to P and letting x verify u′(x) = y,
the formula

X̂t(x) = EQ̂(y)

[
F̂T (x) |Ft

]
(88)

defines a uniformly integrable Q̂(y)-martingale, which is a stochastic inte-
gral on S starting at X0(x) = x, for a predictable S-integrable integrand

(Ĥt(x))0≤t≤T

X̂t = x+ (Ĥ(x) ·S)t = x+

∫ t

0

Ĥu(x)dSu, 0 ≤ t ≤ T. (89)
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First note that (88) well-defines a uniformly integrable Q̂(y)-martingale as
we have

EQ̂(y)

[∣∣∣F̂T (x)
∣∣∣] = E

[∣∣∣∣∣dQ̂(y)

dP
I
(
ŶT (y)

)∣∣∣∣∣
]
<∞. (90)

We also note that X̂0(x) = x, as by (69) and (83) we have

EQ̂(y)

[
F̂T (x)

]
= E

[
dQ̂(y)

dP
I
(
ŶT (y)

)]
= −v′(y) = x. (91)

By theorem 2.2 of [KS99] each X̂(n)(x) is a stochastic integral on S starting

at X̂
(n)
0 (x) = x for some integrand Ĥ(n)(x):

X̂
(n)
t = x+

(
Ĥ(n)(x) ·S

)
t
, 0 ≤ t ≤ T. (92)

Our aim is to deduce the limiting formula (89). We know that the sequence

of terminal values (X̂
(n)
T (x)))∞n=1 converges to X̂T (x) in the norm of L1(Q̂(y)).

Indeed letting yn = (u(n))′(x) we have shown in step 6 that the sequence

−y dQ̂(y)
dP

X̂
(n)
T (x) =

(
ŶT (y)(V (n))′(Ŷ

(n)
T (yn))

)∞
n=1

converges to ŶT (y)V ′(ŶT (y)) =

−y dQ̂(y)
dP

X̂T (x) in the norm of L1(P ), which amounts to the same thing.

If we knew that the processes X̂(n) were uniformly integrable Q̂(y)-
martingales we could apply Yor’s theorem [Y78] to deduce (89) from (92). But

unfortunately we only know that the processes X̂(n) are Q̂(y)-supermartingales

(we only have shown that they are u.i. martingales under Q̂(yn)) and, in fact,

there is no reason why they should be Q̂(y)-martingales.
Hence we have to work a bit harder and apply the more general methodol-

ogy as developed in [DS99].

First we want to control the negative parts of X̂(n). Using the L1(Q̂(y))-

convergence of (X̂
(n)
T (x))∞n=1, we may pass to a subsequence, still denoted by

(X̂(n))∞n=1 such that
∑∞

n=1 ‖(X̂
(n)
T (x)) − (X̂

(n+1)
T (x))‖L1(Q̂(y)) < ∞. Hence the

supremum over the negative parts

Z := sup
n

(X̂
(n)
T (x))− ≤ (93)

≤ (X̂
(1)
T (x))− +

∞∑
n=1

|(X̂(n)
T (x))− (X̂

(n+1)
T (x))|

has finite expectation under Q̂(y). Denoting by Zt = EQ̂(y)[Z|Ft] the Q̂(y)-
martingale with terminal value Z = ZT , we define, for N ∈ N, the stopping
times

τN := inf{t : 0 ≤ t ≤ T and Zt ≥ N}, (94)
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where we define the inf over the empty set to equal T , and the functions wN
by

wN = ZτNχ{τN<∞} +Nχ{τN=T}. (95)

It is easy to verify that τN increases almost surely to T , that wN ∈ L1(Q̂(y)),

for each N ∈ N, and that, for fixed N , the sequence
((
X̂(n)(x)

)τN)∞
n=1

of

processes stopped at time τN is bounded from below by the function wN .
Hence we are in a position to apply, for fixed N , theorem D of [DS99].

To avoid (mainly notational) difficulties pertaining to the repeated formation
of convex combinations we isolate the easy diagonalization argument before
we apply theorem D of [DS99]: by Komlos’ theorem (compare [DS99], theo-
rem 1.3) we may find a sequence, denoted by (ξ1,n)∞n=1, of processes such that

ξ1,n ∈ conv(X̂(n)(x), X̂(n+1)(x), . . .) such that the sequence of random variables
(ξ1,n
τ1

)∞n=1 converges a.s.; next we form in a similar way a sequence of convex
combinations (ξ2,n)∞n=1 of the sequence of processes (ξ1,n)∞n=1 such that (ξ2,n

τ2
)∞n=1

converges a.s.; note that the a.s. convergence of (ξ2,n
τ1

)∞n=1 still holds true. Con-

tinuing in an obvious way we obtain a sequence
(
(ξk,n)∞n=1

)∞
k=1

of sequences of
processes obtained by repeatedly taking convex combinations and such that
(ξk,nτj )∞n=1 converges a.s., for each k and j = 1, . . . , k. The diagonal sequence of
processes (ξn,n)∞n=1 then is a sequence of convex combinations of the original

sequence (X̂(n)(x))∞n=1 and has the property that (ξn,nτj )∞n=1 converges a.s., for
each j ∈ N.

Summing up, by passing to a sequence of convex combinations — which we
now still denote by the sequence of processes (X̂(n)(x))∞n=1 — we may and do

assume that, for each N ∈ N, the sequence of random variables (X̂
(n)
τN (x))∞n=1

converges a.s. to a random variable which we denote by XτN . Also note that

(XτN )∞N=1 converges a.s. to X̂T (x) as τN → T almost surely.
After this preparation we may deduce from theorem D of [DS99] that we

can find a sequence (H(N))∞N=1 of S-integrable predictable processes supported
by ]]τN−1, τN ]] such that the stochastic processes H(N) ·S are supermartingales
and such that

x+ (H(1) ·S)τ1 ≥ Xτ1 (96)

and
(H(N) ·S)τN ≥ XτN −XτN−1

, for N > 1. (97)

We now paste the H(N)’s together and define the S-integrable predictable
integrand

H :=
∞∑
N=1

H(N). (98)

It follows from theorem D of [DS99] that the resulting process

X̃t := x+ (H ·S)t (99)
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is a well-defined Q̂(y)-supermartingale, as (X̃t)0≤t≤T is bounded from below

by the uniformly integrable Q̂(y)-martingale (−Zt)0≤t≤T . From (96) and (97)
we obtain that

x+ (H ·S)T = X̃T ≥ X̂T (x). (100)

On the other hand, using (88) and the Q̂(y)-super-martingale property of

(X̃t)0≤t≤T we obtain

x = EQ̂(y)[X̂T (x)] ≤ EQ̂(y)[X̃T ] ≤ x. (101)

Hence we must have equality in (100) and the process X̃ equals the process

X̂(x) and therefore is a uniformly integrable Q̂(y)-martingale, for which the

representation (89) holds true if we define Ĥ(x) := H.
The proof of theorem 2.2 now is complete.

Remark 2.3 We have assumed in item (iv) of theorem 2.2 that Q̂(y) is equiv-

alent to P and left open the case, when Q̂(y) only is absolutely continuous with
respect to P .

Note that in the case, when U(∞) = ∞, it is obvious from (14) and the

equality U(∞) = V (0) that for the minimizer Q̂(y) ∈ Ma(S) we have that
Q̂(y)
dP

> 0 almost surely, i.e., that Q̂(y) ∈ Me(S), so that theorem 2.2 (iv)
applies. But there are also other important cases where one may assert that
Q̂(y) is equivalent to P : for example, it follows from the work of I. Csiszar
[C75] that, for the exponential utility U(x) = −e−x, the condition

inf
Q∈Me(S)

E

[
V

(
y
dQ

dP

)]
<∞ (102)

implies that Q̂(y) ∈ Me(S). Note, however, that there is a slight difference
between condition (102) and the finiteness of v(y) as defined in (14).

In general, there is little reason why Q̂(y) should be equivalent to P . A
thorough discussion of this case is left to the future research.

We also note that the processes Xt = x+ (H ·S)t which are uniformly inte-

grable under some Q ∈ Me(S), such as the optimal process X̂(x) in theorem
2.2 (iv) above, have extensively been studied in [DS97], where they were shown
to have a number of features which make them interesting in applications to
Mathematical Finance.

Remark 2.4 As mentioned in the introduction, F. Bellini and M. Fritelli have
proved — using different methods — a result which implies that the assump-
tions (1), (2) and

inf
Q∈Ma(S)

E

[
V

(
dQ

dP

)]
<∞ (103)
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imply that there is a unique minimizer Q̂ ∈Ma(S) to (103) which is inMe(S)
if U(∞) =∞.

We have reproved this result in step 2 above, but this proof is rather com-
plicated as we had to prepare the ground for the proof of the other assertions
of theorem 2.2 too.

If one is only interested in the result of F. Bellini and M. Fritelli above one
may proceed in a considerably simpler way and one does not need the assump-
tion of reasonable asymptotic elasticity of U . For the sake of completeness we
sketch the argument: applying theorem 2.2 of [KS99] we may find, for each
n ∈ N, a measure Q(n) ∈Me(S) satisfying

v(n)(1) +
1

n
> E

[
V (n)

(
dQ(n)

dP

)]
. (104)

The applicability of theorem 2.2 of [KS99] is justified as we have chosen the
sequence

(
U (n)

)∞
n=1

such that each U (n) has reasonable asymptotic elasticity,
even when U fails to do so.

Assumption (103) clearly implies that limn→∞ v
(n)(1) <∞. We shall show

that (Q(n))∞n=1 converges in the variation norm by showing that
(
dQ(n)

dP

)∞
n=1

is

uniformly integrable and converges in measure. As regards the uniform integra-
bility we just copy the argument from (56) above. As regards the convergence
in measure we have — at least — two possibilities: either we repeat the argu-

ment of (57) above showing directly that
(
dQ(n)

dP

)∞
n=1

is Cauchy in measure; or

we may also be lazy and avoid this argument by applying Komlos’ theorem:
passing to convex combinations of (Q(n))∞n=1 one can without further argument
assume that this sequence of convex combinations, still denoted by (Q(n))∞n=1,

is Cauchy in measure. Consequently
(
dQ(n)

dP

)∞
n=1

is convergent in the norm of

L1(P ) to some dQ̂
dP

.

As Ma(S) is closed in the variation norm we have that Q̂ ∈ Ma(S) and
Fatou’s lemma implies that it is the minimizer to (103).

The uniqueness of Q̂ now follows from the strict convexity of V and the
fact that Q̂ ∈Me(S), if U(∞) = V (0) =∞, is obvious.

Remark 2.5 The formula

u′(x) =
E[X̂T (x)U ′(X̂T (x))]

x
(105)

may be viewed as a special case of a general principle on the variation of the
optimal investment X̂T (x). We interpret this principle of valuing by marginal
utility in economic terms (compare [F90] and [D97]): suppose your initial
endowment is changed from x to x + h, for some small h ∈ R. What is the
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resulting change u(x + h)− u(x) in expected utility, if we invest optimally in
the financial market S?

One may use the additional endowment h to finance the contingent claim
h
x
X̂T (x) (we assume for simplicity x 6= 0), which can be replicated on the

financial market at a cost of h. The resulting difference in expected utility
then equals

E

[
U

(
x+ h

x
X̂T (x)

)
− U

(
X̂T (x)

)]
≈ h ·E[X̂T (x)U ′(X̂T (x))]

x
. (106)

Economic intuition suggests that
(
1 + h

x

)
X̂T (x) equals the optimal invest-

ment X̂T (x+ h) up to terms of order o(h), which leads us to conjecture

u(x+ h)− u(x)

h
≈ E[X̂T (x)U ′(X̂T (x))]

x
. (107)

In the present paper as well as in [KS99] we have given precise and fairly
general conditions making sure that this intuitive reasoning indeed leads to
the precise formula (105).

Let us now consider an alternative use of the additional endowment h,
namely investing it into the bond: this results in a terminal wealth X̂T (x) +h.
Again economic intuition suggests that this investment should be optimal, for
given endowment x + h, up to terms of order o(h). Hence we conjecture the
relation

u(x+ h)− u(x)

h
≈ E[U(X̂T (x) + h)− U(X̂T (x))]

h
(108)

≈ E[U ′(X̂T (x))]. (109)

Under which conditions does this — even simpler — relation result in a precise
formula? The answer is: in the setting of the present paper it does hold true,
while in the setting of [KS99] things may go wrong.

Indeed, using the relations y = u′(x) and U ′(X̂T (x)) = ŶT (y) the formula

u′(x) = E[U ′(X̂T (x))] (110)

is equivalent to the formula

y = E[ŶT (y)]. (111)

As we have seen, formula (111) always holds true under the assumptions of
theorem 2.2 of the present paper; on the other hand, it was shown in example
5.1 of [KS99] that the assumptions of theorem 2.2 of [KS99] are not sufficient
to imply the validity of (111).
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In a way, this situation is not too surprising, if one thinks in economic
terms: Formula (105) reflects the logic of a multiplicative variation of the

optimal endowment X̂T (x) while formula (110) reflects the logic of an additive
variation. While — at least on an intuitive level — a multiplicative variation
does fit well to utility functions U : R → R as well as to utility functions
U : R+ → R, the additive variation is prone to lead to difficulties, when
U ′(0) =∞, while it does fit well to utility functions U defined on all of R.

We thank I. Klein for helpful comments on the theme of this remark.

Remark 2.6 In the present paper we have assumed that the stock price pro-
cess S is a locally bounded semi-martingale, a setting which is slightly less
general then the one chosen in [KS99].

The reason for assuming local boundedness is that our present approach
is based on approximating the optimal process X̂(x) by a sequence X(n)(x)
of processes which are bounded from below, thus modeling, for fixed n, the
situation of an economic agent with a finite credit line. The assumption of
local boundedness of S is crucial for this approach to work successfully, which
again is not too surprising if one thinks in economic terms.

We give an easy example illustrating the new phenomena arising in the non
locally bounded case: Let S = (S0, S1) be a one period process with S0 = 0
and S1 normally distributed with mean µ ∈ R and variance σ2 > 0. We
consider S to be defined with respect to its natural filtration (F0,F1). Given
the endowment x ∈ R the set of random variables

K(x) := {x+ (H ·S)1 : H predictable and S-integrable} (112)

trivially reduces to the set

K(x) := {x+ λS1 : λ ∈ R}. (113)

Let us now consider the exponential utility U(x) = −e−x and the optimiza-
tion problem

{E[U(X1)], X1 ∈ K(x)} 7−→ max! (114)

An elementary calculation reveals the well-known result that the maximizer
to this problem is given by X̂1 = x + λ̂S1, where λ̂ = µ/σ, which makes
perfect sense economically: the higher the Sharpe-ratio µ/σ of the investment
opportunity is, the more the utility-maximizing agent wants to invest in it.

But note that, for µ 6= 0, this investment cannot be approximated by
trading strategies on S which are uniformly bounded from below (i.e., which
can be chosen by an agent with a finite credit line), as there are no such trading
strategies except for the zero-investment.

Summing up: in the case of non locally bounded processes the modeling of
the optimal investment as a limit of investments which are bounded from below
does not work any more and a different methodology has to be developed. This
theme is left to future research.
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3 Examples

In this section we give some examples similar to example 5.2 in [KS99] where
the assumption AE−∞(U) = 1 now replaces (or accompanies) the assumption
AE+∞(U) = 1 of [KS99].

Lemma 3.1 Assume that U : R → R is a utility function satisfying (1) such
that AE−∞(U) = 1; denote by V its conjugate function. Then there is a prob-
ability measure Q on R+ supported by a sequence (xk)k≥0 of positive numbers
increasing to infinity such that

(i)
∫∞

0
V (x)Q(dx) <∞,

(ii)
∫∞

0
xV ′(x)Q(dx) <∞,

(iii)
∫∞

0
V (γx)Q(dx) =∞ for any γ > 1.

Proof (compare [KS99], lemma 5.1) Using proposition 4.1 (iii) below we may
find a sequence (yn)n≥1 of positive numbers increasing to infinity such that,
for any γ > 1

∞∑
n=1

1

22n

V (γyn)

V (yn)
= +∞. (115)

Denote

xn =
yn

1 + 1
2n

and pn =
K

22nV (yn)
(116)

where the normalizing constant K is chosen such that
∑∞

n=1 pn = 1. We now
are ready to define the measure Q, which is supported by the sequence (xn)n≥1:

Q(xn) = pn. (117)

Let us check the assertions of our Lemma. We have∫ ∞
0

V (x)Q(dx) =
∞∑
n=1

pnV (xn) <∞ (118)

where we have used that for all but finitely many n’s we have V (xn) ≤ V (yn)
and that

∑∞
n=1 pnV (yn) < ∞. This proves 3.1 (i). As regards 3.1 (ii), we use

the inequality:

xV ′(x) ≤ 1

γ − 1
(V (γx)− V (x)) ≤ 1

γ − 1
V (γx), (119)

which is valid for any γ > 1 and x sufficiently big, to get

xnV
′(xn) ≤ 2nV (yn), (120)

33



for n sufficiently big, say n ≥ n0, and hence∫ ∞
0

xV ′(x)Q(dx) =
∞∑
n=1

pnxnV
′(xn) ≤ const +

∞∑
n=n0

pn2nV (yn) <∞ (121)

Finally, (115) implies 3.1 (iii): for any γ > 1∫ ∞
0

V (γx)Q(dx) =
∞∑
n=1

pnV (γxn) =∞. (122)

The proof is complete.

Remark 3.2 The assertions (i)-(iii) of lemma 3.1 are sensitive only to the
behavior of Q near infinity. For example, we can always choose Q in such a
way that

∫∞
0
xQ(dx) = 1. (Note that assertion 3.1 (i) implies in particular

that
∫∞

0
xQ(dx) <∞.)

We now can formulate the analogue to example 5.2 of [KS99]:

Proposition 3.3 Let U : R→ R be a utility function satisfying (1) and such
that AE−∞(U) = 1. Then there is a complete continuous financial market
(St)0≤t≤T such that:

(i) there is a ∈ R such that, for x ≥ a, the optimization problem (6) has a

unique optimal solution X̂(x), while, for x < a, no optimal solution to
(6) exists.

(ii) u is continuously differentiable; it is strictly concave on [a,∞[, while
u′(x) = 1, for x ≤ a.

(iii) v is continuously differentiable and strictly convex on ]0, 1] and the left
derivative v′l at y = 1 equals v′l(1) = −a, while v(y) =∞, for y > 1.

Proof We proceed similarly as in [KS99], example 5.2.
Let U be a utility function satisfying (1) and such that AE−∞(U) = 1.

Let W be a standard Brownian motion with W0 = 0 defined on a filtered
probability space (Ω,FT , (Ft)0≤t≤T , P ), where 0 < T < ∞ is fixed and the
filtration (Ft)0≤t≤T is supposed to be generated by W . Let Q be a measure on
(0,∞) for which the assertions (i)-(iii) of Lemma 3.1 hold true and such that
(see remark 3.2) ∫ ∞

0

xQ(dx) = 1. (123)

Let

−a =

∫ ∞
0

xV ′(x)Q(dx). (124)
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and η an R+-valued random variable on (Ω,FT ), whose distribution under
P coincides with the measure Q. Clearly, (123) implies that E[η] = 1. The
process

Zt = E[η|Ft], t ≥ 0. (125)

is a strictly positive martingale with initial value Z0 = 1. From the integral
representation theorem we deduce the existence of a predictable process µ =
(µt)t≥0 such that

Zt = 1 +

∫ t

0

µsZsdWs (126)

or, equivalently,

Zt = exp

(∫ t

0

µsdWs −
1

2

∫ t

0

µ2
sds

)
. (127)

The stock price process S is now defined as

St = 1 +

∫ t

0

Su (−µudu+ dWu) . (128)

Standard arguments based on the integral representation theorem and the Gir-
sanov theorem imply that the family of martingale measures for the process S
consists of exactly one element (i.e., the market is complete) and that the den-
sity process of the unique martingale measure is equal to Z. The verification
of the assertions (i)-(iii) of the proposition 3.3 now follows exactly the same
lines as the proof of proposition 5.2 in [KS99] and therefore is omitted.

We now turn to the case of utility functions U : R→ R satisfying (1) and
such that AE+∞(U) as well as AE−∞(U) equal 1; in this situation we may
construct examples which - from an economic point of view - are even more
puzzling than the above example described in proposition 3.3.

First we need a combination of lemma 3.1 above with lemma 5.1 from
[KS99]:

Lemma 3.4 Let U : R → R be a utility function satisfying (1) such that
AE+∞(U) = AE−∞(U) = 1. There is a probability measure Q on R+ supported
by an increasing sequence (xk)k∈Z such that limk→−∞ xk = 0, limk→∞ xk = ∞
such that

(i)
∫∞

0
V (x)Q(dx) <∞ and

∫∞
0
xQ(dx) = 1,

(ii)
∫∞

0
x|V ′(x)|Q(dx) <∞,

(iii)
∫ 1

0
V (γx)Q(dx) =∞, for any γ 6= 1.

Proof The proof is a straightforward combination of the proofs of lemma
3.1 above and lemma 5.1 of [KS99]: for (xk)k≥0 we mimic the former and for
(xk)k<0 the latter one.
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Proposition 3.5 Let U : R → R be a utility function satisfying (1) and
such that AE+∞(U) = AE−∞(U) = 1. Then there is a complete continuous
financial market (St)0≤t≤T such that

(i) There is precisely one x0 ∈ R for which the optimal solution X̂(x0) to

(6) exists; moreover this optimal solution X̂(x0) is unique.

(ii) u(x) = c+ x for some constant c ∈ R

(iii) v(1) <∞ while, for y 6= 1, we have v(y) =∞.

Proof We repeat the construction of the proof of proposition 3.3 above where
the measure Q on R+ now satisfies the properties listed in lemma 3.4 rather
than those of lemma 3.1. Then it follows from lemma 3.4 (i) and (iii) that
assertion 3.5 (iii) is satisfied which in turn implies 3.5 (ii) by the conjugacy of
the functions u and v. As regards assertion 3.5 (i) we deduce form Scholium
5.1 of [KS99] that there is at most one x0 ∈ R such that the optimal solution

X̂(x0) exists. To find this x0 and the corresponding X̂(x0) we define the
random variable

X := I(ZT ) = −V ′(ZT ), (129)

where ZT is defined as in the proof of proposition 3.3 above. Then it follows
from lemma 3.4 (ii) that

E [|X|ZT ] =

∫ ∞
0

|V ′(x)|xQ(dx) <∞. (130)

so that x0 = E[XZT ] is well defined and - using the martingale representation
theorem - we may write X as

X = x0 +

∫ T

0

HudSu. (131)

Here the process (x0 +
∫ T

0
HudSu)0≤t≤T is a uniformly integrable martingale

under the unique martingale measure for the financial market (St)0≤t≤T (the
density of this martingale measure with respect to P is given by ZT ). In other

words the random variable X equals the terminal value X̂T (x0) of a process

X̂(x0) ∈ X(x0).

To show that X̂(x0) is the unique solution to the optimization problem (6)

(for x = x0) it suffices to show that E
[
U(X̂T (x0))

]
= u(x0) holds true. Noting

that u(x0) = v(1) + x0 this equality follows from

E
[
U(X̂T (x0))

]
= E [U (I(ZT ))] (132)

= E [U (I(ZT ))− I(Zt)ZT ] + E [I(ZT )ZT ]

= E [V (ZT )] + E [XZT ]

= v(1) + x0
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which yields 3.5 (i) and thus finishes the proof.

Remark 3.6 One also may construct several variants of the example given in
proposition 3.5 (always using the hypothesis AE+∞(U) = AE−∞(U) = 1): for
example, one may modify the construction of lemma 3.4 such that assertion
3.4 (ii) is replaced by

3.4 (ii ′)
∫∞

0
x|V ′(x)|Q(dx) =∞,

while assertions 3.4 (i) and 3.4 (iii) remain uncharged.
Plugging a measure Q satisfying 3.4 (i), (ii′), and (iii) into the construction

of proposition 3.5, we again obtain the assertions 3.5 (ii) and (iii) while (i) is
replaced by

3.5 (i ′) There is no x ∈ R for which the optimal solution X̂(x0) exists.

A second variation is to modify the construction of lemma 3.4 so that we
have

3.4 (i ′′)
∫∞

0
V (γx)Q(dx) <∞ for 1 ≤ γ ≤ 2, and

∫∞
0
xQ(dx) = 1,

3.4 (ii ′′)
∫∞

0
x|V ′(γx)|Q(dx) <∞ for 1 ≤ γ ≤ 2,

3.4 (iii ′′)
∫∞

0
V (γx)Q(dx) =∞ for γ 6∈ [1, 2].

Using such a probability measure Q in the construction of proposition 3.5
yields the following assertions:

3.5 (i ′′) There are numbers −∞ < a < b < ∞ such that, for x ∈ [a, b], there

exists a unique optimal solution X̂(x) to (6); for x 6∈ [a, b] the optimal
solution to (6) does not exist.

3.5 (ii ′′) u(x) is a smooth function which is strictly concave on [a, b], while
u′(x) = 2, for x ≤ a, and u′(x) = 1, for x ≥ b.

3.5 (iii ′′) v(y) is a finitely valued, smooth and strictly convex function on the
interval [1, 2] while v(y) = ∞, for y 6∈ [1, 2]. The right derivative v′r(1)
at 1 and the left derivative v′l(2) at 2 are finite and we have

v′r(1) = −b and v′l(2) = −a.

The proofs of the above observations are rather straightforward variations
of the preceding arguments and left to the energetic reader.
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Remark 3.7 The attentive reader certainly has noticed a slight difference
between [KS99] and the present paper with respect to the condition insuring
that the value function u(x) as defined in (8) does not become degenerate: in
(9) above we have required that

u(x) < U(∞), for some x ∈ R, (133)

while in [KS99] we have used the assumption

u(x) <∞, for some x > 0. (134)

Of course, it is natural that in the context of the present paper we allow x
to vary in R, while, in the context of [KS99], x varies in R+. But why do we
have to impose in (133) the (stronger) requirement u(x) < U(∞) instead of
u(x) <∞? Clearly these two requirements coincide if U(∞) =∞. But what
happens if U(∞) < ∞? The point is that for a utility function U : R+ → R

satisfying U ′(0) = ∞, as considered in [KS99] and such that U(∞) < ∞ we
may deduce already from our standing assumption 2, i.e., Me(S) 6= ∅, that
we automatically have u(x) < U(∞), for all x > 0. Indeed, the equality
u(x) = U(∞), for some x > 0, implies that there is a sequence (H(n))∞n=1 of
admissible integrands such that the processesX(n) = x+H(n)·S are nonnegative
and such that (X

(n)
T )∞n=1 tends to +∞ almost surely. This implies that the

sequence of trading strategies (H(n))∞n=1 defines a “free lunch with bounded
risk” as H(n) ·S ≥ −x, which is in contradiction to the assumptionMe(S) 6= ∅
(see [DS94]).

Summing up: we have that for a utility function U : R+ → R satisfying
U ′(0) = ∞ as in [KS99] under the assumption Me(S) 6= ∅ the conditions
u(x) <∞ and u(x) < U(∞), for some x > 0, are equivalent. Indeed, the case
U(∞) = ∞ this is true for trivial reasons, while in the case U(∞) < ∞ both
conditions are automatically satisfied.

In the context of the present paper the situation is not so pleasant any
more. In the subsequent lemma 3.8 we show that, for any utility function
U : R → R satisfying (1) and such that U(∞) < ∞ we may construct a
financial market S satisfying Me(S) 6= ∅ but such that u(x) = U(∞), for all
x ∈ R. To exclude these cases we had to use assumption (133) in the present
paper.

We thank C. Summer for helpful comments on the theme of this remark.

Lemma 3.8 Let U : R→ R be a utility function satisfying (1) and such that
U(∞) < ∞. Then there is a complete continuous financial market (St)0≤t≤T
such that:

u(x) = U(∞), for all x ∈ R. (135)
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Proof Fix a sequence (pn)∞n=1 of strictly positive numbers,
∑∞

n=1 pn = 1, such
that

lim
n→∞

pnU(−n2n) = 0. (136)

Letting qn = 2−n, define xn = qn
pn

. Now repeat the construction of proposition

3.3 to find a complete, continuous financial market (St)0≤t≤T such that the
Radon-Nykodym derivative ZT of the unique equivalent martingale measure
for the process S has the form

ZT =
∞∑
n=1

xnχDn (137)

where (Dn)∞n=1 is a partition of Ω into FT -measurable sets, satisfying P [Dn] =
pn.

Now we consider the Arrow-Debreu-type security A(n), whose payoff at
time T is defined as

A
(n)
T = −n2nχDn , (138)

i.e., which pays to the holder −n2n at time t = T (or — phrased the other
way round — obliges the holder to pay n2n) if the true state of the world ω
lies in Dn, and zero otherwise.

As our market is complete, the price of this security at time t = 0 equals

A
(n)
0 = E

[
ZTA

(n)
T

]
= pnxn · (−n2n) = −n. (139)

On the other hand the expected utility of the security A(n) at time t = T ,
which equals E[U(A

(n)
T )] = pnU(−n2n), tends to zero as n → ∞. Speaking

informally: the Arrow-Debreu-type security A(n) is a very good deal for an
agent whose utility is defined by U : she receives the amount n at time t = 0
while the possible loss of n2n at time t = T , if the true state of the world
happens to lie in Dn, has little effect on the expected utility, as we have chosen
pn to be very small.

Now fix C > 0, and m ∈ N and define, for n > m, the security X(n) by

X
(n)
T =

m∑
j=1

CχDj − n2nχDn . (140)

Its price at time t = 0 is given by

X
(n)
0 = C

m∑
j=1

qj − n, (141)

so that for fixed initial endowment x ∈ R, we have X
(n)
0 < x, for n sufficiently

large, which means that X
(n)
T ∈ CbU(x). On the other hand, the expected utility
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of X
(n)
T equals

E
[
U
(
X

(n)
T

)]
= U(C)

m∑
j=1

pj − o(n) (142)

which is arbitrarily close to U(∞), if we chose C > 0 and m ∈ N sufficiently
large. Hence

u(x) = sup
XT∈CbU (x)

E[U(XT )] = U(∞). (143)

4 The asymptotic elasticity at −∞
In this section we give a characterization of the property that the asymptotic
elasticity AE−∞(U) at minus infinity of a utility function U : R→ R is equal
to 1. The result is entirely parallel to the characterization of the property that
the asymptotic elasticity AE+∞(U) at plus infinity is equal to 1 which were
obtained in section 6 of [KS99].

Proposition 4.1 Let U : R → R be a utility function satisfying (1). The
following assertions are equivalent:

(i) AE−∞(U) > 1.

(ii) There is x0 < 0, λ > 1 and c > 1 s.t.

U(λx) < cλU(x), for x < x0. (144)

(iii) There is y0 > 0, λ > 1 and C <∞ s.t.

V (λy) < CV (y), for y > y0. (145)

(iv) There is y0 > 0 and C > 0 such that

V ′(y) < C
V (y)

y
, for y > y0. (146)

Proof (i) ⇒ (ii): Assuming AE−∞(U) > 1 we may find α > 0 and x0 < 0

such that xU ′(x)
U(x)

> 1+α, for x < x0. Given λ > 1 we may estimate, for x < x0:

U(λx) ≤ U(x) + U ′(x)(λ− 1)x (147)

≤ U(x) + U(x)(λ− 1)(1 + α)

≤ U(x)[1 + (λ− 1)(1 + α)]

Noting that the term in the last bracket is strictly bigger than λ we have
proved (ii).
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(ii) ⇒ (iii): Assuming that (ii) holds true for x0 < 0, λ > 1 and c > 1 let
y0 = U ′(λx0) and estimate, for y > y0 and µ = c > 1:

V (y) = sup
x<x0

[U(x)− xy] (148)

> sup
x<x0

[
1

cλ
U(λx)− xy

]
= sup

x<x0

1

cλ
[U(λx)− (λx)(cy)]

=
1

cλ
V (cy),

which proves (iii).
(iii) ⇒ (iv): Assuming that (iii) holds true for some y0 > 0, λ > 1 and

C <∞ let y > y0 and estimate:

V ′(y) ≤ V (λy)− V (y)

λy − y
(149)

≤ (C − 1)V (y)

(λ− 1)y
= C ′

V (y)

y
,

where C ′ = (C−1)
(λ−1)

.

(iv) ⇒ (i): Assuming that (iv) holds true for some y0 > 0 and C > 0 let
x0 = −V ′(y0) and estimate, for x < x0:

U(x) = inf
y>y0

[V (y) + xy] (150)

= V (U ′(x)) + xU ′(x)

> C−1V ′ (U ′(x))U ′(x) + xU ′(x)

> xU ′(x)
(
1− C−1

)
showing that AE−∞(U) ≥ (1− C−1)−1.

The subsequent consequence of proposition 4.1 was used several times in
this paper:

Corollary 4.2 If U : R → R is a utility function satisfying (1), U(0) >
0, having reasonable asymptotic elasticity, and [λ0, λ1] is a compact interval
contained in ]0,∞[, we may find constants C > 0 and K > 0 s.t.

(i) V (λy) ≤ CV (y), for y > 0 and λ0 ≤ λ ≤ λ1,

(ii) y|V ′(y)| ≤ CV (y), for y > 0.

(iii) For ε > 0 we may find δ > 0 s.t. for all (1− δ) < λ < (1 + δ) we have

(1− ε)V (y) < V (λy) < (1 + ε)V (y), for y > 0. (151)

41



Proof (i) It follows from the above proposition 4.1 (iii) and lemma 6.3 (iii)
in [KS99] that for a given interval [λ0, λ1] we may find a constant C and
0 < y0 < y1 <∞ such that

V (λy) ≤ CV (y), for 0 < y < y0 and y1 < y <∞. (152)

For the y lying in the interval [y0, y1] first note that the assumption U(0) > 0
implies that V (y) > 0, for all y > 0. Hence by a compactness argument we
have

lim
C→∞

inf
y0≤y≤y1,λ0≤λ≤λ1

CV (y)− V (λy) =∞, (153)

which implies that, for C > 0 sufficiently large, assertion (i) holds true.
(ii) The proof of inequality (ii) is analogous now applying proposition

4.1 (iv) above and lemma 6.3 (iv) of [KS99].
(iii) For the proof of (iii) observe that it suffices to prove one of the in-

equalities in (151), say

V (λy) < (1 + ε)V (y), for y > 0. (154)

Denoting by y the argmin of V , i.e., where V ′(ymin) = 0, note that the above
inequality is trivial for λ < 1 and y > ymin/(1 − δ) as well as for λ > 1 and
y < ymin(1 + δ). The non-trivial cases are

A) when λ < 1 and y is close to zero (say 0 < y < y0 for some y0 > 0) and

B) when λ > 1 and y is close to infinity (say y1 < y for some y1 > 0).

In case A) the validity of (154) follows from [KS99], lemma 6.3 (iii) and case
B) follows from a refinement of proposition 4.1 (iii) above, which is completely
analogous to the situation of [KS99], lemma 6.3 (iii) and left to the reader.

Finally the extension to the case λ < 1 and y0 ≤ y ≤ ymin/(1 − δ) as
well as λ > 1 and ymin/(1 + δ) ≤ y ≤ y1 is obtained from the assumption
infy>0 V (y) = V (ymin) > 0 and a compactness argument similarly as in the
proof of (i) above.
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[BF99] Bellini, F.,Fritelli, M., On the existence of minimax martingale mea-
sures. preprint.

[B73] Bismut, J.M. (1973) Conjugate convex functions in optimal stochastic
control. J. Math. Anal. Appl. 44, 1973, pp. 384-404.

42



[C75] Csiszar, I. 1-Divergence Geometry of Probability Distributions and
Minimization Problems. Annals of Probability 3, no. 1, (1975),
pp. 146–158.

[CSW99] Cvitanic, J., Schachermayer, W., Wang, J. Utility Maximization
With Random Endowment. work in progress.

[D97] Davis, M.H.A., Option pricing in incomplete markets. Publications of
the Newton Institute, Mathematics of derivative securities, Cambridge
University Press, (1997), pp. 216–226.

[DS94] Delbaen, F., Schachermayer, W. A General Version of the Fundamen-
tal Theorem of Asset Pricing. Mathematische Annalen 300, (1994),
pp. 463–520.

[DS97] Delbaen, F., Schachermayer, W. The Banach Space of Workable Con-
tingent Claims in Arbitrage Theory. Annales de l’ I.H.P., Vol. 33, No.
1 (1997), pp. 113–144.

[DS98] Delbaen, F., Schachermayer, W., The Fundamental Theorem of Asset
Pricing for Unbounded Stochastic Processes. Mathematische Annalen
312 (1998), pp. 215–250.

[DS99] Delbaen, F., Schachermayer, A Compactness Principle for Bounded
Sequences of Martingales with Applications. Proceedings of the Semi-
nar on Stochastic Analysis, Random Fields and Applications, Progress
in Probability, vol. 45, (1999), pp. 137–173, Birkhäuser Verlag
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XII, Lect. Notes Mathematics, vol. 649, (1978), pp. 265–309.

Walter Schachermayer
Vienna University of Technology
Wiedner Hauptstrasse 8-10/1075, A-1040 Vienna, Austria
wschach@fam.tuwien.ac.at

44


