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Abstract

We study the uniqueness of the marginal utility based price of contingent claims

in a semimartingale model of incomplete financial market. In particular, we

obtain that a necessary and sufficient condition for all bounded contingent claims

to admit a unique marginal utility based price is that the solution to the dual

problem defines an equivalent local martingale measure.



Introduction

As is well known, in a complete financial market every contingent claim can

be perfectly replicated by a controlled portfolio of the traded securities and

therefore admits a well-defined arbitrage free price. In an incomplete market,

to every contingent claim is associated an interval of arbitrage free prices and,

unless the contingent claim is replicable in which case this set consists of a single

point, arbitrage arguments alone are not sufficient to determine a unique price.

Since the endpoints of the arbitrage free interval coincide with the sub and super

replication costs of the contingent claim, the buying or selling of the claim at

any price in the interior of this set leads to a possible loss at the maturity.

Hence, in this case the choice of a price can only be made with respect to some

risk functional representing the preferences and endowments of the agent under

consideration.

Relying on this observation different utility based valuation approaches have

been developed and studied by Hodges and Neuberger [9], Davis [2], Karatzas

and Kou [11], Frittelli [7], Foldes [6] and Kallsen [10] among others. We study

in this paper the concept of marginal utility based price which is defined as such

an amount p that, given the possibility of buy & hold trading at p, the agent’s

optimal demand for the contingent claim is equal to zero. Note that the basic

idea underlying this valuation principle is well-known in economics and finance,

see, for example, the classic work [8] by Sir Hicks.

While marginal utility based prices exist under very minimal assumptions on

the financial market model, the agent’s preferences and the contingent claim,

their uniqueness remains a more delicate question. In our main theorem we

show that the uniqueness of the marginal utility based price is closely related

to the property that contingent claims be dominated by the terminal wealth of

a portfolio such that the product of its capital process and the solution to a

dual problem is a uniformly integrable martingale. As a corollary to this result,

we obtain that a necessary and sufficient condition for all bounded contingent

claims to admit a unique marginal utility based price is that the solution to the

dual problem defines an equivalent local martingale measure.

The rest of the paper is organized as follows. In Section 1 we present the

model of financial market and recall the definition of various classes of trading
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strategies. In Section 2 we state and discuss our main results. Section 3 contains

all the proofs.

We are indebted to two anonymous referees and an associate editor for per-

tinent comments and suggestions.

1 The Model

We consider a finite horizon model of a financial market which consists of d + 1

securities: one savings account and d stocks. As usual in mathematical finance,

we shall assume that the price process of the savings account is normalized to

one. The price process S := (Si)n
i=1 of the stocks is assumed to be a locally

bounded semimartingale on a given filtered probability space (Ω,F ,F, P) where

the filtration F := (Ft)t∈[0,T ] satisfies the usual conditions. Hereafter, we let

FT = F and denote by L0 the set of F−measurable random variables.

A probability measure Q is called an equivalent local martingale measure if

it is equivalent to P and if S is a local martingale under Q. We denote by M
the family of all such measures and assume that

M 6= ∅. (1)

This rather mild condition is essentially equivalent to the absence of arbitrage

opportunities in the financial market, see [3] for precise statements and further

references.

A self financing portfolio is defined by a pair (x,H) where x ∈ R represents

the initial capital and H = (Hi)d
i=1 is a predictable and S−integrable process

specifying the number of shares of each of the stocks held in the portfolio. The

value process of a self financing portfolio evolves in time as the stochastic integral

of the process H with respect to the stock price:

Xt := x + (H · S)t = x +
∫ t

0

HτdSτ , t ∈ [0, T ]. (2)

A process X is called admissible if it is the value of a self financing portfolio

and is almost surely non negative. For every x > 0 we denote by X (x) the class

of admissible processes whose initial value is equal to x, that is

X (x) :=
{

X ≥ 0 : X satisfies (2) for some H and X0 = x
}

. (3)

2



We shall use a shorter notation X for the set X (1). A process X ∈ X (x) is

said to be maximal if its terminal value cannot be dominated by that of any

other process in X (x), that is if X ′ ∈ X (x) and XT ≤ X ′
T imply X ′ = X.

Finally, a process X is said to be acceptable if it admits a decomposition of the

form X = X ′ −X ′′ where X ′ is admissible and X ′′ is maximal. For details on

maximal and acceptable processes we refer to [4].

We consider an economic agent whose preferences over terminal wealth are

represented by a utility function U : (0,∞) → R which is assumed to be strictly

increasing, strictly concave, continuously differentiable and to satisfy the Inada

conditions:

U ′(0) := lim
x→0

U ′(x) = ∞, U ′(∞) := lim
x→∞

U ′(x) = 0. (4)

In what follows we set U(0) := limx→0 U(x) and U(x) = −∞ for all x < 0.

The convex conjugate function of the agent’s utility function is defined to be

the Legendre transform of the convex function −U(−·), that is

V (y) := sup
x>0

{
−xy + U(x)

}
, y > 0. (5)

It is well known that under the Inada conditions (4), the conjugate function

is a continuously differentiable, strictly decreasing and strictly convex function

satisfying −V ′(0) = ∞, V ′(∞) = 0 and V (0) = U(∞), V (∞) = U(0) as well as

the following bidual relation

U(x) = inf
y>0

{
xy + V (y)

}
, x > 0. (6)

We also note that under the Inada conditions (4), the agent’s marginal utility

is the inverse of minus the derivative of the convex conjugate: (U ′)−1 = −V ′.

2 Main Results

Assume that the agent has some initial capital x > 0. In accordance with the

model set forth in the previous section, the maximal expected utility that this

agent can achieve by trading in the financial market is given by

u(x) := sup
X∈X (x)

E
[
U

(
XT

)]
, x > 0. (7)
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Let Y denote the set of non negative semimartingales Y with initial value

one and such that for any X ∈ X the product XY is a supermartingale:

Y :=
{

Y ≥ 0 : Y0 = 1 and XY is a supermartingale ∀X ∈ X
}

.

Note that since 1 ∈ X the semimartingales in Y are supermartingales. Define a

non increasing convex function by setting

v(y) = inf
Y ∈Y

E
[
V

(
yYT

)]
, y > 0. (8)

Hereafter we shall assume that v is finitely valued on (0,∞), that is

v(y) < ∞, y > 0. (9)

Under this assumption the value function u is strictly increasing, strictly concave

and continuously differentiable and v is its convex conjugate, that is

v(y) = sup
x>0

{
−xy + u(x)

}
. (10)

The solutions X̂(x) and Ŷ (y) to, respectively, (7) and (8) exist and are unique

for any x > 0 and y > 0. Furthermore, if y = u′(x) then

U ′(X̂T (x)) = yŶT (y), E
[
ŶT (y)X̂T (x)

]
= x. (11)

For details on these results we refer to [13].

Let now B ∈ L0 denote a European contingent claim which matures at the

terminal time T of the model. For a pair (x, q) ∈ R2 we denote by X (x, q|B)

the set of acceptable processes with initial value x and whose terminal value

dominates the random variable −qB, that is

X (x, q|B) :=
{

X is acceptable with X0 = x and XT + qB ≥ 0
}

. (12)

Note that with x > 0 and q = 0 this set coincides with the set of admissible

processes with initial capital equal to x.

Definition 1 Let B ∈ L0 and x > 0. A real number p is called a marginal

utility based price for B given the initial capital x if

E
[
U

(
XT + qB

)]
≤ u(x), q ∈ R, X ∈ X

(
x− qp, q|B

)
. (13)
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The interpretation of this definition is that p is a marginal utility based price

for a contingent claim if, given the possibility of buy & hold trading in the claim

at that price, the agent’s optimal demand is equal to zero.

The following theorem provides sufficient conditions for the uniqueness of

the marginal utility based price and constitutes our main result.

Theorem 1 Assume that the conditions (1), (4), (9) hold true. Fix x > 0,

define y = u′(x) and let Ŷ (y) denote the corresponding solution to (8). Then

for any maximal admissible process X̃ ∈ X we have:

(i) If the product process Ŷ (y)X̃ is a uniformly integrable martingale then

every contingent claim with the property that |B| ≤ cX̃T for some c > 0

admits a unique marginal utility based price with respect to the initial

capital x which is given by

p(B|x) := E
[
ŶT (y)B

]
. (14)

(ii) If the product process Ŷ (y)X̃ fails to be a uniformly integrable martingale,

that is if there exists a constant δ > 0 such that

E
[
ŶT (y)X̃T

]
= 1− δ,

then there exists a contingent claim 0 ≤ B ≤ X̃T and a constant α ≥ 0

such that every α ≤ π ≤ α + δ is a marginal utility based price for B.

The proof of the theorem will be given in the next section. We conclude this

section with an important corollary and some remarks.

Corollary 1 Assume that the conditions of Theorem 1 hold. Fix an arbitrary

x > 0, define y = u′(x) and let Ŷ (y) denote the corresponding solution to (8).

Then the following assertions are equivalent:

(i) The dual optimizer Ŷ (y) is the density process of an equivalent local mar-

tingale measure Q̂(y) with respect to P.

(ii) Every bounded contingent claim admits a unique marginal utility based

price given the initial capital x.
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Moreover, if any of the above assertions hold true, then the marginal utility

based price of any bounded contingent claim B has the representation:

p(B|x) = EQ̂(y)[B]. (15)

Proof. The result follows from Theorem 1 by taking X̃ ≡ 1. �

Remark 1 Let X̃ ∈ X be a maximal admissible process, fix a contingent claim

|B| ≤ X̃T and denote by B the interior of the set of points (x, q) such that the

family X (x, q|B) is non empty. With this notation, the function defined by

u(x, q) := sup
X∈X (x,q|B)

E
[
U

(
XT + qB

)]
, (x, q) ∈ B (16)

represents the maximal expected utility that an agent whose endowment is given

by x units of cash and q units of the contingent claim can achieve by trading in

the financial market.

Using standard arguments from the theory of convex functions we deduce

that the set of marginal utility based prices for the contingent claim is given by

P(B|x) :=
{

p =
r

y
: (y, r) ∈ ∂u(x, 0)

}
(17)

where ∂u denotes the subdifferential of the function u. Uniqueness of the

marginal utility based price for the contingent claim B given an initial capi-

tal x > 0 is thus equivalent to the differentiability of u at the point (x, 0) and

our main result can be seen as providing sufficient conditions for this property to

hold. If the function u is indeed differentiable at the point (x, 0), then it follows

from (17) that the contingent claim’s marginal utility based price is uniquely

given by

p(B|x) =
uq(x, 0)
ux(x, 0)

. (18)

Remark 2 If B is replicable in the sense that there exists an acceptable process

X such that −X is also acceptable and XT = B, then B admits a unique

marginal utility based price which is independent of both the initial capital and

the utility function and is given by b := X0.

Relying on the above observation, one may be tempted to think that for

a replicable claim B ≥ 0 the marginal utility based price is always given by

equation (14). Unfortunately, this guess is wrong as can be seen by taking
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B = XT for some maximal admissible process such that E[ŶT (y)XT ] < X0. For

example, in the setting of [12, Example 5.1] one may take B = 1. Note that in

this case the representation (18) for the marginal utility based price still holds

true.

Remark 3 In Theorem 1 above we considered the case of a utility function

U : (0,∞) → R, satisfying U ′(0) = ∞ so that we extended U to the whole real

line by letting U(x) = −∞, for x < 0 (see (4)).

Another important class of utility functions are those U : R → R which are

finitely valued on R, and satisfy — apart from increasingness, strict concavity

and differentiability — the Inada conditions U ′(−∞) = ∞ and U ′(∞) = 0. The

prime examples of such functions are the constant absolute risk aversion utility

functions given by U(x) = − exp(−αx) for some positive α.

For this class of utility functions it was shown in [1] (see also [14]) that —

under mild regularity conditions — the dual optimizer ŶT (y) to (8) equals the

density of a probability measure Q̂(y) ∈ M. In other words, condition (i) of

Corollary 1 is automatically satisfied in this context. Using similar arguments as

in the proof of Theorem 1 below one may therefore show that, in the setting of

[1] or [14], every bounded contingent claim B admits a unique marginal utility

based price with respect to a given initial capital x. In other words the “kink

phenomenon” described in Remark 1 only appears in the present case of utility

functions satisfying (4) and not for utility functions which are finitely valued on

all of R.

Remark 4 In the present paper we restrict to the assumption of local bound-

edness for the process S, mainly in order to avoid technicalities. It is, however,

possible to generalize our results to the case of arbitrary semi-martingales S

if the following provisos are taken: in the definition of the set M (as well as

in the statement of Corollary 1) the notion of ”local martingale measure” has

to be replaced by the term ”separating measure”. A probability measure Q is

called a ”separating measure” if any admissible X is a supermartingale under

Q. It is not hard to check that the results of [4], on which the proof of the

theorem below relies, carry over to this setting, so that one does not need the

local boundedness assumption there either.
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3 Proof of the main theorem

For the convenience of the reader we start by recalling some results on maximal

processes.

Lemma 1 Assume (1) and let (Xn)n≥1 be a sequence of maximal admissible

processes. Then the set of probability measures Q ∈ M under which all these

processes are uniformly integrable martingales is non empty and dense in M
with respect to the variation norm.

Proof. The result follows from Corollary 2.16, Theorem 5.2 and Corollary 5.3

of [4]. �

Lemma 2 Assume (1). Let X̃ ∈ X , Y ∈ Y, B ∈ L0 be such that |B| ≤ X̃T

and x > 0, q ∈ R be such that the set X (x, q|B) is not empty. If the product

Y X̃ is a uniformly integrable martingale, then

E[YT XT ] ≤ x, X ∈ X (x, q|B).

Proof. Fix X ∈ X (x, q|B) and consider the process X + |q|X̃. As is easily seen

from the assumption made on the contingent claim, this process has a positive

terminal value. On the other hand, the process X being acceptable it can be

written as X ′ −X ′′ where X ′ is admissible and X ′′ is maximal. By Lemma 1

we have that there exists at least one probability measure Q ∈M under which

X ′′ is a uniformly integrable martingale. Using this in conjunction with the fact

that admissible processes are supermartingales under Q we obtain

0 ≤ EQ

[(
XT + |q|X̃T

)∣∣∣Ft

]
≤ Xt + |q|X̃t

and conclude that X + |q|X̃ is an admissible process. The definition of Y and

the assumption of the lemma then imply that

E
[
YT XT

]
= E

[
YT

(
XT + |q|X̃T

)]
− |q| · E

[
YT X̃T

]
= E

[
YT

(
XT + |q|X̃T

)]
− |q| ≤ x.

�
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Proof of Theorem 1.(i). Let B ∈ L0 be a European contingent claim satisfying

the assumption of the statement and assume without loss of generality that

c = 1. Fix also x > 0 and set y = u′(x). We start by showing that the quantity

p = p(B|x) defined by (14) is indeed a marginal utility based price for the

contingent claim. Using (6) in conjunction with (14) and (10) we obtain that

E
[
U

(
XT + qB

)]
≤ E

[
V

(
yŶT (y)

)
+ yŶT (y)

(
XT + qB

)]
= v(y) + y

(
E

[
ŶT (y)XT

]
+qp

)
= u(x) + y

(
E

[
ŶT (y)XT

]
− (x− qp)

)
holds for all q ∈ R, X ∈ X (x − qp, q|B) and the desired inequality (13) now

follows from Lemma 2.

We start the proof of uniqueness by showing that p defines the minimal

marginal utility based price in the sense that for any π < p one can find a

positive number q such that the inequality

u(x− qπ, q) = sup
X∈X (x−qπ,q|B)

E
[
U

(
XT + qB

)]
> u(x) (19)

holds true. As is easily seen, the existence of such a positive number will follow

once we have shown that

D(x, π) := lim inf
q↘0

{
u(x− qπ, q)− u(x)

q

}
> 0. (20)

Let 0 ≤ (qn)∞n=1 ≤ x
1+|π| be an arbitrary sequence of positive numbers de-

creasing to zero and define a sequence of acceptable processes by setting

Xn := X̂(x− qn(1 + π)) + qnX̃

where X̂(x−qn(1+π)) is the optimal wealth process for the no–contingent claim

problem (7) with initial capital x − qn(1 + π). As is easily seen, this process

belongs to the set X (x− qnπ, qn|B) for each n ≥ 1 and it thus follows from the

concavity of the agent’s utility function that we have

u(x− qnπ, qn) ≥ E
[
U

(
Xn

T + qnB
)]

≥ E
[
U

(
X̂T (x− qn(1 + π))

)
+ qn

(
X̃T + B

)
U ′

(
Xn

T + qnB
)]

= u(x− qn(1 + π)) + E
[
qn

(
X̃T + B

)
U ′

(
Xn

T + qnB
)]

.
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Using the above inequality in conjunction with (14), the definition of D(x, π)

and the differentiability of the value function u = u(x) we obtain

D(x, π) ≥ −u′(x)(1 + π) + lim inf
n→∞

E
[(

X̃T + B
)
U ′

(
Xn

T + qnB
)]

≥ −u′(x)(1 + π) + E
[(

X̃T + B
)
U ′

(
X̂T (x)

)]
= u′(x)(p− π) > 0.

where the second inequality follows from the assumption |B| ≤ X̃T , the non

negativity of U ′, the fact that Xn
T converges to X̂T (x) almost surely and Fatou’s

Lemma.

We thus have shown that for any contingent claim B′ dominated by X̃T the

quantity p(B′|x) defined by (14) determines the lower bound of marginal utility

based prices. In particular, we have that −p = p(−B|x) is the minimal marginal

utility based price for −B. However, as one can easily see from Definition 1, this

implies that p is the maximal marginal utility based price for B. This finishes

the proof of uniqueness. �

Proof of Theorem 1.(ii). Assume that the product Ŷ (y)X̃ is not a uniformly

integrable martingale. Since this process is a supermartingale by definition of

the set Y it follows that there exists 0 < δ < 1 such that

E
[
ŶT (y)X̃T

]
= 1− δ < 1. (21)

Let M′ be the set of equivalent probability measures Q ∈ M under which the

maximal admissible process X̃ is a uniformly integrable martingale. As is easily

seen, this set is closed under countable convex combinations and by Lemma 1

it is dense in M with respect to the variation norm. It thus follows from [12,

Propositions 3.1 and 3.2] that

sup
Q∈M′

EQ[XT ] = sup
Q∈M

EQ[XT ] = sup
Y ∈Y

E[YT XT ]

holds for all admissible processes X ∈ X and

v(y) = min
Y ∈Y

E
[
V

(
yYT

)]
= E

[
V

(
yŶT (y)

)]
= inf

Q∈M′
E

[
V

(
y
dQ
dP

)]
.
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Let now (Qn)∞n=1 be an arbitrary minimizing sequence for the above problem,

that is a sequence in M′ with the property that

lim
n→∞

E
[
V

(
y
dQn

dP

)]
= v(y) = E

[
V

(
yŶT (y)

)]
. (22)

Passing if necessary to a subsequence and relying on Komlòs lemma, we may

assume without loss of generality that
(

dQn

dP
)∞
n=1

converges in probability to a

non negative function Y∗. Applying [12, Lemma 3.4] and taking into account

the uniqueness of the solution to (8) we deduce that Y∗ = ŶT (y). Using this

fact in conjunction with (21) and the definition of the set M′, we conclude that

even though it is convergent in probability and bounded in expectations, the

sequence

(Zn)∞n=1 :=
(

X̃T
dQn

dP

)∞
n=1

is not uniformly integrable. Therefore, by Rosenthal’s subsequence splitting

lemma (see for example [5]) we can find a subsequence (Zk)∞k=1 and a sequence

of pairwise disjoint measurable sets (Ak)∞k=1 with the properties that

lim
k→∞

E
[
1Ak

Zk
]

= δ, (23)

and for any bounded random variable R

lim
k→∞

E
[(

1Ac
k
Zk − ŶT (y)X̃T

)
R

]
= 0. (24)

After these lengthy preparations we now turn to the construction of a con-

tingent claim satisfying the assertions of the statement. Let 2N denote the set

of even natural numbers and define

A :=
⋃

k∈2N
Ak ⊂ Ω.

For our contingent claim we take the positive random variable B := 1AX̃T and

finally, for the non negative constant α we take

α := E
[
ŶT (y)B

]
= E

[
1AŶT (y)X̃T

]
.

In order to complete our proof, it is now sufficient to show that the inequality

u(x− qp, q) ≤ u(x) holds true for all strictly positive q when p = α and for all
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strictly negative q when p = α + δ. To this end, we start by observing that it

follows from (5), the definition of M′ and Lemma 2 that

E
[
U

(
XT + qB

)]
≤ E

[
V

(
y
dQk

dP

)]
+ y E

[
dQk

dP

(
XT + qB

)]
≤ E

[
V

(
y
dQk

dP

)]
+ y(x− qp) + yq E

[
dQk

dP
B

]
(25)

holds for all (q, p) ∈ R2, X ∈ X (x− qp, q|B) and k ≥ 1.

Now let p = α and fix an arbitrary q > 0. Taking limits on both sides of

the above expression as k /∈ 2N → ∞ and using (22) in conjunction with the

definition of the set A and (24) with R = 1A we obtain that

E
[
U

(
XT + qB

)]
≤ v(y) + y(x− qα) + lim

k/∈2N→∞
E

[
yq

(
1AZk

)]
= u(x)− yqα + lim

k/∈2N→∞
E

[
yq

(
1A∩Ak

Zk + 1A∩Ac
k
Zk

)]
= u(x)− yqα + lim

k/∈2N→∞
E

[
yq

(
1A∩Ac

k
Zk

)]
= u(x)

holds for all X ∈ X (x − qα, q|B) and the desired inequality follows. Similarly,

fix an arbitrary q < 0 and let p = α+δ =: β. Taking limits on both sides of (25)

as k ∈ 2N increases to infinity and using (22) in conjunction with the definition

of A, (23) and (24) with R = 1A we obtain that

E
[
U

(
XT + qB

)]
− u(x) ≤ yq

(
−β + lim

k∈2N→∞
E

[
1AZk

])
= yq

(
−β + lim

k∈2N→∞
E

[
1A∩Ak

Zk + 1A∩Ac
k
Zk

])
= yq

(
−β + lim

k∈2N→∞
E

[
1Ak

Zk + 1A∩Ac
k
Zk

])
= 0

holds for all X ∈ X (x− qβ, q|B) and our proof is complete. �
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