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Abstract

We consider the problem of maximizing the expected utility of discounted dividend
payments of an insurance company. The risk process, describing the insurance busi-
ness of the company, is modeled as Brownian motion with drift. We mainly consider
power utility and special emphasis is given to the limiting behavior when the coef-
ficient of risk aversion tends to zero. We then find convergence of the corresponding
dividend strategies to the classical case of maximizing the expected dividend pay-
ments.
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1 Introduction

The question of optimizing the dividend policy of an insurance company is a
classical problem of actuarial mathematics. The typical way to mathematically
formalize this problem (see Gerber, 1979, Ch. 10.1) is to model the reserve
process (Rt)t≥0 of an insurance company (before dividend payments) in the
classical Cramèr-Lundberg way using a compound Poisson process. A dividend
paying strategy then consists in an adapted increasing process (Ct)t≥0, model-
ing the accumulated dividend payments up to time t. Define the ex-dividend
process X by letting

Xt = Rt − Ct, (t ≥ 0), (1)

∗ Corresponding author.
Email address: fhubalek@fam.tuwien.ac.at (Friedrich Hubalek).

Preprint submitted to Elsevier Science 12 December 2003



and the time of ruin under the dividend paying policy C by

τ = inf{t : Xt ≤ 0}. (2)

Both X and τ depend obviously on C. A dividend policy C is admissible if
Ct = Cτ− for t ≥ τ : after (as well as at) the moment of ruin, no dividend
payments are possible any more.

To find the optimal dividend policy one has to define the target functional
which has to be maximized. The classical choice is the expected value of dis-
counted dividend payments, i.e.,

E

 ∞∫
0

e−βtdCt

 7→ max!, (3)

where β > 0 is a fixed discount rate. In this case one finds (under suitable
regularity conditions, see Gerber (1979)) that the optimal strategy is of barrier
type, i.e., there is a number B > 0 such that the company pays dividends
whenever the ex-dividend reserve process X hits the level B. In the setting
where R is modeled as Brownian motion with drift an analogous result was
obtained by Asmussen and Taksar (1997), and we shall review this result
below.

In the present paper we study a variation of the optimization problem (3):
instead of maximizing the expected value of discounted dividend payments,
we maximize the expected value of the utility of these payments, for some
utility function U : R≥0 → R≥0. To make this idea meaningful we require —
apart from the usual assumptions of monotonicity, smoothness and concavity
of U — that U(0) = 0, as well as the Inada conditions U ′(0) = lim

x↘0
U ′(x) = ∞

and U ′(∞) = lim
x↗∞

U ′(x) = 0. In fact, we shall focus our attention on the case

of power utility

U(x) =
xα

α
, (x ≥ 0), (4)

where we let α vary in (0, 1). Of course, the limiting case α = 1 corresponds
to the classical problem (3). We shall be particularly interested in the limiting
behavior as α tends to 1.

If α < 1 we may suppose without loss of generality that C is absolutely contin-
uous with respect to Lebesgue measure, as the condition U ′(∞) = 0 (which is

equivalent to lim
x→∞

U(x)

x
= 0 for concave functions), implies that the singular

part of C does not contribute to the target functional. Hence we suppose that
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the process (Ct)t≥0 admits almost surely a density process, denoted by (ct)t≥0

modeling the intensity of the dividend payments in continuous time. We then
have for each t ≥ 0

Ct =

t∫
0

csds, a.s. (5)

Now we can define, for a fixed utility function U , the target functional

E

 ∞∫
0

e−βtU(ct)dt

 7→ max! (6)

To make this problem – which will turn out to be quite delicate — more
tractable we restrict ourself to the diffusion limit of the Cramèr-Lundberg
model: we suppose that R is simply Brownian motion with drift, i.e.,

Rt = x + µt + σWt, (t ≥ 0), (7)

where x > 0 denotes the initial reserve, µ ∈ R the drift parameter, σ > 0 the
diffusion parameter and W is a standard Brownian motion, defined on (and
adapted to) some filtered probability space (Ω,F , P, F) with F = (Ft)t≥0. The
case of a process R of Cramèr-Lundberg type with jumps (of which the above
process is a limiting case) is left to future research.

The ex-dividend process is now

Xt = Rt −
t∫

0

csds, (t ≥ 0). (8)

Recall that the dividend density process (ct)t≥0 is admissible, if it is a non-
negative adapted process, that satisfies ct = 0, for t ≥ τ , where τ is the time
of ruin. As X now is a continuous process we have τ = inf{t ≥ 0 : Xt = 0}.

A word on the notation: as the process (ct)t≥0 is our control variable in the
problem (3), it is customary in the control theory literature to denote this
variable by (ut)t≥0. We prefer not to do so, as this might create confusion with
the letter U , which denotes the utility function; we rather prefer to follow Björk
et al. (1987) where a similar problem was investigated and where (ct)t≥0 had
the interpretation of ”consumption”.
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According to the above discussion of admissible dividend densities we have

E

 ∞∫
0

e−βtU(ct)dt

 = E

 τ∫
0

e−βtU(ct)dt

 . (9)

We define the value function

w(t, x) = sup E

 ∞∫
t

e−βsU(cs)ds

 , (10)

where we maximize over all densities (cs)s≥t of admissible dividend paying
processes starting at time t conditionally on the assumption Xt = Rt = x. We
may associate — at least formally — to the maximization problem (6) the
Hamilton-Jacobi-Bellman (HJB) equation

wt + sup
c≥0

[
(µ− c)wx +

σ2

2
wxx + U(c)e−βt

]
= 0, w(t, 0) = 0. (11)

This is a nonlinear partial differential equation. The value function w clearly
is of the form

w(t, x) = e−βtv(x), (12)

where v denotes a function depending only on the current reserve x. We have
wt(t, x) = −βe−βtv(x), hence we can simplify equation (11) to

−βv + sup
c≥0

[
(µ− c)vx +

σ2

2
vxx + U(c)

]
= 0, v(0) = 0, (13)

which is a nonlinear ordinary differential equation. The supremum in (13) is
attained at

c = (U ′)−1(vx) = v−1/(1−α)
x (14)

and (13) can be rewritten as

βv − µvx −
σ2

2
vxx −

1− α

α
v
− α

1−α
x = 0, v(0) = 0. (15)

We consider this ODE for x ≥ 0. Apart from the obvious initial value v(0) = 0
one more initial condition is clearly required to obtain a unique solution. We
postpone this issue for the moment.
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There seems to be no closed form solution in terms of elementary functions
(as we shall see below, there are good reasons why we should not expect an
elementary solution).

We now summarize the main results of the paper.

Theorem 1 For α ∈ (0, 1), β > 0, µ ∈ R, σ > 0, the value function w(t, x)
defined in (10) equals v(x)e−βt, where v is the unique solution of the ODE (15),
that has initial value v(0) = 0, and is well-defined and concave on R≥0. The
optimal dividend policy is given by ct = c(Xt), with

c(x) = vx(x)−
1

1−α . (16)

The asymptotic behavior of v(x), vx(x), and c(x), as x →∞, is given by

v(x) =

(
1− α

β

)1−α
xα

α

(
1 +O

(
ln x

x

))
, x → +∞, (17)

vx(x) =

(
1− α

β

)1−α

xα−1

(
1 +O

(
ln x

x

))
x → +∞, (18)

c(x) =
β

1− α
x

(
1 +O

(
ln x

x

))
, x → +∞. (19)

To motivate the above asymptotic results we consider for a moment the sit-
uation where µ = 0 and σ = 0, while α ∈ (0, 1) and β are still free. In other
words, we consider the situation where the risk process R is constant. In more
pedestrian terms, we analyze the (rather trivial) question of consuming an
initial amount x of money by a (deterministic) consumption process c, such
that x =

∫∞
0 ctdt, which is optimal with respect to

∞∫
0

e−βsU(cs)ds 7→ max! (20)

An elementary calculation reveals that the leading term in (19) solves this
problem, with the corresponding value function equal to the leading term
in (17): the optimal consumption c(x) is then proportional to the remaining
wealth x, the proportionality factor being β/(1−α). Similarly the value func-
tion v(x) then is proportional to the original utility function U(x) = xα/α,
the proportionality factor now being ((1− α)/β)1−α.

The above asymptotic formulas (17), (18), and (19), pertaining to the case
of general µ ∈ R and σ > 0, may therefore very roughly be interpreted as
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follows: for very rich insurance companies, i.e., x being close to infinity, the
optimal dividend policy, as well as the corresponding value function, are almost
the same as the optimal dividend policy for a company without any risky
business, i.e., µ = 0 and σ = 0. The explanation is that the influence of the
risk process R, for fixed µ ∈ R and σ > 0, becomes irrelevant as compared to
the present (huge) value x.

Let us now compare the theorem with the limiting case α = 1, i.e., the prob-
lem (3). In this case the HJB equation for the corresponding value function
equals (by the same formal arguments as above)

wt + sup
c≥0

[
(µ− c)wx +

σ2

2
wxx + ce−βt

]
= 0, w(t, 0) = 0, (21)

and the corresponding ODE reads

−βv + sup
c≥0

[
(µ− c)vx +

σ2

2
vxx + c

]
= 0, v(0) = 0. (22)

As long as wx(x, t) > e−βt the optimal choice of c is zero, which means that
no dividend payments should take place. Note that the condition wx(x, t) >
e−βt does not depend on t and is equivalent to vx(x) > 1. For vx(x) = 1
the expression in the bracket does not depend on the choice of c, while for
vx(x) < 1 the above equation becomes wt(t, x) = −∞ by letting c tend to
infinity, i.e., the equations (21) and (22) do not make sense any more.

Assuming vx ≥ 1 in (22) we obtain the ODE

βv − µvx −
σ2

2
vxx = 0, v(0) = 0, (23)

which is very easy to solve. The basic solutions of (23) are eλ1x and eλ2x, where

λ1 =
−µ +

√
µ2 + 2βσ2

σ2
> 0, λ2 =

−µ−
√

µ2 + 2βσ2

σ2
< 0. (24)

As we must have v(0) = 0 we get

v(x) = k
(
eλ1x − eλ2x

)
. (25)

The parameter k ∈ R still is free to be chosen. As v ≥ 0, we have vx(0) =
k(λ1 − λ2) ≥ 0, whence k > 0. The ”good” choice of k is an interesting
issue and crucial for understanding the situation of Theorem 1 above. Note
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that g(x) = eλ1x − eλ2x is a function on R≥0 which is concave on [0, x0],

where x0 =
1

λ1 − λ2

ln

(
λ2

2

λ2
1

)
is the unique inflection point of g; on [x0,∞) the

function g is convex.
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Fig. 1. The functions g(x) and g′(x) with parameters β = 0.05, µ = 0.2, σ = 1

Hence there is a unique k0 > 0, given by k0 = (λ1e
λ1x0 − λ2e

λ2x0)−1, such
that, for v(x) = k0g(x), we have vx(x0) = minx≥0 vx(x) = 1. It turns out
that for this choice of k the function v is indeed the value function associated
to the problem (3) on the interval [0, x0]. At the inflection point x0 is the
optimal dividend barrier and beyond x0, the value function v is not given by
the ODE (23) any more; it simply is continued in an affine way with slope 1,
i.e., v(x) = v(x0)+x−x0, for x ≥ x0. Clearly this continuation corresponds to
the strategy of immediately paying all the reserve exceeding x0 as dividends.

For the verification that this function v is indeed the value function of the
problem (3) we refer to the remarks at the end of Section 2 below. Note that,
at the inflection point x0 we have vxx = 0 and vx = 1, so that (22) yields
v(x0) = µ/β and that this quantity does not depend on σ.

It is interesting to discuss what happens for a choice of k different from k0.
After all, v(x) = kg(x) obeys the ODE (23) for all choices of k.

If k < (λ1 − λ2)
−1, then the function v = kg satisfies vx(0) < 1, hence the

ODE (22) fails already to be well-defined at x = 0. A more interesting choice is
(λ1−λ2)

−1 < k < k0. In this case there is 0 < x1 < x0 such that for v = kg the
ODE (22) is satisfied on [0, x1] and such that vx(x1) = 1. For x ∈ (x1, x0] we
have vx < 1 so that (22) fails to be well-defined. By considering the dividend
strategy of paying dividends whenever Xt = Rt − Ct exceeds v(x1), we get
indeed that w(t, x) = e−βtv(x) is the value function associated to this strategy.
But this strategy is not optimal (among all admissible strategies), as it is better
to wait with the dividend paying until the process X hits x0.
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On the other hand, if k > k0 then kg(x) = v(x) satisfies inf
x≥0

vx(x) > 1

so that the ODE (22) is satisfied on all of R≥0 with the associated opti-
mal dividend strategy being to never ever pay dividends. In economic terms
this may be interpreted as a bubble: the process (e−βtv(Xt))t≥0 is a local
martingale in view of (22). It is not hard to show that it is indeed a mar-
tingale, tending almost surely to zero, whence for all 0 ≤ t < ∞ we have

v(X0) = E
[
e−βtv(Xt)

]
> E

[
lim
t→∞

e−βtv(Xt)
]

= 0. This corresponds to the sit-

uation of a ”pure growth company” whose valuation by the function w —
although consistent in finite time (this is an economic interpretation of the
fact that (e−βtv(Xt))t≥0 is a martingale) — is never materialized by actual
dividend payments.

After these reminders on the classical case α = 1 let us discuss the situation
α ∈ (0, 1) described in Theorem 1 above. Instead of the ODE (22) we now
consider the nonlinear ODE (15); again one initial condition is given by v(0) =
0, while for the second, we may prescribe a value for vx(0) similarly as above.

If we choose k = vx(0) > 0 small enough, then it turns out that there is a
unique solution of (15) on a maximal interval [0, x1), where 0 < x1 < ∞. As

x ↗ x1 we find that vx(x) tends to zero, so that v
− α

1−α
x tends to infinity and

the ODE (15) does not make sense any more for x ≥ x1.
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Fig. 2. The functions v(x) and vx(x) with parameters α = 0.5, β = 0.05, µ = 0.2,
σ = 1, and initial values v(0) = 0 and vx(0) = 5.

This function is indeed the value function associated to the dividend policy

of paying dividends with an intensity of v
− 1

1−α
x . One may check that these

dividend payments create a negative drift to the ex-dividend process Xt, when
Xt comes close to v(x1), which is strong enough, such that Xt never attains
the value v(X1) a.s. (we assume X0 < v(x1)). One may also show that this
dividend policy is optimal among all dividend policies satisfying the constraint
that the ex-dividend process Xt remains below v(X1). The crux is, of course,
that this is an artificial constraint and that this policy is not optimal among
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all the admissible dividend payment plans.

On the other hand, if we choose k = vx(0) > 0 big enough, then vx > 0 on
all of R≥0, and there is a unique inflection point 0 < x2 < ∞ such that v
is concave on [0, x2] and convex on [x2,∞), similarly as in the case α = 1
considered above.
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Fig. 3. The functions v(x) and vx(x) with parameters α = 0.5, β = 0.05, µ = 0.2,
σ = 1, and initial values v(0) = 0 and vx(0) = 10.

Economically speaking, this again corresponds to a bubble, caused by a believe
in the value of the company not sufficiently materialized by dividend payments
in finite time: indeed, as x →∞ we have lim

x→∞
vx(x) = ∞; hence the intensity

v
− 1

1−α
x of dividend payments tends to zero when the ex-dividend process X

tends to infinity, which leads to a similar phenomenon as in the above discussed
case α = 1.

Hence we have seen that by choosing k = vx(0) either too small or too big
does not yield the optimal solution. It turns out — this is the message of
Theorem 1 — that there is precisely one critical value k0 = vx(0) such that
the corresponding solution of (15) is defined on all of R≥0 and such that there
is no inflection point; hence v is concave on all of R≥0 and Theorem 1 furnishes
more precise information.

The present choice of k0 is similar to the above discussed critical choice in
the case α = 1. There is, however, a remarkable difference: in the case α = 1
the associated value function v was obtained by some ”smooth pasting” at
the point x0, where the behavior of v changed from that of a solution to (22)
to that of a straight line. In the setting, where α ∈ (0, 1), no such ”pasting”
takes place and v equals the solution to (15) on all of R≥0.

Finally we want to discuss the limiting behavior of the situation described by
Theorem 1 as α tends to 1.

Theorem 2 Let wα(t, x) = e−βtvα(x) denote the value function associated to
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problem (10) for α ∈ (0, 1] and suppose µ > 0. Then

lim
α→1

v(α)(x) = v(1)(x) (x ≥ 0). (26)

lim
α→1

v(α)
x (x) = v(1)

x (x) (x ≥ 0), (27)

the convergence being uniform on compact subsets of [0, +∞). Moreover

lim
α→1

c(α)(x) =


0, (0 ≤ x < x0),

+∞, (x > x0).

(28)

There is a remarkable feature in this theorem: we just observed that v(1) is a
”pasted” solution, which has a discontinuity of its third derivative v(1)

xxx at the
point x0. On the other hand, the functions v(α) are not ”pasted”, i.e., solutions
to (15) and therefore infinitely often differentiable on all of R≥0.

This gives us some motivation, why we should not expect to find nice closed-
form solutions to the ODE (15). A precise statement in this context may be
formulated like that: there does not exist a domain D in C, containing x0 as
an interior point, such that the functions v(α) can all be analytically continued
to D, and such that (v(α))0<α<1 is a normal family, see (Rudin, 1987, Ch.14,
p.281). Indeed, otherwise the pointwise (on R≥0) limit v(1) (of a convergent
subsequence) would also have an analytic continuation to D, which is not
true in view of the discontinuity of the third derivative, (Rudin, 1987, Ch.10,
p.214).

We close this introduction with a remark on more general utility functions

U(x) than just U(x) =
xα

α
, which has been pointed out to us by N. Touzi.

Under the general assumptions on U made above, we may still write the HJB
equation (11):

wt + sup
c≥0

[
(µ− c)wx +

σ2

2
wxx + U(c)e−βt

]
= 0, w(t, 0) = 0. (29)

Denote by V (y) the conjugate function of U(x) (see, e.g., Rockafellar (1970),
and Karatzas et al. (1991) or Kramkov and Schachermayer (1999) for its ap-
plications in the context of finance)

V (y) = sup
x≥0

[U(X)− xy] . (30)
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Note that, for U(x) =
xα

α
we have V (y) = 1−α

α
y−

α
1−α . Using again wt = −βw

we therefore obtain, also for more general utility functions, the ODE

−βv + µvx +
σ2

2
vxx + V (vx) = 0. (31)

This equation makes the present problem — at least in principle — also
approachable by ODE methods and gives additional insight on the term

−1− α

α
v
− α

1−α
x in (15).

The remainder of the paper is organized as follows: In Section 2 we verify
that w(t, x) = e−βtv(x) as defined in Theorem 1 is indeed the value function
and construct the corresponding optimal dividend strategy. In Section 3 we
provide results about the ODE (15), with a few technical results relegated to
Appendices A and B.

2 Verification

In Proposition 1 below it is shown that the ODE (15) has a solution v(x)
with properties as stated in Theorem 1. The asymptotic results as x →∞ are
shown by Proposition 2. In this section we show — admitting Proposition 1
— that the function

w(t, x) = e−βtv(x) (32)

is indeed the value function defined in (10), with the optimal control uniquely
attained at the dividend strategy C, that is constructed as follows: The case
x = 0 is trivial, as it implies Ct = 0 for t ≥ 0. Suppose x > 0 and define the
function c on R>0 by

c(x) = vx(x)−
1

1−α , (x > 0). (33)

Standard arguments show that there is a maximal stopping time τ > 0, such
that the stochastic differential equation

dXt = (µ− c(Xt))dt + σdWt, X0 = x, (34)

admits a unique strong solution on [0, τ). This solution is continuous, strictly
positive on [0, τ), and satisfies limt→τ Xt = 0 almost surely. We set Xt = 0 for
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t ≥ τ . Then τ = inf{t ≥ 0 : Xt = 0}. Now we can define the process

ct =

 c(Xt) (0 ≤ t < τ)

0 (t ≥ τ)
(35)

and

Ct =

t∫
0

csds, (t ≥ 0). (36)

Lemma 1 Given any nonnegative adapted process (ct)t≥0 such that the pro-
cess Ct =

∫ t
0 csds of accumulated dividend payments is admissible, we have,

that the process

Zt = w(t,Xt∧τ ) +

t∫
0

e−βsU(cs)ds, t ≥ 0, (37)

is a nonnegative supermartingale, where Xt = Rt − Ct and τ = inf{t ≥ 0 :
Xt = 0}. Hence

v(X0) ≥ E

 ∞∫
0

e−βsU(cs)ds

 . (38)

If (ct)t≥0 is admissible, but different from the process defined in (35), then we
have a strict inequality in (38).

Proof: By Itô’s Lemma we have

dZt = wt(t,Xt)dt + wx(t,Xt)dXt +
1

2
wxx(t,Xt)d〈X〉t + e−βtU(ct)dt

=

[
wt(t,Xt) + (µ− ct)wx(t,Xt) +

σ2

2
wxx(t,Xt) + e−βtU(ct)

]
dt

+σwx(t,Xt)dWt. (39)

Whence equation (11) shows that Z is a local supermartingale; as Z ≥ 0, it
is a supermartingale. Hence, for any starting point X0 ≥ 0 and t ≥ 0

v(X0)≥E

w(t,Xt) +

t∫
0

e−βtU(cs)ds

 (40)
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≥E

 t∫
0

e−βsU(cs)ds

 . (41)

Letting t → ∞ and applying the monotone convergence theorem we obtain
the result.

When c is different from the process defined in (35), in the sense that the
subset of Ω × R≥0, where the processes differ has strictly positive P × λ-
measure, with λ the Lebesgue measure on R≥0, then we have by the strict
concavity of U and by (11)

dZt = µtdt + σwx(t,Xt)dWt, (42)

where µ is a non-positive process different from zero, in the sense defined
above. Hence Z0 > E[Z∞], which yields a strict inequality in (41). 2

Lemma 2 For w, c, and X as defined by (32), (34), and (35) above we have
that

Zt = w(t,Xt) +

t∫
0

e−βsU(cs)ds, t ≥ 0, (43)

is a martingale and that

lim
t→∞

E [w(t,Xt)] = 0. (44)

Hence

Z0 = v(X0) = E

 ∞∫
0

e−βsU(cs)ds

 . (45)

Proof: By the same argument as in Lemma 1 we now obtain that Z is a local
martingale, see (15) and (39). We have to show that it is a true martingale as
well as equation (44) which will clearly imply (45).

So, let us show that, for every fixed horizon T < ∞, the process (Zt)0≤t≤T

is uniformly integrable. To do so, it will suffice to show, that the maximal
function Z∗T = sup0≤t≤T Zt is integrable. We have

0 ≤ Z∗T ≤ sup
0≤t≤T

[v(Xt)] +

T∫
0

e−βtU(ct)dt. (46)
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The second term on the right hand side is integrable by (38), and for the first
term we can argue by the following rough estimate: we have Xt ≤ Rt and
v(x) ≤ xv′(0) by the concavity of v. Hence

E
[

sup
0≤t≤T

v(Xt)

]
≤ v′(0)E

[
sup

0≤t≤T
Rt

]
< ∞. (47)

The second inequality of (47) holds true as R is simply Brownian motion with
drift. Summing up, we have shown that (Zt)0≤t≤T is a true martingale. In
particular, for each 0 < t < ∞

v(X0) = Z0 = E [w(t,Xt)] + E

 t∫
0

e−βsU(cs)ds

 . (48)

We now show (44): Let g(x) = eλ1x− eλ2x, where λ1 > 0 and λ2 < 0 are given

by (24). Thus g is a solution to (23) on R≥0. We know that
(
e−βtg(Rt)

)
t≥0

is a

local martingale, hence, by the monotonicity of g, the process (e−βtg(Xt))t≥0

is a local supermartingale and therefore, by the nonnegativity of g, a super-
martingale. Hence

E
[
e−βtg(Xt)

]
≤ g(X0), for t ≥ 0. (49)

Note that limx→∞ v(x)/g(x) = 0 so that, for ε > 0, we may find tε > 0 such
that

e−βtv(x) ≤ ε max
[
1, e−βtg(x)

]
for x ≥ 0, t ≥ tε. (50)

Hence, for t ≥ tε,

E
[
e−βtv(Xt)

]
≤ ε

(
1 + E

[
e−βtg(Xt)

])
≤ ε(1 + g(X0)), (51)

which proves (44).

Combining (48) and (44) and letting t →∞ we obtain (45) from the monotone
convergence theorem. 2

The above argument also shows the classical result that, for the case α = 1,
the function v(1) is indeed the value function of the problem (3) and that the
corresponding dividend policy of paying dividends, when X hits x0, is indeed
optimal. In fact, the argument used in Lemma 2 becomes somewhat easier, as
now the process X is bounded and therefore trivially uniformly integrable.

14



We can also apply the above arguments for 0 < α < 1, to the solutions of
the ODE (15) where we choose vx(0) either smaller or bigger than the critical
value k0.

In the former case, denote again by x1 > 0 the maximal value such that v is
defined and satisfies (15) on [0, x1) and let the dividend strategy be defined
via (35). Then Lemma 2 still holds true and Lemma 1 holds true for all
dividend policies c such that X remains a.s. in [0, x1) (with almost identical
arguments). In plain words: the dividend policy is optimal among all policies
such that the ex-dividend process never exceeds x1. But this is, of course, an
artificial constraint, lowering the value function.

In the latter case, where vx(0) > x1, Lemma 1 still is satisfied (without re-
strictions). In Lemma 2 the process Z still is a martingale; but (44) and
therefore (45) fail to hold true. An easy and direct argument to see the failure
of (44) goes as follows: Note that in the present case inf

x>0
vx(x) > 0 so that

there is a (deterministic) uniform upper bound for ct = vx(Xt)
− 1

1−α as well as∫∞
0 e−βsU(cs)ds. It follows immediately that (45) cannot hold true for large

values of X0. To extend this reasoning to arbitrary initial values X0 > 0 it
suffices to condition on the event that at some fixed time t > 0 (say, t = 1) the
process X satisfies Xt ≥ M , for some large M . This implies that the condi-
tional version of (45) fails, which easily implies — using the supermartingale
property of Z — that (45) is wrong too. This phenomenon may again be
interpreted as a ”bubble” similarly as in the case α = 1 discussed above.

3 Results about the ODE

3.1 Existence and uniqueness

Proposition 1 Suppose α ∈ (0, 1), β > 0, µ ∈ R, σ > 0. Then

v(0) = 0, βv − µvx −
σ2

2
vxx −

1− α

α
v
− α

1−α
x = 0, (x ≥ 0) (52)

has precisely one strictly increasing concave solution in C(2)[0,∞).

Proof: We have a second order nonlinear equation, with the independent vari-
able not in the equation. By Riccati’s Ansatz the problem is equivalent to two
first order equations: Suppose we have a strictly increasing concave solution
v ∈ C(2)[0,∞). Then v(0) > 0 for all x > 0 and vx(x) > 0 for all x ≥ 0. We

15



can define y(x) = vx(v
−1(x)) for all x ≥ 0. The functions v and y satisfy

v(0) = 0, vx = y(v), (x ≥ 0), (53)

and

yx =
2

σ2

(
βx

y
− µ− 1− α

α
y−

1
1−α

)
, (x ≥ 0). (54)

We have y(x) > 0 for all x ≥ 0. From vxx = yx(v(x))vx(x) for all x ≥ 0
and the concavity of v it follows, that yx(x) ≤ 0 for all x ≥ 0, thus y is
decreasing, strictly positive and hence bounded. The right hand sides of (53)
and (54) satisfy Lipschitz conditions on compact subsets of [0,∞) × (0,∞).
As a consequence we have uniqueness.

Theorem 3 below asserts the existence of a decreasing, strictly positive, bounded
solution of (54), that is Lipschitz continuous on compact subsets of (0,∞).
This implies by a standard argument the existence of a solution to (53), with
properties as claimed. 2

It is convenient for the proofs below, to study the ODE (54) on x ∈ R instead
of x ≥ 0.

Theorem 3 Suppose α ∈ (0, 1), β > 0, µ ∈ R, σ > 0. Then the differential
equation

yx =
2

σ2

(
βx

y
− µ− 1− α

α
y−

1
1−α

)
, (x ∈ R) (55)

has precisely one decreasing convex solution.

Proof: In order to keep the argument transparent, we only give an outline of
the proof. The technical details are done in various lemmas which have been
shifted to the appendix. (i) First we study potential critical points of y(x),
that is, solutions of F (x, y) = 0 with x ∈ R and y > 0, where

F (x, y) =
2

σ2

(
βx

y
− µ− 1− α

α
y−

1
1−α

)
. (56)

They can be parameterized by {x = ζ(y) : y > 0}. The function ζ is described
in Lemma 5. Alternatively the potential critical points can be described by
{y = θ(x) : x ≥ x̂1} and {y = θ(x) : x ≥ x̂1}, with some x̂1 ≥ 0. The value x̂1

is given in Lemma 5 and functions θ and θ are described in Lemma 6.
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Fig. 4. A sketch for the auxiliary functions θ, θ, η1, η
1
, η2.

(ii) Next we discuss potential inflection points of y. As

yx(x) = Fx(x, y(x)) + Fy(x, y(x))yx(x) (57)

= Fx(x, y(x)) + Fy(x, y(x))F (x, y(x)), (58)

those are the solutions of G(x, y) = 0 with x ∈ R and y > 0, where

G(x, y) = Fx(x, y) + Fy(x, y)F (x, y). (59)

They can be parameterized by {x = ξ1(y) : y > 0} and {x = ξ2(y) : y > 0}.
The functions ξ1 and ξ2 are studied in Lemma 7. Alternatively the potential
inflections points are described by {y = η1(x) : x ≥ x̂2}, {y = η

1
(x) : x ≥ x̂2},

and {y = η2(x) : x ∈ R}, with some x̂2 > 0. The value x̂2 is given and the
functions η1, η

1
, and η2 are described in Lemma 9, with an auxiliary result in

Lemma 8. This discussion of auxiliary functions is illustrated with Figure 4.
The functions θ and η2 will be used to construct the desired solution y of the
ODE (55). They provide good upper and lower bounds for y(x) when x is
large. From now on θ and η2 will be denoted by θ and η.
(iii) In Lemma 11 and 12 we show that

y(b) = θ(b), yx = F (x, y), (x ∈ R) (60)
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has a unique solution for any b > x̂1. This solution will be denoted by yb. In
Lemma 13 and 14 we show that for each b > 0 there is rb > 0 such that

y(b) = η(b), yx = F (x, y), (x ≤ rb) (61)

has a unique solution that explodes down to zero as x → rb, while the first
derivative tends to −∞ as x → rb. Those solutions will be denoted by y

b
.

Moreover we obtain the inequalities

η(x) < y
b
(x), (x ≤ b), (62)

and

yb(x) < θ(x), (x̂1 ≤ x ≤ b). (63)

(iv) By construction yb(x) is bounded and decreasing in b, whereas y
b
(x) is

bounded and increasing in b. Hence we can define for all x ∈ R the limits

y∞(x) = lim
b→∞

yb(x), y∞(x) = lim
b→∞

y
b
(x). (64)

Both y∞ and y∞ are positive-valued, decreasing, convex, and continuous.
Moreover y∞(x) ≤ y∞(x) for all x ∈ R. In Lemma 15 we show that y∞ = y∞.
From now on we will call this function just y. Moreover, using Dini’s Theorem,
we show that y is a solution of (55) with the desired properties, and that it is
unique. The various solutions and bounds are illustrated in Figure 5.
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Fig. 5. Sketch of yb, y
b
, the solution y∞, and the bounds θ and η.

(v) The function y is nonnegative, decreasing, and smooth. As a consequence
it is locally Lipschitz and bounded, hence a standard theorem on existence
and uniqueness of the solution of (15).
(vi) By construction we have

η(x) ≤ y(x) ≤ θ(x), (x ≥ x̂1). (65)

The leading terms of θ(x) and η(x) for x →∞ coincide and provide the exact
order of magnitude of y(x) as x → ∞. Using standard comparison theorems
for ODEs, we can lift in Proposition 2 those asymptotic developments to v(x)
as x →∞. 2

Before we proceed with the proof of Theorem 2, we indicate, why it would
be surprising, if the ODE (54) had an elementary solution: Particular simple
cases should be α = n/(n + 1) with integer n ≥ 1, because the right hand
side of the ODE is then a rational function of x and y, which should make
life easier. (Recall that one of our aims is to analyze the limiting behavior
as α → 1.) Reducing further to simple cases consider the following choice of
parameters: α = 1/2, and we may take β = 1, µ = 0, σ =

√
2. Then we have

the harmless looking ODE

y′ =
x

y
− 1

y2
. (66)
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Interchanging the roles of the variables yields

(xy − 1)x′ − y2 = 0, (67)

an Abel ODE of the second kind and class C (see Kamke, 1977, p.28). And we
have found neither by using Maple nor checking the literature an elementary
solution for that.

3.2 Proof of Theorem 2

As in the initial discussion following Theorem 1, let v(1) denote the value
function for the case α = 1, that is,

v(1)(x) =


k0(e

λ1x − eλ2x), (0 ≤ x ≤ x0),

µ

β
− x0 + x, (x ≥ x0).

, (68)

with

λ1 =
−µ +

√
µ2 + 2βσ2

σ2
, λ2 =

−µ−
√

µ2 + 2βσ2

σ2
, (69)

and

x0 =
2

λ1 − λ2

ln

(
−λ2

λ1

)
, k0 =

1

λ1eλ1x0 − λ2eλ2x0
. (70)

Then v(1) is the unique solution to the problem

v(x0) =
µ

β
, vx(x0) = 1, vxx = − 2

σ2
(µvx − βv)+, (x ≥ 0). (71)

Uniqueness follows immediately from a Lipschitz condition of the right hand
side. Let

y(1)(x) = v(1)
x ((v(1))−1(x)), (72)

where (v(1))−1 denotes the inverse function of v(1).
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Lemma 3 Suppose we have differentiable functions y and v that satisfy

y

(
µ

β

)
= 1, yx = − 2

σ2

(
µ− βx

y

)
+

, (x ≥ 0), (73)

and

v(0) = 0, vx = y(v), (x ≥ 0), (74)

then y = y(1) and v = v(1).

Proof: A direct calculation shows that y(1) and v(1) satisfy (73) resp. (74).
From (73) it follows, that any solution y is decreasing and satisfies y(x) ≥ 1
for x ≥ 0. The right hand side is locally Lipschitz on R2

+, thus we have
uniqueness. Similarly the right hand side of (74) is locally Lipschitz and thus
there is uniqueness for v. 2

Lemma 4 We have

lim
α→1

y(α)(x) = y(1)(x), (x ≥ 0), (75)

and the convergence is uniform on compact subsets of [0, +∞).

Proof: (i) We consider an arbitrary sequence (αn) with αn ∈ (0, 1) and αn → 1
as n → ∞. We fix arbitrary a < 0 and b > 0. We know from Theorem 3
that (y(αn)) is a sequence of decreasing convex functions. Equation (B.46) in
Lemma 22 shows that that y(αn)(x) is uniformly bounded on [a, b] as n →∞.
By Helly’s selection principle (Helly, 1912, §6.VII.5, p.286), see also (Feller,
1971, VIII.6), we can find a subsequence (α′n), such that y(α′n) converges weakly
to a limit y. Weak convergence in this context implies, that we have conver-
gence at the continuity points of the limit. But this limit y is a limit of convex
functions, thus convex, and therefore continuous on (a, b). Hence we have in
fact pointwise convergence on (a, b).

Consider now an arbitrary a′ ∈ (a, 0) and b′ ∈ (0, b). Then our subsequence
provides a sequence of monotonic functions that converges to a continuous
limit on the compact interval [a′, b′]. By a complement to Dini’s Theorem
we must have uniform convergence on [a′, b′], see (Pólya and Szegő, 1925,
II.3.3.127, pp.63 and 226).

(ii) We know from equation (B.45) in Lemma 22, that y(α)(x) is uniformly
bounded away from zero on [a′, b′], as α → 1. Thus

lim
n→∞

x

y(α′n)(x)
=

x

y(x)
(76)
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uniformly on [a′, b′]. Equation (B.39) in Lemma 21 says

lim
n→∞

1− α

α
y(α′n)(x)−

1−α
α = 0,

(
0 ≤ µ

β

)
, (77)

uniformly. Thus y(α′n)
x is uniformly convergent and

lim
n→∞

y(α′n)
x (x) = yx(x). (78)

This shows that y solves (73) and thus y = y(1). By these arguments we see,
that y(α) has exactly one accumulation point, thus

lim
α→1

y(α)(x) = y(1)(x). (79)

Again, by referring to the complement to Dini’s Theorem, this limit is uniform
on compacts. 2

Now we are ready to complete the proof of Theorem 2: Let us consider the
problem

v(0) = 0, v′ = y(α)(v), (x ≥ 0). (80)

The functions p(α) are continuous and converge uniformly on compact subsets
of [0, +∞) as α → 1 to y(1), which is locally Lipschitz. Let v(α) denote the
solution of (80). Then we can apply a standard theorem about the continuity of
solutions of ODEs with respect to a parameter, see, for example, the corollary
in Section 6.4, p.157 of Birkhoff and Rota (1969). The conclusion is, that v(α)

converges to a solution of (74), which is precisely v(1). As we have from the
ODE (74)

v(α)
x (x) = y(α)

(
v(α)(x)

)
(81)

and both y(α) → y(1) and v(α) → v(1) uniformly on compact subsets of [0,∞),
we get v(α)

x (x) → v(1)
x (x) uniformly on compact subsets of [0,∞) as well. Next

suppose x < x0, then v(α)
x (x) → v(1)

x (x) > 1 and thus

lim
α→1

v(α)
x (x)−

1
1−α → 0, (0 ≤ x < x0). (82)

Finally if x > x0 then using again the uniform convergence of v(α)(x) →
v(1)(x) > µ/β + x− x0 and Lemma 21 yields

lim
α→1

1− α

α

(
y(α)

(
v(α)(x)

))− 1
1−α = β(x− x0)+ > 0, (x > x0) (83)
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implying

lim
α→1

(
y(α)

(
v(α)(x)

))− 1
1−α = +∞, (x > x0) (84)

This proves (28). 2
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A Appendix: Study of the nonlinear ODE

We consider the ODE

yx = F (x, y), (x ∈ R), (A.1)

with

F (x, y) =
2

σ2y

(
βx− 1− α

α
y−

α
1−α − µy

)
. (A.2)

We will use later

Fx(x, y) =
2β

σ2y
(A.3)

and

Fy(x, y) =
2

σ2y2

(
1

α
y−α/(1−α) − βx

)
. (A.4)

A.1 Critical points

It is useful to look at (x, y) where F (x, y) vanishes.

Lemma 5 (i) The solutions of F (x, y) = 0 with (x, y) ∈ R × R>0 can be
parameterized by x = ζ(y), y > 0, where ζ(y) is the function given by

ζ(y) =
µ

β
y +

1− α

αβ
y−

α
1−α , y > 0. (A.5)
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(ii) Let

x̂1 =
µα

+

αβ
, ŷ1 =



( −µα

1− α

)−(1−α)

if µ < 0,

+∞ if µ = 0,

µ−(1−α) if µ > 0.

(A.6)

If µ < 0 the function ζ(y) is strictly decreasing from +∞ to −∞ on
(0, +∞) and has a zero at ŷ1, if µ = 0 it is strictly decreasing from +∞
to 0 on (0, +∞), if µ > 0 it is strictly decreasing from +∞ to x̂1 on
(0, ŷ1], and increases again to +∞ on [ŷ1, +∞).

Proof: We have

ζ ′(y) =
µ

β
− 1

β
y−

1
1−α , y > 0. (A.7)

This shows: If µ < 0 then ζ ′(y) < 0, ζ(y) → −∞ as y → +∞, and ζ(ŷ1) = 0.
If µ = 0 then ζ ′(y) < 0 and ζ(y) → 0 as y →∞. If µ > 0 we have ζ ′(ŷ1) = 0
and this is the only zero of ζ(y). Moreover x̂1 = ζ(ŷ1). 2

Lemma 6 The function ζ(y) admits an increasing inverse function θ(x) for
x ∈ (x̂1, +∞) and a decreasing inverse function θ(x) for x ∈ (x̂1, +∞). The
limiting behavior of θ(x) for x →∞ is given by

θ(x) =

(
1− α

αβ

) 1−α
α

x−
1−α

α +O
(
x−

2−α
α

)
, x → +∞. (A.8)

Proof: We know from the previous lemma, that the restriction of ζ(y) to
(ŷ1, +∞) is strictly increasing, thus we have the increasing inverse function θ(x).
The restriction of ζ(y) to (0, ŷ1) is strictly decreasing from +∞ to x̂1, and thus
admits an inverse function θ(x) on (x̂1, +∞) that decreases from ŷ1 to 0. Thus
x ≥ x̂1 implies θ(x) ≤ ŷ1. If µ = 0 we have

θ(x) =

(
1− α

αβ

) 1−α
α

x−
1−α

α , (A.9)

and (A.8) holds with zero remainder. If µ 6= 0 we can rewrite the equation
x = ζ(θ(x)) for sufficiently large x as

θ(x) =

(
1− α

αβ

) 1−α
α

x−
1−α

α

(
1− µ

θ(x)

x

)− 1−α
α

(A.10)
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A first crude estimate is therefore

θ(x) = O
(
x−

1−α
α

)
. (A.11)

Expanding the last factor on the right hand side of (A.10) yields

θ(x) =

(
1− α

αβ

) 1−α
α

x−
1−α

α

(
1 +O

(
θ(x)

x

))
(A.12)

=

(
1− α

αβ

) 1−α
α

x−
1−α

α +O
(
θ(x)x−

1
α

)
(A.13)

Inserting the crude estimate (A.11) shows (A.8). 2

A.2 Inflection points

Suppose y(x) is a solution of the ODE (A.1). Differentiating the equation
y′(x) = F (x, y(x)) we obtain

y′′(x) = Fx(x, y(x)) + Fy(x, y(x))y′(x) (A.14)

= Fx(x, y(x)) + Fy(x, y(x))F (x, y(x)). (A.15)

Hence, if x is an inflection point of the function y(x), then (x, y(x)) lies on

Fx(x, y) + Fy(x, y)F (x, y) = 0. (A.16)

Lemma 7 Let

G(x, y) = Fx(x, y) + Fy(x, y)F (x, y). (A.17)

Then we have

(i) The solutions of G(x, y) = 0 with (x, y) ∈ R× R>0 can be parameterized
by x = ξ1(y) and x = ξ2(y), where ξ1(y) and ξ2(y) are given by

ξ1(y) =
y

2β

(
µ +

2− α

α
y−

1
1−α +

√
2βσ2 +

(
y−

1
1−α − µ

)2
)

, (A.18)

and

ξ2(y) =
y

2β

(
µ +

2− α

α
y−

1
1−α −

√
2βσ2 +

(
y−

1
1−α − µ

)2
)

. (A.19)
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(ii) We have the asymptotic estimates

ξ1(y) =


1

αβ
y−

α
1−α +O

(
y

2−α
1−α

)
y → 0(

µ +
√

µ2 + 2βσ2

2β

)
y +O

(
y−

α
1−α

)
y →∞

(A.20)

and

ξ2(y) =


1− α

αβ
y−

α
1−α +

µ

β
y +O

(
y

2−α
1−α

)
y → 0(

µ−
√

µ2 + 2βσ2

2β

)
y +O

(
y−

α
1−α

)
y →∞.

(A.21)

(iii) There is ŷ2 > 0 such that ξ1(y) is strictly decreasing from +∞ to ξ1(ŷ2)
on (0, ŷ2] and then increases again to +∞ on [ŷ2, +∞). The function
ξ2(y) is strictly decreasing from +∞ to −∞ on (0, +∞).

(iv) We have the inequality

0 < ξ2(y) < ζ(y) < ξ1(y), y > 0. (A.22)

Proof: (i) We have

G(x, y) = g(y)
(
x2 + p(y)x + q(y)

)
, (A.23)

with

p(y) = − y

β

(
µ +

2− α

α
y−

1
1−α

)
, (A.24)

and

g(y) = − 4β2

σ4y3
, q(y) = − y2

β2

(
βσ2

2
− µ

α
y−

1
1−α − 1− α

α2
y−

2
1−α

)
. (A.25)

Thus G(x, y) = 0 is equivalent to a quadratic equation in x with solutions

ξ1(y) = −1
2
p(y)+

√
r(y) and ξ2(y) = −1

2
p(y)−

√
r(y), where r(y) = p(y)2/4−

q(y).
(ii) The asymptotic expansions are elementary. Let us consider y → 0 first.
We have

r(y) =
1

4β2
y−

2α
1−α

(
1− 2µy

1
1−α + (µ2 + 2βσ2)y

2
1−α

)
, (A.26)
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and expanding the square root gives

√
r(y) =

1

2β
y−

α
1−α

(
1− µy

1
1−α +O

(
y

2
1−α

))
. (A.27)

Next consider y →∞. We have

r(y) =
µ2 + 2βσ2

4β2
y2

(
1− 2µ

µ2 + 2βσ2
y−

1
1−α +

1

µ2 + 2βσ2
y−

2
1−α

)
, (A.28)

and expanding the square root yields

√
r(y) =

√
µ2 + 2βσ2

2β
y
(
1 +O

(
y−

1
1−α

))
. (A.29)

(iii) Next let us look at the derivatives

ξ′1,2(y) = −1

2
p′(y)± r′(y)

2
√

r(y)
. (A.30)

We have ξ1(y) = 0 resp. ξ2(y) = 0 if

p′(y) = ± r′(y)

2
√

r(y)
. (A.31)

Squaring yields

r(y)p′(y)2 − r′(y)2 = 0, (A.32)

or

y2

(1− α)β4
A
(
y−

1
1−α

)
= 0, (A.33)

where

A(z) = z4 − 3µz3 +

(
3µ2 +

4− 2α− α2

2(1− α)
βσ2

)
z2

−
(
µ2 + (1 + α)βσ2

)
µz − (1− α)βσ2

(
µ2

2
+ βσ2

)
. (A.34)
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In Lemma 8 below we show, that this quartic equation has exactly one positive
solution, that we denote by ẑ2. This means that ŷ2 = ẑ

−(1−α)
2 is the only

candidate for a zero of ξ′1(y) or ξ′2(y). We know from the asymptotics that
ξ1(y) must have a local minimum, thus ξ′1(ŷ2) = 0. If both ξ′1(y) and ξ′2(y)
vanished at the same y, then, by Vièta’s formulas, we would have p′(y) and
q′(y) = 0. As

q′(y) +
y

β

(
µ2

(2− α)2
+

2(1− α)

α(2− α)
y−

1
1−α

)
p′(y) (A.35)

= − y

β2

(
µ2

(2− α)2
+ βσ2

)
(A.36)

we see that ξ′1(y) and ξ′2(y) never vanish simultaneously for y > 0. Thus ξ′2(y)
has no zeroes and, by looking at the asymptotics, we see that ξ2(y) is a strictly
decreasing function.
(iv) Looking at the definition of G(x, y) in (A.17) we see that F (x, y) = 0
and G(x, y) = 0 do not have a common solution with y > 0. In other words
the set of possible inflection points and the set of possible critical points do
not intersect. This fact, combined with the asymptotic expansions, and the
smoothness of the functions implies, that ξ1(y) runs to the top resp. right and
ξ2(y) to the bottom resp. left of ζ(y), more precisely, the inequality (A.22). 2

Lemma 8 Suppose

A(z) = z4 − 3µz3 +

(
3µ2 +

4− 2α− α2

2(1− α)
βσ2

)
z2

−
(
µ2 + (1 + α)βσ2

)
µz − (1− α)βσ2

(
µ2

2
+ βσ2

)
. (A.37)

with µ ∈ R, 0 < α < 1, β > 0, σ > 0. Then A(z) = 0 has exactly one positive
solution.

Proof: If µ = 0 then the equation is biquadratic and the solutions are fairly
simple. In the general case we do not want to write down Ferrari’s explicit for-
mula. Sturm sequences also yield lengthy expressions. Therfore we investigate
the behavior of the equation in the following elementary way. We use

A′(z) = 4z3 − 9µz2 +

(
6µ2 +

4− 2α− α2

1− α
βσ2

)
z

−
(
µ2 + (1− α)βσ2

)
µ− (1− α)βσ2

(
µ2

2
+ βσ2

)
. (A.38)
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and

A′′(z) = 12z2 − 18µz +

(
6µ2 +

4− 2α− α2

1− α
βσ2

)
(A.39)

We observe that

A(0) < 0, A′(0) < 0, A′′(0) > 0. (A.40)

Let

µ0 =

√√√√4(4− 2α− α2)βσ2

3(1− α)
. (A.41)

If |µ| < µ0 then A′′(z) has no real zeroes, if µ = µ0 a double zero, if |µ| > µ0

two real zeroes. If |µ| < µ0 this implies, that A(z) has no inflection points,
is convex, and since A(0) < 0, we have exactly one negative and one positive
zero of A(z). If µ ≤ 0 then A′(z) > 0 for z > 0, A(z) is therefore increasing
on z > 0, and since A(0) < 0 the same conclusion follows. It remains to treat
µ ≥ µ0. The two inflection points of A(z) are

z̃1 =
3µ−

√
µ2 − µ2

0

4
, z̃2 =

3µ +
√

µ2 − µ2
0

4
. (A.42)

We have 0 < z̃1 < z̃2. At z̃1 we have a local maximum of A′(z), at z̃2 a local
minimum. Moreover

A′(z̃2) =
µ2

8

(
µ−

√
µ2 − µ2

0

)
+

(
8− 6α + α2

4(1− α)
µ +

4− 2α− α2

6(1− α)

√
µ2 − µ2

0

)
βσ2 > 0. (A.43)

As A′(0) < 0 this implies that A′(z) has exactly one real zero z̄0, and that
zero satisfies 0 < z̄0 < z̃1. Thus A(z) is decreasing for z ≤ z̄0 and increasing
for z ≥ z̄0. Hence A(z) has exactly one positive zero z0, and that zero satisfies
z0 > z̄0. 2

Lemma 9 The function ξ1(y) admits an inverse function η1(x), that increases
from ŷ2 at x̂2 to +∞ as x → +∞, and inverse function η

2
(x), that decreases

from ŷ2 at x̂2 to 0 as x → +∞, where x̂2 = ξ1(ŷ2). The function ξ2(y) admits
a decreasing inverse function η2(x) that goes to +∞ as x → −∞ and to 0 as
x → +∞. We have

0 < η2(x) < θ(x) < η
1
(x) < η1(x) < θ(x), (x > x̂2). (A.44)
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We have the asymptotics

η
1
(x) =

1

(αβ)
1−α

α

x−
1−α

α +O
(
x−

3−α
α

)
, x →∞ (A.45)

and

η2(x) =

(
1− α

αβ

) 1−α
α

x−
1−α

α +O
(
x−

2−α
α

)
, x →∞ (A.46)

Proof: From Lemma 7 we know, that ξ1(y) and ξ2(y) admit decreasing inverse
functions η1(x) and η2(x) on (x̂2, +∞) resp. on (0, +∞), that satisfy (A.44).
We also know η1(x) → 0 as x → ∞. Thus we obtain from x = ξ1(η1(x)) and
the y → 0 asymptotics of ξ1(y) the equation

x =
1

αβ
η1(x)−

α
1−α

(
1 +O

(
η1(x)

2
1−α

))
. (A.47)

Solving for η1(x) and expanding yields

η1(x) = (αβ)−
1−α

α x−
1−α

α

(
1 +O

(
η1(x)

2
1−α

)) 1−α
α

(A.48)

= (αβ)−
1−α

α x−
1−α

α

(
1 +O

(
η1(x)

2
1−α

))
. (A.49)

This gives the first crude estimate

η1(x) = O
(
x−

1−α
α

)
. (A.50)

Plugging this estimate into (A.48) yields (A.45). A similar calculations yields
(A.46). We already know η2(x) → 0 as x → ∞. Thus we obtain from x =
ξ2(η2(x)) and the y → 0 asymptotics of ξ2(y) the equation

x =
1− α

αβ
η2(x)−

α
1−α

(
1 +O

(
η2(x)

1
1−α

))
. (A.51)

Solving for η2(x) and expanding yields

η2(x) =

(
αβ

1− α

)− 1−α
α

x−
1−α

α

(
1 +O

(
η2(x)

1
1−α

)) 1−α
α

(A.52)

=

(
αβ

1− α

)− 1−α
α

x−
1−α

α

(
1 +O

(
η2(x)

1
1−α

))
. (A.53)
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This gives the first crude estimate

η2(x) = O
(
x−

1−α
α

)
. (A.54)

Plugging this estimate into (A.52) yields (A.46). 2

Lemma 10 We have the inequality

F (x, η2(x)) < η′2(x) < 0, (x > 0). (A.55)

Proof: We recall, that

G(x, y) = g(y)(x2 + p(y)x + q(y)). (A.56)

Thus

Gx(x, y) = g(y)(2x + p(y)). (A.57)

Now let us consider a point (x0, y0) such that y0 = η2(x0), or equivalently,

that x0 = ξ2(y0). Using ξ2(y0) = −p(y0)/2−
√

r(y0) yields

Gx(x0, y0) = −2g(y0)
√

r(y0) < 0. (A.58)

Differentiating G(x, η2(x)) = 0 at x = x0 gives

Gx(x0, y0) + Gy(x0, y0)η
′
2(x0) = 0. (A.59)

We know already, that η2(x) is strictly decreasing, so η′2(x0) < 0, thus we must
have Gy(x0, y0) > 0. We can write

η′2(x0) = −Gx(x0, y0)

Gy(x0, y0)
. (A.60)

Our claim is equivalent to

F (x0, y0) < −Gx(x0, y0)

Gy(x0, y0)
, (A.61)

or H(x0, y0) < 0 with

H(x, y) = Gx(x, y) + Gy(x, y)F (x, y). (A.62)
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Observing x0 = ξ2(y0) gives

H(x0, y0) = `(y0)
√

r(y0) + m(y0), (A.63)

where

`(y) =
8β

(1− α)σ6
y−

4−3α
1−α

(
y−

1
1−α − µ

)
(A.64)

and

m(y) = − 4

(1− α)σ6
y−

3−2α
1−α

((
y−

1
1−α − µ

)2
+ βσ2

)
. (A.65)

We note, that m(y) < 0 for all y > 0. If `(y0) < 0 we are done, if `(y0) ≥ 0 our

claim is equivalent to `(y0)
√

r(y0) < −m(y0), with both sides now nonnegative.

We can square and have to show `(y0)
2r(y0)−m(y0)

2 < 0. But

`(y0)
2r(y0)−m(y0)

2 = − 16β2

(1− α)2σ8
y−

6−4α
1−α . (A.66)

2

A.3 Upper solutions

Lemma 11 For any b > x̂1 there exists ε > 0 such that

y′ = F (x, y), y(b) = θ(b) (A.67)

has a unique analytic solution in (b− ε, b + ε) satisfying

y′(b) = 0, y′′(b) > 0 (A.68)

and the estimates

θ(b) < y(x) < θ(x) x− ε < x < b (A.69)

and

y(x) > θ(b) b < x < b + ε. (A.70)
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Proof: The local existence and uniqueness is standard, see, e.g., (Birkhoff and
Rota, 1969, Theorem 6.10.9, p.171). Since θ(x) was defined by F (x, θ(x)) = 0
we have y′(b) = 0 and from

y′′(x) = Fx(x, y(x)) + Fy(x, y(x))y′(x) (A.71)

and the initial condition we get

y′′(b) =
2β

σ2b
> 0. (A.72)

2

We will denote the solution from the previous lemma by yb(x).

Lemma 12 Each yb(x) can be continued to a solution for all x ∈ R>0, that
satisfies

θ(b) < yb(x) < θ(x), (x̂1 < x < b). (A.73)

Proof: Let us denote by (xL, xR) the maximal interval, where the solution
yb(x) can be continued. First we show yb(x) < θ(x) for xL ∧ x̂1 < x < b:
The following picture, that visualizes the properties from the previous lemma,
should suffice, but we will give the details below.
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Assume, by contradiction, that yb(x) = θ(x) for some x ∈ (xL ∧ x̂1, b). Let
c = sup{x ∈ (xL ∧ x̂1, b) : yb(x) ≥ η(x)}. By Lemma 11 we have c < b. As
yb(x) is continuous at x = c and we must have yb(c) = 0. By local uniqueness
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we have yb(x) = yc(x) in a neighborhood of x = c. But the previous lemma
tells us that yc(c̃) > θ(c̃) for some c̃ ∈ (c, b), contradicting the definition of c.

Now we know yb(x) < θ(x) for xL ∧ x̂1 < x < b. This implies y′b(x) < 0 for
xL < x < b and thus yb(x) ≥ θ(b) in xL < x ≤ b. This means, the solution
yb(x) stays away from the singularities of F (x, y). On the other hand F (x, y)
is (at most) linearly bounded in both variables on (−∞, b]× [θ(b), +∞), and
a crude estimate implies, that the solution does not explode to infinity for
xL < x < b. As a consequence of a standard theorem, e.g, (Birkhoff and Rota,
1969, 6.11.10, p.172) (with left and right boundary interchanged), we must
have xL = −∞.

A similar argument shows that yb(x) > θ(x) for b < x < XR. Thus y′b(x) > 0
for x > b and therefore yb(x) > θ(b) in that interval. Precisely the same
argument as before shows xR = +∞. 2

A.4 Lower solutions

Lemma 13 For any b > 0 there exists ε > 0 such that

y′ = F (x, y), y(b) = η2(b) (A.74)

has a unique analytic solution in (b− ε, b + ε) satisfying

y′(b) < η′2(b), y′′(b) = 0 (A.75)

and the estimates

η2(x) < y(x), x− ε < x < b (A.76)

and

0 < y(x) < η2(x) b < x < b + ε. (A.77)

Proof: Local existence and uniqueness is again standard as above. From the
prescribed condition y(b) = η2(b) we get y′′(b) = G(b, y(b)) = 0. From Lemma 10
we see y′(b) = F (b, y(b)) < η′2(b), meaning, that the tangent of y(x) is steeper
than the tangent of η2(x) in x = b. Taking ε > 0 sufficiently small yields the
inequalities (A.76) and (A.77). 2

We will denote the solution from the previous lemma by y
b
(x).
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Lemma 14 For each b > 0 exists a finite xR(b) > b such that y
b
(x) can be

continued to a solution on (−∞, xR(b)), that satisfies

η2(x) < y
b
(x) < yb(x), x ∈ (−∞, b), (A.78)

and

0 < y
b
(x) < η2(x), x ∈ (b, xR(b)), (A.79)

and we have

lim
x→xR(b)

y
b
(x) = 0, lim

x→xR(b)
y′

b
(x) = −∞. (A.80)

Proof: Let us denote by (xL, xR) the maximal interval, where the solution y
b
(x)

can be continued. First we show y
b
(x) > η2(x) for x ∈ (xL, b). The following

picture, that visualizes the properties from the previous lemma, should suffice,
but, again, we give the details below.
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Assume by contradiction, that y
b
(x) = η(x) for some x ∈ (xL, b). Let c =

sup{x ∈ (xL, b) : y
b
(x) ≤ η(x)}. By Lemma 13 we have c < b, from the

continuity of y
b
(x) we get y

b
(c) ≤ η(c). By local uniqueness we have y

b
(x) =
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y
c
(x) around x = c. But Lemma 13 tells us, that y

c
(c̃) < η(c̃) for some c̃ ∈ (c, b)

contradicting the definition of c.

Now we know y
b
(x) > η(x) on (xL, b) and thus y

b
(x) is bounded away from

the singularities of F (x, y) there. As F (x, y) is (at most) linearly bounded on
(−∞, b]× [η(b), +∞) the function y

b
(x) cannot explode to +∞. Thus we must

have xL = −∞.

A similar argument shows y
b
(x) < η(x) for x ∈ (b, xR). Assume by contra-

diction, that y
b
(x) = η(x) for some x ∈ (b, xR). Let c = inf{x ∈ (b, xR) :

y
b
(x) ≥ η(x)}. By Lemma 13 we have c > b, from the continuity of y

b
(x) we

get y
b
(c) ≥ η(c). By local uniqueness we have y

b
(x) = y

c
(x) around x = c.

But Lemma 13 tells us, that y
c
(c̃) > η(c̃) for some c̃ ∈ (b, c) contradicting the

definition of c.

Now we know y
b
(x) < η(x). This means, that y

b
(x) is decreasing and concave

on (b, xR). Thus xR = +∞ is impossible as y
b
(x) must eventually hit zero. On

the other hand we must have limx↑xR
y(x) = 0, because otherwise limx↑xR

y(x)
would exist, were greater than zero, and we could continue y

b
(x) further to

the right, contradicting the definition of xR. 2

A.5 The critical solution

Lemma 15 There is a unique decreasing positive solution y∞(x) of the ODE
on R, that satisfies

y∞(x) = lim
b→∞

y
b
(x) = lim

b→∞
yb(x) (A.81)

and

η(x) < y∞(x), x ∈ R (A.82)

and

y∞(x) < θ(x), x > x̂1. (A.83)

Consequently y∞(x) is convex and satisfies

y∞(x) =

(
1− α

αβ

) 1−α
α

x−
1−α

α +O
(
x−

3−α
α

)
, x →∞. (A.84)
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Fig. A.1. Solutions y(x) of the ODE with µ = 0, σ = 1, α = 0.5, β = 0.05

Proof: The solutions yb(x) do not intersect each other. Thus yb(x) is decreasing
in b > x̂1 for all x ∈ R. They are bounded below by yb(x) > η(x) > 0. Thus
we can define y∞(x) = limb→∞ yb(x). Let us fix two real numbers ` < r and
ε > 0. The functions yb(x) with b > b0 = (r+ε)∨ x̂1 are convex and decreasing
on (` − ε, r + ε), thus the limit y∞(x) is also convex and decreasing on that
interval. In particular y∞(x) is continuous on [`, r]. We have a decreasing
sequence of continuous functions converging to a continuous function on a
compact interval. By Dini’s Theorem we have uniform convergence. We have
η(r) ≤ yb(x) ≤ θ(`) for x ∈ [`, r] and b ≥ b0, hence F (x, yb(x)) is also
uniformly convergent on [`, r]. To summarize, we have uniform convergence
yb(x) → y∞(x) and y′b(x) → F (x, yb(x)) on [`, r]. This is more than we need
to show that y∞(x) is differentiable and satisfies the ODE.

A similar argument as above, now with y
b
(x) increasing in b for all x, shows

that y∞(x) = limb→∞ y
b
(x) exists, is convex, decreasing, differentiable, and

satisfies the ODE.

To show that y∞(x) = y∞(x) we observe, that

y∞(x) ≤ y∞(x) < θ(x) < (αβx)−
1−α

α (A.85)

for sufficiently large x. This implies that (x, y∞(x)) and (x, y∞(x)) both lie in
the area where Fy(x, y) ≥ 0 and thus

y′∞(x) = F (x, y∞(x)) ≤ F (x, y∞(x)) = y′∞(x). (A.86)

As a consequence, if we had y∞(c) = y∞(c) − ε for some c sufficiently large
and ε > 0, then y∞(x) ≤ y∞(x)− ε for all x ≥ c, and eventually y(x) had to
hit zero, which is not the case. 2
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A.6 Asymptotics for x →∞

Proposition 2 Let v be as in Proposition 1. Then (17), (18), and (19) hold
as x →∞.

Proof: We know from (A.84) in Lemma 15 that

y(v) ∼ cv−
1−α

α , v →∞. (A.87)

Fix x0 > 0. We can find constants c1 ∈ (0, c) and c2 ∈ (c,∞) such that

c1v
− 1−α

α ≤ y(v) ≤ c2v
− 1−α

α , v ≥ v(x0). (A.88)

Then we look at the initial value problem

v′1 = c1v
− 1−α

α
1 , v1(x0) = v(x0). (A.89)

This has the solution

v1(x) =
(

c1

α
(x− x0) + v(x0)

1
α

)α

(A.90)

A standard comparison theorem shows now v1(x) ≤ v(x) for x ≥ x0. A similar
results follows for the upper bound and we get

v(x) � xα, x →∞. (A.91)

Naturally we expect

v(x) ∼
(

c

α

)α

xα, x →∞. (A.92)

To show that, we use

y(v) = cv−
1−α

α +O
(
v−

2−α
α

)
, v →∞. (A.93)

This means, we can find v0 > 0 and K > 0, such that

cv−
1−α

α −Kv−
2−α

α ≤ y(v) ≤ cv−
1−α

α + Kv−
2−α

α , v ≥ v0. (A.94)
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Then we take v1 = 1+max(v0, (K/c)α) to make the left hand side positive for
v ≥ v1. Due to (A.91) we can find x0 > 0, such that v(x0) ≥ v1 and consider

v′ = cv−
1−α

α + Kv−
2−α

α , v(x0) = v(x0). (A.95)

This is (a simple case of) an ODE studied by Conte (1932). It can be solved
quite explicitly. Setting

v(x) =
(

c

α

)α

z(x)−α, z0 =
c

α
v(x0)

− 1
α , k =

α

c2
K, (A.96)

we get

z′ + z2 + kz3 = 0, z(x0) = z0. (A.97)

The solution of this equation can be expressed in terms of Lambert’s W func-
tion, see Corless et al. (1996). This is the inverse of xex. Here we do not need
the ”main” branch W (x) that increases from the value −1 at −e−1 to +∞
as x → ∞, but another branch, denoted by W−1(x) that decreases from the
value −1 at −e−1 to −∞ as x → 0 from the left. We have

z(x) = − 1

k(1 + W−1(w0ew0−(x−x0)/k))
, w0 = −

(
1 +

1

ky0

)
. (A.98)

Using the asymptotic estimate

W−1(x) = ln(−x) +O (ln(− ln(−x))) , x → 0 (A.99)

we obtain, by substitution back into v(x),

v(x) =
(

c

α

)α

xα

(
1 +O

(
ln x

x

))
, x →∞. (A.100)

For the lower bound we get a similar estimate. We consider now the equation

v′ = cv−
1−α

α −Kv−
2−α

α , v(x1) = v(x1). (A.101)

The solution of this equation is

v(x) =
(

c

α

)α

y(x)−α, (A.102)
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with now

z(x) =
1

k(1 + W1(w0ew0+(x−x0)/k))
. w0 = −

(
1− 1

ky0

)
. (A.103)

Here we need the ”main” branch W1(x), often denoted just by W (x), that
increases from the value −1 at −e−1 to +∞ as x →∞. Using the asymptotic
estimate

W1(x) = ln(x) +O (ln(ln(x))) , x →∞ (A.104)

we obtain, by substitution back into v(x),

v(x) =
(

c

α

)α

xα

(
1 +O

(
ln x

x

))
, x →∞. (A.105)

In general, one cannot simply differentiate an asymptotic expansion. But we
can use the differential equation vx(x) = y(v(x)) and plug the asymptotics of
v(x) into the expansion of y(v) to derive the asymptotics of vx(x) and c(x). 2

B Convergence details

As the case α = 1 only makes sense for positive drift, we assume throughout
this section

µ > 0. (B.1)

We emphasize the dependence on α ∈ (0, 1] by writing θ(α)(x) instead of θ(x)
etc. in the statement of the results, but, for brevity, only occasionally in the
proofs.

B.1 Results for the auxiliary functions related to critical points

Lemma 16 We have the inequalities

θ(α)(x) ≤ γα

(
x− µα

β

)− 1−α
α

,

(
x ≥ µα

αβ

)
, (B.2)
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and

θ(α)(x) ≥ γαx−
1−α

α ,

(
x ≥ µα

αβ

)
, (B.3)

where

γα =

(
1− α

αβ

) 1−α
α

. (B.4)

Proof: We recall

x̂1 =
µα

αβ
, ŷ1 = µ−(1−α), (B.5)

and that θ decreases from ŷ1 to 0 on [x̂1, +∞). Thus x ≥ x̂1 implies θ(x) ≤ ŷ1.
We have

ζ(y) ≤ µ

β
ŷ1 +

1− α

αβ
y−

α
1−α , (0 < y ≤ ŷ1). (B.6)

Taking y = θ(x) yields

x = ζ(θ(x)) ≤ µ

β
ŷ1 +

1− α

αβ
θ(x)−

α
1−α , (x ≥ x̂1), (B.7)

or

x− µ

β
ŷ1 ≤

1− α

αβ
θ(x)−

α
1−α , (x ≥ x̂1), (B.8)

which is equivalent to (B.2). On the other hand we have

ζ(y) ≥ 1− α

αβ
y−

α
1−α , (0 < y ≤ ŷ1). (B.9)

Taking y = θ(x) yields

x = ζ(θ(x)) ≥ 1− α

αβ
θ(x)−

α
1−α , (x ≥ x̂1), (B.10)

which is equivalent to (B.3). 2
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Lemma 17 We have

lim
α→1

θ(α)(x) = 1,

(
x >

µ

β

)
(B.11)

and

lim
α→1

1− α

α

(
θ(α)(x)

)− α
1−α = βx− µ,

(
x >

µ

β

)
. (B.12)

Proof: We consider a fixed x > µ/β. As

lim
α→1

µα

αβ
=

µ

β
, (B.13)

we can find α0 ∈ (0, 1) such that

x ≥ µα

αβ
(B.14)

for α ∈ (α0, 1). We obtain from Lemma 16

γαx−
1−α

α ≤ θ(x) ≤ γα

(
x− µα

β

)− 1−α
α

. (B.15)

Letting α → 1 shows (B.11). Next we have

x =
µ

β
θ(x) +

1− α

αβ
θ(x)−

α
1−α (B.16)

Letting α → 1 shows (B.12). 2

B.2 Results for the auxiliary functions related to inflection points

Lemma 18 We have the inequality

ξ
(α)
2 (y) ≥

(
1− α

αβ

)
y−

α
1−α ,

0 < y ≤
(

2µ

µ2 + 2βσ2

)1−α
 (B.17)
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Proof: We recall that

ξ2(y) = −1

2
p(y)−

√
r(y), (B.18)

where

p(y) = − y

β

(
µ +

2− α

α
y−

1
1−α

)
, (B.19)

and

r(y) =
y2

4β2

(
2βσ2 +

(
µ− y−

1
1−α

)2
)

. (B.20)

Thus

−1

2
p(y) ≥ 2− α

2αβ
y−

α
1−α . (B.21)

Next we have

2βσ2 +
(
µ− y−

1
1−α

)2
≤ y−

2
1−α , (B.22)

provided

(µ2 + 2βσ2)− 2µy−
1

1−α ≤ 0, (B.23)

which is equivalent to

y ≤
(

2µ

µ2 + 2βσ2

)1−α

. (B.24)

Thus

−
√

r(y) ≥ − 1

2β
y−

α
1−α , (B.25)

and summing up yields the claim. 2

Lemma 19 We have the inequality

η(α)(x) ≥
(

1− α

αβ

) 1−α
α

x−
1−α

α ,

(
x ≥ µ2 + 2(1− α)βσ2

2αµααβ(µ2 + 2βσ2)1−α

)
. (B.26)
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Proof: This follows by applying the previous lemma to y = η(x). 2

We note in passing, that

lim
α→1

(
µ2 + 2(1− α)βσ2

2αµααβ(µ2 + 2βσ2)1−α

)
=

µ

2β
. (B.27)

Lemma 20 We have

lim
α→1

η(α)(x) = 1, (x ≥ 0), (B.28)

and

lim
α→1

1− α

α

(
η(α)(x)

)− 1
1−α = (βx− µ)+ (x ≥ 0). (B.29)

Proof: (i) A direct calculation shows

η(α)(0) =

(
α

2(1− α)

)−(1−α) (√
µ2 + 2βσ2(1− α)− µ

)−(1−α)

(B.30)

and

lim
α→1

η(α)(0) = 1. (B.31)

We fix an arbitrary b > x, that is sufficiently large to be able to apply
Lemma 19. We let α → 1 and obtain

lim inf
α→1

η(α)(b) = 1. (B.32)

As η(α) are decreasing, we deduce

lim
α→1

η(α)(x) = 1 (B.33)

uniformly for 0 ≤ x ≤ b.
(ii) Next we observe, that for x > µ/β and α sufficiently close to 1, we have
η(α)(x) < θ(α)(x) and thus

0 ≤
(
η(α)(x)

) 1
1−α ≤

(
θ(α)(x)

) 1
1−α . (B.34)

As a consequence of Lemma 17 the right hand side vanishes as α → 1 and

lim
α→1

(
η(α)(x)

) 1
1−α = 0. (B.35)
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The function η(α) satisfies by definition, see Lemma 7 and 9, the equation

x2 + p
(
η(α)(x)

)
x + q

(
η(α)(x)

)
= 0. (B.36)

We multiply this equation with β2
(
η(α)(x)

) 1
1−α and deduce

lim
α→1

1− α

α

(
η(α)(x)

)− 1
1−α = βx− µ. (B.37)

For 0 ≤ x ≤ µ/β we invoke monotonicity. 2

Lemma 21 We have

lim
α→1

y(α)(x) = 1,

(
x >

µ

β

)
, (B.38)

and

lim
α→1

1− α

α

(
y(α)(x)

)− 1
1−α = (βx− µ)+, (x ≥ 0). (B.39)

The second limit is uniform on compact subsets of [0, +∞).

Proof: Lemma 20, Lemma 17, and the inequality

η(α)(x) ≤ y(α)(x) ≤ θ(α)(x) (B.40)

imply

lim
α→1

1− α

α

(
y(α)(x)

)− 1
1−α = βx− µ,

(
x ≥ µ

β

)
. (B.41)

For 0 ≤ x ≤ µ/β we choose ε > 0 and invoke the monotonicity of y(α)

y(α)

(
µ + ε

β

)
≤ y(α)(x) (B.42)

thus

0 ≤ 1− α

α

(
y(α)(x)

)− 1
1−α ≤ 1− α

α

(
y(α)

(
µ + ε

β

))− 1
1−α

. (B.43)
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The right hand side tends by (B.41) above to ε. As ε > 0 was arbitrary, we
have

lim
α→1

1− α

α

(
y(α)(x)

)− 1
1−α = 0,

(
0 ≤ x ≤ µ

β

)
. (B.44)

Now fix an arbitrary b > µ/β. In (B.41) we have a sequence of increasing
functions that tends to a continuous limit on the compact interval [0, b]. Thus
we must have uniform convergence on such intervals. 2

B.3 Bounds and limits for the ODE solution

Lemma 22 We have

lim inf
α→1

y(α)(x) ≥ 1, (x ∈ R), (B.45)

and

lim sup
α→1

y(α)(x) ≤ 1 +
4µ2

βσ2
, (x ≥ 0), (B.46)

lim sup
α→1

y(α)(x) ≤ 1 +
4µ2

βσ2
+

βx2 − 2µx

σ2
, (x ≤ 0). (B.47)

Proof: Equation (B.45) follows from y(x) ≥ η(x) and (B.28) in Lemma 20. As
y is a decreasing function, it is sufficient to show (B.46) for x = 0: We use

y(x) ≥ η(x̂1) ≥ `(x̂1) for 0 ≤ x ≤ x̂1, where `(x) = γαx−
1−α

α . This implies

F (z, y(z)) ≥ 2

σ2

(
−1− α

α
`(x̂1)

− 1
1−α − µ

)
= F (0, `(x̂1)), (0 ≤ z ≤ x̂1).(B.48)

Thus

y(0) = y(x̂1)−
x̂1∫
0

F (z, y(z))dz (B.49)

≤ θ(x̂1) +
(

1− α

α
`(x̂1)

− 1
1−α + µ

)
x̂1 =: b(α)(0). (B.50)

Next we consider x ≤ 0: We use y(x) ≥ η(0) for x ≤ 0. This implies
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F (z, y(z))≥ 2

σ2

(
βz

η(0)
− 1− α

α
η(0)−

1
1−α − µ

)
(B.51)

= F (z, η(0)), (x ≤ z ≤ 0). (B.52)

Thus

y(x) = y(0)−
0∫

x

F (z, y(z))dz (B.53)

≤ b(α)(0)− 2

σ2

0∫
x

(
βz

η(0)
− 1− α

α
η(0)−

1
1−α − µ

)
dz (B.54)

= b(α)(0) +
2

σ2

(
βx2

2η(0)
−
(

1− α

α
η(0)−

1
1−α + µ

)
x

)
=: b(α)(x) (B.55)

Finally a direct calculation shows

lim
α→1

b(α)(x) = 1 +
4µ2

βσ2
+

βx2 − 2µx

σ2
, (x ∈ R). (B.56)

2
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