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Abstract

For any utility function with asymptotic elasticity equal to one, we construct a
market model in countable discrete time, such that the utility maximization problem
with proportional transaction costs admits no solution.

This proves that the necessity of the reasonable asymptotic elasticity condition,
established by Kramkov and Schachermayer [KS99] in the frictionless case, remains
valid also in the presence of transaction costs.

1 Introduction

An economic agent endowed with initial capital x trades in a financial market so as to
maximize the expected utility of his terminal wealth at a fixed time horizon T . In general,
we can write this optimization problem as:

max
H

E [U(x + VT (H))] (P)

where VT (H) represents the portfolio value obtained with the trading rule H, which varies in
a suitable set of “admissible” strategies, defined so as to exclude arbitrage through doubling
schemes. In most cases, and also in the present paper, this is achieved through the solvability
constraint x + Vt(H) ≥ 0 a.s. for all t ∈ [0, T ], a natural choice for utility functions defined
on positive values, such as U(X) = log x and U(x) = xα/α, with α ∈ (−∞, 1) \ {0}.

We adopt the definitions from [KS99], to which we refer for unexplained notation. We
assume that the utility function U : R+ 7→ R satisfies the Inada conditions:

Assumption 1.1. A utility function U : R+ 7→ R satisfies the regularity (Inada) conditions
if it is strictly increasing, strictly concave, continuously differentiable, U ′(0) = ∞ and
U ′(∞) = 0.
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In this setting it was shown in [KS99] that a necessary and sufficient condition on the
utility function U for the existence of an optimal solution in any financial market model is
the condition that the asymptotic elasticity of U is strictly less than 1:

AE+∞(U) = lim sup
x→∞

xU ′(x)
U(x)

< 1 (1)

When this condition fails, one can always construct a market model leading to a utility
maximization problem which admits no solution (provided the initial capital x is strictly
greater than a given critical value x∗ (see [KS99], section 5)).

This phenomenon can be explained by looking at maximizing strategies: as observed in
[KS99], when (1) fails and x > x∗, the economic agent can approach the maximal expected
utility as follows: he/she splits the initial capital x into two parts. An amount equal to the
critical value x∗ is used to set up the strategy which is optimal for x = x∗. The remainder
x− x∗ is used to buy a very risky bet, which will most likely return nothing, although with
a tiny chance it will win a huge sum.

The idea is that there is a sequence Bn of such bets, becoming more and more risky
as n → ∞, yielding a strictly increasing (as n → ∞) contribution to the expected utility
appearing in (P), which tends to a finite limit. The agent would therefore like to pass to
the limit of (Bn)∞n=1, but this turns out to be impossible, as in the limit this would be a
bet which yields with probability 0 a gain ∞, which does not make sense. This is, very
roughly speaking, the idea underlying Proposition 5.2 in [KS99] (compare also Example 3.2
in [Sch02]).

The aim of the present paper is to investigate the problem of existence of the optimizer
in (P) in the presence of transaction costs: we assume that there is one risky asset, modeled
by the R−valued price process (St)t∈[0,T ] and a bond, normalized to Bt = 1 such that,
whenever we buy or sell the risky asset, transaction costs of k times the value of the trade
are due, where 0 ≤ k < 1 is given. We remark that with the methods below we could also
treat the case when transaction costs are different for buying and selling: but, mainly for
the sake of notational convenience, we assume that they agree.

We investigate, to which extent the results obtained in [KS99] for the frictionless case
k = 0 carry over to the case k > 0. On the positive side, in was shown in [Gua02] that,
also in the presence of transaction costs, condition (1) is sufficient for the existence of the
optimizer in (P). The question addressed in the present paper is whether under transaction
costs condition (1) is still necessary, as in the frictionless case, or whether the risky bets
described above are wiped out by transaction costs.

We show that the nonexistence phenomenon persists: for any utility function U such
that:

lim sup
x→∞

xU ′(x)
U(x)

= 1 (2)
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and any x∗ > 0, we construct a market model where the utility maximization problem (P)
does not admit a solution for initial capital x > x∗. In fact, we shall construct a complete
market, defined on a countable probability space and indexed by countable discrete time
displaying this phenomenon.

The main result of this paper therefore reads as follows:

Proposition 1.2. Let U satisfy Assumption 1.1 and (2), and let 0 ≤ k < 1. Denoting by
tn = 1 − 1

n+1 , there exists a stochastic process (Xtn)∞n=0, based on the filtered probability
space (Ω,F , (Fn)∞n=0 , P ), where Fn = σ((Xti)

n
i=0) and F = F∞ = σ(∨∞n=0Fn), such that:

i) u(x) = sup
{

E
[
U(x + V k

1 (H))
]

: H admissible
}

is finite for all x > 0.

ii) Problem (P) has a solution if and only if x ≤ x∗

iii) u′(x) is constant for x ≥ x∗.

The construction is done in two steps: in section 2 we construct a frictionless model
with one risky asset S in countable discrete time, which serves the same purpose without
transaction costs. Unlike the counterexample given in [KS99], based on the dual problem,
here the model is constructed explicitly for the primal problem (compare also Example 3.2
in [Sch02]). The construction described below implies the existence of maximizing sequences
with positive holdings in the risky asset, which will be crucial for our following analysis.

In section 3 we modify the construction to find a financial market, now denoted by
(Xtn)∞n=0, which does the same purpose in the presence of transaction costs k > 0. The idea
is that Xtn −Xtn−1 is a suitable modification of (−1)n(Stn − Stn−1). This will imply that,
in order to find a “good” trading strategy, one should be long in the risky asset at even and
short at odd times. Of course, such a behavior generates a lot of transaction costs, but the
“suitable modification” is done precisely in such a way to set off these transaction costs. In
this way we succeed in carrying over the arguments from the frictionless case to that of a
market with transaction costs.

2 The Frictionless Example

We recall some notation from [KS99]. Fix an R-valued semimartingale (St)t∈[0,T ], where
T > 0. We denote by

Ax = {H predictable, S-integrable : x +
∫ t

0
HsdSs ≥ 0 a.s. for all 0 ≤ t ≤ T}

the set of admissible strategies with initial capital x, and by

X (x) = {X : X ≤ x +
∫ T

0
HtdSt : H ∈ Ax}
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the corresponding set of superreplicable claims. The value function, or indirect utility, of
(P) is then:

u(x) = sup
X∈X (x)

E [U (X)] (3)

In the present paper, we embed the discrete time model ((Xtn)∞n=0,Ω,F , (Fn)∞n=0 , P ) in the
continuous time interval [0, T ] (with T = 1) through the usual right-continuous extension
Xt = Xtn for t ∈ [tn, tn+1).

In this section we give a proof for the following variant of Example 5.2 in [KS99]:

Proposition 2.1. Let U satisfy Assumption 1.1, and (2). For any x∗ > 0, there is a com-
plete financial market (Stn)∞n=0, based on a countable filtered probability space (Ω,F , (Fn)∞n=0, P )
such that:

i) u(x) < ∞, for all x > 0,

ii) For x > 0, problem (P) admits an optimizer X̂(x) = x + (Ĥ(x) ·S)T , with Ĥ(x) ∈ Ax,
if and only if x ≤ x∗,

iii) u′(x) is constant for x ≥ x∗.

As indicated in the introduction, the idea of the construction is that for x > x∗ the
optimal investment will roughly be x∗ to finance X̂(x∗) and the remaining funds x− x∗ to
buy a bet which with high probability yields 0, while with low probability pn it yields a
gain (x− x∗)ξn

n such that pnU((x− x∗)ξn
n) ∼ y(x− x∗), where y = u′(x∗). To achieve this,

it will be convenient to introduce some notation:

Definition 2.2. A financial market (Ω,F , (Fn)∞n=0 , P, (Stn)∞n=0) is a simple jump model
if:

i) Ω = (∪∞n=1An)∪B, where (An)∞n=1 and B are disjoint nonempty sets such that P (An) =
pn for some numbers pn > 0, where

∑∞
n=1 pn = 1− P (B) < 1.

ii) Fn = σ((Ak)n
k=1), for n ≥ 0.

iii) The risky asset process Stn is defined by:

Stn =
n∑

k=1

αk(1Ak
− qk)1Ω\(∪k−1

i=1 Ai)

where the numbers (αn)∞n=1 and (qn)∞n=1 satisfy
∑∞

n=1 αn < ∞, qn > 0 for all n, and∑∞
n=1 qn < 1.

Remark 2.3. It is immediate from the above definition that a simple jump model is complete,
and the unique equivalent martingale measure Q for S is given by Q(An) = qn and Q(B) =
1−

∑∞
n=1 qn.
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We break the proof of Proposition 2.1 into two Lemmata. In the first one, we show
that the quantities (pn)∞n=1 and (qn)∞n=1 in Definition 2.2 can be chosen so that the optimal
terminal payoff on SN with initial capital x∗∗ prescribes an investment of x∗∗ − xN in the
Arrow-Debreu asset 1AN

. As N increases to infinity, the value functions uN (x∗∗) increase
to u(x∗∗), also finite-valued, and yN , the Lagrange multipliers associated to the above
problems, increase to a finite value y∞. Finally, the actual optimizing strategies HN always
require positive holdings in the asset S.

¿From now on, we shall write, for notational convenience, Sn (respectively Hn, Xn) in
place of Stn (resp. Htn , Xtn).

Lemma 2.4. Let U be a utility function satisfying Assumption 1.1 and (2). Let x∗ > 0,
x∗∗ > x∗, and let (xn)∞n=1, with x1 > 0, be a sequence strictly increasing to x∗. Consider a
simple jump model, as in Definition 2.2, and denote by (SN

n )∞n=1 the process (Sn)∞n=1 stopped
at N , and by uN (x) and u(x) the value functions of the utility maximization problems on
S and SN respectively. Finally, denote by X̂N

T (x∗∗) = ξN
1 1A1 + · · · + ξN

N 1AN
+ µN1BN

the
optimal terminal payoff on SN with initial capital x∗∗.

We can choose the quantities (pn)∞n=1 and (qn)∞n=1 such that:

i) qNξN
N = x∗∗ − xN

ii) 0 < qn < pn

2 and
∑∞

n=1 pn ≤ 1
2 .

iii) u(x) = limN→∞ uN (x) < ∞ for all x > 0, and y∞ = limN→∞ yN < ∞,
where yN = (uN )′(x∗∗) and y∞ = u′(x∗∗).

iv) For all x > 0 and N ≥ 1, the optimal strategies (ĤN
n )N

n=1, defined by:

X̂N
T (x) = x +

N∑
n=1

ĤN
n (Sn − Sn−1)

satisfy the condition ĤN
n ≥ 0 a.s. for all n ≤ N .

Proof. Note that without loss of generality we may assume U(∞) > 0, as adding a constant
to U does not change the optimization problem.

First we need to introduce some notation. Let us fix strictly positive numbers (εn)∞n=1,
such that

∏∞
n=1(1 + εn) < 2, and denote by I = (U ′)−1. Denote also the set

Ξ =
{

x : U(x) > 0,
xU ′(x)
U(x)

>
1
2

}
which is open by Assumption 1.1 and unbounded by assumption (2).

We shall construct our model so that the following properties hold:
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(a)
∑N

n=1 pn < 1
2 − 2−(N+1)

(b) qn < pn

2 for 1 ≤ n ≤ N

(c) ξN
N qN = x∗∗ − xN

(d) U ′
(

xN+1−xN

2(x∗∗−xN )ξ
N
N

)
< U ′(ξN

N )(1 + εN )

(e) I(y qN
pN

) ∈ Ξ for all y ∈ [yN , y∞]

We proceed by induction on N . Consider first N = 1: we shall find p1 and q1, which
determine ξ1

1 , µ1 and y1 so that

X̂1(x∗∗) =ξ1
11A1 + µ11B1 and

y1 =(u1)′(x∗∗)

For fixed parameter ξ1
1 ∈ Ξ, we obtain the first order conditions for the optimal portfolio

satisfying (c) for the one-period problem S1 by solving the following equations for the
unknowns p1, q1, y

1, µ1, for given parameter ξ1
1 :

ξ1
1q1 =x∗∗ − x1 (4)

ξ1
1q1 + µ1(1− q1) =x∗∗ (5)

U ′(ξ1
1) =y1 q1

p1
(6)

U ′(µ1) =y1 1− q1

1− p1
(7)

Let us check that this system has indeed a solution: q1 is determined by (4), and µ1 by (5).
(6) determines p1 in terms of y1, and plugging in (7) we obtain:

y1 =
U ′(µ1)

1 + x∗∗−x1

ξ1
1

( 1
U ′(ξ1)

− 1)
(8)

Recalling that limx→∞
U(x)

x = 0 and that:

1
2
≤ lim inf

x→∞
x∈Ξ

xU ′(x)
U(x)

≤ lim sup
x→∞
x∈Ξ

xU ′(x)
U(x)

≤ 1 (9)

we obtain that:

lim
ξ1
1→∞
ξ1
1∈Ξ

y1(ξ1
1) = lim

ξ1
1→∞
ξ1
1∈Ξ

U ′(µ1)U(ξ1
1)

U(ξ1
1) + (x∗∗ − x1)

(
U(ξ1

1)

ξ1
1U ′(ξ1

1)
− U(ξ1

1)

ξ1
1

) = η < ∞
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¿From (6) and (9) it follows that:

p1 = y1 x∗∗ − x1

U ′(ξ1
1)ξ

1
1

< 2y1 x∗∗ − x1

U(ξ1
1)

and therefore we can assume that p1 < 1
4 and q1 < p1

2 (by (6)) for ξ1
1 large enough.

Finally, we apply Lemma A.1 to ε = min
(
ε1,

x2−x1
2(x∗∗−x1)

)
, which provides some large ξ1

1

for which (d) is satisfied, and condition (e) is obtained up to a change to smaller (εn)∞n=2.
It is worthwhile to resume the present procedure. For the parameter ξ1

1 we obtain from
the necessary first-order conditions (4)-(7) how the quantities ξ1

1 , p1, q1, y1 and µ1 have to
be related. Then we turn around and specify (for a large value of ξ1

1) the parameters p1, q1

in our model as we have just obtained them. It then follows that for this model ξ1
1 and µ1

indeed define the optimal portfolio, while y1 is the associated Lagrange multiplier satisfying
(u1)′(x∗∗) = y1.

Let us now pass to the induction step. Suppose that we have constructed (pi)N
i=1 and

(qi)N
i=1 such that the resulting quantities (ξN

i )N
i=1 and yN = (uN )′(x∗∗) satisfy (a)–(e) above.

Let us construct pN+1, qN+1, which in turn determine µN+1, yN+1 and (ξN+1
i )N+1

i=1 such
that the same assumptions are satisfied for N + 1.

Again, we leave ξ = ξN+1
N+1 as a free parameter to be fixed later, and solve the N + 4

equations:

ξN+1
N+1qN+1 =x∗∗ − xN+1 (10)

N∑
n=1

ξN+1
n qn + ξN+1

N+1qN+1 + µN+1

(
1−

N+1∑
n=1

qn

)
=x∗∗ (11)

U ′(ξN+1
n ) =yN+1 qn

pn
for n = 1 . . . N + 1 (12)

U ′(µN+1) =yN+1 1−
∑N+1

n=1 qn

1−
∑N+1

n=1 pn

(13)

in the unknowns qN+1, pN+1, yN+1, µN+1 and (ξN+1
i )N

i=1. Again, qN+1 is determined by
(10). If we fix yN+1 = y we are left with N + 2 equations ((12) and (13)), each one
involving exactly one of the N + 2 unknowns (ξN+1

i )N
i=1, pN+1 and µN+1, which admit a

unique solution depending on ξ and y. We write ξN+1
n (y) and µN+1(y) to indicate their

dependence on y. Now, denote the quantity on the left side of (11),

G(y) =
N∑

n=1

ξN+1
n (y)qn + (x∗∗ − xN+1) + µN+1(y)

(
1−

N+1∑
n=1

qn

)
(14)

Observe that G is a strictly decreasing function for y ≥ yN . In fact, from (12)–(13) we have
that ξN+1

n = I(y qn

pn
), and since I is a decreasing function, the first summation in (14) is
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decreasing. To prove the claim, it remains to show that µN+1(y) is also decreasing. Solving
(12) for pN+1, we have that:

pN+1 = y
x∗∗ − xN+1

ξU ′(ξ)

and substituting in (13), we obtain:

µN+1(y) = I

(
y

1−
∑N

n=1 qn − x∗∗−xN+1

ξ

1−
∑N

n=1 pn − y
x∗∗−xN+1

ξU ′(ξ)

)
= I

(
ay

b− cy

)

where a = 1 −
∑N

n=1 qn − x∗∗−xN+1

ξ , b = 1 −
∑N

n=1 pn, and c = x∗∗−xN+1

ξU ′(ξ) are all positive
numbers. Since ay

b−cy is an increasing function, the claim follows.
For y = yN we have that ξN+1

n (yN ) = ξN
n for n = 1, . . . , N , and µN+1(yN ) and µN are

arbitrarily close for large ξ. In fact, by the inductive hypothesis:

N∑
n=1

ξN
n qn + µN

(
1−

N∑
n=1

qn

)
= x∗∗

we obtain that:

G(yN ) = x∗∗ + (x∗∗ − xN+1) + µN+1

(
1−

N+1∑
n=1

qn

)
− µN

(
1−

N∑
n=1

qn

)

For ξ large enough, µN+1 approaches to µN and qN+1 approaches to zero, therefore we can
assume that G(yN ) > x∗∗. For y = yN (1 + εn), since ξN+1

n (y) is decreasing, we have that:

ξN+1
n (yN (1 + εN )) ≤ ξN+1

n (yN ) = ξN
n (yN ) for n = 1 . . . N − 1 (15)

Furthermore, by the inductive hypothesis (d):

yN (1 + εN ) = U ′(ξN
N )(1 + εN ) > U ′

(
xN+1 − xN

2(x∗∗ − xN )
ξN
N

)
(16)

and hence:
ξN+1
N (y(1 + εN )) <

xN+1 − xN

2(x∗∗ − xN )
ξN
N
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Substituting (15) and (16) in (14), we obtain:

G(yN (1 + εN )) <

<

N−1∑
n=1

ξN
n qn +x∗∗+

xN+1 − xN

2(x∗∗ − xN )
ξN
N qN +(x∗∗−xN+1)+µN+1(yN (1+εN ))

(
1−

N+1∑
n=1

qn

)
=

= −(x∗∗ − xN ) +
xN+1 − xN

2
+ (x∗∗ − xN+1) + µN+1

(
1−

N+1∑
n=1

qn

)
− µN

(
1−

N∑
n=1

qn

)
=

= −1
2
(xN+1 − xN ) + ϕ(ξ)

where

ϕ(ξ) = µN+1(ξ)

(
1−

N∑
n=1

qn − qN+1(ξ)

)
− µN

(
1−

N∑
n=1

qn

)
is infinitesimal, in the sense that limξ→∞ ϕ(ξ) = 0.

Therefore, for a sufficiently large ξ, G(yN (1 + εN )) < x∗∗, and there is a unique value
yN+1 ∈ (yN , yN (1+εN )) such that G(y) = x∗∗. Hence, using this value of yN+1 in equations
(10,11,12,13), we obtain a solution to the entire system, and in particular we obtain the
desired values for pN+1 and qN+1. To check (b), (d) and (e), we apply Lemma A.1 to
ε = min

(
εN ,

xN+2−xN+1

2(x∗∗−xN+1)

)
, and obtain some large ξ such that:

U ′
(

xN+2 − xN+1

2(x∗∗ − xN+1)
ξ

)
< U ′(ξ)(1 + εN+1) (17)

which implies (d), and up a change to smaller (εn)∞n=N+1 we obtain (e). Finally, we let
ξ be large enough so that qN+1 <

pN+1

2 , and the induction hypotheses are satisfied. This
completes the construction.

The sequence (yN )∞N=1 increases to y∞ < ∞. In fact, the assumption
∏∞

n=1(1 + εn) < 2
guarantees that:

yN ≤ y1
N∏

n=2

(1 + εn) ≤ 2y1

Then by (12) it follows that (ξN
n )∞N=n decreases to the value ξn satisfying U ′(ξn) = y∞ qn

pn
.

Similarly, we can prove that µN decreases to the value µ which satisfies U ′(µ) = y∞rn,
where rn = 1−

∑n
k=1 qk

1−
∑n

k=1 pk
. In fact, by (13) it is sufficient to prove that rn is increasing. To see

this, we use the assumption qn < pn

2 , which implies:

rN+1 =
1−

∑N
n=1 qn − qN+1

1−
∑N

n=1 pn − pN+1

>
1−

∑N
n=1 qn − pN+1

2

1−
∑N

n=1 pn − pN+1

>
1−

∑N
n=1 qn

1−
∑N

n=1 pn

= rN
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where the last inequality is equivalent to 1 −
∑N

n=1 qn ≥ 1−
∑N

n=1 pn

2 , which is implied by
qn < pn

2 .
We now show that u(x) = limN→∞ uN (x). Since uN (x) is increasing, and uN (x) ≤ u(x)

for all N , it is clear that limN→∞ uN (x) ≤ u(x). To prove the reverse inequality, it suffices
to show that X̂N

T is a maximizing sequence.
Consider a maximizing sequence for u(x), that is a sequence (Y k)∞k=1 ⊂ X (x) such that

limk→∞ E
[
U(Y k)

]
= u(x). We may well replace Y k with (1 − δk)Y k1{Y k<Mk} + xδk for

some small (δk)∞k=1 and some big (Mk)∞k=1, so that we still have a maximizing sequence (still
denoted by (Y k)∞k=1), and Yk is bounded away from zero.

As Y k is the terminal payoff of some strategy Hk, we denote by Y k
n the payoff of Hk

at time n. Then we have that U(Y k
n ) is bounded from below by U(xδk), uniformly in n.

Therefore, Fatou’s Lemma implies that:

lim
n→∞

E
[
U(Y k

n )
]
≥ E

[
U(Y k)

]
and hence, choosing nk big enough, (Y k

nk
)∞k=1 is a maximizing sequence. On the other hand,

we trivially have that E
[
U(Y k

nk
)
]
≤ E

[
U(X̂k

T )
]
, as desired.

We now prove that u(x) < ∞ for all x > 0. By Theorem 3.1 in [KS99] (or by the
concavity of u), it suffices to show that u(x) < ∞ for some x > 0, and we show this for
x∗. The utility maximization problem with initial capital x∗ admits an optimizer (see also
Lemma 2.5 (i) below), which is given by:

X̂T (x∗) =
∞∑

n=1

1AnI

(
y∞

qn

pn

)
+ 1BI (y∞r∞)

By assumption (e) above, I
(
y∞ qn

pn

)
∈ Ξ for all n. Denoting by M = U(I (y∞r∞)), we

have:

E
[
U(X̂T (x∗))

]
< M + 2E

[
X̂T (x∗)U ′(X̂T (x∗))1Ω\(B∪A1)

]
=

= M + 2y∞
N∑

n=2

I

(
y∞

qn

pn

)
qn = M + 2y∞x∗

which shows that u(x∗) < ∞.
To show that the optimal strategy ĤN

n is nonnegative, we argue by backward induction.
The basic idea is very simple: all the investments 1An − qn have a positive expected return,
therefore we expect that a utility maximizer will hold them in positive quantities.

Denote by Bn = Ω \ (∪n
i=1Ai), the event where S has not jumped during the first n

periods. Note that it suffices to prove that ĤN
n 1Bn−1 ≥ 0, because if the only possible jump
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has already occurred, any further investment is irrelevant, and we may choose ĤN
n = 0 on

Ω \Bn−1. Observe first that:

E [Sn − Sn−1|Fn−1] = αn(pn − qn) ≥ αn
pn

2
> 0 (18)

and denote by uN
k (x) the conditional indirect utility after k time steps, defined as:

uN
k (x) = sup

{
E

[
U

(
x +

N∑
n=k+1

ĤN
n (Sn − Sn−1)

)]
: H admissible

}

and note that we trivially have uN
N = U .

Consider first n = N − 1. By (18), SN − SN−1 has a positive expected return, and the
continuity of U ′ implies that the optimal holding ĤN

N−1 is strictly positive. In particular,
this implies that, on the event BN−1:

(uN
N−1)

′(X̂N
N−1(x)) > U ′(X̂N

N−1(x)) a.s.

For n < N − 1, assume that, for all k > n, ĤN
k ≥ 0 and that

(uN
k )′(X̂N

k (x)) > (uN
k+1)

′(X̂N
k (x)) a.s. on Bk

Again, since Sn+1 − Sn has positive conditional expectation (by (18)), and (uN
k+1)

′ is con-
tinuous (by Theorem 3.1 in [KS99]), it follows that ĤN

n must be strictly positive to achieve
optimality.

In the next Lemma we describe the properties of the above model:

Lemma 2.5. The model constructed in Lemma 2.4 has the following properties:

i) For all x ≥ x∗, X̂N
T (x) converges to X̂T (x∗) a.s.

ii) u(x) is a straight line with slope u′(x∗) for x > x∗.

iii) Problem (P) admits a solution if and only if x ≤ x∗.

Proof.

i) Denoting by X̂N (x) = (ξN
1 , . . . , ξN

N , µN ), from (12,13) we obtain that, for x ≥ x∗:

lim
N→∞

ξN
n = I

(
yN qn

pn

)
= I

(
y∞

qn

pn

)
lim

N→∞
µN = I

(
yNrN

)
= I (y∞r∞)

11



therefore it suffices to show that this limit coincides with X̂(x∗). In fact, from (11),
we obtain that:

N−1∑
n=1

I

(
yN qn

pn

)
qn + I(yNrN )

(
1−

N∑
n=1

qn

)
= xN

and taking the limit as N →∞, we obtain:

∞∑
n=1

I

(
y∞

qn

pn

)
qn + I(y∞r∞)

(
1−

∞∑
n=1

qn

)
= x∗

which concludes the proof.

Note that for x < x∗, equations (11,12,13) still admit a solution, but yN converges to
a value strictly greater than y∞.

ii) By Lemma 2.4 we have that uN (x) → u(x) for all x > 0, and by standard results on
convex functions (see [Roc97]), this implies that also (uN )′(x) converges to u′(x), for
all x > 0. Also, by Theorem 2.0 in [KS99] we have that (uN )′(x) = yN .

¿From i) it follows that, for x ≥ x∗:

u′(x∗) = y∞ = lim
N→∞

yN = lim
N→∞

(uN )′(x) = u′(x)

which proves the claim.

iii) As noted in i), an optimizer exists for x = x∗. Then an optimizer exists also for x < x∗

by Theorem 2.0 in [KS99]. Since an optimizer exists for x = x∗, then it cannot exist
for x > x∗ by ii), and by the strict concavity of U (see Scholium 5.1 in [KS99]).

3 Incorporating Transaction Costs

In this section we derive, from the example constructed above, a market model with trans-
action costs where essentially the same phenomenon occurs, as in Lemma 2.4 and 2.5 above.

Let X be a strictly positive, adapted process, and H a strategy, that is a predictable,
X-integrable process. We define the liquidation value at time t of the strategy H with
proportional transaction costs k as V k

0 (H,X) = 0 for t = 0 and, for t ≥ 1, as:

V k
t (H,X) =

t−1∑
n=0

Hn(Xn+1 −Xn)− k

(
|H0|X0 +

t−1∑
n=1

|Hn −Hn−1|Xn + |Ht−1|Xt

)
(19)

12



so that V 0
t (H,X) = Vt(H) with the notation introduced in (P) above.

We now proceed with the proof of Proposition 1.2, which will be broken into three
Lemmata. In the first one, from a frictionless model with asset process Sn, we construct
a process Xn for which any positive strategy on S (without transaction costs) delivers the
same payoff as another strategy on X (with transaction costs k).

Lemma 3.1. Let (Sn)∞n=0 be an adapted process, and let (Xn)∞n=0 be defined by:{
X0 = x0

Xn+1 = Sn+1−Sn

−((−1)n+k) + 1−k(−1)n

1+k(−1)n Xn
(20)

Suppose Xn ≥ 0 a.s. for all n. If (H̃)∞n=0 is a nonnegative predictable process, and (Hn)∞n=0

is defined by Hn = (−1)n+1H̃n, then

V k
t (H,X) = V 0

t (H̃, S)

Proof. From (20) it follows that:

Sn+1 − Sn = −(−1)n(Xn+1 −Xn)− k(Xn+1 + Xn) (21)

and hence:

V 0
t (H̃, S) =

t−1∑
n=0

H̃n(Sn+1 − Sn) =
t−1∑
n=0

Hn(Xn+1 − Xn) − k

t−1∑
n=0

H̃n(Xn+1 + Xn)

Since H has alternating signs, and X is strictly positive, we have that:

|H0|X0 +
t−1∑
n=1

|Hn −Hn−1|Xn + |Ht−1|Xt =
t−1∑
n=0

H̃n(Xn+1 + Xn)

which proves the claim.

In the next Lemma, we verify that if Sn is a simple jump model, then the above con-
struction leads to a strictly positive process Xn.

Lemma 3.2. Let S be the risky asset of a simple jump model as in Definition 2.2. Then
there exists some X0 > 0 such that X obtained from S by (20) is a strictly positive process.

Proof. Iterating (20), it follows that, for all n even, we have

Xn = X0 +
n∑

i=1

Si − Si−1

(−1)i(1− k)
(22)

13



hence we have that:

|Xn −X0| ≤
n∑

i=1

∣∣∣∣ Si − Si−1

(−1)i(1− k)

∣∣∣∣ ≤ 1
1− k

n∑
i=1

αi (23)

and therefore Xn ≥ X0 − 1
1−k

∑n
i=1 αi = M , which is finite by assumption. If n is even, we

also have:
Xn+1

Xn
=

Sn+1 − Sn

−(1 + k)Xn
+

1− k

1 + k
≥ 1− k

1 + k
− supn αn

(1 + k)M
(24)

It follows that, by choosing X0 large enough, all Xn are positive.

Finally, we check that any strategy on X with transaction costs is dominated by another
one in S without transaction costs.

Lemma 3.3. Let (Sn)∞n=0 be an adapted process, and (Xn)∞n=0 be defined as in Lemma 3.1.
Suppose Xn ≥ 0 a.s. for all n. If (Hn)∞n=0 is any strategy (i.e. a predictable R-valued
process), and H̃n = (−1)n+1Hn, then we have that:

V k
t (H,X) ≤ V 0

t (H̃, S) a.s. for 0 ≤ t ≤ T

Proof. We prove the claim by induction on t. For t = 0, we trivially have V k
t (H,X) =

V 0
t (H̃, S) = 0. Suppose that the claim is true for s < t. We define the stopping times:

τ = inf{n ≥ 0 : H̃n < 0}
σ = inf{n > τ : H̃n ≥ 0}

and note that σ ≥ 1. If τ ≥ t, then H̃t is nonnegative, and the thesis follows from Lemma
3.1. For t > τ , adding and subtracting both k|Hτ−1|Xτ and k|Hσ|Xσ, we have:

V k
t (H,X) =V k

τ (H,X)+ (25)

+k|Hτ−1|Xτ − k
σ∑

n=τ

|Hn −Hn−1|Xn + k|Hσ|Xσ +
σ−1∑
n=τ

Hn(Xn+1 −Xn)+ (26)

+V k
t−σ(H·−σ, X·−σ) (27)

where H·−σ and X·−σ are the processes defined by (H·−σ)(t) = Ht−σ and (X·−σ)(t) = Xt−σ

respectively.
By the inductive hypothesis, (25) and (27) are respectively less than V 0

τ (H̃, S) and
V 0

t−σ(H̃·−σ, S·−σ). The second term in (26) can be estimated from above as:

−k

σ∑
n=τ

|Hn −Hn−1|Xn ≤ −k (|Hτ −Hτ−1|Xτ + |Hσ −Hσ−1|Xσ) (28)
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For τ ≤ n ≤ σ − 1, we have that Hn = −|Hn|(−1)n+1. Also, recall that (21) implies that:

Xn+1 −Xn = (−1)n+1(Sn+1 − Sn + k(Xn+1 −Xn))

and hence the last term in (26) can be written as:

σ−1∑
n=τ

Hn(Xn+1 −Xn) = −
σ−1∑
n=τ

|Hn|(Sn+1 − Sn)− k

σ−1∑
n=τ

|Hn|(Xn+1 + Xn) ≤ (29)

≤ −
σ−1∑
n=τ

|Hn|(Sn+1 − Sn)− k|Hτ |Xτ − k|Hσ−1|Xσ (30)

Note that the last inequality holds as an equality in the case τ = σ − 1. Substituting (30)
and (28) in (26), we finally obtain:

(26) ≤ −
σ−1∑
n=τ

|Hn|(Sn+1 − Sn) + kXτ (|Hτ−1| − |Hτ | − |Hτ −Hτ−1|)+

+ kXσ(|Hσ| − |Hσ−1| − |Hσ −Hσ−1|) ≤ −
σ−1∑
n=τ

|Hn|(Sn+1 − Sn) (31)

where the last inequality follows by the triangular inequalities |Hτ−1| ≤ |Hτ |+ |Hτ −Hτ−1|
and |Hσ| ≤ |Hσ−1|+ |Hσ −Hσ−1|. Summing up, we have:

V k
t (H,X) ≤ V 0

τ (H̃, S) + V 0
t−σ(H̃·−σ, S·−σ)−

σ−1∑
n=τ

|Hn|(Sn+1 − Sn) =

= V 0
τ (H̃, S) + V 0

t−σ(H̃·−σ, S·−σ) +
σ−1∑
n=τ

H̃n(Sn+1 − Sn) =

= V 0
t (H̃, S)

which completes the proof.

We can now resume the above results as follows:

Proof of Proposition 1.2. Let S be the simple jump model (as in Definition 2.2) constructed
as in Lemma 2.4. The properties of this model are resumed in Proposition 2.1.

If we define X as in Lemma 3.1, we obtain a positive process by Lemma 3.2. Define the
value functions of the two utility maximization problems as:

uS(x) = sup
{

E
[
U
(
x + V 0

T (H,S)
)]

: H admissible
}

uX(x) = sup
{

E
[
U
(
x + V k

T (H,X)
)]

: H admissible
}

15



By Lemma 2.4, there exists a sequence of maximizing strategies for uS with positive
holdings. Then, by Lemma 3.1 it follows that uS(x) ≤ uX(x), and the reverse inequality
follows from Lemma 3.3. This proves i) and ii). To prove iii), note that uX has a maximizer
if and only if uS has one.

A Appendix

Lemma A.1. Let U be a utility function satisfying Assumption 1.1 and (2). For all ε > 0,
there is x > ε−1 such that:

i) xU ′(x) ≥ ε−1

ii) zU ′(z)
U(z) ≥ 1− ε for all z ∈ [εx, x

ε ]

iii) U ′(εx) ≤ (1 + ε)U ′(x)

Notice that ii) is an immediate consequence of (2), while iii) follows from Lemma 6.5
in [KS99]. The difficulty of the above Lemma consists in finding some x which satisfies
simultaneously ii) and iii).

The proof requires two auxiliary Lemmata.

Lemma A.2. Let U be a utility function satisfying Assumption 1.1, and y < x such that:

yU ′(y)
U(y)

≤ α
xU ′(x)
U(x)

≥ β

Then we have that:

x ≥ y

(
β − α

(1− β)α
+ 1
)

Proof. Define b(x) = U(x)− xU ′(x). Note that b(x) can be characterized as:

b(x) = inf{m : U ′(x)z + m ≥ U(z) for all z > 0} (32)

and therefore b(x) is an increasing function of x (when U is twice differentiable, this is
immediately seen by differentiating the definition of b(x)). This fact, combined with the
assumptions on x and y, implies that:

(1− α)U(y) ≤ b(y) ≤ b(x) ≤ (1− β)U(x) (33)

and by the concavity of U :

U(x) ≤ U(y) + U ′(y)(x− y) (34)
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Putting together (33) and (34), we have:

x− y ≥ β − α

1− β

U(y)
U ′(y)

and hence:

x ≥ y

(
β − α

1− β

U(y)
yU ′(y)

+ 1
)
≥ y

(
β − α

(1− β)α
+ 1
)

Lemma A.3. Let U be a utility function satisfying Assumption 1.1, and U(∞) > 0. Let
0 < y < x and 0 < α < β.

i) If xU ′(x)
U(x) ≥ β and zU ′(z)

U(z) ≥ α for all z ∈ [y, x] then U ′(x) > β
α

(
x
y

)α−1
U ′(y)

ii) For y large enough, if yU ′(y)
U(y) ≥ β and xU ′(x)

U(x) ≤ α then U ′(y) ≥ β
αU ′(x)

Proof.

i) By Gronwall’s lemma, we have:

U(z) ≥ U(y)
(

z

y

)α

for all z ∈ [y, x]

It follows that:

β ≤ xU ′(x)
U(x)

≤ yU ′(x)
U(y)

(y

x

)α−1
≤ α

U ′(x)
U ′(y)

(y

x

)α−1

which completes the proof.

ii) Notice that: (
U(x)

x

)′
=

xU ′(x)− U(x)
x2

= −b(x)
x2

Since U(∞) > 0 implies that limx→∞ b(x) > 0, it follows that U(x)
x is a decreasing

positive function on the nonempty set {x : b(x) ≥ 0, U(x) ≥ 0}. It follows that:

U ′(y)
U ′(x)

≥ β

α

U(y)
y

x

U(x)
≥ β

α

as claimed.
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Proof of Lemma A.1. First note that AE+∞(U) > 0 implies that U is unbounded (Lemma
6.1 in [KS99]). Hence, we only need to find some x big enough which satisfies ii) and iii),
as i) will follow automatically.

If there exists some x0 such that xU ′(x)
U(x) ≥ 1 − ε for all x ≥ x0, the result follows by

Lemma 6.5 in [KS99]. In fact, from the mentioned lemma we obtain that, for all α < 1 and
β > 1 there exists y > ε−1 such that:

αU ′(y) < U ′(βy)

and iii) follows by setting β = 1
ε , x = y

ε and α = 1
1+ε . Such an x will then satisfy ii) and

i) above.
Otherwise, if lim infx→∞

xU ′(x)
U(x) < 1, then there exist y, x̂, with y < x̂ such that:

x̂U ′(x̂)
U(x̂)

≥ 1− ε3,
yU ′(y)
U(y)

= 1− ε and
zU ′(z)
U(z)

≥ 1− ε for all z ∈ [y, x̂]

In fact, we may just choose some y < x̂ with the first two properties, and then replace y

with sup{w < x̂ : wU ′(w)
U(w) ≤ 1− ε}.

Denote now x = inf{w > y : wU ′(w)
U(w) = 1− ε2}. Notice that, by Lemma A.2, we have:

x̂ ≥
(

1 +
1

ε(1 + ε)

)
x ≥ x

ε
and εx ≥ y (1 + ε) > y

Applying Lemma A.3 (i) to y = εx, we obtain that:

U ′(x) ≥ (1 + ε)εεU ′(εx) > (1 + ε)(1 + ε log ε)U ′(εx)

and iii) follows for ε small enough.
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