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Abstract. We compare the option pricing formulas of Louis Bachelier and

Black-Merton-Scholes and observe – theoretically and by typical data – that
the prices coincide very well. We illustrate Louis Bachelier’s efforts to obtain

applicable formulas for option pricing in pre-computer time. Furthermore we

explain – by simple methods from chaos expansion – why Bachelier’s model
yields good short-time approximations of prices and volatilities.

1. Introduction

It is the pride of Mathematical Finance that L. Bachelier was the first to analyze
Brownian motion mathematically, and that he did so in order to develop a theory
of option pricing (see [2]). In the present note we shall review some of the results
from his thesis as well as from his later textbook on probability theory (see [3]),
and we shall explain the remarkable closeness of prices in the Bachelier and Black-
Merton-Scholes model.

The “fundamental principle” underlying Bachelier’s approach to option pricing
is crystallized in his famous dictum (see [2], p.34):

“L’ésperance mathematique du spéculateur est nul”,
i.e. “the mathematical expectation of a speculator is zero”. His argument in favor
of this principle is based on equilibrium considerations (see [2] and [10]), similar to
what in today’s terminology is called the “efficient market hypothesis” (see [9]), i.e.
the use of martingales to describe stochastic time evolutions of price movements in
ideal markets (see [2], p. 31):

“It seems that the market, the aggregate of speculators, can believe
in neither a market rise nor a market fall, since, for each

quoted price, there are as many buyers as sellers.”

The reader familiar with today‘s approach to option pricing might wonder where
the concept of “risk free interest rate” has disappeared to, which seems crucial in the
modern approach of pricing by no arbitrage arguments (recall that the discounted
price process should be a martingale under the risk neutral measure). The answer
is that L. Bachelier applied his “fundamental principle” in terms of “true” prices
(this is terminology from 1900 which corresponds to the concept of forward prices
in modern terminology). Is is well-known that the passage to forward prices makes
the riskless interest rate disappear: in the context of the Black-Merton-Scholes
formula, this is what amounts to the so-called Black’s formula (see [4]).

Summing up: Bachelier’s “fundamental principle” yields exactly the same recipe
for option pricing as we use today (for more details we refer to the first section of
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the St. Flour summer school lecture [10]): using discounted terms (“true prices”)
one obtains the prices of options (or of more general derivatives of European style)
by taking expectations. The expectation pertains to a probability measure under
which the price process of the underlying security (in discounted terms) satisfies
the fundamental principle, i.e. is a martingale in modern terminology.

It is important to emphasize that, although the recipes for obtaining option
prices are the same for Bachelier’s as for the modern approach, the arguments
in favour of them are very different: an equilibrium argument in Bachelier’s case
as opposed to the no arbitrage arguments in the Black-Merton-Scholes approach.
With all admiration for Bachelier’s work, the development of a theory of hedging
and replication by dynamic strategies, which is the crucial ingredient of the Black-
Merton-Scholes-approach, was far out of his reach (compare [10]).

In order to obtain option prices one has to specify the underlying model. We
fix a time horizon T > 0. As is well-known, Bachelier proposed to use (properly
scaled) Brownian motion as a model for stock prices. In modern terminology this
amounts (using “true prices”) to

(1.1) SB
t := S0(1 + σWt),

for 0 ≤ t ≤ T , where (Wt)0≤t≤T denotes standard Brownian motion and the super-
script B stands for Bachelier. The parameter σ > 0 denotes the volatility in modern
terminology. In fact, Bachelier used the normalization H = S0

σ√
2π

and called this
quantity the “coefficient of instability” or of “nervousness” of the security S.

The Black-Merton-Scholes model (under the risk-neutral measure) for the dis-
counted price process is, of course, given by

(1.2) SBS
t = S0 exp(σWt −

σ2

2
t),

for 0 ≤ t ≤ T .
This model was proposed by P. Samuelson in 1965, after he had – led by an

inquiry of J. Savage for the treatise [3] – personally rediscovered the virtually for-
gotten Bachelier thesis in the library of Harvard University. The difference between
the two models is analogous to the difference between linear and compound interest,
as becomes apparent when looking at the associated differential equations

dSB
t = SB

0 σdWt,

dSBS
t = SBS

t σdWt.

This analogy makes us expect that, in the short run, both models should yield
similar results while, in the long run, the difference should be spectacular. Fortu-
nately, options usually have a relatively short time to maturity (the options con-
sidered by Bachelier had a time to expiration of less than 2 months), while in the
long run we all are dead (to quote J.M. Keynes).

2. Bachelier versus Black-Merton-Scholes

We now have assembled all the ingredients to recall the derivation of the price of
an option in Bachelier’s framework. Fix a strike price K (of course, in “true”, i.e.
discounted terms), a horizon T and consider the European call C, whose pay-off at
time T is modeled by the random variable

CB
T = (SB

T −K)+.
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Applying Bachelier‘s “fundamental principle” and using that SB
T is normally

distributed with mean S0 and variance S2
0σ

2T , we obtain for the price of the option
at time t = 0

CB
0 = E[(SB

T −K)+]

=
∫ ∞

K−S0

(S0 + x−K)
1

S0σ
√

2πT
exp(− x2

2σ2S2
0T

)dx(2.1a)

= (S0 −K)Φ(
S0 −K

S0σ
√
T

) + S0σ
√
Tφ(

S0 −K

S0σ
√
T

),(2.1b)

where φ(x) = 1√
2π

exp(−x2

2 ) denotes the density of the standard normal distribu-
tion. We applied the relation φ′(x) = −xφ(x) to pass from (2.1a) to (2.1b). For
further use we shall need the Black-Merton-Scholes price, too,

CBS
0 = E[(SBS −K)+]

=
∫ ∞

−∞
(S0 exp(−σ

2T

2
+ σ

√
Tx)−K)+

1√
2π

exp(−x
2

2
)dx(2.2a)

=
∫ ∞

log K
S0

+ σ2T
2

σ
√

T

(S0 exp(−σ
2T

2
+ σ

√
Tx)−K)

1√
2π

exp(−x
2

2
)dx(2.2b)

= S0Φ(
log S0

K + 1
2σ

2T

σ
√
T

)−KΦ(
log S0

K − 1
2σ

2T

σ
√
T

).(2.2c)

Interestingly, Bachelier explicitly wrote down formula (2.1a), but did not bother
to spell out formula (2.1b). The main reason seems to be that at his time option
prices – at least in Paris – were quoted the other way around: while today the strike
prices K is fixed and the option price fluctuates according to supply and demand,
at Bachelier’s times the option prices were fixed (at 10, 20 and 50 Centimes for a
“rente”, i.e., a perpetual bond with par value of 100 Francs) and therefore the strike
price K fluctuates. Hence what Bachelier really needed was the inverse version of
the above relation between C = CB

0 and K.
Apparently there is no simple “formula” to express this inverse relationship.

This is somewhat analogous to the situation in the Black-Merton-Scholes model,
where there is also no “formula” for the inverse problem of calculating the implied
volatility as a function of the given option price. We shall see below that L. Bachelier
designed a clever series expansion for CB

0 as a function of the strike price K in order
to derive (very) easy formulae which approximate this inverse relation and which
were well suited to pre-computer technology.

2.1. At the money options. Bachelier first specializes to this case (called “simple
options” in the terminology of 1900), when S0 = K. In this case (2.1b) reduces to
the simple and beautiful relation

CB
0 = S0σ

√
T

2π
.

As explicitly noticed by Bachelier, this formula can also be used, for a given price
C of the at the money option with maturity T , to determine the “coefficient of
nervousness of the security” H = S0σ√

2π
, i.e., to determine the implied volatility in

modern technology. Indeed, it suffices to normalize the price CB
0 by

√
T to obtain
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H = CB
0√
T

. This leads us to our first result. For convenience we phrase it rather in
terms of σ than of H.

Proposition 1. The volatility σ in the Bachelier model is determined by the price
CB

0 of an at the money option with maturity T by

(2.3) σ =
CB

0

S0

√
2π
T
.

In the subsequent Proposition, we compare, for fixed volatility σ > 0 and time
to maturity T , the price of an at the money call option as obtained from the Black-
Merton-Scholes and Bachelier’s formula respectively. Furthermore we also compare
the implied volatilities, for given price C0 of an at the money call, in the Bachelier
and Black-Merton-Scholes model.

Proposition 2. Fix σ > 0, T > 0 and S0 = K, and denote by CB and CBS the
corresponding prices for a European call option in the Bachelier (1.1) and Black-
Merton-Scholes model (1.2) respectively. Then

(2.4) 0 ≤ CB
0 − CBS

0 ≤ S0

12
√

2π
σ3T

3
2 = O((σ

√
T )3).

Conversely, fix the price 0 < C0 < S0 of an at the money option and denote by
σB := σ the implied Bachelier volatility and by σBS the implied Black-Merton-
Scholes volatility, then

(2.5) 0 ≤ σBS − σB ≤ T

12
(σBS)3.

Proof. (compare [10]). For S0 = K, we obtain in the Bachelier and Black-Merton-
Scholes model the following prices, respectively,

CB
0 =

S0σ√
2π

√
T

CBS
0 = S0(Φ(

1
2
σ
√
T )− Φ(−1

2
σ
√
T )).

Hence

0 ≤ CB
0 − CBS

0 = (
S0√
2π
x− S0(Φ(

x

2
)− Φ(−x

2
)))|x=σ

√
T ≤

≤ S0√
2π

∫ x
2

− x
2

y2

2
dy|x=σ

√
T =

=
S0√
2π

x3

12
|x=σ

√
T =

S0

12
√

2π
σ3T

3
2 = O((σ

√
T )3),

since ey ≥ 1 + y for all y, so that y2

2 ≥ 1− e−
y2

2 for all y.
For the second assertion note that solving equation

C0 =
σB

√
2π

√
T = Φ(

1
2
σBS

√
T )− Φ(−1

2
σBS

√
T )
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given σB > 0 yields the Black-Merton-Scholes implied volatility σBS . We obtain
similarly as above

0 ≤ σBS − σB = σBS −
√

2π√
T

(Φ(
1
2
σBS

√
T ) + Φ(−1

2
σBS

√
T ))

=
√

2π√
T

(
1√
2π
x− (Φ(

x

2
)− Φ(−x

2
)))|x=σBS

√
T

≤
√

2π√
T

1
12
√

2π
(σBS)3T

3
2 =

(σBS)3T
12

.

�

Proposition 1 and 2 yield in particular the well-known asymptotic behaviour of
an at the money call price in the Black-Merton-Scholes model as described in [1].

Proposition 2 tells us that for the case when (σ
√
T ) � 1 (which typically holds

true in applications), formula (2.3) gives a satisfactory approximation of the implied
Black-Merton-Scholes volatility, and is very easy to calculate. We note that for the
data reported by Bachelier (see [2] and [10]), the yearly volatility was of the order
of 2.4% p.a. and T in the order of one month, i.e T = 1

12 years so that
√
T ≈ 0.3.

Consequently we get (σ
√
T )3 ≈ (0.008)3 ≈ 5×10−7. The estimate in Proposition 2

yields a right hand side of S0

12
√

2π
5× 10−7 = 1.6× 10−8S0, i.e. the difference of the

Bachelier and Black-Merton-Scholes price (when using the same volatility σ = 2.4%
p.a.) is of the order 10−8 of the price S0 of the underlying security.

Remark 1. Inequality (2.4) is an estimate of third order, whereas inequality (2.5)
only yields an estimate of the relative error of second order

σBS − σB

σBS
≤ 1

12
(σBS

√
T )2.

On the other hand, for the time-standardized volatilities at maturity T we obtain
an estimate of third order

σBS
√
T − σB

√
T ≤ 1

12
(σBS

√
T )3.

3. Further results of L. Bachelier

We now proceed to a more detailed analysis of the option pricing formula (2.1b)
for general strike prices K. We shall introduce some notation used by L. Bache-
lier for the following two reasons: firstly, it should make the task easier for the
interested reader to look up the original texts by Bachelier; secondly, and more
importantly, we shall see that his notation has its own merits and allows for intu-
itive and economically meaningful interpretations (as we have already seen for the
normalization H = S0σ√

2π
of the volatility, which equals the time-standardized price

of an at the money option).
L. Bachelier found it convenient to use a parallel shift of the coordinate system

moving S0 to 0, so that the Gaussian distribution will be centered at 0. We write

(3.1) a =
S0σ

√
T√

2π
, m := K − S0, P := m+ C.

The parameter a equals, up to the normalizing factor S0√
2π

, the time-standardized

volatility σ
√
T at maturity T . Readers familiar, e.g. with the Hull-White model of
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stochastic volatility, will realize that this is a very natural parametrization for an
option with maturity T .

In any case, the quantity a was a natural parametrization for L. Bachelier, as it
is the price of the at the money option with the maturity T (see formula 2.3), so
that it can be observed from market data.

The quantity m is the strike price K shifted by S0 and needs no further expla-
nation. P has a natural interpretation (in Bachelier’s times it was called “écart”,
i.e. the “spread” of an option): it is the price P of a european put at maturity T
with strike price K, as was explicitly noted by Bachelier (using, of course, different
terminology): as nicely explained in [2], a speculator “á la hausse”, i.e. hoping for
a rise of ST may buy a forward contract with maturity T . Using the “fundamental
principle”, which in this case boils down to elementary no arbitrage arguments, one
concludes that the forward price must equal S0, so that the total gain or loss of
this operation is given by the random variable ST − S0 at time T .

On the other hand , a more prudent speculator might want to limit the maximal
loss by a quantity K > 0. She thus would buy a call option with price C, which
would correspond to a strike price K (here we see very nicely the above mentioned
fact that in Bachelier‘s times the strike price was considered as a function of the
option price C – la “prime” in french – and not vice versa as today). Her total gain
or loss would then be given by the random variable

(ST −K)+ − C.

If at time T it indeed turns out that ST ≥ K, then the buyer of the forward
contract is, of course, better off than the option buyer. The difference equals

(ST − S0)− [(ST −K)− C] = K − S0 + C = P,

which therefore may be interpreted as a “cost of insurance”. If ST ≤ K, we obtain

(ST − S0)− [0− C] = (ST −K) +K − S0 + C = (ST −K) + P.

By the Bachelier’s “fundamental principle” we obtain

P = E[(ST −K)−].

Hence Bachelier was led by no-arbitrage considerations to the put-call parity. For
further considerations we denote the put price in the Bachelier model at time t = 0
by PB

0 or P (m) respectively.
Clearly, the higher the potential loss C is, which the option buyer is ready to

accept, the lower the costs of insurance P should be and vice versa, so that we
expect a monotone dependence of these two quantities.

In fact, Bachelier observed that the following pretty result holds true in his model
(see [3], p.295):

Proposition 3 (Theorem of reciprocity). For fixed σ > 0 and T > 0 the quantities
C and P are reciprocal in Bachelier’s model, i.e. there is monotone strictly decreas-
ing and self-inverse, i.e. I = I−1 function I : R>0 → R>0 such that P = I(C).

Proof. Denote by ψ the density of ST − S0, then

C(m) =
∫ ∞

m

(x−m)ψ(x)dx,

P (m) =
∫ m

−∞
(m− x)ψ(x)dx.



BACHELIER VERSUS BLACK-SCHOLES 7

Hence we obtain that C(−m) = P (m). We note in passing that this is only due to
the symmetry of the density ψ with respect to reflection at 0. Since C ′(m) < 0 (see
the proof of Proposition 1) we obtain P = P (m(C)) := I(C), where C 7→ m(C)
inverts the function m 7→ C(m). C maps R in a strictly decreasing way to R>0 and
P maps R in a strictly increasing way to R>0. The resulting map I is therefore
strictly decreasing, and – due to symmetry – we obtain

I(P ) = P (m(P )) = P (−m(C)) = C,

so I is self-inverse. �

Using the above notations (3.1), equation (2.1b) for the option price CB
0 (which

we now write as C(m) to stress the dependence on the strike price) obtained from
the fundamental principles becomes

(3.2) C(m) =
∫ ∞

m

(x−m)µ(dx),

where µ denotes the distribution of ST−S0, which has the Gaussian density µ(dx) =
ψ(x)dx with

ψ(x) =
1

S0σ
√

2πT
exp(− x2

2σ2S2
0T

) =
1

2πa
exp(− x2

4πa2
).

As mentioned above, Bachelier does not simply calculate the integral (3.2). He
rather does something more interesting (see [3], Nr.445, p.294): “Si l’on développe
l’integrale en série, on obtient

(3.3) C(m) = a+
m

2
+
m2

4πa
− m4

96π2a3
+

m6

1920π3a5
+ . . .′′ .

In the subsequent theorem we justify this step. It is worth noting that the method
for developing this series expansion is not restricted to Bachelier’s model, but holds
true in general (provided that µ, the probability distribution of ST − S0, admits a
density function ψ, which is analytic in a neighborhood of 0).

Theorem 1. Suppose that the law µ of the random variable ST admits a density

µ(dx) = ψ(x)dx,

such that ψ is analytic in a ball of radius r > 0 around 0, and that∫ ∞

−∞
xψ(x)dx <∞.

Then the function

C(m) =
∫ ∞

m

(x−m)µ(dx)

is analytic for |m| < r and admits a power series expansion

C(m) =
∞∑

k=0

ckm
k,

where c0 =
∫∞
0
xψ(x)dx, c1 =

∫∞
0
ψ(x)dx and ck = 1

k!ψ
(k−2)(0) for k ≥ 2.
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Proof. Due to our assumptions C is seen to be analytic as sum of two analytic
functions,

C(m) =
∫ ∞

m

xψ(x)dx−m

∫ ∞

m

ψ(x)dx.

Indeed, if ψ is analytic around 0, then the functions x 7→ xψ(x) andm 7→
∫∞

m
xψ(x)dx

are analytic with the same radius of convergence r. The same holds true for the
function m 7→ m

∫∞
m
ψ(x)dx. The derivatives can be calculated by the Leibniz rule,

C ′(m) = −mψ(m)−
∫ ∞

m

ψ(x)dx+mψ(m)

= −
∫ ∞

m

ψ(x)dx,

C ′′(m) = ψ(m),

whence we obtain for the k-th derivative,

C(k)(m) = ψ(k−2)(m),

for k ≥ 2. �

Remark 2. If we assume that m 7→ C(m) is locally analytic around m = 0 (without
any assumption on the density ψ), then the density x 7→ ψ(x) is analytic around
x = 0, too, by inversion of the above argument.

Remark 3. Arguing formally, the formulae for the coefficients ck become rather
obvious on an intuitive level: denote by Hm(x) = (x − m)+ the “hockey stick”
function with kink at m. Note the symmetry – up to the sign – in the variables m
and x. In particular ∂

∂mkHm(x) = (−1)kH
(k)
m (x), where the derivatives have to be

interpreted in the distributional sense. We write H(k)
m for ∂

∂xkHm(x) and observe
that H ′

m(x) = 1{x≥m}, which is the Heaviside function centered at m, and H ′′
m(x) =

δm(x), the “Dirac δ-function” centered at m. Applying this formal argument again,
we obtain from ∂2

∂m2 〈ψ,Hm〉 =
〈
ψ,H

(2)
m

〉
= ψ(m), and consequently,

∂k

∂mk
| 〈ψ,Hm〉 = ψ(k−2)(m)

for any Schwartz test function ψ. Hence (under the assumption that the Taylor
series makes sense)

C(m) =
∞∑

k=0

∂k

∂mk
|m=0 〈ψ,Hm〉

mk

k!

=
1∑

k=0

ck
mk

k!
+

∞∑
k=2

ψ(k−2)(0)
mk

k!
,

with
〈
ψ,H

(0)
m

〉
= c0 and −

〈
ψ,H

(1)
m

〉
= c1.
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Remark 4. In the case when ψ equals the Gaussian distribution, the calculation
of the Taylor coefficients yields

d

dy
(

1
2πa

exp(− y2

4πa2
)) = −1

4
y

π2a3
e−

1
4

y2

πa2 ,

d2

dy2
(

1
2πa

exp(− y2

4πa2
)) = −1

8
2πa2 − y2

π3a5
e−

1
4

y2

πa2 ,

d3

dy3
(

1
2πa

exp(− y2

4πa2
)) =

1
16

6πa2y − y3

π4a7
e−

1
4

y2

πa2 ,

d4

dy4
(

1
2πa

exp(− y2

4πa2
)) =

1
32

12π2a4 − 12y2πa2 + y4

π5a9
e−

1
4

y2

πa2 ,

Consequently ψ(0) = 1
2πa , ψ′(0) = 0, ψ′′(0) = − 1

4π2a3 , ψ′′′(0) = 0 and ψ′′′′(0) =
3
8

1
π3a5 , hence with C(0) = a and C ′(0) = − 1

2 ,

(3.4) C(m) = a− m

2
+
m2

4πa
− m4

96π2a3
+

m6

1920π3a5
+O(m8)

and the series converges for all m, as the Gaussian distribution is an entire function.
This is the expansion indicated by Bachelier in [3]. Since P (−m) = C(m), we also
obtain the expansion for the put

(3.5) P (m) = a+
m

2
+
m2

4πa
− m4

96π2a3
+

m6

1920π3a5
+O(m8).

Remark 5. Looking once more at Bachelier’s series one notes that it is rather a
Taylor expansion in m

a than in m. Note furthermore that m
a is a dimensionless

quantity. The series then becomes

C(m) = a F (
m

a
)

F (x) = 1− x

2
+
x2

4π
− x4

96π2
+

x6

1920π3
+O(x8).

We note as a curiosity that already in the second order term the number π appears.
Whence – if we believe in Bachelier’s formula for option pricing – we are able to
determine π at least approximately (see (3.6) below) – from financial market data
(compare Georges Louis Leclerc Comte de Buffon’s method to determine π by using
statistical experiments).

Remark 6. Denoting by C(m,S0) the price of the call in Bachelier’s model as a
function of m = K − S0 and S0, observe that there is another reciprocity relation
namely

C(m+ b, S0) = C(m,S0 − b)
for all b ∈ R. This is due to the linear dependence of ST on S0. Hence we obtain

∂k

∂mk
C(m,S0) = (−1)k ∂k

∂Sk
0

C(m,S0).

Note that the derivatives on the right hand side are ”Greeks” of the option in today’s
terminology. Hence in the Bachelier model – as in any other Markovian model with
linear dependence on the initial value S0 – the derivatives with respect to the strike
price correspond to the calculation of certain ”Greeks”. Letting S0 = K, we find
that – in modern terminology – in Bachelier’s model for at the money European call
options the ”delta” equals 1

2 and the ”gamma” equals 1
2π . At this point, however,



10 WALTER SCHACHERMAYER AND JOSEF TEICHMANN

we have to be careful not to overdo our interpretation of Bachelier’s findings: the
idea of ”Greeks” and its relation to dynamic replication can – to the best of our
knowledge – not be found in Bachelier’s work.

Let us turn back to Bachelier’s original calculations. He first truncated the
Taylor series (3.4) after the quadratic term, i.e.

(3.6) C(m) ≈ a− m

2
+
m2

4πa
.

This (approximate) formula can easily be inverted by solving a quadratic equation,
thus yielding an explicit formula for m as a function of C. Bachelier observes
that the approximation works well for small values of m

a (the cases relevant for
his practical applications) and gives some numerical estimates. We summarize the
situation.

Proposition 4 (Rule of Thumb 1). For a given maturity T denote by a = C(0)
the price of the at the money option and by C(m) the price of the call option with
strike K = S0 +m. Letting

Ĉ(m) = a− m

2
+
m2

4πa
(3.7)

= C(0)− m

2
+

m2

4πC(0)
,(3.8)

we get an approximation of the Bachelier price C(m) up to order m3.

Remark 7. Note that the value of Ĉ(m) only depends on the price a of an at the
money option (which is observable at the market) and the quantity m = K − S0.

Remark 8. Given any stock price model under a risk neutral measure, the above
approach of quadratic approximation can be applied if the density ψ of ST − S0 is
locally analytic and admits first moments. The approximation then reads

Ĉ(m) = C(0)−B(0)m+
ψ(0)

2
m2

up to a term of order O(m3). Here C(0) denotes the price of the at the money
european call option (pay-off (ST − S0)+), B(0) the price of the at the money
binary option (pay-off 1{ST≥S0}) and ψ(0) the value of an at the money “Dirac”
option (pay-off δS0 , with an appropriate interpretation as a limit).

Example 1. Take for instance the Black-Merton-Scholes model, then the quadratic
approximation can be calculated easily,

C(0) = S0(Φ(
1
2
σ
√
T )− Φ(−1

2
σ
√
T ))

B(0) = Φ(−1
2
σ
√
T ),

ψ(0) =
1

σ
√

2πT
1
S0

exp(−1
8
σ2T ).

Notice that the density ψ of ST − S0 in the Black-Merton-Scholes model is not an
entire function, hence the expansion only holds with a finite radius of convergence.
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Although Bachelier had achieved with formula (3.7) a practically satisfactory
solution, which allowed to calculate (approximately) m as a function of C by only
using pre-computer technology, he was not entirely satisfied. Following the reflexes
of a true mathematician he tried to obtain better approximations (yielding still
easily computable quantities) than simply truncating the Taylor series after the
quadratic term. He observed that, using the series expansion for the put option
(see formula 3.5)

P (m) = a+
m

2
+
m2

4πa
− m4

96π2a3
+ ...

and computing the product function C(m)P (m) or, somewhat more sophisticatedly,
the triple product function C(m)P (m)C(m)+P (m)

2 , one obtains interesting cancel-
lations in the corresponding Taylor series,

C(m)P (m) = a2 − m2

4
+
m2

2π
+O(m4),

C(m)P (m)
C(m) + P (m)

2
= a3 − m2a

4
+

3m2a

4π
+O(m4).

Observe that (C(m)P (m))
1
2 is the geometric mean of the corresponding call and

put price, while (C(m)P (m)C(m)+P (m)
2 )

1
3 is the geometric mean of the call, the put

and the arithmetic mean of the call and put price.
The latter equation yields the approximate identity

(C(m) + P (m))C(m)P (m) ≈ 2a3

which Bachelier rephrases as a cooking book recipe (see [3], p.201):

On additionne l’importance de la prime et son écart.
On multiplie l’importance de la prime par son écart.
On fait le produit des deux résultats.
Ce produit doit être le même pour toutes les primes
qui ont même échéance.

This recipe allows to approximately calculate for m 6= m′ in a quadruple

(C(m), P (m), C(m′), P (m′))

any one of these four quantities as an easy (from the point of view of pre-computer
technology) function of the other three. Note that, in the case m = 0, we have
C(0) = P (0) = a, which makes the resulting calculation even easier.

We now interpret these equations in a more contemporary language (but, of
course, only rephrasing Bachelier‘s insight in this way).

Proposition 5 (Rule of Thumb 2). For given T > 0, σB > 0 and m = K − S0

denote by C(m) and P (m) the prices of the corresponding call and put options in
the Bachelier model. Denote by

a(m) := C(m)P (m)

b(m) = C(m)P (m)(
C(m) + P (m)

2
)
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the products considered by Bachelier, then we have a(0) = a2 and b(0) = a3, and

a(m)
a(0)

= 1−
(π − 2)(m

a )2

4π
+O(m4),

b(m)
b(0)

= 1−
(π − 3)(m

a )2

4π
+O(m4).

Remark 9. We rediscover an approximation of the reciprocity relation of Proposi-
tion 3.1 in the first of the two rules of the thumb. Notice also that this rule of thumb
only holds up to order (m

a )2. Finally note that π−3 ≈ 0.1416 while π−2 ≈ 1.1416,
so that the coefficient of the quadratic term in the above expressions is smaller for
b(m)
b(0) by a factor of 8 as compared to a(m)

a(0) . This is why Bachelier recommended this
slightly more sophisticated product.

4. Bachelier versus other models

We now aim to explain the remarkable asymptotic closeness encountered in
Proposition 2 of the Black-Merton-Scholes and the Bachelier price for at the money
options in a more systematic way. We therefore consider a general model (St)0≤t≤T

in true (i.e. discounted) prices (under a martingale measure) and provide condi-
tions for asymptotic closeness to the Bachelier model (SB

t )0≤t≤T , and systematic
generalizations of these considerations. We shall show that – under mild technical
conditions - we can always find a Bachelier model (SB

t )0≤t≤T , i.e. a parameter
σ > 0, such that the short-time asymptotics of the difference of the European
style option prices in the general model and in the Bachelier model is of order
O(S0(σ

√
t)2) as (σ

√
t) → 0. Since (σ

√
t) is typically small, this yields remarkably

good approximations for prices.
We assume that (St)0≤t≤T is modeled on a filtered probability space (Ω, (Ft)0≤t≤T , P )

such that (Ft)0≤t≤T is generated by a standard Brownian motion (Wt)0≤t≤T . We
assume that (St)0≤t≤T is of the form

St := S0 +
∫ t

0

α(s)dWs,

where (αt)0≤t≤T is a predictable L2-integrator, so that (St)0≤t≤T is an L2-martingale
with continuous trajectories. First we analyse a condition, such that Bachelier’s
model yields a short-time asymptotics of order O(S0(σ

√
t)2).

Proposition 6. Assume that for some σ > 0 and fixed time horizon T > 0 we have
E[

∫ t

0
(α(s) − σS0)2ds]

1
2 ≤ CS0σ

2t for t ∈ [0, T ] and some constant C > 0 (which
may depend on the horizon T ). Then for any globally Lipschitz function g : R → R
we have ∣∣E[g(SB

t )]− E[g(St)]
∣∣ ≤ C||g||LipS0σ

2t,

for 0 ≤ t ≤ T , where (SB
t )0≤t≤T denotes the Bachelier model with constants σ > 0

and SB
0 = S0.
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Proof. From the basic L2-isometry of stochastic integration we obtain∣∣E[g(SB
t )]− E[g(St)]

∣∣ ≤ ||g||LipE[|SB
t − St|]

≤ ||g||LipE[(SB
t − St)2]

1
2

= ||g||LipE[
∫ t

0

(α(s)− σS0)2ds]
1
2

≤ C||g||LipS0σ
2t,

for 0 ≤ t ≤ T . �

Example 2. If we compare the Bachelier and the Black-Merton-Scholes model, we
observe that there is a constant C = C(T ) > 0 such that

E(
∫ t

0

(σS0 exp(σWs −
σ2s

2
)− σS0)2ds) ≤ C2S2

0σ
4t2,

hence the estimate holds for 0 ≤ t ≤ T . As in Example 5 below we obtain an explicit
sharp estimate, namely

C2 =
∑
m≥2

Tm−2

m!
=

exp(T )− 1− T

T 2
.

Example 3. Given the Hobson-Rogers model (see [6]), i.e.

SHR
t = S0 +

∫ t

0

S0η(Yu) exp(−1
2

∫ u

0

β(s)2ds+
∫ u

0

β(s)dWs)dWu,

β(s) = η(Ys),

dYs = (−η(Ys)2

2
+ λYs)ds+ η(Ys)dWs,

with η : R → R a C∞-bounded function and η(Y0) = σ. Hence we obtain a
similar estimate as in the Black-Merton-Scholes case (with a different constant C
of course) in general, but we have to choose the Bachelier model with appropriate
volatility σ = η(Y0).

Now we focus on possibly higher orders in the short-time asymptotics. We first
replace Bachelier’s original model by a general Gaussian martingale model and
ask for the best Gaussian martingale model to approximate a given L2-martingale.
We then consider extensions of this Gaussian martingale model into higher chaos
components to obtain higher order time asymptotics. We finally prove that, under a
mild technical assumption on the general process (St)0≤t≤T , we are able to provide
short-time asymptotics of any order.

If we analyse the crucial condition E(
∫ t

0
(α(s)− σS0)2ds)

1
2 ≤ CS0σ

2t of Propo-
sition 6 more carefully, we realize that we can improve this estimate if we allow
for deterministic, time-dependent volatility functions σ : [0, T ] → R instead of a
constant σ > 0, i.e. if we minimize

E(
∫ t

0

(α(s)− σ(s)S0)2ds)

along all possible choices of deterministic functions s 7→ σ(s). From the basic inertia
identity E[(X − E[X])2] = mina∈R E[(X − a)2], which holds true for any random
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variable X with finite second moment, we infer that the best possible choice is given
by

(4.1) σ(s) :=
E(α(s))
S0

.

If we are already given an estimate E(
∫ t

0
(α(s) − σS0)2ds)

1
2 ≤ CS0σ

2t for some
constant σ > 0, then E(

∫ t

0
(α(s)− σ(s)S0)2ds)

1
2 ≤ C ′S0σ

2t, with C ′ ≤ C, for σ(s)
defined by (4.1).

Instead of solving the one-dimensional problem of finding the best Bachelier
model with minimal L2-distance to (St)0≤t≤T , we hence ask for the best Gaussian
martingale model with respect to the L2-distance, which will improve the constants
in the short-time asymptotics. Notice, however, that for the Black-Merton-Scholes
model with constant volatility σ, the choice σ(s) = σ for 0 ≤ s ≤ T is the optimal.

Example 4. In the Hobson-Rogers model (4.1) leads to

σ(s) := E[η(Ys) exp(−1
2

∫ s

0

β(v)2dv +
∫ s

0

β(v)dWv)]

for 0 ≤ s ≤ T and hence the best (in the sense of L2-distance) Gaussian approxi-
mation of (SHR

t )0≤t≤T is given through

(S0(1 +
∫ t

0

σ(s)dWs))0≤t≤T .

There are possible extensions of the Bachelier model in several directions, but
extensions, which improve – in an optimal way – the L2-distance and the short-time
asymptotics, are favorable from the point of applications. This observation in mind
we aim for best (in the sense of L2-distance) approximations of a given general pro-
cess (St)0≤t≤T by iterated Wiener-Ito integrals up to a certain order. We demand
that the approximating processes are martingales. The methodology results into
the one of chaos expansion or Stroock-Taylor theorems (see [8]). Methods from
chaos expansion for the (explicit) construction of price processes have proved to be
very useful, see for instance [5]. In the sequel we shall call any Gaussian martingale
a (general) Bachelier model.

Definition 1. Fix N ≥ 1. Denote by (M (n)
t )0≤t≤T martingales with continuous

trajectories for 0 ≤ n ≤ N , such that M (n)
t ∈ Hn for 0 ≤ t ≤ T , where Hn denotes

the n-th Wiener chaos in L2(Ω). Then we call the process

S
(N)
t :=

N∑
n=0

M
(n)
t

an extension of degree N of the Bachelier model. Note that M (0)
t = M0 is constant,

and that S(1)
t = M0 +M

(1)
t is a (general) Bachelier model.

Given an L2-martingale (St)0≤t≤T and N ≥ 1. There exists a unique extension
of degree N of the Bachelier model (in the sense that the martingales (M (n)

t )0≤t≤T

are uniquely defined for 0 ≤ n ≤ N) minimizing the L2-norm E[(St − S
(N)
t )2] for

all 0 ≤ t ≤ T . Furthermore S(N)
t → St in the L2-norm as N → ∞, uniformly for

0 ≤ t ≤ T .
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Indeed, since the orthogonal projections pn : L2(Ω,FT , P ) → L2(Ω,FT , P ) onto
the n-th Wiener chaos commute with conditional expectations E(.|Ft) (see for
instance [8]), we obtain that

M
(n)
t := pn(St),

for 0 ≤ t ≤ T , is a martingale with continuous trajectories, because

E(pn(ST )|Ft) = pn(E(ST |Ft) = pn(St)

for 0 ≤ t ≤ T . Consequently

S
(N)
t :=

N∑
n=0

M
(n)
t

is a process minimizing the distance to St for any t ∈ [0, T ]. Clearly we have that

St :=
∞∑

n=0

M
(n)
t

in the L2-topology.

Example 5. For the Black-Merton-Scholes model we obtain that

M
(n)
t = S0σ

nt
n
2Hn(

Wt√
t
),

where Hn denotes the n-th Hermite polynomial, i.e. (n + 1)Hn+1(x) = xHn(x) −
Hn−1(x) and H0(x) = 1, H1(x) = x for n ≥ 1 (for details see [7]). Hence

M
(0)
t = S0,

M
(1)
t = S0σWt,

M
(2)
t = S0

σ2

2
(W 2

t − t).

We recover Bachelier’s model as extension of degree 1 minimizing the distance to
the Black-Merton-Scholes model. Note that we have

||St − S
(N)
t ||2 ≤ CS0σ

N+1
2 t

N+1
2 ,

for 0 ≤ t ≤ T . Furthermore we can calculate a sharp constant C, namely

C2 = sup
0≤t≤T

∑
m≥N+1

tm−N−1E[(Hm(
Wt√
t
))2]

=
∑

m≥N+1

Tm−N−1 1
m!
.

since E[(Hm(Wt√
t
))2] = 1

m! for 0 < t ≤ T and m ≥ 0.

Due to the particular structure of the chaos decomposition we can prove the
desired short-time asymptotics:

Theorem 2. Given an L2-martingale (St)0≤t≤T , assume that ST =
∑∞

i=0Wi(fi)
with symmetric L2-functions fi : [0, T ]i → R and iterated Wiener-Ito integrals

W i
t (fi) :=

∫
0≤t1≤···≤ti≤t

fi(t1, . . . , ti)dWt1 · · · dWti
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. If there is an index i0 such that for i ≥ i0 the functions fi are bounded and
K2 :=

∑
i≥i0

T i−i0

i! ||fi||2∞ < ∞, then we obtain ||St − S
(N)
t ||2 ≤ Kt

n+1
2 for each

N ≥ i0 and 0 ≤ t ≤ T .

Proof. We apply that E[(E(W i
T (fi)|Ft))2] = 1

i! ||1
⊗i
[0,t]fi||2L2([0,T ]i) ≤

ti

i! ||fi||2∞ for
i ≥ i0. Hence the result by applying

||St − S
(N)
t ||2 ≤

∑
i≥i0

E[(E(W i
T (fi)|Ft))2] ≤ Kt

N+1
2 .

�

Remark 10. Notice that the Stroock-Taylor Theorem (see [8], p.161) tells that for
ST ∈ D2,∞ the series

∞∑
i=0

W i
T ((t1, . . . , ti) 7→ E(Dt1,...,tiST )) = ST

converges in D2,∞. Hence the above condition is a statement about boundedness
of higher Malliavin derivatives. The well-known case of the Black-Merton-Scholes
model yields

Dt1,...,ti
SBS

T = 1⊗i
[0,T ]

for i ≥ 0, so the condition of the previous theorem is satisfied.

5. Appendix

We provide tables with implied Black-Merton-Scholes and Bachelier volatilities
on the British Pound/ US $ foreign exchange market. The data refer to February
11, 2002. The spot price on this day was approximately 1.41 US$. In the graphical
illustrations we indicate by K the strike price in ”true prices”. We measure time to
maturity in Business days (BD). The graphs show the close match between implied
volatilities for at the money options; this match becomes less precise when the
options tends out of or into the money, and time to maturity T increases, as we
have seen in Section 2.
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