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Abstract. We prove that c-cyclically monotone transport plans π optimize

the Monge-Kantorovich transportation problem under an additional measur-
ability condition. This measurability condition is always satisfied for finitely

valued, lower semi-continuous cost functions. In particular, this yields a pos-

itive answer to Problem 2.25 in C. Villani’s book. We emphasize that we do
not need any regularity conditions as were imposed in the previous literature.

We consider the Monge-Kantorovich optimal transport problem (µ, ν, c) for Borel
measures µ, ν on polish spaces X,Y and a lower semi-continuous cost function
c : X×Y → R≥0∪{+∞} (see C. Villani’s beautiful book [8] for all necessary details):
we define the set of transport plans Π(µ, ν) as the set of probability measures
π with marginal µ on X, and marginal ν on Y , respectively. Furthermore, we
define Φ(µ, ν) as the set of pairs (φ, ψ) of Borel functions φ : X → R ∪ {−∞} and
ψ : Y → R ∪ {−∞} with φ ∈ L1(µ) and ψ ∈ L1(ν), such that

φ(x) + ψ(y) ≤ c(x, y)

for all (x, y) ∈ X × Y . The Monge-Kantorovich problem is to minimize the cost

I(π) =
∫
X×Y

c(x, y)π(dx, dy)

for transport plans π ∈ Π(µ, ν). Dually to the Monge-Kantorovich problem, we
maximize

J(φ, ψ) =
∫
X

φ(x)µ(dx) +
∫
Y

ψ(y)ν(dy)

over (φ, ψ) ∈ Φ(µ, ν).
It is well-known that under the previous conditions, the equality

inf
Π(µ,ν)

I(π) = sup
Φ(µ,ν)

J(φ, ψ)

holds true, and the infimum is in fact a minimum, if infΠ(µ,ν) I(π) < ∞ (see [8],
Th.1.3). We know furthermore that optimizers π̂ with I(π̂) <∞ are concentrated
on c-monotone (see the following definition) Borel sets Γ ⊂ X×Y . These assertions
are proved for instance in [8, ch.2] or in [1, Th. 3.2].
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Definition 1. A set Γ ⊂ X×Y is called c-monotone if for all n ≥ 1, for all points
(xi, yi) ∈ Γ, i = 1, . . . , n, and all permutations σ ∈ Sn

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i))

holds true. A transport plan π ∈ Π(µ, ν) is called c -monotone if there is a c-
monotone Borel set Γ ⊂ X × Y , where π is concentrated on, i.e. π(Γ) = 1.

In [8] it was posed as an open problem whether c-monotone transport plans π ∈
Π(µ, ν) are necessarily optimizers of the Monge-Kantorovich problem (see Problem
2.25 in [8] and the references therein). Due to [1] it is known that this conjecture
holds true under a certain moment conditions on the probability measures µ, ν with
respect to the cost function c.

Crucial for these considerations is Rüschendorf’s Theorem (see [5] and [8, ch.2]),
which relates c-concave functions and c-monotone sets Γ. Given a function φ : X →
R ∪ {−∞} and a lower semi-continuous cost function c : X × Y → R≥0 ∪ {+∞}.
Then ψ is called c-concave on Y , if there is a function φ : X → R ∪ {−∞}, such
that

ψ(y) = inf
x∈X

(c(x, y)− φ(x))

for y ∈ Y . Accordingly we define c-concave functions φ on X.
Let φ : X → R ∪ {−∞} be a function not identical to −∞, then

(1) φc(y) = inf
x∈X

(c(x, y)− φ(x))

is called the c-transform of φ, which is obviously a c-concave function on Y . We have
that φ is c-concave on X if and only if φ = φcc. The c-superdifferential ∂cφ ⊂ X×Y
of a c-concave function φ is defined as the set of all pairs (x, y) ∈ X × Y such that
for all z ∈ X,

φ(z) ≤ φ(x) + (c(z, y)− c(x, y)).

Rüschendorf’s Theorem finally states that a set Γ ⊂ X × Y is c-monotone if and
only if there is c-concave function φ such that Γ ⊂ ∂cφ (see [8, ch.2] and [5] for
further details and references).

We cite the Theorem from [1], which inspired our subsequent considerations.

Theorem 1. Let X,Y be polish spaces and µ, ν be Borel probability measures
thereon. Assume that c is a finitely-valued, lower semi-continuous cost function
and that π is c-monotone. Furthermore we assume that

ν

(
{y,
∫
X

c(x, y)µ(dx) <∞}
)
> 0,

µ

(
{x,
∫
Y

c(x, y)ν(dy) <∞}
)
> 0.

Then π is an optimizer and there exists a dual optimizer (φ, ψ) ∈ L1(µ) × L1(ν),
where φ is a c-concave Borel function, ψ is a Borel function, ψ = φc almost surely
with respect to ν and

φ(x) + ψ(y) ≤ c(x, y)

for (x, y) ∈ X × Y , where equality holds π-almost surely.
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We shall prove the same assertion without assuming that c is finitely valued and
without any assumptions on the existence of moments of c. Here we do assume
a measurability condition related to c-monotone transport plans, namely the ex-
istence of a Borel-measurable “hull” for a sequence of dual optimizers. We shall
prove (Proposition 1 below) that this measurability condition always holds true for
finitely valued, lower semi-continuous cost functions c thus covering in particular
the setting of problem 2.25 in [8].

Definition 2. Given polish spaces X,Y , a lower semi-continuous cost function
c : X × Y → R≥0 ∪ {+∞}, we call a Borel set Γ ⊂ X × Y strongly c-monotone, if
there exist Borel functions φ : X → R ∪ {−∞} and ψ : Y → R ∪ {−∞} such that

φ(x) + ψ(y) ≤ c(x, y),

for all (x, y) ∈ X × Y and equality holds if (x, y) ∈ Γ. We call a transport plan π
strongly c-monotone if there exists a strongly c-monotone Borel set Γ ⊂ X ×Y , on
which π is concentrated, i.e. π(Γ) = 1.

Remark 1. A seemingly innocent, but important point is the Borel measurability
of φ and ψ.

Remark 2. Notice that we do neither assume the Borel-measurable functions φ, ψ
to be c-concave nor to be conjugate.

Remark 3. A strongly c-monotone set Γ ⊂ X × Y is c-monotone, since
n∑
i=1

c(xi, yi) =
n∑
i=1

(φ(xi) + ψ(yi))

=
n∑
i=1

(φ(xi) + ψ(yσ(i)))

≤
n∑
i=1

c(xi, yσ(i)),

for all (xi, yi)i=1,...,n ⊂ Γ and permutations σ ∈ Sn for n ≥ 1.

The following Proposition, which is based on the proof of Theorem 3.2 in [1],
shows that all c-monotone transport plans are strongly c-monotone pro-
vided that c is finitely valued.

Proposition 1. Given polish spaces X,Y , a finitely valued, lower semi-continuous
cost function c : X × Y → R≥0 and a c-monotone transport plan π. Then there
exist Borel-measurable functions φ, ψ on X,Y , respectively, taking values in R ∪
{−∞}, such that φ is c-concave, the c-superdifferential ∂cφ contains a set where π
is concentrated, ψ coincides ν-almost surely with φc, the inequality

φ(x) + ψ(y) ≤ c(x, y)

holds true for all (x, y) ∈ X × Y , and equality holds true π-almost surely. In
particular π is strongly c-monotone.

Proof. In order to apply a construction of [1] we have to show that there is a c-
monotone Borel set Γ = ∪k≥1Γk with Γk compact, c|Γk continuous for k ≥ 1 and
π(Γ) = 1. Take any c-monotone Borel set Γ′ with π(Γ′) = 1, which exists by
assumption. By Egorov’s Theorem and the inner regularity on polish spaces of the
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transport plan π (see [4] for both results), we know that there are compact subsets
Lk ⊂ X × Y , such that π(X × Y \ Lk) < 1

k for k ≥ 1 and c|Lk is continuous for
k ≥ 1. Consequently we can define compact subsets Γk := Γ′ ∩ Lk ⊂ Lk ⊂ X × Y
for k ≥ 1. In particular c|Γk is continuous for k ≥ 1 and the Borel set Γ := ∪k≥1Γk
satisfies Γ ⊃ Γ′ by construction. Since c|Γk is continuous and Γ′∩Lk is c-monotone
by assumption, the c-monotonicity extends to the closure Γk := Γ′ ∩ Lk for k ≥ 1.
A union of c-monotone sets is c-monotone, so Γ is c-monotone. Whence we have the
claim and can apply [1], Th. 3.2 (step 1 of the proof) in order to construct – in the
spirit of Rüschendorf’s Theorem – a Borel-measurable function φ : X → R∪{−∞}
with Γ ⊂ ∂cφ.

We then define φc via (1) and obtain by applying again [1], Th. 3.2 (step 2 of the
proof), that φc is ν-measurable. Setting the values of φc to −∞ on a ν-negligible
set we can define a Borel measurable function ψ on Y such that

φ(x) + ψ(y) ≤ c(x, y)

holds true for all (x, y) ∈ X × Y . If (x, y) ∈ Γ ⊂ ∂cφ, we know from the definition
of the superdifferential of φ that

φ(z) ≤ φ(x) + (c(z, y)− c(x, y))

for all z ∈ X, hence
c(x, y)− φ(x) ≤ c(z, y)− φ(z)

for all z, so
c(x, y)− φ(x) ≤ ψ(y),

for (x, y) ∈ Γ. Hence equality in

φ(x) + ψ(y) ≤ c(x, y)

holds true π-almost surely, since π(Γ) = 1. �

Next we show that optimal transport plans are strongly c-monotone
provided that c is µ⊗ ν-almost surely finitely valued. This result suggests to work
with strongly c-monotone transport plans instead of c-monotone ones. For the
proof we need the following Lemma, which generalizes results in [5] and [7] (see in
particular the references therein).

Lemma 1. Let (Ωi,Fi, µi) be probability spaces and let φn : Ω1 → R and ψn :
Ω2 → R be measurable functions for n ≥ 1. Assume that

ξn(ω1, ω2) = φn(ω1) + ψn(ω2)

converges in µ1 ⊗ µ2-probability to ξ : Ω1 × Ω2 → R ∪ {−∞}. Then there exist
real numbers (rn)n≥1 and measurable functions φ : Ω1 → R ∪ {−∞}, ψ : Ω2 →
R ∪ {−∞}, such that – along a fixed subsequence – (φn + rn)n≥0 converges in prob-
ability to φ and (ψn − rn)n≥0 to ψ. Furthermore,

ξ(ω1, ω2) = φ(ω1) + ψ(ω2)

µ1 ⊗ µ2-almost surely.

Proof. We choose a complete, bounded metric d on R ∪ {−∞}. Then ξn → ξ in
probability as n → ∞ is equivalent to E(d(ξn, ξ)) → 0 as n → ∞. By Fubini’s
theorem the real-valued function

ω2 7→
∫

Ω1

d(ξn(ω1, ω2), ξ(ω1, ω2))µ1(dω1)
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is µ2-almost surely well-defined and converges in µ2-probability to 0 as n→∞ by
assumption.

We shall now distinguish two cases, either ξ is finitely valued with positive prob-
ability, or µ1⊗µ2-almost surely ξ = −∞. First we assume that there is A ⊂ Ω1×Ω2

such that ξ|A > −∞ and (µ1 ⊗ µ2)(A) > 0. Then there is ω̃2 ∈ Ω2 such that

ξn(ω1, ω̃2) = φn(ω1) + ψn(ω̃2)→ φ(ω1) := ξ(ω1, ω̃2)

converges in µ1-probability on Ω1 as n→∞, and the function φ : Ω1 → R ∪ {−∞}
is measurable with φ > −∞ on a set of positive µ1-probability. Here we possibly
have to pass to a subsequence to guarantee that there is ω̃2 where ξn(., ω̃2) converges
in probability. We assume from now on that we have already passed to such a
subsequence. We then define rn := ψn(ω̃2), for n ≥ 1. Furthermore we obtain that
the sequence

ψn − rn = ξn − φn − rn
converges in µ2-probability on Ω2 as n → ∞ to a function ψ : Ω2 → R ∪ {−∞}.
Indeed, the right hand side does not depend on the first variable ω1 by construction.
We choose a measurable subset A1 ⊂ Ω1 of positive µ1-probability with φ|A1 > −∞.
The sequence (ξn)n≥1 converges in probability to ξ and the sequence (φn + rn)n≥1

converges in probability to φ on A1, so the difference converges in probability on
A1×Ω2 to a limit ψ, which does not depend on the first variable. Hence in particular

ξ(ω1, ω2) = φ(ω1) + ψ(ω2)

µ1 ⊗ µ2-almost sure.
Now we assume that ξ is almost surely equal to −∞. We know that, for each

fixed 0 < α < 1, the α-quantiles

q1
n(α) := inf{x; µ1(φn ≥ x) ≤ α},
q2
n(α) := inf{y; µ2(ψn ≥ y) ≤ α}

have the property
lim
n→∞

(q1
n(α) + q2

n(α)) = −∞

by assumption. Indeed, otherwise there is a subsequence (nk)k≥1 and a lower bound
M > −∞ such that q1

nk
(α) + q2

nk
(α) ≥ M for all k ≥ 1. Hence φnk + ψnk ≥ M

with µ1 ⊗ µ2-probability greater than α2 for k ≥ 1. However, this contradicts the
convergence in probability to −∞. By choosing a sequence (αn)n≥1 with αn ↓ 0
slowly enough as n→∞, we can maintain this property, i.e.

lim
n→∞

(q1
n(αn) + q2

n(αn)) = −∞.

We define now

zn :=
1
2

(q1
n(αn) + q2

n(αn))

rn :=
1
2

(q2
n(αn)− q1

n(αn))

= q2
n(αn)− zn = −(q1

n(αn)− zn).

We have limn→∞ zn = −∞ and hence φn+rn → −∞ and ψn−rn → −∞ converges
in the respective probabilities as n→∞ by construction. �

In the proof of the subsequent proposition we shall apply a Komlos-type result,
which we cite here from [3, Lemma A1.1] for the sake of completeness.
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Lemma 2. Let (fn)n≥1 be a sequence of R≥0 ∪ {+∞}-valued random variables on
a probability space (Ω,F , P ). Then there is a sequence gn ∈ conv(fn, fn+1, . . . ), the
convex hull of fn, fn+1, . . . , for n ≥ 1, which converges almost surely to a random
variable g taking values in R≥0 ∪ {+∞}.

The interesting feature of this result is that we do not need any integrability
assumption on the sequence (fn)n≥1 to obtain an almost sure convergence of con-
vex combinations. It suffices to assume non-negativity of the functions fn. This
situation is related to the setting of [2], where it is shown that a Bipolar-Theorem
can be formulated for the non-locally-convex space L0, provided that one restricts
to positive functions.

Proposition 2. Let c : X × Y → R≥0 ∪ {+∞} be a lower semi-continuous cost
function on polish spaces X,Y . Given Borel probability measures µ on X, ν on Y
and an optimizer π̂ ∈ Π(µ, ν) with I(π̂) < ∞. We assume that c is µ ⊗ ν-almost
surely finitely valued. Then there exist Borel functions φ, ψ on X,Y , respectively,
taking values in R ∪ {−∞}, such that

φ(x) + ψ(y) ≤ c(x, y)

for x ∈ X and y ∈ Y , and φ(x) +ψ(y) = c(x, y) almost surely with respect to π̂. In
particular the transport plan π̂ is strongly c-monotone.

Proof. By [1], Th. 3.1, we know that there is a maximizing sequence (φn, ψn) of
bounded Borel functions on X,Y , respectively, such that

lim
n→∞

Eπ̂(ξn) = lim
n→∞

Eµ⊗ν(ξn) = Eπ̂(c) = I(π̂),

where ξn(x, y) = φn(x)+ψn(y) ≤ c(x, y) for all (x, y) ∈ X×Y and the convergence
of (Eµ⊗ν(ξn))n≥0 is monotonely increasing. By passing to convex combinations
(apply the above Lemma 2 with fn = c − ξn for n ≥ 0) we may assume that ξn
converges µ⊗ ν-almost surely to a Borel function ξ taking values in R∪{−∞}. By
Lemma 1 we know that

ξ(x, y) = φ(x) + ψ(y),
with functions φ and ψ, which are µ- and ν-almost surely defined, respectively.
Furthermore – by passing to a subsequence if necessary – there is a sequence of real
numbers (rn)n≥1 such that φn + rn → φ and ψn− rn → ψ as n→∞ almost surely
with respect to µ and ν, respectively. Choosing appropriate nullsets in X and Y ,
we can redefine φ, φn and ψ,ψn on these nullsets by −∞, such that φn + rn → φ
and ψn − rn → ψ surely, without violating the now sure inequality

ξ(x, y) = φ(x) + ψ(y) ≤ c(x, y).

Obviously Eπ̂(|c − ξn|) = Eπ̂(c − ξn) → 0, as n → ∞, by assumption, hence
φ(x) + ψ(y) = c(x, y) almost surely with respect to π̂. �

Our main Theorem below states that strongly c-monotone transport plans are
always optimal. For sake of clarity we shall formulate an elementary lemma on
monotone convergence of truncations, whose proof is obvious.

Lemma 3. Let a, b be real numbers. We define

an := (−n ∨ a) ∧ n,
bn := (−n ∨ b) ∧ n,
ξn := an + bn.
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Then we have ξ0 = 0 and (ξn)n≥0 converges monotonically to a+b, i.e. if a+b ≥ 0
the sequence (ξn)n≥0 increases to a + b and if a + b ≤ 0 the sequence decreases to
a+ b.

Theorem 2. Let c : X × Y → R≥0 ∪ {+∞} be a lower semi-continuous cost
function on polish spaces X,Y . Given Borel probability measures µ on X, ν on Y
and a strongly c-monotone transport plan π ∈ Π(µ, ν), then π is an optimizer of
the Monge-Kantorovich problem.

Proof. We assume that there is a transport plan π0 with finite cost I(π0) <∞. We
aim to show that I(π) ≤ I(π0). By the assumption of strong c-monotonicity of π
there exist Borel-measurable functions φ, ψ on X,Y , respectively, taking values in
R ∪ {−∞}, such that for all (x, y) ∈ X × Y

φ(x) + ψ(y) ≤ c(x, y),

where equality holds π-almost surely. We define

φn(x) := (−n ∨ φ(x)) ∧ n,
ψn(y) := (−n ∨ ψ(y)) ∧ n,

ξn(x, y) = φn(x) + ψn(y),

ξ(x, y) = φ(x) + ψ(y),

for (x, y) ∈ X × Y and n ≥ 0. Due to the previous Lemma observe that ξn ↑ ξ on
{ξ ≥ 0} and ξn ↓ ξ on {ξ ≤ 0}, as n→∞.

Additionally, Eπ(ξ) = Eπ(c) exists, taking possibly the value +∞, since equality
ξ = c holds π-almost surely and c ≥ 0. The integral of ξ with respect to π0 exists,
too, as

Eπ0(ξ) ≤ Eπ0(c) <∞.
Note that Eπ0(ξ) possibly equals −∞. By the assumption on equal marginals of π
and π0 we obtain

Eπ(ξn) = Eπ(φn) + Eπ(ψn)

= Eπ0(φn) + Eπ0(ψn)

= Eπ0(ξn),

for n ≥ 0, hence

Eπ(ξn1{ξ≥0} + ξn1{ξ≤0}) = Eπ0(ξn1{ξ≥0} + ξn1{ξ≤0}).

By our previous considerations we can pass to the limits and obtain Eπ(ξ) = Eπ0(ξ).
Indeed the limits are monotone on {ξ ≥ 0} and {ξ ≤ 0}, the expectation with
respect to π of ξ− is finite, namely Eπ(ξ−) = 0, and the expectation with respect
to π0 of ξ+ is finite, Eπ0(ξ+) < ∞. Hence the limits of Eπ(ξn) = Eπ0(ξn) exist as
n→∞ and are equal. Consequently I(π) = Eπ(ξ) = Eπ0(ξ) ≤ I(π0). �

The following Corollary answers Problem 2.25 of [8] pertaining to the quadratic
cost function affirmatively. In fact, all finite, lower semi-continuous cost functions
are covered and no additional assumptions on integrability or measurability are
necessary.

Corollary 1. Let c : X × Y → R≥0 be a finitely valued, lower semi-continuous
cost function on polish spaces X,Y . Given Borel probability measures µ on X, ν
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on Y and a c-monotone transport plan π ∈ Π(µ, ν), then π is an optimizer of the
Monge-Kantorovich problem.

Proof. Due to Proposition 1, for a finitely valued, lower semi-continuous cost func-
tion c, a c-monotone transport plan π is strongly c-monotone. Hence Theorem 2
applies. �

The subsequent example, which is taken from [1], Example 3.5, shows that there
are c-monotone transport plans, which are not strongly c-monotone.

Example 1. This example is just a re-interpretation of the illuminating Example
3.5. in [1]. Take X = Y = T 1 = {exp(2πir), 0 ≤ r < 1} ⊂ C the 1-dimensional
Torus with uniform distribution µ = ν and choose α ∈ T 1, so that {αn, n ≥ 0} is
dense in T 1, i.e. α = exp(2πir) with r an irrational number: we define a lower
semicontinuous cost function c : X × Y → R≥0 ∪ {+∞} via

c(x, y) =
{

1 if x = y
2 if x = yα

and +∞ elsewhere. Then there are two disjoint c-monotone subsets of X × Y ,
namely

Γ1 = {(x, x), x ∈ T 1},
Γ2 = {(x, xα), x ∈ T 1}.

For the first set strong c-monotonicity is clear with φ1(exp(2πir)) = r for r ∈ [0, 1[,
and ψ1(exp(ir)) = infx(c(x, exp(ir))−φ1(x)) = 1− r for r ∈ [0, 1[. Then we obtain
the result, that φ1(x) + ψ1(y) ≤ c(x, y) with equality if x = y.

The second set Γ2 is c-monotone (see [1], Example 3.5.), but not strongly c-
monotone (this follows from non-optimality, but we shall also show it directly).

Take n ≥ 1 and (xi, xiα) for i = 1, . . . , n. Then for all σ ∈ Sn,
n∑
i=1

c(xi, xiα) ≤
n∑
i=1

c(xi, xσ(i)α).

Indeed, otherwise there is σ ∈ Sn and at least one xi ∈ T 1 such that c(xi, xσ(i)α) =
1 and therefore

xi = xσ(i)α

Iteration of this equation yields αm = 1 for some m ≥ 1, a contradiction showing
the c-monotonicity of Γ2.

We shall now show that Γ2 fails to be strongly c-monotone. In fact, we shall
show the stronger assertion that, for every Borel measure B ⊂ T 1 with µ(B) > 0
the set

Γ3 = {(x, xα), x ∈ B}
fails to be strongly c-monotone. Indeed, we suppose that there are Borel-measurable
φ2 and ψ2 taking value in R ∪ {−∞}, such that

(2) φ2(x) + ψ2(y) ≤ c(x, y)

for all (x, y) ∈ T 1 × T 1, with equality holding for xα = y and x ∈ B. Using the
special form of c, we see that (2) implies

φ2(z) + ψ2(z) ≤ 1,(3)

φ2(x) + ψ2(xα) = 2,(4)
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for x ∈ B and z ∈ T 1. Combining (3) and (4) we obtain

(5) φ2(x) ≥ φ2(xα) + 1

for x ∈ B or for xα ∈ B. Defining Bk := B ∩ φ−1
2 ([k, k + 1[) for k ∈ Z, we obtain

a partition (Bk)k∈Z of B. We consider now an equivalence relation on T 1, namely
x ∼α y if xαm = y for some m ∈ Z. Fix k ∈ Z; due to 5 there can be at most one
element of each equivalence class [x] ⊂ T 1 in B∩φ−1

2 ([k, k+1[). On the other hand
every Borel set A ⊂ T 1, which contains at most one element of each equivalence
class [x], has measure µ(A) = 0 (since then ∪m∈Z(Aαm) ⊂ T 1, Aαm are pairwise
disjoint and µ(Aαm) = µ(A) for m ∈ Z by translation invariance). Consequently
we obtain a contradiction to the assumption that the sets Bk are Borel sets.

We can finally formulate an approximation result for the optimal transport plan
of Monge-Kantorovich problems. The result can also be interpreted as discretization
result for numerical purposes. In particular, we obtain – without any moment
conditions – that the adherence points of candidate approximations are optimizers,
provided the cost function c is continuous.

Definition 3. Let c : X × Y → R≥0 ∪ {+∞} be a lower semi-continuous cost
function on polish spaces X,Y . Given Borel probability measures µ on X and ν
on Y . Assume that there are sequences (µn)n≥1 and (νn)n≥1 of Borel probability
measures converging weakly to µ and ν on the respective spaces X and Y . We
denote by πn a solution of the Monge-Kantorovich problem associated to (µn, νn, c)
for n ≥ 1 and we assume that∫

X×Y
c(x, y)πn(dx, dy) <∞,

for each n ≥ 1. We call the sequence (πn)n≥1 an approximating sequence of opti-
mizers.

Theorem 3. Let c : X × Y → R≥0 be a finitely valued, continuous cost function
on polish spaces X,Y . Let (πn)n≥1 be an approximating sequence of optimizers
associated to weakly converging sequences µn → µ and νn → ν as n → ∞. Then
there is a subsequence (πnk)k≥0 converging weakly to a transport plan π on X × Y ,
which optimizes the Monge-Kantorovich problem (µ, ν, c). Any other converging
subsequence of (πn)n≥0 also converges to an optimizer of the Monge-Kantorovich
problem, i.e. the non-empty set of adherence points of (πn)n≥0 is a set of optimizers.

Proof. Fix ε > 0. By Prohorov’s Theorem (see for instance [4], Th. 16.3) there are
compact sets K ⊂ X and L ⊂ Y such that µn(X \K) ≤ ε and νn(Y \L) ≤ ε for all
n. Hence πn(X × Y \K × L) ≤ πn(X × (Y \ L)) + πn((X \K)× Y ) ≤ 2ε. Again
by Prohorov’s Theorem we know that there is a weakly converging subsequence
(πnk)k≥0 with weak limit π. We have to prove that π is c-monotone, since by
Proposition 1 the transport plan π is then strongly c-monotone and hence optimal.
We know that for m ≥ 1 and points (xi, yi) ∈ suppπ for i = 1, . . . ,m, there exist
sequences of points (xki , y

k
i )k≥0 such that (xki , y

k
i ) ∈ suppπnk and (xki , y

k
i )→ (xi, yi)

as k →∞ (see again [4], Th. 16.3). Since πnk is c-monotone by Proposition 2 and
Remark 3, and since c is continuous, suppπnk is a c-monotone subset of X × Y ,
hence

m∑
i=1

c(xki , y
k
i ) ≤

m∑
i=1

c(xkσ(i), y
k
σ(i))
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for permutations σ ∈ Sm, whence also for k → ∞ by continuity of c. By the
same reasoning any converging subsequence of (πn)n≥0 converges to a c-monotone
transport plan, which is by Proposition 1 a strongly c-monotone one and hence
optimal by Theorem 2. �

Remark 4. In particular the set of optimizers of a Monge-Kantorovich problem is
compact in the weak topology on probability measures, since the constant sequences
µn = µ and νn = ν for n ≥ 0 are approximating sequences. This also yields that
we cannot improve the result to the assertion on convergence of the sequence, but
we point out that the convergence of the sequence in Theorem 3 holds true if and
only if the optimizer is unique.

Example 2. Let c be a continuous, finitely valued cost function on the product
X × Y of two polish spaces X,Y and let µ, ν be probability measures thereon. By
the law of large numbers we can always find empirical distributions (see for instance
[4], Prop. 4.24)

µn =
1
n

n∑
i=1

δxi ,

νn =
1
n

n∑
i=1

δyi ,

which converge weakly to µ and ν, respectively. Each associated approximating
sequence of optimizers (πn)n≥1 is given through a sequence of permutations σn ∈
Sn, n ≥ 1, and

πn =
1
n

n∑
i=1

δ(xi,yσn(i)).

Notice that always I(πn) =
∫
X×Y c(x, y)πn(dx, dy) < ∞ for each fixed n ∈ N. We

deduce from Theorem 3 that all adherence points of (πn)n≥1 are optimizers of the
Monge-Kantorovich problem and that there is at least one adherence point. Notice
that each πn for n ≥ 1 is obtained by solving a finite optimization problem.
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