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Abstract

Typical models of mathematical finance admit equivalent martingale mea-
sures up to any finite time horizon but not globally, and this means that arbitrage
opportunities arise in the long run. In this paper we derive explicit estimates
for asymptotic arbitrage, and we show how they are related to large deviation
estimates for the market price of risk. As a case study we consider a geometric
Ornstein-Uhlenbeck process. In this setting we also compute the optimal trad-
ing strategies and the resulting optimal growth rates of expected utility for all
HARA utilities.
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1 Introduction

In this paper we investigate the issue of optimizing terminal wealth by investing in a
financial market, when the time horizon T tends to infinity. We focus on the following
issues:

(i) A better understanding of the features of the financial market (St)t≥0 which insure
exponential growth of the terminal wealth XT of an investor in this market, for
T →∞.

(ii) Relating this question to the notion of asymptotic arbitrage, to the theory of
large deviations, and to utility maximization with respect to the power utilities
U(x) = xα

α
, for α ∈ ]−∞, 0[ .
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(iii) Analyzing carefully the case study of a geometric Ornstein-Uhlenbeck process and
comparing it to the well-known situation of the Black-Scholes model by explicitly
calculating the optimal strategies for HARA-utility optimizers.

We consider an Rd-valued semi-martingale S = (St)t≥0 modeling the price process
of d risky assets with infinite horizon. The bond is assumed to be normalized by Bt ≡ 1,
i.e., we consider S in discounted terms. For a fixed finite horizon T , let

KT = {(H ·S)T | H ∈ H},

denote the set of attainable contingent claims, whereH denotes the class of predictable,
S-integrable, admissible processes (for a definition see e.g. [DS 06, Def. 8.1.1, p. 130]).

We recall the notion of strong asymptotic arbitrage as introduced by Y. Kabanov
and D. Kramkov [KK 98] which we specialize to the present situation of a varying time
horizon T .

Definition 1.1 The process S = (St)t≥0 allows for strong asymptotic arbitrage if, for
ε > 0, there is T <∞ and XT ∈ KT satisfying

(i) XT ≥ −ε, a.s., and

(ii) P[XT ≥ ε−1] ≥ 1− ε.

The economic interpretation is straightforward: condition (i) means that the max-
imal loss of the trading strategy, yielding the wealth XT at time T , is bounded by ε;
condition (ii) means that with probability 1− ε the terminal wealth XT equals at least
ε−1.

In [KK98] a dual characterization of this concept was given in terms of the Hellinger
distance of the equivalent martingale measures for the process (St)0≤t≤T to the original
measure P (compare also [KS 96]). In Proposition 2.1 below we take up this theme
again and relate these Hellinger distances to utility maximization for power utility
U(x) = xα

α
, where α ∈ ]−∞, 0[ .

For the sake of clarity of exposition we shall focus on the setting of diffusions
driven by Brownian motion; we note however, that many of the results below could be
extended to more general situations.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space such that (Ft)t≥0 is the (right
continuous, saturated) filtration generated by an RN -valued standard Brownian motion
(Wt)t≥0.

Assumption 1.2 The process S = (St)t≥0 will be assumed to be an Rd-valued diffu-
sion based on (Ω,F , (Ft)t≥0,P) such that there is a (deterministic, time-independent)
volatility function

σ : Rd → Rd×N (1)

as well as a market price of risk function

ϕ : Rd → RN (2)

such that
dSt = σ(St)(dWt + ϕ(St)dt), (3)
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where we may and do suppose that ϕ(St) takes its values in ker(σ(St))
⊥.

We also assume that

Zmin
t = exp

[
−
∫ t

0

(ϕu, dWu)−
1

2

∫ t

0

‖ϕu‖2du

]
(4)

is a strictly positive martingale, where we put ϕu = ϕ(Su) and where ( . , . ) and ‖ . ‖
denote the inner product and the corresponding Euclidean norm on RN .

We then deduce from Girsanov’s formula that, for each T ≥ 0, the measure Qmin
T

on FT defined by
dQmin

T

dP
= Zmin

T

is a probability measure equivalent to the restriction of P to FT such that (St)0≤t≤T is
a local martingale under Qmin

T . Following [FS 91] we call Qmin
T the minimal martingale

measure for (St)0≤t≤T .

It seems worthwile to comment on the above concepts. Suppose for simplicity that
ϕ and σ are constant. If the d×N matrix σ is injective, then the law of the process S in
(3) uniquely determines the vector ϕ ∈ RN ; this corresponds to the case of a complete
market. On the other hand, in the incomplete case, i.e. for a non-injective matrix σ,
the vector ϕ is only determined by the process S in (3) up to adding elements in the
kernel of σ. There is one canonical choice of ϕ, namely the one orthogonal to ker(σ).
The fact that this choice of ϕ has minimal norm in RN motivates the name “minimal”
above.

A central question of our present investigation will be to understand which features
of the above model imply that there is exponential growth of a well chosen attainable
portfolio as the time horizon T goes to ∞. It is obvious that one has to impose some
assumption on the market price of risk. Indeed, if ϕ vanishes then the process (St)t≥0 is
a local martingale, and one cannot systematically win by betting on a local martingale
in an admissible way.

Definition 1.3 Under the above assumptions we say that the diffusion process S =
(St)t≥0 has an average squared market price of risk above the threshold c > 0 if the
process (‖ϕt‖)t≥0 satisfies the following estimate:

lim
T→∞

P

[
1

T

∫ T

0

‖ϕt‖2dt < c

]
= 0. (5)

If there is c > 0 such that (5) holds true we say that S has a non-trivial market price
of risk.

We say that the market price of risk satisfies a large deviations estimate if there
are constants c1, c2 > 0 such that

lim sup
T→∞

1

T
log

(
P

[
1

T

∫ T

0

‖ϕt‖2dt ≤ c1

])
< −c2. (6)

The economic interpretation of (5) is that the market price of risk should on average
be bounded away from zero in the long run. This assumption is satisfied whenever the
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diffusion is ergodic with invariant measure µ and if the market price of risk function ϕ
is not µ-a.s. equal to 0, since ergodicity implies

lim
T→∞

1

T

∫ T

0

‖ϕt‖2dt =

∫
Rd

‖ϕ(x)‖2µ(dx) P-a.s..

As explained in section 3, the large deviations estimate (6) for the market price of
risk follows by a contraction principle whenever the diffusion process (St)t≥0 is ergodic
and satisfies a principle of large deviations. We refer to the large deviations literature
for suitable conditions; see, e.g., [DZ 98]. For the Black-Scholes model the market price
of risk is constant, and so the large deviations estimate (6) is trivially satisfied if the
market price of risk is assumed to be different from zero. Less trivial is the example of
the geometric Ornstein-Uhlenbeck process which will be analyzed in sections 4 and 5
below, using large deviations results from [FP99], [P 03]); see also [FS 99]. In this
example the large deviations estimate (6) holds true, and the optimal pairs (c1, c2) can
be calculated explicitly.

Assumption (5) is of course weaker than (6), but it is sufficient to deduce the
following estimates which will be proved in section 3.

Theorem 1.4 Let S = (St)t≥0 be a process satisfying Assumption 1.2 and having an
average squared market price of risk above the threshold c > 0; cf. (5).

For ε > 0, γ1 + γ2 < c/2, and for T large enough, there exists XT ∈ KT such that

(i) XT ≥ −e−γ1T ,

(ii) P
[
XT ≥ eγ2T

]
≥ 1− ε.

The message of the theorem is that the assumption of a non-trivial market price of
risk (5) implies asymptotic arbitrage; in fact we obtain exponential estimates for the
maximal loss in (i) as well as for the “typical” growth in (ii).

If assumption (5) is replaced by the stronger large deviation estimate (6), one
should even expect an exponential decay in time for the probability of falling short of
the exponential lower bound in assertion (ii) above. This will be discussed in section 3.
In section 4 we illustrate the situation for the geometric Ornstein-Uhlenbeck process
defined by

St = exp(Yt), (7)

where (Yt)t≥0 denotes an Ornstein-Uhlenbeck process defined by

dYt = −ρYtdt+ σdWt, Y0 = y0, (8)

for constants σ > 0, ρ > 0, and y0 ∈ R. Here the market price of risk ϕt = ϕ(St) is
given by

ϕt = −ρ
σ
Yt +

σ

2

(see (14)), and we obtain the subsequent explicit results:

Theorem 1.5 Let (St)t≥0 be a geometric Ornstein-Uhlenbeck process as in (7). For

any γ, γ1, γ2 ∈ R such that γ1 + γ2 < γ ∈
]
0, σ2

8
+ ρ

4

[
, there exist attainable contingent

claims XT ∈ KT such that
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(i) XT ≥ −e−γ2T ,

(ii) limT→∞
1
T

log P
[
XT < eγ1T

]
=

−
(

σ2

8
−γ+ ρ

4

)2

σ2

8
−γ+ ρ

2

.

In fact we are going to prove a stronger version, with sharper bounds in (i) and a
corresponding optimality result for the rate of convergence in (ii); cf. Theorem 4.2 and
Remark 4.3.

Remark 4.4 describes the extension to an Ornstein-Uhlenbeck process with drift. A
corresponding result for the Black-Scholes model is given in Theorem 4.5 below.

How are these results, which ensure “asymptotic arbitrage” in a rather strong sense,
related to the theme of utility maximization? For the case of logarithmic utility, The-
orem 1.4 easily implies a lower bound for the attainable expected utility per unit
time; see Proposition 3.2 below. In fact, there is a deeper connection of the results
on asymptotic arbitrage and utility maximization. In Proposition 2.3 we give rather
sharp estimates between asymptotic arbitrage and utility maximization with respect
to the power utilities U(x) = xα

α
, where α ranges in ]−∞, 0 [ . This result is interesting

in its own right and also allows for a better understanding of the duality theory of
asymptotic arbitrage ([KS 96], [KK98]).

In section 5 we continue our case study of the geometric Ornstein-Uhlenbeck process
and calculate explicitly the optimal trading strategies and the resulting expected utility
uT (x) for all T > 0 and all HARA-utilities. As a corollary we obtain the optimal growth
rates for uT (x). In the case of power utility, this may be viewed as a probabilistic
complement to the dynamic programming approach in Fleming and Sheu [FS 99], as
explained in Remark 5.8. While for logarithmic utility there are no surprises and our
findings are similar to the wellknown results of R. Merton in the case of the Black-
Scholes model ([M69], [M 71]), we find some counter-intuitive results in the case of
power utility U(x) = xα

α
, for α ∈ ]−∞, 1[ \ {0}, and of exponential utility U(x) =

− exp(−λx).

Acknowledgement. We thank Thomas Knispel for his efficient help in checking
and improving the explicit computations for the geometric Ornstein-Uhlenbeck process.
We also thank two anonymous referees for their insightful reports which helped us to
improve the paper.

2 Asymptotic Arbitrage and Power Utility

We start with an easy but surprisingly sharp dual characterization of the notion of
asymptotic arbitrage. In this proposition we take the horizon T as fixed.

Proposition 2.1 Let S = (St)0≤t≤T be an Rd-valued locally bounded semi-martingale
such that

Me
T (S) = {Q ∼ P | S is a local Q-martingale} 6= ∅.

For 1 > ε1, ε2 > 0 the statements (a) and (b) are equivalent:

(a) There is XT ∈ KT such that

(i) XT ≥ −ε2,
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(ii) P[XT ≥ 1− ε2] ≥ 1− ε1.

(b) There is AT ∈ FT with P[AT ] ≤ ε1 such that, for each Q ∈ Me
T (S) we have

Q[AT ] ≥ 1− ε2.

In this case we say that S admits an (ε1, ε2)-arbitrage (up to time T ).

Proof (a)⇒ (b): Let AT = {XT < 1−ε2} so that P[AT ] ≤ ε1, and take Q ∈Me
T (S) .

Since XT ∈ KT implies EQ[XT ] ≤ 0 (see, e.g., [DS 94], Theorem 5.7), we may estimate

(1− ε2)Q[Ω \ AT ]− ε2Q[AT ] ≤ EQ[XT ] ≤ 0,

hence Q[AT ] ≥ 1− ε2.
(b) ⇒ (a): If AT satisfies the assumptions of (b) then

XT = −ε21AT
+ (1− ε2)1Ω\AT

has properties (i) and (ii) and satisfies EQ[XT ] ≤ 0 for each Q ∈ Me
T (S). Applying

again the superhedging theorem ([DS 94], Theorem 5.7) we see that XT is dominated

by an element X̃T ∈ KT , and X̃T clearly inherits properties (i) and (ii).

We remark that the assumption of local boundedness is not really relevant in the
present context. It could be dropped by replacing the concept of local martingales by
the concept of sigma-martingales (see [DS 98]).

In the next result we relate strong asymptotic arbitrage with dynamic portfolio
optimisation for a certain class of utility functions which includes the power utilities
U(x) = xα

α
for −∞ < α < 0 as typical examples.

Proposition 2.2 Let S = (St)t≥0 be an Rd-valued locally bounded semi-martingale
such that, for each T > 0, the set Me

T (S) is not empty. Let U : R+ → R be a strictly
increasing concave function such that

lim
x↘0

U(x) = −∞, lim
x→∞

U(x) = 0.

The following assertions are equivalent:

(a) (St)t≥0 allows for strong asymptotic arbitrage.

(b) Defining the value function

uT (x) = sup
XT∈KT

E[U(x+XT )],

we have
lim

T→∞
uT (x) = 0,

for some x > 0 (or, equivalently, for all x > 0).
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Proof (a) ⇒ (b): Given x > 0, let 0 < ε < x
2
. If XT ∈ KT satisfies (i) and (ii) of

Definition 1.1 we get

uT (x) ≥ E[U(x+XT )]

≥ U
(x

2

)
P [XT < ε−1] + U(ε−1)P [XT ≥ ε−1]

≥ εU
(x

2

)
+ U(ε−1).

Since the latter expression tends to zero as ε→ 0, we obtain limT→∞ uT (x) = 0.
(b) ⇒ (a): Suppose that there is x > 0 such that limT→∞ uT (x) = 0. Thus we may

find XT ∈ KT such that XT ≥ −x and

lim
T→∞

E[U(x+XT )] = 0.

Take ε > 0. Applying Tschebyscheff’s inequality in the form

P[XT < xε−2] = P[|U(x+XT )| > |U(x+ xε−2)|]
≤ |U(x+ xε−2)]|−1|E[U(x+XT )]|,

we obtain Tε > 0 such that
P[XT ≥ xε−2] ≥ 1− ε

for T ≥ Tε. Since XT ≥ −x we conclude that εXT/x satisfies the requirements of
Definition 1.1.

The preceding result is of a purely qualitative nature. Since we also want to obtain
quantitative results on the speed of convergence, we now specialize to the case of power
utility

U (α)(x) =
xα

α
, −∞ < α < 0.

In this case the conjugate function

V (y) = sup
x>0

[U (α)(x)− xy], y > 0,

is given by

V (y) = V (β)(y) = −y
β

β

where β = α
α−1

∈ ]0, 1[.

As usual in utility optimization we write for the primal and dual value functions
([KS 99])

u
(α)
T (x) = sup

XT∈KT

E[U (α)(x+XT )], x > 0,

v
(β)
T (y) = inf

Q∈Me
T (S)

E
[
V (β)

(
y dQ

dP

)]
, y > 0.

We obtain from the scaling property of the power function that we have u
(α)
T (x) =

cTU
(α)(x), for some 0 ≤ cT ≤ 1, as well as v

(β)
T (y) = c∗TV

(β)(y), where c∗T = c
1

|α|+1

T

(compare [KS 99]).

The following proposition is similar to the results in [KK 98] in terms of the concept
of Hellinger distance, but there it is not connected with the idea of utility maximization.
Again the horizon T will be fixed.
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Proposition 2.3 Let −∞ < α < 0, β = α
α−1

, and an Rd-valued semi-martingale
S = (St)0≤t≤T as in Proposition 2.1 be given. For ε, ε1, ε2 > 0 consider the following
statements.

(i) S admits an (ε1, ε2)-arbitrage.

(i’) There is A ∈ FT , P[A] ≤ ε1, such that, for each Q ∈ Me
T (S) we have Q[A] ≥

1− ε2.

(ii) For each Q ∈Me
T (S) there is A ∈ FT , such that P[A] ≤ ε1 and Q[A] ≥ 1− ε2.

(iii) u
(α)
T (x) ≥ εU (α)(x), for some (or, equivalently, for all) x > 0.

(iii’) v
(β)
T (y) ≥ ε

1
|α|+1V (β)(y), for some (or, equivalently, for all) y > 0.

Then the following assertions hold true:

(a) (i) ⇔ (i’) and (iii) ⇔ (iii’).

(b) (i’) ⇒ (ii). The reverse implication (ii) ⇒ (i’) holds true if Me
T (S) = {Q} is a

singleton (complete financial market).

(c) (ii) ⇒ (iii) if ε ≥ 21+|α|max(ε1, ε
|α|
2 ).

(d) (iii) ⇒ (i) if ε ≤ ε1ε
|α|
2 .

Proof (a) follows from Proposition 2.1 and the discussion preceding Proposition 2.3,
while (b) is obvious.

(c): Fix Q ∈ Me
T (S) and the corresponding set A ∈ FT satisfying P[A] ≤ ε1 and

Q[A] ≥ 1−ε2 as in (ii). By possibly passing to smaller values of ε1, ε2, we may suppose
that P[A] = ε1 and Q[A] = 1−ε2. In view of (a) it is enough to verify (iii’). By Jensen
we obtain

E
[
V (β)

(
dQ
dP

)]
= − 1

β
E
[(

dQ
dP

)β]
≥ − 1

β
E

[
1A

(
Q[A]

P[A]

)β

+ 1Ω\A

(
Q[Ω \ A]

P[Ω \ A]

)β
]

= − 1

β

[
ε1−β
1 (1− ε2)

β + (1− ε1)
1−β εβ

2

]
≥ − 2

β
max

(
ε1−β
1 , εβ

2

)
.

As this inequality holds true for all Q ∈Me
T (S) we obtain

v
(β)
T (1) ≥ 2 max

(
ε1−β
1 , εβ

2

)
V (β)(1).

Using 1
|α|+1

= −1
α−1

= 1− β we conclude from the assumption

ε
1

|α|+1 ≥ 2 max

(
ε

1
|α|+1

1 , ε
|α|

|α|+1

2

)
= 2 max

(
ε1−β
1 , εβ

2

)
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that
v

(β)
T (1) ≥ ε

1
|α|+1V (β)(1),

which yields (iii’).

(d): Let ε, ε1, ε2 satisfy ε < ε1ε
|α|
2 . By assumption (iii) there is XT ∈ KT such that

E[U (α)(ε2 +XT )] ≥ εU (α)(ε2) = ε
εα
2

α
.

Clearly XT ≥ −ε2 a.s.. In order to verify (i) it remains to show that P[XT ≥ 1− ε2] ≥
1− ε1. Indeed, using Tschebyscheff we obtain

E[U (α)(ε2 +XT )] ≤ P[XT < 1− ε2] U
(α)(1),

hence

−εε
α
2

α
≥ P[XT < 1− ε2]

(
− 1

α

)
,

and therefore
ε1 > P[XT < 1− ε2].

Remark 2.4 Statements (i’) and (ii) above only differ in the order of the quantifiers,
so that we have the trivial implication (i’) ⇒ (ii), as well as (ii) ⇒ (i’) in the case when
Me

T (S) is a singleton.
The more interesting part of Proposition 2.3 is that we may also conclude that (ii)

⇒ (i’) in the incomplete case, provided we replace the constants ε1, ε2 in (i’) by bigger

constants ε̃1, ε̃2. For example we may choose ε̃1 = 21+|α|ε
1
2
1 , ε̃2 = ε

1
2
2 , where α ∈ ]−∞, 0 [

satisfies ε1 = ε
|α|
2 . Indeed, for given ε1, ε2 > 0 and α ∈ ]−∞, 0 [ such that ε1 = ε

|α|
2 ,

we have (ii) ⇒ (iii’), if we let ε = 21+|α|ε1. We then have ε ≤ ε̃1ε̃
|α|
2 = 21+|α|ε

1
2
1 ε

1
2
1 so

that we obtain (iii) ⇒ (i) ⇔ (i’), if we use in (i) and (i’) the constants ε̃1, ε̃2 instead of
ε1, ε2.

Summing up, we can reverse the quantifiers in statement (ii) provided we content
ourselves with somewhat worse constants. This phenomenon is related to a quantitative
version of the Halmos-Savage theorem, as was stressed in [KS 96].

3 Estimates for Asymptotic Arbitrage

In this section we show under suitable regularity conditions that price processes with
a non-trivial market price of risk (5) allow for asymptotic arbitrage; more precisely, we
prove the estimates of Theorem 1.4. We also show how these estimates can be refined
if the market price of risk satisfies a large deviations estimate.

Let us fix a diffusion process S satisfying Assumption 1.2, and recall the minimal
martingale measure Qmin

T for (St)0≤t≤T defined via (4) .
It follows from [FS 91] that, for an arbitrary QT ∈ Me

T (S) there is a predictable
process (ψt)0≤t≤T such that the density ZT = dQT

dP
is given by

ZT = exp

[∫ T

0

(
−ψtdWt −

‖ψt‖2

2
dt

)]
, (9)
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where ψt − ϕt is in the kernel of σ(St) (a.s. for almost all 0 ≤ t ≤ T ). Hence ϕt is
orthogonal to ψt − ϕt, so that ‖ψt‖ ≥ ‖ϕt‖. Therefore the estimates (5) and (6) carry
over from ϕt to ψt.

Proposition 3.1 Suppose that (St)t≥0 satisfies Assumption 1.2 and has an average
squared market price of risk above the threshold c > 0; cf. (5).

For ε > 0 and 0 < γ < c
2

there is T0 > 0 such that, for T ≥ T0, condition (ii) of
Proposition 2.3 is satisfied with ε1 = ε and ε2 = e−γT , i.e., for each Q ∈Me

T (S) there
is AT ∈ FT such that

P[AT ] ≤ ε and Q[AT ] ≥ 1− e−γT .

Proof Fix 0 < γ < γ < c
2

and find T0 >
4γ

(γ−γ)2ε
such that, for T ≥ T0,

P

[
1

T

∫ T

0

‖ϕt‖2dt ≤ 2γ

]
<
ε

2
. (10)

For QT ∈Me
T (S) let (ψt)0≤t≤T be the RN -valued process as in (9) so that

dQT

dP
= ZT = exp

[∫ T

0

(
−ψtdWt −

‖ψt‖2

2
dt

)]
.

Define the stopping time τ by

τ = inf

{
t ∈ [0, T ]

∣∣∣∣ ∫ t

0

‖ψs‖2ds ≥ 2γT

}
∧ T.

For the random variable

Bτ =

∫ τ

0

ψtdWt

we infer from
∫ τ

0
‖ψt‖2dt ≤ 2γT that

‖Bτ‖2
L2(P) ≤ 2γT,

and so Tschebyscheff’s inequality implies

P
[
|Bτ | ≥ (γ − γ)T

]
≤ 2γ

(γ − γ)2
T−1 <

ε

2
. (11)

For

Zτ = exp

[∫ τ

0

(
−ψtdWt −

‖ψt‖2

2
dt

)]
we obtain from (10) and (11) that

P [Zτ > exp(−γT )]

= P

[
−Bτ −

∫ τ

0

‖ψt‖2

2
dt > −γT

]
≤ P [|Bτ | ≥ (γ − γ)T ] + P

[∫ τ

0

‖ψt‖2

2
dt < γT

]
≤ ε

2
+
ε

2
.
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Letting AT = {Zτ > exp(−γT )} we obtain P[AT ] ≤ ε and QT [Ac
T ] = E[Zτ A

c
T ] ≤ e−γT .

We are now in a position to construct attainable contingent claims which satisfy
the arbitrage estimates of Theorem 1.4.

Proof of Theorem 1.4 Let the constant c > 0 be given by (5). The preceding
Proposition 3.1 implies that, for any given ε1 > 0 and ε2 = e−dT , where 0 < d < c

2
,

condition (ii) of Proposition 2.3 is satisfied for T sufficiently large. Fix ε > 0 and
γ, γ1, γ2 verifying 0 < γ = γ1 + γ2 <

c
2
, as in the statement of Theorem 1.4. Fix d > 0

with γ < d < c
2
, and let µ = d−γ

d
∈ ]0, 1[ .

We now proceed similarly as in Remark 2.4. Choose T0 such that for T > T0

condition (ii) of Proposition 2.3 is satisfied with

ε1 =
(ε

3

) 1
µ

and ε2 = e−dT .

Defining αT ∈ ]−∞, 0 [ by the equation

ε1 = ε
|αT |
2 .

we have that |αT | → 0 as T → ∞. We may assume that T0 has been chosen large
enough such that 21+|αT | ≤ 3, for T ≥ T0.

Letting ε̃1 = 3εµ
1 = ε and ε̃2 = ε

(1−µ)
2 we have

ε̃1ε̃
|αT |
2 = 3εµ

1ε
(1−µ)|αT |
2

= 3ε1 ≥ 21+|αT |max
(
ε1, ε

|αT |
2

)
.

The last inequality implies that condition (iii) of Proposition 2.3 is satisfied with ε
replaced by 3ε1. Hence we may conclude that condition (i) of Proposition 2.3 is satis-
fied, i.e., there is an (ε̃1, ε̃2)-arbitrage, for the pair (ε̃1, ε̃2) =

(
ε, e−d(1−µ)T

)
. Note that

d(1− µ) > γ. Hence there is XT ∈ KT such that

(i) XT ≥ −e−d(1−µ)T a.s.

(ii) P
[
XT ≥ 1− e−d(1−µ)T

]
≥ 1− ε.

Since d(1− µ)− γ1 > γ2, we see that the contingent claim XT = e(d(1−µ)−γ1)TXT ∈ KT

satisfies, for T ≥ T0 sufficiently large,

(i) XT ≥ −e−γ1T a.s.,

(ii) P[XT ≥ eγ2T ] ≥ 1− ε.

The message of Theorem 1.4 is that we may achieve exponential growth of a portfolio
XT with probability close to 1 as T → ∞, while also controlling the maximal loss by
an exponential bound. This implies, for instance, the following lower bound for the
growth of logarithmic utility.
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Corollary 3.2 Let S = (St)t≥0 be a process satisfying Assumption 1.2 and having an
average squared market price of risk above the threshold c > 0 as in (5). For any initial
capital x > 0, there exist contingent claims XT ∈ KT such that

lim inf
T→∞

1

T
E
[
log(x+XT )

]
≥ c

2
.

Proof By Theorem 1.4 we know that for γ1 = 0 and γ2 < c/2 we may find, for ε > 0
and T sufficiently large, XT ∈ KT with

(i) XT ≥ −1,

(ii) P
[
XT ≥ eγ2T

]
≥ 1− ε.

For 0 < α < x we obtain the estimate

1

T
E[log(x+ αXT )] ≥ 1

T
ε log(x− α) +

1

T
(1− ε) log(x+ αeγ2T ),

hence
1

T
E[log(x+ αXT )] ≥ (1− ε)γ2,

for sufficiently large T , which readily yields the result.

Theorem 1.4 is valid under the assumption (5) of a non-trivial market price of risk.
If we replace this assumption by the stronger large deviation estimate (6) we expect a
stronger result: the term P

[
XT < eγ2T

]
in statement (ii) of Theorem 1.4 should even

decay exponentially as T → ∞. Let us sketch a systematic approach how to obtain
such a sharper result; we also take the opportunity to motivate the large deviation
estimate (6).

Let (St)t≥0 be a d-dimensional diffusion satisfying Assumption 1.2, and assume that
S is in fact ergodic. Thus, the empirical distributions

ρT (ω) :=
1

T

∫ T

0

δSt(ω)dt

converge weakly, P-a.s., to the unique invariant distribution µ of S. Typically, the
empirical distributions will satisfy a large deviations principle of the form

1

T
log P[ρT ∈ A] � − inf

ν∈A
I(ν) (12)

with some rate function I defined on the convex set M1(Rd) of probability measures
on Rd, where (12) should be read as an upper bound for the lim sup of the left-hand
side if A is a closed subset of M1(Rd) and as a lower bound for the lim inf if A is open.
Under some regularity conditions the market price of risk will then satisfy the large
deviations estimate (6)

lim
T↗∞

1

T
log P

[
1

T

∫ T

0

‖ϕt‖2dt ≤ c1

]
≤ −c2

for any c1 <
∫
‖ϕ(x)‖2µ(dx), with

c2 := inf

{
I(ν)

∣∣∣∣ ∫ T

0

‖ϕ(x)‖2dν(x) ≤ c1

}
> 0,

12



due to the contraction principle (see, e.g., [DZ 98]).
In such a situation one should expect an exponential decay of the probabilities

P
[
ZT ≥ e−γT

]
and a corresponding exponential version of the estimates in Theorem 1.4, assuming
now uniqueness of the locally equivalent martingale measure Q. However, this will
involve a slight refinement of the large deviations principle in its classical form (12).

Let us sketch the argument for the one-dimensional case. Indeed,

P
[
ZT ≥ e−γT

]
= P

[∫ T

0

ϕtdWt +
1

2

∫ T

0

ϕ2
tdt ≤ γT

]
.

By Itô’s formula,∫ T

0

ϕtdWt :=

∫ T

0

ϕt

(
dSt

σ(St)
− ϕtdt

)
=

∫ T

0

f(St)dSt −
∫ T

0

ϕ2
tdt

= F (ST )− F (S0)−
1

2

∫ T

0

f ′(St)σ
2(St)dt−

∫ T

0

ϕ2(St)dt,

where we put f(x) := ϕ(x)
σ(x)

, assume f ∈ C1, and take F ∈ C2 such that F ′ = f . Thus,

P
[
ZT ≥ e−γT

]
= P

[(
F (ST )− F (S0)

)
− 1

2

∫ T

0

h(St)dt ≤ γT

]
= P

[
1

T

(
F (ST )− F (S0)

)
− 1

2

∫ T

0

h(x)dρT (x) ≤ γ

]
where we define h(x) = f ′(x)σ2(x) + ϕ2(x). An exponential estimate of the form

lim sup
T→∞

1

T
log P

[
ZT ≥ e−γT

]
< 0

will now follow for γ < −1
2

∫
hdµ, if we have a joint large deviation principle for

the random variables
(

1
T

(
F (ST )− F (S0)

)
, ρT

)
with values in R1 ×M1(Rd) or, more

specifically, for the random variables

1

T

(
F (ST )− F (S0)

)
− 1

2

∫ T

0

h(x)dρT (x).

In this paper we do not try to give a rigorous version of the argument under general
conditions. Instead we will illustrate this approach by proving explicit exponential
estimates for the geometric Ornstein-Uhlenbeck process.

4 A case study: the geometric Ornstein-Uhlenbeck

process

In this section we consider the geometric Ornstein-Uhlenbeck process and derive ex-
ponential versions of the extimates in Theorem 1.4. In order to keep the notation as

13



transparent as possible, we take the simplest case

St = exp(Yt), (13)

where (Yt)t≥0 is the stationary Ornstein-Uhlenbeck process defined by

dYt = −ρYtdt+ σdWt, Y0 = y0,

with parameters ρ > 0 and σ > 0 and with initial value y0 ∈ R; see, however, Re-
mark 4.4 below for the extension to an Ornstein-Uhlenbeck process with drift.

The process S = (St)t≥0 defined by (13) satisfies the SDE

dSt = St[−ρYtdt+ σdWt] + St
σ2

2
dt

= Stσ

[
dWt −

1

σ

(
ρYt −

σ2

2

)
dt

]
. (14)

For fixed T > 0, the unique equivalent martingale measure Q on FT for the process S
is defined by

dQ
dP

∣∣
FT

= ZT

where

ZT := exp

(∫ T

0

1

σ

(
ρYt −

σ2

2

)
dWt −

1

2

∫ T

0

1

σ2

(
ρYt −

σ2

2

)2

dt

)
. (15)

In other words, the dynamics of S under Q takes the form

dSt = σStdW
Q
t ,

where

WQ
t := Wt −

∫ t

0

1

σ

(
ρYs −

σ2

2

)
ds

=
1

σ

(
Yt − y0 +

σ2

2
t

)
(16)

is a Wiener process under Q.
In this specific model we can describe the large deviations more explicitly.

Proposition 4.1 For any γ ∈
]
0, σ2

8
+ ρ

4

[
, the sets AT :=

{
ZT ≥ e−γT

}
satisfy

Q[AT ] ≥ 1− e−γT (17)

and

lim
T↗∞

1

T
log P[AT ] = −

(
σ2

8
− γ + ρ

4

)2

σ2

8
− γ + ρ

2

. (18)

14



Proof Clearly,

Q
[
ZT ≤ e−γT

]
=

∫
{ZT≤e−γT }

ZTdP ≤ e−γT ,

and this implies (17). The proof of (18) consists in combining a result of Florens-
Landais and Pham [FP 99] for certain large deviations of the Ornstein-Uhlenbeck pro-
cess with a simple perturbation argument. To this end, we write

logZT =
1

σ

∫ T

0

(
ρYt −

σ2

2

)(
1

σ
dYt +

ρ

σ
Ytdt

)
−1

2

ρ2

σ2

∫ T

0

Y 2
t dt−

σ2

8
T +

ρ

2

∫ T

0

Ytdt

=
ρ

σ2

∫ T

0

YtdYt −
1

2
(YT − Y0) +

ρ2

2σ2

∫ T

0

Y 2
t dt−

σ2

8
T

=
ρ

σ2
ξT −

σ2

8
T, (19)

where

ξT := ηT + ζT ,

ηT :=

∫ T

0

YtdYt +
ρ

2

∫ T

0

Y 2
t dt

=
1

2
(Y 2

T − Y 2
0 − σ2T ) +

ρ

2

∫ T

0

Y 2
t dt,

ζT :=
σ2

2ρ
(Y0 − YT ).

Recall that the Ornstein-Uhlenbeck process Y is ergodic with invariant distribution
N(0, σ2

2ρ
), and note that this implies

lim
T↗∞

ξT
T

= lim
T↗∞

ηT

T
= −σ

2

2
+
ρ

2

σ2

2ρ
= −σ

2

4
P-a.s.. (20)

Let us now look at the corresponding large deviations. Applying Theorem 2.2 of
Florens-Landais and Pham [FP99] (with θ0 = −ρ, θ = −ρ

2
, and the straightforward

extension to the case σ 6= 1), we see that the random variables ηT

T
satisfy a large

deviations principle with rate function

I(y) =

 2ρ( y

σ2 + 1
4)

2

2 y

σ2 +1
for y > −1

2
σ2

∞ for y ≤ −1
2
σ2

i.e.,

lim sup
T↗∞

1

T
log P

[ηT

T
∈ F

]
≤ − inf

y∈F
I(y)

for any closed set F ⊆ R1 and

lim inf
T↗∞

1

T
log P

[ηT

T
∈ G

]
≥ − inf

y∈G
I(y)
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for any open set G ⊆ R1. A simple perturbation argument shows that the same large
deviations principle with rate function I applies to the random variables ξT

T
. Indeed, the

additional terms ζT are normally distributed with means mT converging to m∞ ∈ R1

and variances σ2
T converging to σ2

∞ ∈ ]0,∞[, and this implies

lim
T↗∞

1

T 2
log P

[
|ζT |
T

> ε

]
= lim

T↗∞

1

T 2
log

2√
2π

∫ ∞

εTσ−1
T

e−
y2

2 dy

= − ε2

2σ2
∞
.

In particular,

P

[
ξT
T
∈ F

]
≤ P

[
|ξT |
T

> ε

]
+ P

[ηT

T
∈ Fε

]
≤ 2P

[ηT

T
∈ Fε

]
for any ε > 0, Fε := {y | d(y, F ) ≤ ε}, and for T large enough. Thus,

lim
T↗∞

1

T
log P

[
ξT
T
∈ F

]
≤ − inf

y∈Fε

I(y)

for closed F and for arbitrary ε > 0, hence

lim
T↗∞

1

T
log P

[
ξT
T
∈ F

]
≤ − inf

y∈F
I(y).

The lower bound for open sets follows in the same manner. For y0 > −σ2

4
and F :=

[y0,∞[, these two bounds imply

lim
T↗∞

1

T
log P

[
ξT
T
≥ y0

]
= −I(y0).

We can now conclude that the asymptotic behavior of

P
[
ZT ≥ e−γT

]
= P

[
ρ

σ2
ξT −

1

8
σ2T ≥ −γT

]
= P

[
ξT
T
≥ σ2

ρ

(
σ2

8
− γ

)]
for γ ∈

]
0, σ2

8
+ ρ

4

[
is described by equation (18).

We now are prepared to prove Theorem 1.5. In fact we will prove the following
stronger version:

Theorem 4.2 Let (St)t≥0 be the geometric Ornstein-Uhlenbeck process defined in (7).

Take γ ∈
]
0, σ2

8
+ ρ

4

[
and any γ1 < γ. Then there exist contingent claims XT ∈ KT

such that, for any γ2 < γ − γ1,

(i) XT ≥ −e−γ2T for large T ,
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(ii) limT→∞
1
T

log P
[
XT < eγ1T

]
=

−
(

σ2

8
−γ+ ρ

4

)2

σ2

8
−γ+ ρ

2

.

More precisely, we can achieve the tighter bounds

(iii) XT ≥ −αT := −eγ1T Q[Ac
T ]

Q[AT ]

where AT := {ZT ≥ e−γT}, and the decay rate in (ii) for the shortfall probabilities
P[XT < eγ1T ] is in fact optimal under the constraint (iii).

Proof Since Q[Ac
T ] ≤ e−γT by (17), the constants αT defined by (iii) satisfy

αT ≤ e−(γ−γ1)T 1

Q[AT ]
,

hence αT ≤ e−γ2T for large T if γ2 < γ − γ1. Now consider the contingent claims

XT := eγ1T1Ac
T
− αT1AT

.

Clearly, XT ≥ −αT , and

EQ[XT ] = eγ1TQ[Ac
T ]− αTQ[AT ] = 0,

hence XT ∈ KT . Moreover, since {
XT < eγ2T

}
= AT

for large enough T , part (ii) of Theorem 4.2 follows from (18). In order to check the
optimality of the convergence rate in (ii) under the constraint (iii), take a sequence

of contingent claims X̃T ∈ KT such that X̃T ≥ −αT . The corresponding sets ÃT :={
X̃T < eγ1T

}
satify

Q
[
Ãc

T

](
eγ1T + αT

)
− αT = eγ1TQ

[
Ãc

T

]
+ (−αT )Q

[
ÃT

]
≤ EQ

[
X̃T

]
≤ 0,

hence
Q
[
Ãc

T

]
≤ αT

αT + eγ1T
= Q[Ac

T ].

The Neyman-Pearson lemma allows us to conclude that

P
[
Ãc

T

]
≤ P[Ac

T ].

In particular, the shortfall probabilities P
[
X̃T < eγ1T

]
= P[ÃT ] cannot decay at a

faster rate than described by (ii).

Remark 4.3 Note that the constants αT defined in part (iii) of Theorem 4.2 satisfy

lim
t→∞

1

T
logαT = γ1 + lim

T→∞

1

T
log Q[Ac

T ]

≤ −(γ − γ1), (21)
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where we have used the crude estimate Q[Ac
T ] ≤ e−γT . Refined large deviation esti-

mates for the probabilities Q[Ac
T ] yield better rates for the convergence of αT to 0.

Indeed,

Q[Ac
T ] = Q[ZT < e−γT ]

≤ e−ηγTEQ[Z−η
T ]

= e−ηγTEP[Z1−η
T ]

for any η > 0. The term EP[Z1−η
T ] can be computed explicitly; cf. Proposition 5.6

below. This yields

lim
T→∞

1

T
log Q[Ac

T ] ≤ −(γ + f(η))

with

f(η) :=
ρ

2
(
√
η − η) + (1− η)

(
σ2

8
− γ

)
.

Since we have assumed γ < σ2

8
+ ρ

4
, the function f attains its maximum value

f(η(γ)) =

(
σ2

8
+
ρ

4
− γ

)2(
σ2

8
+
ρ

2
− γ

)−1

> 0

in η(γ) = ρ2

16

(
σ2

8
+ ρ

2
− γ
)−2

, and so we can replace the rate γ−γ1 in (21) by the better

rate γ − γ1 + f(η(γ)).

Remark 4.4 The preceding discussion also applies to more general versions of the
geometric Ornstein-Uhlenbeck process. Suppose, for example, that the discounted
price process is of the form

St = eYt+µt

with some constant drift parameter µ. In this case, the density ZT of the unique
equivalent martingale measure is again of the form (15), but with modified parameters

σ̃ = σ +
2µ

σ
, ρ̃ = ρ

(
1 +

2µ

σ2

)
.

As a result, equation (18) in Proposition 4.1 is still valid, but with σ̃ instead of σ.

Indeed, note that logZT takes the form (19) with ξ̃T = ηT + ζ̃T , where

ζ̃T =
σσ̃

2ρ
(Y0 − YT ).

The law of large numbers (20) remains valid for ξ̃, and the large deviations principle

for η can be transferred also to ξ̃. Thus

lim
T↗∞

1

T
log P

[
ZT ≥ e−γT

]
= lim

T↗∞

1

T
log P

[
ηT

T
≥ σ2

ρ

(
1

8
σ̃2 − γ

)]
= −I

(
σ2

ρ

(
1

8
σ̃2 − γ

))
for γ ∈

]
0, σ̃2

8
+ ρ

4

[
, and this amounts to equation (18) with σ̃ instead of σ.
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Finally we want to compare the arbitrage estimates for the geometric Ornstein-
Uhlenbeck case as described in Theorem 1.5 and in Remark 4.4 with the much simpler
case of the Black-Scholes model.

Theorem 4.5 Let µ 6= 0, σ > 0 and define the Black-Scholes model by

St = S0 exp

[
σWt +

(
µ− σ2

2

)
t

]
.

Take γ ∈ ]0, ϕ2

2
[, where ϕt ≡ ϕ ≡ µ

σ
. For any γ1 < γ, there exists XT ∈ KT such that,

for any γ2 < γ − γ1,

(i) XT ≥ −e−γ2T for large T ,

(ii) limT→∞
1
T

log P
[
XT < eγ1T

]
= −1

2

(
ϕ
2
− γ

ϕ

)2

.

More precisely, we can achieve the tighter bounds

(iii) XT ≥ −αT := −eγ1T Q[Ac
T ]

Q[AT ]
,

where AT = {ZT ≥ e−γT}. Then

lim
T→∞

1

T
logαT = γ1 −

(
γ

ϕ
+
ϕ

2

)2

,

and the decay rate for the shortfall probabilities in (ii) is optimal under the constraint
(iii).

Proof For T > 0 the density ZT of the unique equivalent martingale measure is given
by

ZT = exp

[
−ϕWT −

ϕ2

2
T

]
.

We have

P
[
Ac

T

]
= P

[
−ϕWT −

ϕ2

2
T < −γT

]
= P

[
−WT <

(
ϕ2

2
− γ
)
T

ϕ

]

= Φ

((
ϕ

2
− γ

ϕ

)
T

1
2

)
for ϕ > 0, and similarly for ϕ < 0, where Φ denotes the distribution function of a
standard normal variable. On the other hand, since WQ

t := Wt + ϕt defines a Wiener
process under Q,

Q
[
Ac

T

]
= Q

[
−ϕWQ

T < −γT − ϕ

2
T
]

= Φ

(
−
(
γ

ϕ
+
ϕ

2

)√
T

)
.
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Now consider the contingent claim

XT := eγ1T1Ac
T
− αT1AT

.

Clearly, XT ≥ −αT and EQ[XT ] = 0 hence XT ∈ KT . Finally we have

P
[
XT < eγ2T

]
= P

[
AT

]
= Φ

(
−
(
ϕ

2
− γ

ϕ

)
T

1
2

)
.

Since

lim
T→∞

1

T
log Φ

(
− ηT

1
2

)
= −η

2

2

for any η ∈ R1, we easily obtain

lim
T→∞

1

T
log P

[
XT < eγ1T

]
= −

(
ϕ

2
− γ

ϕ

)2

/ 2.

In the same way we see that

lim
T→∞

1

T
logαT = γ1 + lim

T→∞

1

T
log Q[Ac

T ]

= γ1 −
(
γ

ϕ
+
ϕ

2

)2

.

As in the proof of Theorem 4.2, optimality of the decay rate in (ii) under the constraints
(iii) follows by applying the Neyman-Pearson lemma.

5 Optimal strategies for the geometric Ornstein-

Uhlenbeck process for HARA utilities

Let us return to the geometric Ornstein-Uhlenbeck model introduced in section 4. For
three standard choices of a utility function U , we are going to compute the maximal
expected utility

uT (x) := EP[U(XT )]

attainable at time T > 0 using some self-financing trading strategy and the initial
capital x > 0. Recall (see, e.g, [KLS 87]) that the optimal contingent claim XT is of
the form

XT = (U ′)−1(yZT ) (22)

where the Lagrange multiplier y > 0 is given by

EQ

[
(U ′)−1(yZT )

]
= x. (23)

Hence XT − x ∈ KT . A little warning on the notation seems appropriate: While in
the previous sections it was natural to have XT ∈ KT , we now follow the usual notation
in utility maximization, where we fix an initial endowment x ∈ R and let XT denote a
random variable such that XT − x ∈ KT .
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We are also going to identify the optimal trading strategy, i.e., the predictable
process (ξ

(T )
t )0≤t≤T such that

X
(T )
t := EQ[XT | Ft]

= x+

∫ t

0

ξ(T )
s dSs (24)

for any t ∈ [0, T ]. It is clearly equivalent to compute the optimal proportion

π
(T )
t :=

ξ
(T )
t ·St

X
(T )
t

(25)

of the capital X
(T )
t generated up to time t which should be invested in the financial

asset.
Moreover, we are going to describe the growth of uT (x) and the limiting form of

the optimal strategy as T increases to ∞, and to give some financial interpretation in
terms of certainty equivalents.

5.1 Logarithmic utility

For the logarithmic utility function U(x) = log x it follows from (22) and (23) that the
optimal contingent claim at time T is given by

XT = xZ−1
T . (26)

Thus the maximal expected utility takes the form

uT (x) = log x+HT (P|Q) (27)

where

HT (P|Q) := EP

[
log dP

dQ

∣∣∣
FT

]
= EP

[
logZ−1

T

]
denotes the relative entropy of P with respect to Q on FT .

Proposition 5.1 The maximal expected utility at time T is given by

uT (x) = log x+
1

4
ρT − 1

8

(
1− e−2ρT

)
+

1

4

ρ

σ2
y2

0

(
1− e−2ρT

)
− 1

2
y0

(
1− e−ρT

)
+

1

8
σ2T. (28)

In particular uT (x) grows linearly at the rate

lim
T↗∞

uT (x)

T
=

1

4
ρ+

1

8
σ2. (29)

Proof In view of (27) it is enough to compute the relative entropy

HT (P|Q)

= −EP

[∫ T

0

1

σ

(
ρYt −

1

2
σ2

)
dWt

]
+ EP

[
1

2

∫ T

0

1

σ2

(
ρYt −

1

2
σ2

)2

dt

]
.
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Note that the first term vanishes, and recall that the first two moments of the Ornstein-
Uhlenbeck process (Yt)t≥0 are given by

EP[Yt] = y0e
−ρt (30)

and

EP[Y 2
t ] =

σ2

2ρ
(1− e−2ρt) + e−2ρty2

0.

Thus

HT (P|Q) =
ρ2

2σ2

∫ T

0

EP[Y 2
t ]dt− ρ

2

∫ T

0

EP[Yt]dt+
1

8
σ2T

=
1

4

ρ

σ2
y2

0

(
1− e−2ρT

)
− 1

2
y0

(
1− e−ρT

)
−1

8

(
1− e−2ρT

)
+

1

4
ρT +

1

8
σ2T.

In the logarithmic case the optimal strategy does not depend on the horizon T :

Proposition 5.2 The optimal proportion defined by (25) is given by

π
(T )
t =

1

2
− 1

σ2
ρYt. (31)

Proof In view of (26), (15) and (16) the optimal contingent claim is given by

XT = x exp

(
−
∫ T

0

1

σ

(
ρYt −

1

2
σ2

)
dWt +

1

2

∫ T

0

1

σ2

(
ρYt −

1

2
σ2

)2

dt

)

= x exp

(
−
∫ T

0

1

σ

(
ρYt −

1

2
σ2

)
dWQ

t − 1

2

∫ T

0

1

σ2

(
ρYt −

1

2
σ2

)2

dt

)
.

Thus the Q-martingale

X
(T )
t := EQ[XT | Ft]

= x exp

(
−
∫ t

0

1

σ

(
ρYs −

1

2
σ2

)
dWQ

s − 1

2

∫ t

0

1

σ2

(
ρYs −

1

2
σ2

)2

ds

)

satisfies

dX
(T )
t = X

(T )
t

(
− 1

σ

(
ρYt −

1

2
σ2

))
dWQ

t

= X
(T )
t

(
− 1

σ2
ρYt +

1

2

)
S−1

t dSt,

and so the proportion π
(T )
t defined by (25) is indeed given by (31).
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Remark 5.3 It is well-known that for logarithmic utility the optimal contingent claim
is given by the “numéraire portfolio”

XT = x
(
Zmin

T

)−1
= x+

∫ T

0

Xt

(ϕ
σ

)
t
dSt, (32)

i.e., the optimal strategy is simply proportional to the current wealth Xt as well as
to the quotient ϕ

σ
; see, e.g., [KS 99] and [B 01]. Note that these results also hold

true in the general incomplete case. In our special case of the geometric Ornstein-
Uhlenbeck process, this is of course consistent with the explicit formula (31) for the
optimal proportion. Formula (32) implies in particular that any estimate (from below)
on −E

[
log
(
Zmin

)]
yields an estimate (from below) on E[log(XT )].

5.2 Exponential utility

For the exponential utility function U(x) = − exp(−λx) with parameter λ > 0 we have
(U ′)−1(y) = 1

λ
log
(

λ
y

)
, so that the optimal contingent claim in (22) takes the form

XT = x+
1

λ
(HT (Q|P)− logZT ) ,

where
HT (Q|P) := EQ[logZT ]

denotes the relative entropy of Q with respect to P on FT .

Proposition 5.4 The maximal expected utility is given by

uT (x) = − exp (−λx−HT (Q|P)) (33)

where

HT (Q|P) =

(
1

2

ρ2

σ2
y2

0 −
ρ

2
y0 +

1

8
σ2

)
T

+

(
1

4
ρ2(1− y0) +

1

8
ρσ2

)
T 2 +

1

24
ρ2σ2T 3. (34)

In particular, uT (x) grows to its upper bound 0 at the rate

lim
T↗∞

1

T 3
log (−uT (x)) = − 1

24
ρ2σ2.

Proof Since by (22)

uT (x) = −EP [exp(−λXT )]

= − exp (−λx−HT (Q|P)) ,
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it remains to compute the relative entropy in our special setting. In view of (15) and
(16) we have

HT (Q|P) = EQ

[∫ T

0

1

σ

(
ρYt −

1

2
σ2

)
dWt −

1

2

∫ T

0

1

σ2

(
ρYt −

1

2
σ2

)2

dt

]

= EQ

[∫ T

0

1

σ

(
ρYt −

1

2
σ2

)
dWQ

t +
1

2

∫ T

0

1

σ2

(
ρYt −

1

2
σ2

)2

ds

]

=
ρ2

2σ2

∫ T

0

EQ[Y 2
t ]dt− ρ

2

∫ T

0

EQ[Yt]dt+
1

8
σ2T.

Since Yt = σWQ
t + y0 − 1

2
σ2t by (16), the first two moments are given by

EQ[Yt] = y0 −
1

2
σ2t.

and

EQ[Y 2
t ] = σ2t+ y2

0 − y0σ
2t+

1

4
σ4t2,

and this yields equation (34).

Let us now identify the optimal strategy for a fixed horizon T > 0.

Proposition 5.5 The optimal quantity ξ
(T )
t defined by (24) is given by

ξ
(T )
t =

1

λSt

[
− 1

σ2

(
ρ+ ρ2(T − t)

)
Yt +

1

4

(
1 + ρ(T − t)

)2
+

1

4

]
. (35)

Proof Consider the Q-martingale

X
(T )
t := EQ[XT | Ft]

= x+
1

λ
HT (Q|P)− 1

λσ

∫ t

0

(
ρYs −

1

2
σ2

)
dWQ

s

− 1

2λ

∫ t

0

1

σ2

(
ρYs −

1

2
σ2

)2

ds

− 1

2λ
EQ

[∫ T

t

1

σ2

(
ρYs −

1

2
σ2

)2

ds

∣∣∣∣∣ Ft

]
.

The last term can be computed explicitly using the conditional moments

EQ[Ys | Ft] = σWQ
t + y0 −

1

2
σ2s

and

EQ[Y 2
s | Ft] = σ2(s− t) + σ2

(
WQ

t

)2
+

(
y0 −

1

2
σ2s

)2

+ 2σWQ
t

(
y0 −

1

2
σ2s

)
.
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Since the components of bounded variation in our equation for the Q-martingale X
(T )
t

must sum up to the constant x, we finally obtain

X
(T )
t = x+

1

λ

∫ t

0

[
1

σ

(
1

2
σ2 − ρYs

)
− ρ2

σ
(T − s)Ys

σ

4
+

σ

4ρ2

(
ρ+ ρ2(T − s)

)2]
dWQ

s

= x+
1

λ

∫ t

0

1

Ss

[(
− ρ

σ2
− ρ2

σ2
(T − s)

)
Ys +

1

4

(
1 + ρ(T − s)

)2
+

1

4

]
dSs.

This shows that the integrand
(
ξ

(T )
t

)
defined via (24) is indeed given by (35)

5.3 Power utility

Consider the power utility function U(x) = 1
α
xα with parameter α ∈ ]−∞, 1[ \ {0}.

Since (U ′)−1(y) = yγ with γ := 1
α−1

∈ ]−∞, 0 [, the optimal contingent claim for T > 0
is given by

XT = x Zγ
T EQ [Zγ

T ]−1 = x Zγ
T EP

[
Zβ

T

]−1

, (36)

and the maximal expected utility

uT (x) = EP[U(XT )] (37)

takes the form

uT (x) =
xα

α
EP

[
Zβ

T

]1−α

(38)

where
β :=

α

α− 1
∈ ]−∞, 1[ \ {0}.

The following proposition provides an explicit formula for uT (x). In particular it
allows us to compute its rate of growth as T ↗∞. Note that for α > 0 equation (40)
describes the exponential growth of uT (x) to infinity, while for α < 0 it specifies the
exponential decay of the distance between uT (x) and its maximal value 0.

Proposition 5.6 We have

EP[Zβ
T ] = (A−T )−

1
2 exp

(
BT + (A−T )−1CT

)
, (39)

where

A±T := 1− 1

2
(1−

√
1− β)(1± exp(−2ρ

√
1− β T )),

BT :=
1

2
βy0 −

1

2

ρ

σ2
(
√

1− β − (1− β))y2
0

−
[
1

8
βσ2 +

ρ

2
(
√

1− β − (1− β))

]
T,

and

CT := −1

2
y0β exp(−ρ

√
1− βT )

+
1

2
y2

0

ρ

σ2
(
√

1− β − (1− β)) exp(−2ρ
√

1− β T )

+
1

16

β2σ2

ρ
(1− β)−

1
2

(
1− exp(−2ρ

√
1− β T )

)
.
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In particular, the maximal expected utility grows at the rate

lim
T↗∞

1

T
log (|uT (x)|) =

1

8
ασ2 +

1

2
ρ(1−

√
1− α). (40)

Proof In order to compute the expectation of

Zβ
T = exp

(
ρβ

σ2

∫ T

0

YsdYs +
1

2

βρ2

σ2

∫ T

0

Y 2
s ds−

1

2
β(YT − y0)−

1

8
βσ2T

)
,

we first eliminate the energy term
∫ T

0
Y 2

s ds appearing in the exponent by means of a
suitable Girsanov transformation. For δ > 0 we denote by Pδ the probability measure
on FT with density

ϕδ
T := exp

(∫ T

0

ρ− δ

σ
YsdWs −

1

2

∫ T

0

(
ρ− δ

σ
Ys

)2

ds

)

= exp

(
ρ− δ

σ2

∫ T

0

YsdYs +
1

2

ρ2 − δ2

σ2

∫ T

0

Y 2
s ds

)
(41)

with respect to P. Since

W δ
t := Wt −

∫ t

0

ρ− δ

σ
Ysds

defines a Wiener process under Pδ, (Yt)0≤t≤T becomes an Ornstein-Uhlenbeck process
under Pδ with parameter δ, i.e.,

dYt = −δYtdt+ σdW δ
t . (42)

Setting δ := ρ
√

1− β and using Itô’s formula∫ T

0

YsdYs =
1

2
(Y 2

T − y2
0)−

1

2
σ2T,

we obtain

EP[Zβ
T ] = Eδ

[
Zβ

T

(
ϕδ

T

)−1
]

= Eδ

[
exp

(
ρ

σ2

(√
1− β − (1− β)

)∫ T

0

YsdYs −
1

2
β(YT − y0)−

1

8
βσ2T

)]
= exp(BT )Eδ

[
exp

(
ρ

2σ2

(√
1− β − (1− β)

)
Y 2

T −
1

2
βYT

)]
.

In view of (42), YT is Gaussian with meanm := e−δTy0 and variance ν2 := σ2

2δ
(1−e−2δT ).

Using the fact that

E[exp(λY 2 + ηY )]

= (1− 2λν2)−
1
2 exp

(
(1− 2λν2)−1

(
λm2 + ηm+

1

2
η2ν2

))
(43)
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for any random variable Y with normal distribution N(m, ν2) and for λν2 < 1
2
, we

finally obtain equation (39). Combining (38) with (39), we see that

log |uT (x)| = α log x− log |α|+ (1− α)
(
BT + (A−T )−1CT

)
− 1

2
(1− α) logA−T .

Since A−T and CT converge to a finite limit as T ↗∞,

lim
T↗∞

1

T
log |uT (x)| = (1− α) lim

T↗∞

1

T
BT

= (α− 1)

[
1

8
βσ2 +

ρ

2

(√
1− β − (1− β)

)]
=

1

8
ασ2 +

1

2
ρ
(
1−

√
1− α

)
.

Our next goal is to identify the optimal strategy (ξ
(T )
t )0≤t≤T defined by (24). It will

be described in terms of the optimal proportion π
(T )
t of the capital

X
(T )
t = EQ[XT |Ft]

which should be invested in the financial asset at time t for any t ∈ [0, T ], see (25).

Proposition 5.7 The optimal proportion π
(T )
t is an affine function of the logarithmic

stock price given by
π

(T )
t = a(T − t)Yt + b(T − t), (44)

where
a(T − t) := − ρ

σ2

√
1− βA+

T−t(A
−
T−t)

−1

and

b(T − t) :=
1

2

[
1− (A−T−t)

−1β exp
(
−ρ
√

1− β(T − t)
)]
.

In particular, the asymptotic form of the optimal strategy for T ↗∞ is given by

πt := lim
T↗∞

π
(T )
t = − ρ

σ2
√

1− α
Yt +

1

2
. (45)

Proof Consider the Q-martingale (Mt)0≤t≤T defined by

Mt := EQ[Zγ
T |Ft],

and recall the measure Pδ introduced in the proof of Proposition 5.6 for δ := ρ
√

1− β.
In terms of its densities

ϕδ
t := EP[ϕδ

T |Ft]

with respect to P where ϕδ
T is given by (41), Mt takes the form

Mt = Z−1
t EP

[
Zβ

T |Ft

]
= Z−1

t ϕδ
tE

δ
[
Zβ

T (ϕδ
T )−1|Ft

]
= Lt E

δ

[
exp

(
1

2

ρ

σ2

(√
1− β − (1− β)

)
Y 2

T −
1

2
βYT

) ∣∣∣∣ Ft

]
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with

logLt := − δ

σ2

∫ t

0

YsdYs −
1

2

δ2

σ2

∫ t

0

Y 2
s ds+

1

2
(Yt − y0) +

1

8
σ2t+BT

where BT was defined in Proposition 5.6.
In view of (42) the random variable YT is Gaussian under the conditional distribu-

tion Pδ[ . |Ft], with conditional mean m := Yt exp(−δ(T − t)) and conditional variance
ρ2 := σ2

2δ
(1− exp(−2δ(T − t))). Using again formula (43) we finally obtain an expres-

sion of the form
Mt = exp(Nt)Dt,

where

Nt :=

∫ t

0

π
(T )
t σdWQ

s

is a Q-martingale, π
(T )
t is given by (44) and (Dt)0≤t≤T is some adapted process with

continuous paths of bounded variation. But (Mt)0≤t≤T is a Q-martingale, and this
implies

Mt = M0 exp

(
Nt −

1

2
〈N〉t

)
,

hence
dMt = MtdNt

and

dX
(T )
t = X

(T )
t dNt

= X
(T )
t π

(T )
t σdWQ

t

= X
(T )
t π

(T )
t S−1

t dSt.

Thus we have shown that the trading strategy (ξ
(T )
t ) in (24) is given by

ξ
(T )
t = X

(T )
t π

(T )
t S−1

t ,

and so the quantity π
(T )
t defined by (44) is indeed the optimal proportion of the available

capital X
(T )
t which should be invested in the financial asset at time t.

Since

lim
T↗∞

A±T = 1− 1

2
(1−

√
1− β),

we obtain
lim

T↗∞
a(T − t) = − ρ

σ2

√
1− β = − ρ

σ2
√

1− α

and

lim
T↗∞

b(T − t) =
1

2
,

and so the asymptotic form of the strategy for T ↗∞ is given by (45).

Remark 5.8 In Fleming and Sheu [FS 99] dynamic programming methods are used
in order to compute directly the optimal growth rate

Λ = sup lim sup
T↗∞

1

T
log EP[U(Xπ

T )]
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for power utilities U , where the supremum is taken over all admissible trading strategies;
see also Pham [P 03]. Our propositions 5.6 and 5.7 provide, in addition, explicit results
for any finite horizon T and may be viewed as a probabilistic complement to the
analytical method in [FS 99].

Remark 5.9 We have considered prices and contingent claims in discounted form since
the bond was assumed to be normalized to Bt ≡ 1. For a constant risk-free interest rate
r > 0, the undiscounted contingent claim generated by a self-financing trading strategy
is of the form X̃T = XT e

rT , and it seems natural to apply a given utility function U
to X̃T rather than to XT . Moreover one may want to introduce a subjective rate of
discounting δ > 0. Let us denoty by ũT (x) the optimal value obtained by maximizing

E
[
U
(
X̃T

)]
e−δT .

For a power utility U(x) = 1
α
xα the optimal contingent claim is clearly the same as

before, i.e., X̃T = XT e
rT where XT is given by (36). Note, however, that ZT now

depends on r. The optimal value takes the form

ũT (x) = uT (x)e(αr−δ)T

where uT (x) is given by (37), and in analogy to Proposition 5.6 we obtain exponential
growth at the rate

lim
T↗∞

1

T
log(|ũT (x)|) = α

(
r +

1

2σ2

(
1

2
σ2 − r

)2
)

+
1

2
ρ
(
1−

√
1− α

)
− δ;

see [K 08] for detailed computations and for extensions to more general Ornstein-
Uhlenbeck processes in a robust setting.

5.4 Certainty Equivalents and their Growth Rates

We now shall interpret in financial terms the previous results on optimal investment
with respect to the geometric Ornstein-Uhlenbeck process for the utility functions
considered above. We shall also analyze to which extent the logarithmic utility U(x) =
log(x) and the exponential utility U(x) = − exp(−x) correspond to the limiting cases
α→ 0 and α→ −∞ for power utilities U (α)(x) = xα

α
.

To make the above results comparable we transform them from the utility scale
to the money scale, using the concept of “certainty equivalent”, due to De Finetti
(compare, e.g., [DS 06, Example 3.3.5]).

We fix an initial endowment x of an economic agent, which we shall eventually
normalize by x = 1, as well as the value function uT (x). The certainty equivalent
CET (x) then is the solution to

U(x+ CET (x)) = uT (x). (46)

The interpretation of this formula is that an agent whose preferences are modeled
by expected utility U at time T is indifferent between having an initial endowment
x+ CET (x) without the possibility of investing in the financial market S (so that her

29



wealth remains constant during [0, T ]), as compared to having an initial endowment x
as well as the possibility of investing (optimally) in the market S during [0, T ].

By scaling we have CET (x) = xCET (1) in the case of logarithmic and power utility
while CET (x) is independent of x in the case of the exponential utility. We therefore
shall simply write CET for CET (1); if we want to emphasize the role of the utility
function U , we shall also denote this quantity by CEU

T .
Propositions 5.1, 5.4 and 5.6 yield an explicit description of the growth of the

certainty equivalents as T ↗∞.

5.4.1 Logarithmic utility

We have
CE

(log)
T (x) = x

(
expHT (P|Q)− 1

)
,

and formula (29) yields exponential growth at the rate

lim
T↗∞

1

T
log CE

(log)
T (x) =

ρ

4
+
σ2

8
. (47)

5.4.2 Exponential utility

We have

CE
(exp)
T (x) =

1

λ
HT (Q|P),

and formula (34) yields cubic growth at the rate

lim
T↗∞

1

T 3
CE

(exp)
T (x) =

1

λ

ρ2σ2

24
. (48)

5.4.3 Power utility

For α ∈ ]−∞, 1[ \ {0} and U(x) = xα

α
, the certainty equivalent is given by

CE
(α)
T (x) = x

(
EP

[
Zβ

T

]− 1
β − 1

)
,

and formula (40) yields exponential growth at the rate

lim
T↗∞

1

T
log CE

(α)
T (x) =

σ2

8
+
ρ(1−

√
1− α)

2α
. (49)

Remark 5.10 For the optimization problem formulated in Remark 5.9, the corre-
sponding certainty equivalent C̃ET (x) is given by

U
(
x+ C̃ET (x)

)
= ũT (x).

For a power utility U(x) = 1
α
xα we obtain

x+ C̃E
(α)

T (x) =
(
x+ CE

(α)
T (x)

)
e(r− δ

α)T ,

and (49) implies exponential growth at the rate

lim
t↗∞

1

T
log C̃E

(α)

T (x) =
1

2σ2

(
σ2

2
− r

)2

+
ρ(1−

√
1− α)

2α
+ r − δ

α
.
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We now discuss the limiting behavior α→ 0 and α→ −∞. We start with the first
case which is easier.

Noting that limα→0
xα−1

α
= log x and limα→0

1−
√

1−α
2α

= 1
4
, we have that (49) tends

to (47) as α→ 0. In fact, a stronger result holds true: one may verify using (28), (38),
(39) that, for fixed T , we have

lim
α→0

CE
(α)
T = CE

(log)
T .

We thus see that

lim
α→0

lim
T→∞

1

T
log
(
CE

(α)
T

)
= lim

T→∞

1

T
log
(
CE

(log)
T

)
= lim

T→∞
lim
α→0

1

T
log
(
CE

(α)
T

)
This formula indicates that the case of logarithmic utility indeed corresponds to the
limit α→ 0 for power utility.

We observe that the growth rate limT→∞
1
T

log
(
CE

(α)
T

)
of the certainty equivalent

is a monotone function in α ∈ ]−∞, 1[ ranging from

lim
α→−∞

lim
T→∞

1

T
log
(
CE

(α)
T

)
=
σ2

8

via

lim
α→0

lim
T→∞

1

T
log
(
CE

(α)
T

)
= lim

T→∞

1

T
log
(
CE

(log)
T

)
=
σ2

8
+
ρ

4
to

lim
α→1

lim
T→∞

1

T
log
(
CE

(α)
T

)
=
σ2

8
+
ρ

2
.

This reflects the financial intuition that an agent with smaller risk aversion can take
better advantage (measured in terms of certainty equivalents) of investment opportu-
nities.

The analysis of the behavior for α → −∞ is more subtle than the case α → 0.
Recall that the exponential utility represents the limit of U (α)(x) = xα

α
, as α → −∞,

after proper affine normalisation:

− exp(−x) = − lim
α→−∞

(
1− x

α

)α

= lim
α→−∞

(x− α)α

α
|α|−α+1.

Hence, up to the multiplicative factor |α|−α+1, which is irrelevant for the certainty
equivalent, the exponential utility − exp(−x) is close to the shifted power utility
U (α)(x− α), as α→ −∞.

Using (34), (38), (39) one may verify that for fixed horizon T , we again have

lim
α→−∞

CE
(α)
T (|α|) = CE

(exp)
T . (50)

However, the above relation does not carry over to the limiting expressions for T →∞
by interchanging the limiting procedures for α and T as in the logarithmic case above:
the terms in (48) and (49) are of a completely different qualitative structure. In fact,
the term T 3 in (48) looks at first sight rather puzzling.

In order to develop an understanding of the situation it is instructive to have a
closer look at the optimal trading strategies. Let us again start with the logarithmic
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case which is the easiest, as π
(log,T )
t = 1

2
− 1

σ2ρYt, as defined in (31), does not depend

on T , so that we may define π
(log)
t = 1

2
− 1

σ2ρYt independently of the horizon T .

As regards the optimal trading strategy π
(α,T )
t for power utility (44), it does depend

on the horizon T ; nevertheless the limit π
(α)
t for T →∞ exists for each α ∈ ]−∞, 1[\{0}

(45) and one readily verifies that

π
(log)
t = − ρ

σ2
Yt +

1

2
= lim

α→0
− ρ

σ2
√

1− α
Yt +

1

2
= lim

α→0
π

(α)
t ,

in order words that the logarithmically optimal investment strategy again is the limit
of the limiting α-optimal strategy π(α), as α→ 0.

Passing to the exponential utility, the picture changes drastically: the optimal
quantity ξ

(exp,T )
t , given by (35), depends on the horizon T in such a way that it is not

possible to pass to the limit T →∞ as the leading term is ρ2

4λSt
(T − t)2.

In order to find the reason why the exponential utility maximizer shows this rather
strange behavior let us rewrite the value functions (27), (33) and (38) in a form appro-
priate to argue with the Hamilton-Jacobi-Bellman equation.

u
(log)
T (x, y, t) = log x+

1

4
ρ(T − t)− 1

8

(
1− e−2ρ(T−t)

)
+

1

4

ρ

σ2
y2
(
1− e−2ρ(T−t)

)
−1

2
y
(
1− e−ρ(T−t)

)
+

1

8
σ2(T − t), (51)

u
(exp)
T (x, y, t) = − exp

[
−λx−

(
1

2

ρ2

σ2
y2 − ρ

2
y +

1

8
σ2

)
(T − t)

−
(

1

4
ρ2(1− y) +

1

8
ρσ2

)
(T − t)2 − 1

24
ρ2σ2(T − t)3

]
, (52)

u
(α)
T (x, y, t) =

xα

α

[(
A−T−t

)− 1
2 exp

(
BT−t +

(
A−T−t

)−1
CT−t

)]1−α

, (53)

where A±T−t := 1− 1

2

(
1−

√
1− β

)(
1± exp

(
− 2ρ

√
1− β (T − t)

))
,

BT−t :=
1

2
βy − 1

2

ρ

σ2

(√
1− β − (1− β)

)
y2

−
[
1

8
βσ2 +

ρ

2

(√
1− β − (1− β)

)]
(T − t), and

CT−t := −1

2
yβ exp

(
− ρ
√

1− β(T − t)
)

+
1

2
y2 ρ

σ2

(√
1− β − (1− β)

)
exp

(
− 2ρ

√
1− β(T − t)

)
+

1

16

β2σ2

ρ
(1− β)−

1
2

(
1− exp

(
− 2ρ

√
1− β(T − t)

))
.

A basic feature of dynamic programming is that, fixing T and plugging the optimizer(
X̂

(T )
t

)
0≤t≤T

as well as the process (Yt)0≤t≤T into the value function above, one obtains

a (local) martingale
(
uT

(
X̂

(T )
t , Yt, t

))
0≤t≤T

. We do not try to prove this rigorously

(which is possible) as we only want to argue formally to develop an intuition for the
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phenomena encountered above. We shall also use the formal identities E[dWt] = 0 and
(dWt)

2 = dt.
We obtain from the martingale property the equation

E
[
d
(
uT

(
X̂

(T )
t , Yt, t

))]
= 0, (54)

where Itô’s formula allows us to write

E
[
d
(
uT

(
X̂

(T )
t , Yt, t

))]
=

∂uT

∂t
dt+

∂uT

∂x
E
[
dX̂

(T )
t

]
+
∂uT

∂y
E
[
dYt

]
+
∂2uT

2∂x2

(
dX̂

(T )
t

)2
+
∂2uT

2∂y2

(
dYt

)2
+
∂2uT

∂x∂y
dX̂

(T )
t dYt (55)

Analyzing the above equation, it turns out that the mixed derivative ∂2uT

∂x∂y
(x, y, t)

plays a crucial role: while this term vanishes in the case of logarithmic utility (51), it
cannot be neglected in the exponential (52) and the power case (53).

Concentrating on the exponential case we deduce from (52) that the leading term

(w.r. to T − t) of
∂2u

(exp)
T

∂x∂y
is given by

∂2u
(exp)
T

∂x∂y
≈ −λρ

2

4
(T − t)2u

(exp)
T .

This term dominates (for large T − t) the derivatives
∂u

(exp)
T

∂x
as well as

∂2u
(exp)
T

∂x2 , which

equal −λu(exp)
T and λ2u

(exp)
T respectively.

This gives us a clue to the understanding of the leading term of the optimal strategy

ξ
(T )
t ≈ ρ2

4λSt

(T − t)2. (56)

We may interpret the dynamic programming equation (54) in the following way: the

exponential utility maximizer chooses at time t the investment ξ
(T )
t in such a way that,

when plugging dX̂
(T )
t = ξ

(T )
t dSt into (54) and (55) the term ∂uT

∂t
becomes minimal.

Indeed, in this case the function uT ( . , . , 0) becomes maximal for the given boundary
condition uT (x, y, T ) = − exp(−λx) as the descent in the time coordinate is steepest.

The choice of the control variable ξ
(T )
t in dX̂

(T )
t = ξ

(T )
t dSt does not effect the behav-

ior of E[dYt] or (dYt)
2; hence we see from (55) that one has to solve the following

maximization problem for the variable ξ ∈ R:

∂uT

∂x
ξE[dSt] +

∂2uT

2∂x2
ξ2(dSt)

2 +
∂2uT

∂x∂y
ξdStdYt −→ max!

Using
∂uT

∂x
= −λuT ,

∂2uT

∂x2
= λ2uT ,

∂2uT

∂x∂y
≈ −λρ

2

4
(T − t)2uT

and

E[dSt] = ey

(
σ2

2
− ρy

)
dt, (dSt)

2 = e2yσ2dt, dStdYt = σ2eydt
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we arrive, letting St = ey and keeping only the leading terms in (T − t)2, at

λ2

2
uT ξ

2e2yσ2dt− λρ2

4
(T − t)2uT ξσ

2eydt −→ max!

Differentiating with respect to ξ and equating to zero yields (56).

Summing up, we see that in the exponential case the “joint wobbling” dX̂
(T )
t dYt

and the mixed derivative ∂2uT

∂x∂y
are the crucial terms which cause the optimal value

ξ
(T )
t St = ρ2

4λ
(T − t)2 to be of the order (T − t)2, independently of the current value of

the process Yt which determines the market price of risk.
Now we are in a position to understand why the double limiting procedure α→ −∞,

T → ∞ cannot be interchanged: For fixed horizon T we have that u
(α)
T (x − α) tends

to u
(exp)
T (x), as α→ −∞ for x ∈ R, and the same limiting behavior holds true for the

corresponding trading strategies. On the other hand the optimal exponential strategies
ξ

(T )
t (56) do not converge, as T →∞, while we have seen that, for fixed α ∈ [−∞, 1[\{0}

the optimal power strategies π
(α,T )
t do converge to π

(α)
t .

Not only in the case of exponential utility we find remarkable differences to the
Black-Scholes situation where the optimal strategies are independent of the time hori-
zon, but even in the case of logarithmic utility, which is the most regular one, we find
unexpected phenomena. As regards the optimal investment of the logarithmic utility
maximizer there are no surprises yet: the optimal investment proportion π

(log)
t given in

(31) is proportional to the market price of risk − ρ
σ
Yt + σ

2
of the process S (see (14)).

When Yt = σ2

2ρ
there are no profitable investment opportunities as in this case the

market price of risk vanishes: the optimal strategy of the log-optimizer therefore is not
to invest into the risky asset in this situation.

Now let us look at the value function (51) for the logarithmic utility

u
(log)
T (x, y, t) = log x+

1

4
ρ(T − t)− 1

8

(
1− e−2ρ(T−t)

)
+

1

4

ρ

σ2
y2
(
1− e−2ρ(T−t)

)
− 1

2
y
(
1− e−ρ(T−t)

)
+

1

8
σ2(T − t).

Fixing x and t we observe that the minimal value is attained at ymin ≈ σ2

ρ
for large

T . Hence the situation for the log-investor is worse (if measured by expected utility at
time T ) if Yt = σ2

ρ
than in the case Yt = σ2

2ρ
, when the market price of risk vanishes.

To explain this at first glance counter-intuitive phenomenon we quote from Wilhelm
Tell: “He has no choice but through this sunken way to come to Kussnacht. There is
no other road.” The drift of the Ornstein-Uhlenbeck process Y drives the process back
towards Y = 0; hence a typical path of Y , for which at time t we have Yt = σ2

ρ
, will

tend towards 0 and on this way it has to pass through the region around σ2

2ρ
where the

log-investor will not find profitable investment opportunities. This situation is worse
than starting at Yt = σ2

2ρ
, where one already may hope to drift out of the “sunken way”.

Let us finally look at the pathwise growth of the capital XT generated by the
optimal strategy up to time T . Note first that

lim
T↗∞

1

T
logZT = −

(
ρ

4
+
σ2

8

)
P-a.s., (57)
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due to (19) and (20).
For a power utility with parameter α ∈ ]−∞, 1[ \ {0} we have

XT = xZγ
T EP

[
Zβ

T

]−1

with γ = 1
α−1

and β = α
α−1

. By (38) and (40),

lim
T↗∞

1

T
log EP

[
Zβ

T

]
=

1

1− α

(
1

8
ασ2 +

1

2
ρ
(
1−

√
1− α

))
.

Together with (57) this yields exponential growth of XT at the rate

lim
T↗∞

1

T
logXT =

1

1− α

(
1

8
σ2 +

1

4
ρ− 1

8
ασ2 − 1

2
ρ
(
1−

√
1− α

))
=

1

8
σ2 +

1

4
ρ h(α) P-almost surely, (58)

where we put

h(α) :=
1

1− α

(
2
√

1− α− 1
)
.

Note that h(α) attains its maximal value 1 for α = 0. This corresponds to the loga-
rithmic case where XT = xZ−1

T , hence

lim
T↗∞

1

T
logXT =

1

8
σ2 +

1

4
ρ P-a.s., (59)

due to (57). This was to be expected as logarithmic utility optimizes the expected
monetary growth rate. Note also that h(α) decreases to 0 as α ↘ −∞. On the other
hand, the growth rate becomes negative as soon as α > 3

4
, and it decreases to −∞ as

α↗ 1, thus approaching the risk neutral case.
It seems a remarkable fact that, almost surely for α ∈

]
3
4
, 1
[
, the α-optimal investor

eventually looses all her initial endowment x in the long run, at a rate which becomes
arbitrarily large as α→ 1.

For the exponential utility with parameter λ > 0 we have

XT = x+
1

λ
(HT (Q|P)− logZT ) .

Combining (57) with (34), we see that XT grows like T 3 at the rate

lim
T↗∞

1

T 3
XT =

1

λ

ρ2σ2

24
.

Note that this cubic rate increases to ∞ as λ decreases to 0, which corresponds to the
risk neutral case.
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6 Cost Averaging and exponential growth of wealth

The so-called “cost average effect” is a popular argument among practitioners in fi-
nance, in particular among those selling investment plans. We cite from [SE 03]: “cost
averaging simply means investing the same fixed amount of money in shares of a risky
asset at regular intervals of time. Thus the investor will always buy more shares when
prices are low and fewer shares when prices are high. Accordingly the average cost
per share is always lower than the average of the share prices over the investment time
frame.”

The argument is indeed somewhat seducing to convince potential clients to buy
investment plans. On the other hand, if one believes that — after proper discounting
— the stock price process is a martingale [S 65], then it is obvious that the preceding
argument cannot show the superiority of a constant investment over time in comparison
to, e.g., a lump sum investment: indeed, it is the basic message of Doob’s optional
sampling theorem (see, e.g. [RW00]), that the expected result of any trading strategy
(satisfying some regularity condition), when applied to a martingale, simply equals zero.
In fact, this argument was already used as “Fundamental Principle” by L. Bachelier in
1900 [B 00].

Of course, the crux with the “cost average” argument sketched in the first paragraph
is that, if we try to make it rigorous, one quickly sees that it involves a strategy which
fails to be predictable. The two strategies implicitly compared in the above argument
are: the strategy A of investing 1e at each time t ∈ {0, . . . , T − 1} into a stock with
price process (St)

T
t=0 so that one aquires S−1

t stocks at each time t. Eventually one
thus holds

∑T−1
t=0 S

−1
t stocks at time T . The alternative is strategy B to invest the

total sum of T e in such a way that one buys at each time t the same number x of

stocks. Equalling the total investment, this number x is given by x =
(∑T−1

t=0 St/T
)−1

so that one eventually holds T
(∑T−1

t=0 St/T
)−1

stocks. The latter quantity is indeed

always less than or equal than
∑T−1

t=0 S
−1
t as this amounts to comparing the harmonic

mean with the arithmetic mean. Hence strategy A indeed dominates strategy B, but

strategy B is not predictable as the investment of x =
(∑T−1

t=0 St/T
)−1

at each time

t involves the knowledge of the process (St)
T−1
t=0 . Of course, a non-predictable strategy

does not make sense economically, so the above argument does not show anything.

On the other hand, if one believes, that the stock price evolution is correctly modeled
by a stationary process, then the cost averaging effect described above appears as a
perfectly sound argument: a stationary process has tendency to be driven back when it
is in an unlikely area of its invariant distribution (think, e.g., of the Ornstein-Uhlenbeck
process analyzed above); hence the term “lower than the average price,” alluded to in
the verbal description of the cost average effect above, should make some kind of sense
in the framework of stationary processes.

It is a wellknown fact that the notions of martingales and stationary processes are
“orthogonal” to each other: the only stationary martingales are the constant processes.
On the other hand, from an economic as well as from an intuitive point of view they
have much in common: “in the average” they neither move up or down (thinking about
the one-dimensional case for simplicity). But, of course, they do so in two completely
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different ways.
The point of view of modeling with martingales, which goes back to L. Bache-

lier [B 00] and corresponds in modern terminology to the “efficient market hypothesis”
in its strong form [S 65], today is largely considered as too narrow for many applica-
tions: for example, it is not possible in this framework to model a different long term
yield (in the average) between stocks and bonds. The dominating paradigm in finan-
cial modeling today is the class of processes which are martingales under an equivalent
probability measure. The reason is that — essentially — this is the class of processes
which do not allow for arbitrage opportunities. This was the basic insight of the semi-
nal papers by Harrison, Kreps and Pliska [HK 79], [HP 81], [K 81], and is the theme of
the so-called “Fundamental Theorem of Asset Pricing”.

For finite time horizon the class of stationary processes and the class of processes
which are martingales under an equivalent probability measure are not “orthogonal”
any more: for example the Ornstein-Uhlenbeck process clearly admits an equivalent
martingale measure for each fixed finite horizon T . The interesting issue is to analyse
the asymptotic situation as T →∞.

In this context the natural class of processes, encompassing as arch-examples the
Black-Scholes model as well as the geometric Ornstein-Uhlenbeck process, seems to be
those with non-trivial market price of risk process (ϕt)t≥0 in the sense of Definition 1.3,
and in particular those where the market price of risk satisfies a large deviations es-
timate (6). Similar classes of processes have been recently studied by M. Dempster,
I. Evstigneev and K. Schenk-Hoppé [ES 02], [DES 03], and [DES 03]. In these papers it
is shown that, under general hypotheses, the strategy of keeping fixed proportions of
wealth in the assets under consideration leads to almost sure exponential growth in the
value process, as the time horizon T tends to infinity. This fixed proportion strategy
bears some similarity with the “cost averaging” approach described above (one is led
to buy an asset when its price, relative to the other assets, goes down and sells it when
its price goes up again).

Taking up again the sceptical point of view towards cost averaging, there is a
long line of research, going back to the work of G. Constantinides [C 79] and Ph. Dy-
bvig [D 88], elaborating on the sub-optimality and inefficiency of the cost-averaging
investment policy and similar schemes. In the latter paper Ph. Dybvig shows that for
an economic agent described as a maximizer of expected utility of terminal wealth for
an arbitrary utility function U : R → R∪{−∞}, the final outcome of an optimal port-
folio is a random variable which is necessarily anti-comonotone to the Radon-Nikodym
derivative dQ

dP
, if Q is the unique equivalent martingale measure for the (discounted)

stock price process. He also shows that, in the Black-Scholes model, the cost-averaging
policy (as well as many other popular schemes) simply fails to have this property so
that such a policy can be dominated by a better strategy (in the sense of second order
stochastic dominance). Compare also [J 01] on this issue.

Although the above two lines of results seem to go into different directions, they
are by no means contradictory. Exponential growth may very well be achieved by
sub-optimal strategies such as cost averaging. The crucial issue is the optimal rate
of exponential growth. The point of the present paper was to carefully analyze these
optimal rates, the corresponding strategies, and the relations with asymptotic arbitrage
and utility maximization.
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[ES 02] I. Evstigneev, K. Schenk-Hoppé, (2002), From Rags to Riches: on Constant
Proportions Investment Strategies, International Journal of Theoretical and
Applied Finance, Vol. 5, pp. 563–573.

[FS 99] W.H. Fleming, S.-J. Sheu, (1999), Optimal long term growth rate of expected
utility of wealth, The Annals of Applied Probability, Vol. 9, No. 3, pp. 871–903.

[FP 99] D. Florens-Landais, H. Pham, (1999), Large deviations in estimation of an
Ornstein-Uhlenbeck model, Journal of Applied Probability, Vol. 36, No. 1, pp.
60–77.

38
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