
arXiv: math.PR/0802.1152

Hiding a Drift
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Abstract: In this article we consider a Brownian motion with drift of the
form

dSt = µtdt + dBt for t ≥ 0,

with a specific non-trivial (µt)t≥0, predictable with respect to FB , the
natural filtration of the Brownian motion B = (Bt)t≥0. We construct a

process H = (Ht)t≥0, also predictable with respect to FB , such that ((H ·

S)t)t≥0 is a Brownian motion in its own filtration. Furthermore, for any
δ > 0, we refine this construction such that the drift (µt)t≥0 only takes
values in ]µ − δ, µ + δ[, for fixed µ > 0.
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1. Introduction

Let B = (Bt)t≥0 be a standard Brownian motion on a probability space (Ω,F , P).
For a fixed constant µ > 0, denote the Brownian motion with drift µ as
S = (St)t≥0, defined by

St = µt + Bt, t ≥ 0. (1.1)

Furthermore let FB := (FB
t )t≥0 denote the right continuous, saturated filtration

generated by B. Given a predictable, FB-adapted process H = (Ht)t≥0 we

∗Financial support from the Austrian Science Fund (FWF) grant P19456 and from the
Hungarian Science Foundation (OTKA) grant F049094 is gratefully acknowledged.

†Financial support from the Austrian Science Fund (FWF) grant P19456, from Vienna
Science and Technology Fund (WWTF) grant MA13 and from the Christian Doppler Research
Association (CDG) is gratefully acknowledged. While the research of this paper was conducted
all three authors were affiliated with the Institute for Mathematical Methods in Economics,
Vienna University of Technology.

1

http://arxiv.org/abs/math.PR/0802.1152
mailto:rasonyi@sztaki.hu
mailto:walter.schachermayer@univie.ac.at
mailto:richard.warnung@rcm.at
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consider the stochastic integral (H · S) = ((H · S)t)t≥0 in its right continuous,

saturated filtration F(H·S) := (F
(H·S)
t )t≥0. Marc Yor posed the following

Question 1: Can we define an FB-predictable process H such that the result-
ing stochastic integral (H · S) is a Brownian motion (without drift) in its own
filtration, i.e. an F(H·S)-Brownian motion?

Clearly, the predictable integrand H can only take values in {−1, 1}, P⊗λ- a.s.,
λ denoting Lebesgue measure on [0,∞), in order to make sure that the process
(H · S) has the quadratic variation of a Brownian motion.

In fact, at first glance it seems completely unlikely that an FB-predictable
process H with the required property does exist. Indeed, intuitively speaking,
it would have to start with P[H0 = 1] = P[H0 = −1] = 1/2, which seems
absurd as H0 is required to be FB

0 - measurable and therefore P-a.s. constant
(the sigma-algebra FB

0 is trivial). Fortunately this intuitive argument is not
quite correct, as the predictable process H = (Ht)t≥0 is only defined modulo
P⊗λ null-sets, so that it does not really makes sense to speak about the random
variable H0. Nevertheless the preceding heuristics seem to indicate that we need
some random sign ǫ with P[ǫ = 1] = P[ǫ = −1] = 1/2 which is independent of the
Brownian motion B to be able to start a successful construction of the desired
integrand H = (Ht)t≥0 for t close to t = 0.

So, let us cheat for a moment and fix a random variable ǫ, defined on (Ω,F , P)
with P[ǫ = 1] = P[ǫ = −1] = 1/2, and consider the enlarged filtration FB,ǫ

defined by letting FB,ǫ
t = σ(FB

t , ǫ) for t ≥ 0.
Let us now try to construct an integrand H = (Ht)t≥0 which is predictable

in the enlarged filtration FB,ǫ and such that the stochastic integral (H · S) is a
Brownian motion (without drift) in its own filtration F(H·S). We have an obvious
way to start the construction of H at time t = 0 by letting

H0 := ǫ, (1.2)

or rather, reasoning heuristically with infinitesimals,

Hu := ǫ for 0 ≤ u ≤ dt.

This yields an integrand (Hu)0≤u≤dt such that the stochastic integral (H ·
S)0≤u≤dt is a martingale for the infinitesimal time interval [0, dt]. Indeed

E[d(H · S)0] = E[ǫ(Sdt − S0)] = E[ǫ(Bdt − B0) + ǫµdt] = 0dt.

But already an infinitesimal instant of time later we again are in trouble: after
having observed the process (H ·S) during the infinitesimal time interval [0, dt]

we have learned something (which turns out to be of the order dt1/2) on the
probability of ǫ equaling +1 or −1, conditionally on the process (H · S)0≤u≤dt.

Hence the approach of defining Ht = H0 = ǫ for t ∈ [0, ∆t] for a finite
increment ∆t > 0 yields a process (H · S)0≤t≤∆t which fails to be a martingale
in its own filtration as one easily verifies.

At this stage we remembered Pólya’s famous dictum:
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“To every problem there is an easier problem”.

Instead of asking Yor’s original question for the process S with constant drift µ
as in (1.1) we pose the same question, but with µ replaced by an appropriate
predictable process (µt)t≥0, i.e.,

dSt = µtdt + dBt, (1.3)

where (µt)t≥0 is tailor-made such that, for the integrand Ht = ǫ, for t ≥ 0,
we indeed obtain a process (H · S)t≥0 which is a Brownian motion in its own
filtration F(H·S). This program indeed turns out to be doable as summarized in
the subsequent statement.

Proposition 1.1. Suppose that on (Ω,F , P) there is a standard Brownian mo-
tion B = (Bt)t≥0 and a random variable ǫ with P[ǫ = 1] = P[ǫ = −1] = 1/2,
independent of B. Denote by FB the filtration generated by B.

For each µ > 0, there is an FB-predictable process µt taking values in ]0, 2µ[
such that defining S = (St)t≥0 by S0 = 0 and

dSt = µtdt + dBt, t ≥ 0, (1.4)

we have that
Yt = ǫSt, t ≥ 0,

is a Brownian motion in its own filtration.

The preceding result is a preliminary step towards a satisfactory answer to
Yor’s question. It has two deficiencies: firstly we had to replace the constant
µ by a process (µt)t≥0 fluctuating in ]0, 2µ[, and secondly we had to enlarge
the filtration FB to Fǫ,B in order to be able to define our predictable integrand
Ht ≡ ǫ, for t ≥ 0.

As regards the second issue, we can get completely rid of the necessity of
introducing the additional source of randomness ǫ by applying the Lévy trans-
form, see Section 3. We can indeed find an integrand H which is predictable
with respect to FB instead of Fǫ,B and still does the job. As regards the first
issue we can refine the construction in such a way that the process (µt)t≥0 only
takes values in ]µ − δ, µ + δ[ instead of ]0, 2µ[, for given δ > 0.

We summarize our findings in the subsequent theorem. Very roughly speak-
ing, it states that the answer to Yor’s question is positive, provided that we
allow for a tailor-made drift process (µt)t≥0 instead of a constant drift µ, which
may be chosen to satisfy |µt − µ| < δ, for given δ > 0.

Theorem 1.2. Let B = (Bt)t≥0 be a Brownian motion defined on the filtered
probability space (Ω,F , FB, P), where FB = (FB

t )t≥0 is the right-continuous
saturated filtration generated by B.

(i) For each µ > 0, there are FB- predictable processes H = (Ht)t≥0, taking
values in {−1, 1}, and (µt)t≥0, taking values in ]0, 2µ[, such that for S =
(St)t≥0 defined by S0 = 0 and

dSt = µtdt + dBt
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we have that the process ((H · S)t)t≥0 is a Brownian motion in its own
filtration F(H·S).

(ii) Furthermore, for each δ > 0 we can choose (µt)t≥0 such that it only takes
values in ]µ − δ, µ + δ[.

However, Question 1 of M. Yor in its original form above still remains an open
and challenging problem. For recent work on the conservation of the martingale
property under a change of filtration we refer to [1].

M. Émery asked us the following question: what about the discrete-time
version of the problem? The proper discrete analogue is an i.i.d. sequence (ǫn)n≤0

in its natural filtration (Fn)n≤0 such that P[ǫn = 1] = 1 − P[ǫn = −1] = p ∈
]0, 1[ \{1/2}. The question now reads as follows: is there an (Fn)n≤0-predictable
sequence (hn)n≤0 of {−1, 1}-valued random variables such that the sequence
(hnǫn)n≤0 is i.i.d. with P[hnǫn = 1] = P[hnǫn = −1] = 1/2 ?

This discrete version turns out to be simpler than the continuous one and we
shall give in the appendix a positive solution, even in a slightly more general
setting.

The article is structured as follows: In Section 2 we describe the details of
the construction of (µt)t≥0 with respect to Fǫ,B. Next in Section 3 we prove the
first part of Theorem 1.2 above. Finally, in Section 4 we use stopping techniques
in order to show the second statement of Theorem 1.2.

2. Constructing the drift process

Fix a probability space (Ω,F , P ). Let B be a Brownian motion and let ǫ be an
independent random sign with P (ǫ = 1) = P (ǫ = −1) = 1/2. Consider

St :=

∫ t

0

µsds + Bt, t ≥ 0, (2.1)

with some bounded FB-predictable drift µt and set Yt := ǫSt. Our purpose is
to find µt such that Yt is a Brownian motion in its own filtration.

We imagine µt as being “glued together” from two FY -predictable processes.
Formally, let µ+

t , µ−
t be FY -predictable bounded processes such that

µt := 1{ǫ=+1}µ
+
t + 1{ǫ=−1}µ

−
t . (2.2)

We wish to derive conditions on µ+
t , µ−

t which ensure that Yt is as required.
To this end introduce the conditional probabilities

pt := P [ǫ = 1|FY
t ], t ≥ 0. (2.3)

In the language of filtering theory pt gives the distribution of the “signal” ǫ,
conditionally on the “observations” Y .

Proposition 2.1. Let S and Y be as above and (µt)t≥0 a bounded FB-predictable
process of the form (2.2). The conditional probabilities pt defined in (2.3) satisfy
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p0 = 1/2 and

dpt =
(µ+

t + µ−
t )2

2
[ǫpt (1 − pt) + pt(1 − pt)(1 − 2pt)] dt+ǫpt(1−pt)(µ

+
t +µ−

t )dBt.

(2.4)

Proof. For each T > 0 there exists a measure QT ∼ P|Fǫ,B

T

such that (Yt)0≤t≤T

is a (QT , Fǫ,B)- Brownian motion. By the Girsanov theorem, we know that the
Radon-Nikodym derivative is given by

dQT

dP
=







exp
(

−
∫ T

0 µ+
t dBt − (1/2)

∫ T

0 (µ+
t )2dt

)

, if ǫ = 1

exp
(

−
∫ T

0
µ−

t dBt − (1/2)
∫ T

0
(µ−

t )2dt
)

, if ǫ = −1.
(2.5)

It follows that for each T > 0 , the (QT , Fǫ,B)-martingale Zt := dP
dQT

∣

∣

∣Fǫ,B
t

, 0 ≤

t ≤ T is of the form

Zt = Z+
t 1{ǫ=1} + Z−

t 1{ǫ=−1}, 0 ≤ t ≤ T, (2.6)

where the processes (Z+
t )0≤t≤T and (Z−

t )0≤t≤T are given by Z+
0 = Z−

0 = 1 and

dZ+
t = µ+

t Z+
t dYt,

dZ−
t = −µ−

t Z−
t dYt,

respectively. Note that µ+
t , µ−

t are assumed to be FY -predictable and thus
(Z+

t )0≤t≤T and (Z−
t )0≤t≤T are FY -predictable, too. By the assumption on µt,

Zt is clearly FB-predictable.
We claim that, under QT , ǫ is independent of Y and has the same law as

under P. Indeed, as ZT is FB
T -measurable and ǫ is independent of B (and hence

of S) under P, for any bounded measurable functions h, j we have

EQT
[h(S)j(ǫ)] = EP[(1/ZT )h(S)]EP[j(ǫ)] = EQT

[h(S)]EQT
[j(ǫ)],

showing the QT -independence of S and ǫ as well as QT [ǫ = ±1] = 1/2.
Now note that, under QT , S is a Brownian motion. By symmetry of the

Brownian motion we also get that Y = ǫS and ǫ are QT -independent as claimed
above.

Clearly, we have 1{ǫ=1} = ǫ+1
2 . Thus for calculating

EP[1{ǫ=1} | FY
t ] =

1

2
(EP[ǫ | FY

t ] + 1), t ≥ 0

we first calculate EP[ǫ | FY
t ], t ≥ 0. Fix any T > 0 and consider that by Bayes’

formula and the tower law applied to the (QT , Fǫ,B)-martingale ZT , it holds
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that

EP[ǫ | FY
t ] =

EQT
[ǫZT | FY

t ]

EQT
[ZT | FY

t ]
=

=
EQT

[ǫEQT
[ZT | Fǫ,B

t ] | FY
t ]

EQT
[EQT

[ZT | Fǫ,B
t ] | FY

t ]
=

=
EQT

[ǫZt | FY
t ]

EQT
[Zt | FY

t ]
, 0 ≤ t ≤ T.

By independence of ǫ and Y (under QT ) and FY -adaptedness of (Z+
t )0≤t≤T

and (Z−
t )0≤t≤T we get

EQT
[ǫZt | FY

t ]

EQT
[Zt | FY

t ]
=

EQT
[Z+

t 1{ǫ=1} | FY
t ] − EQT

[Z−
t 1{ǫ=−1} | FY

t ]

EQT
[Z+

t 1{ǫ=1} | FY
t ] + EQT

[Z−
t 1{ǫ=−1} | FY

t ]
=

Z+
t − Z−

t

Z+
t + Z−

t

=
exp
(∫ t

0
µ+

u dYu − (1/2)
∫ t

0
(µ+

u )2du
)

− exp
(

−
∫ t

0
µ−

u dYu − (1/2)
∫ t

0
(µ−

u )2du
)

exp
(∫ t

0
µ+

u dYu − (1/2)
∫ t

0
(µ+

u )2du
)

+ exp
(

−
∫ t

0
µ−

u dYu − (1/2)
∫ t

0
(µ−

u )2du
)

=
exp
(∫ t

0
(µ+

u + µ−
u )dYu − (1/2)

∫ t

0
[(µ+

u )2 − (µ−
u )2]du

)

− 1

exp
(∫ t

0 (µ+
u + µ−

u )dYu − (1/2)
∫ t

0 [(µ+
u )2 − (µ−

u )2]du
)

+ 1
, 0 ≤ t ≤ T.

So we have

EP[1{ǫ=1} | FY
t ] =

1

2

(

EQT
[ǫZt | F

Y
t ]

EQT
[Zt | FY

t ]
+ 1

)

=

=
exp
(∫ t

0
(µ+

u + µ−
u )dYu − (1/2)

∫ t

0
[(µ+

u )2 − (µ−
u )2]du

)

exp
(∫ t

0
(µ+

u + µ−
u )dYu − (1/2)

∫ t

0
[(µ+

u )2 − (µ−
u )2]du

)

+ 1
,

(2.7)

for 0 ≤ t ≤ T . Define the process (Ut)t≥0 given by U0 = 0 and

dUt = (µ+
u + µ−

u )dYt −
(µ+

u )2 − (µ−
u )2

2
dt.

Applying the Itô formula to (2.7) and recalling the expression for (Yt)t≥0 we get

d
exp(Ut)

exp(Ut) + 1
=

exp(Ut)

(exp(Ut) + 1)2

(

ǫ
(µ+

t + µ−
t )2

2
dt + ǫ(µ+

t + µ−
t )dBt

)

+
1

2

exp(Ut) − exp(2Ut)

(exp(Ut) + 1)3
(µ+

t + µ−
t )2dt.

Using pt = exp(Ut)
exp(Ut)+1 , t ≥ 0 we get (2.4).

We also have
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Proposition 2.2. Under the assumptions of Proposition 2.1 suppose, in addi-
tion, that for all u ≥ 0,

puµ+
u − (1 − pu)µ−

u = 0 a.s., (2.8)

then the process Y is an FY -Brownian motion.

Proof. Obviously (Yt)t≥0 is FY -adapted, continuous and has the right quadratic
variation as the drift is bounded. In order to fulfill Lévy’s characterization the-
orem of Brownian motion we need to check the martingale condition. Therefore
fix s ≤ t < ∞ and consider that

E[ǫ
(

St − Ss

)

| FY
s ] = E[

∫ t

s

ǫµudu | FY
s ] + E[ǫ(Bt − Bs) | F

Y
s ].

The second conditional expectation is 0. The martingale property is thus equiv-
alent to

E[

∫ t

s

ǫµudu1A] = 0, (2.9)

for all A ∈ FY
s . Note that the Fubini theorem applies as |ǫµu1A| is bounded.

Furthermore using the tower law we get that (2.9) holds iff

E[

∫ t

s

ǫµudu1A] =

∫ t

s

E[E[ǫµu | FY
u ]1A]du = 0,

for all A ∈ FY
u . Recall that µ+

u and µ−
u are assumed to be FY

u -measurable for
u ≥ 0. It follows from the hypotheses of this Proposition that

E[ǫµu | FY
u ] = puµ+

u − (1 − pu)µ−
u = 0,

concluding the proof.

Formula (2.8) shows that it is reasonable to choose µ+
t proportional to (1−pt)

and µ−
t proportional to pt. This will guarantee the validity of (2.8) as the next

Proposition shows.

Proposition 2.3. Let µ > 0 be an arbitrary constant. Let gt be a solution of
the equation

dgt = 2µ2 [ǫgt(1 − gt) + gt(1 − gt) (1 − 2gt)] dt + 2µǫgt(1 − gt)dBt, g0 = 1/2,
(2.10)

adapted to the filtration Fǫ,B and satisfying 0 ≤ gt ≤ 1 for t ≥ 0. Set

µ+
t = 2µ(1 − gt), µ−

t = 2µgt, t ≥ 0, (2.11)

and define µt, St, Yt, pt accordingly. If gt is FY -predictable and µt is FB-predictable
then pt equals gt and Y is a Brownian motion in its own filtration.
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Proof. First note that the coefficients of the autonomous SDE (2.10) are Lipschitz-
continuous and bounded when restricted to the interval [0, 1] hence gt is the
unique strong solution of (2.10) adapted to Fǫ,B. Thus it suffices to prove that
pt is also a solution of (2.10). Obviously, p0 = P[ǫ = 1] = 1/2 = g0.

If gt is FY -predictable then so are µ+
t , µ−

t . Proposition 2.1 shows that pt is
a solution of (2.10) hence indeed pt = gt. With this choice of µ+

t , µ−
t equation

(2.8) is satisfied and Proposition 2.2 allows us to conclude.

It remains to solve the stochastic differential equation (2.10).

Proof of Proposition 1.1. In section 4.2 of [4] a different filtering problem leads
to almost the same equation as (2.10). That equation has an explicit solution
(see (4.55) on page 180) from which it is easy to make the guess

gt :=

{

exp(2µBt+2µ2t)
1+exp(2µBt+2µ2t) , if ǫ = 1

1
1+exp(2µBt+2µ2t) , if ǫ = −1.

(2.12)

Applying Itô’s formula we may check that this indeed gives a (strong) solution to
(2.10) which trivially stays in (0, 1). Define µ+

t , µ−
t , µt, St, Yt, pt as in Proposition

2.3. One may check that

dgt = 2µgt(1 − gt)dYt, (2.13)

showing that gt is FY -predictable. We find that the dynamics of µt is

dµt = −µ2
t (2µ − µt)dt − µt(2µ − µt)dBt, (2.14)

hence µt is FB-predictable. For later use we note that, substituting in to (2.11)
we get the following formula for µt:

µt =
2µ

1 + exp(2µBt + 2µ2t)
. (2.15)

Proposition 2.3 now implies that pt = gt and Yt is indeed as required.

3. Passing to the Lévy transform

In this section we describe how to get rid of the enlargement of the filtration FB

by the sign ǫ. We will make use of the Lévy transform which arises naturally in
the famous Tanaka formula for the SDE of (|Bt|)t≥0 for some Brownian motion
B (for the derivation of the Tanaka formula see e.g. [3]).

Recall that the Lévy transform (M0
t )t≥0, of a Brownian motion (Bt)t≥0 is

defined by

M0
t =

∫ t

0

sign(Bs)dBs, t ≥ 0, (3.1)
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where we use the sign function in the following left-continuous form

sign(x) = 1{x>0} − 1{x≤0}, for x ∈ R.

Among the properties of the Lévy transform we mention that (M0
t )t≥0 is a Brow-

nian motion in its own filtration and that the filtration generated by (M0
t )t≥0

equals the one generated by (|Bt|)t≥0 which is strictly smaller than the filtration
generated by (Bt)t≥0.

Proof of i) in Theorem 1.2. We come back to the setting of section 2 and con-
sider the filtered probability space (Ω,F , Fǫ,B, P). Let us take µt, St as con-
structed in the proof of Proposition 1.1. Introduce (Yt)t≥0 = (ǫSt)t≥0, this is a
Brownian motion in its own filtration, by Proposition 1.1.

Now consider the Lévy transform (Mt)t≥0 of the FY -Brownian motion Y =
(Yt)t≥0. It is defined by M0 = 0 and

dMt = sign(Yt)dYt = sign(ǫSt)ǫdSt

= sign(St)dSt, t ≥ 0. (3.2)

This is again a Brownian motion (in FY as well as in FM ) by the properties of
the Lévy-transform. It follows that with the choice Ht = sign(St), the process
(H · S)t, t ≥ 0 is a Brownian motion in its own filtration.

4. L
∞-approximation of a constant drift

The aim of this section is to show that we can in fact define a process (St)t≥0

such that the drift is close to a constant drift µ with respect to the norm in L∞.
The strategy is that we stop whenever the drift (µt)t≥0 has moved by some small
fixed number. After that we will restart the construction. A somewhat delicate
point is that the stopping has to be done in a way adapted to FM . Lemma 4.1
below shows that this is indeed possible.

The distance of the drift process µt from µ is proportional to the distance of
pt from one half. Namely, by (2.2) and (2.11),

|µt − µ| = |2µ(1 − pt) − µ|1{ǫ=1} + |2µpt − µ|1{ǫ=−1}

= 2µ

∣

∣

∣

∣

1

2
− pt

∣

∣

∣

∣

, for t ≥ 0. (4.1)

In the following lemma we show that one can define a stopping time in the
filtration generated by the Lévy transform (Mt)t≥0 of the Brownian motion
(Yt)t≥0, i.e. FM := (FM

t )t≥0, such that we have a control over the distance of p
from 1/2.

Lemma 4.1. Take pt, µt, St, Yt as constructed in the proof of Proposition 1.1
in section 2 and consider the Lévy transform M = (Mt)t≥0 of Y = (Yt)t≥0,
defined by M0 = 0 and

dMt = sign(Yt)dYt.
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For each δ > 0 we define the stopping time ρδ := inf{t : |Mt| ≥ δ} ∧ δ. The
following estimate holds:

∣

∣

∣

∣

pt −
1

2

∣

∣

∣

∣

≤ δ
(2µ + 3µ2)

2
for 0 ≤ t ≤ ρδ. (4.2)

Proof. We present the proof in two steps.
Step 1: We show that |Yt| ≤ 2δ, for 0 ≤ t ≤ ρδ.

Let τ := inf{t : |Yt| ≥ 2δ} and let σ := max{t ≤ τ : Yt = 0}, i.e. the time of
the last zero of Y preceding τ . We note in passing that τ is a stopping time in
the filtration FY , while σ fails to be a stopping time. Observe that by Tanaka’s
formula (see for instance [3])

Mt = |Yt| − Lt,

where L is the local time of Y at zero. By definition of σ the local time L does
not grow on [σ, τ ] and thus a.s. Lσ = Lτ . For the process M this gives

|Mσ − Mτ | = 2δ,

so that sup0≤t≤τ |Mt| ≥ δ, which shows that a.s. ρδ ≤ τ , i.e. |Yt| ≤ 2δ for
0 ≤ t ≤ ρδ.

Step 2: By straightforward calculation, |pt − (1/2)| = (1/2)|th(µ2t + µBt)|,
where th denotes the hyperbolic tangent. As |thx| ≤ |x|, dYt = ǫµtdt + ǫdBt

and µt ∈]0, 2µ[ we may write, for t ≤ ρδ,

∣

∣

∣

∣

pt −
1

2

∣

∣

∣

∣

≤ µ2t/2 + µ|Bt|/2 ≤ µ2t/2 + µ|Yt|/2 + µ

∣

∣

∣

∣

∫ t

0

µsds

∣

∣

∣

∣

/2 ≤

µ2δ/2 + µ(2δ)/2 + µ2δ,

using Step 1 and ρδ ≤ δ.

Using the previous Lemma we can refine the construction by stopping and
restarting, when we are too far away from a constant drift, considering the
information of FM only. Fix the constant µ > 0. For the goal of controlling the
L∞ distance of µ and the drift process µt to be constructed fix also a constant
δ > 0.

The strategy is straightforward. We start at t = 0 using the drift (µ1
t )t≥0

which is given by µ1
0 = µ and (2.14). Define the process S1 by S1

0 = 0,

dS1
t = µ1

t dt + dBt, t ≥ 0.

We perform the Lévy transform which results in a process (M1
t )t≥0. Intro-

ducing the FM1

-stopping time

τ1 := inf{t > 0 : |M1
t | ≥ δ} ∧ δ

we can assure by Lemma 4.1 and (4.1) that

|µ1
t − µ| ≤ δ(3µ3 + 2µ2) for 0 ≤ t ≤ τ1. (4.3)
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Then after τ1 we restart the construction by defining the drift (µ2
t )t≥τ1 where

µ2
τ1

= µ and (µ2
t )t≥τ1 fulfills (2.14). Set S2

τ1
= 0 and

dS2
t = µ2

t dt + dBt, t ≥ τ1.

Furthermore we perform the Lévy transform resulting in (M2
t )t≥τ1 and we define

the stopping time

τ2 := inf{t > τ1 : |M2
t | ≥ δ} ∧ (δ + τ1).

By this construction we have that the estimate (4.3) holds for (µ2
t )τ1≤t≤τ2 , and

we may continue the construction in the same fashion.
Now we proceed formally:
Set τ0 = 0 and define recursively for l ≥ 1 (S̃l

t)t≥0 by S̃l
0 = 0 and

dS̃l
t = µ̃l

tdt + dW l
t , t ≥ 0,

where the Brownian motion (W l
t )t≥0 is given by

W l
t := Bτl−1+t − Bτl−1

, t ≥ 0,

and the drift process (µ̃l
t)t≥0 is given by

µ̃l
t =

2µ

1 + exp(2µW l
t + 2µ2t)

, (4.4)

(compare to (2.15)).
The integrand (H l

t)t≥0 is defined analogously to Section 3 by

H l
t = sign(S̃l

t), t ≥ 0,

and the stopping time γl is defined by

γl := inf{t : |(H l · S̃l)t| ≥ δ} ∧ δ. (4.5)

Then we set

τl = τl−1 + γl (4.6)

and go on with the recursive definition.
Finally for l ≥ 1 we introduce the processes (Ñ l

t)t≥0 and (N l
t)t≥0 by

Ñ l
t := (H l · S̃l)t, t ≥ 0

and
N l

t := Ñ l
t∧γl

, t ≥ 0.

Note that by the considerations of sections 2 and 3 (Ñ l
t )t≥0 as well as its stopped

version (N l
t)t≥0 are martingales in their own filtrations for l ≥ 1.
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Remark 4.2. It is evident that (γl)l≥1 as well as {(W l
t )0≤t≤γl

}l≥1 are i.i.d. se-

quences. By σ(N l
t , t ≥ 0) ⊆ FW l

γl
it holds that (N l

t )l≥1 are independent (and

identically distributed) processes and that FB
τl−1

is independent of (W l
t )t≥0 for

l ≥ 1. By these observations it follows that FB
τl−1

is independent of (N l
t )t≥0 for

l ≥ 1.

We need to show that the union of the stochastic intervals
⋃

l≥1Jτl−1, τlK
equals the whole real line.

Lemma 4.3. Let (τl)
∞
l=0 be defined by τ0 = 0 and (4.6) for l ≥ 1. Then

P[τl → ∞, l → ∞] = 1.

Proof. We already noticed in Remark 4.2 that the interval lengths τl − τl−1 =
γl are positive and identically distributed. A well-known result (see e.g. [2,
Proposition 4.14]) tells us that

lim
l→∞

τl =
∞
∑

l=1

(τl − τl−1) = ∞

almost surely.

The last step is to show that the process which is given by the concatenation
of the Lévy transforms N l, l ≥ 1 on the respective stochastic intervals is a
Brownian motion in its own filtration. We want to apply Lévy ’s criterion and
first concentrate on proving the martingale property. We need three lemmas:

Lemma 4.4. Let (Gt)t≥0 be a martingale in its own filtration. Then

(G(t−x)+)t≥0

is also a martingale in its own filtration for each fixed number x ≥ 0.

Proof. Obvious.

Lemma 4.5. Let η be an FB-stopping time and (Gt)t≥0 be a continuous mar-
tingale in its own filtration such that FB

η ⊥⊥ (Gt)t≥0. Define the filtration

Ft := FB
η ∨ Gt, where Gt := σ(G(u−η)+ , 0 ≤ u ≤ t), then (G(t−η)+)t≥0 is a

martingale w.r.t. (Ft)t≥0.

Proof. We want to show that

E[G(t−η)+ | FB
η ∨ σ(G(u−η)+ , 0 ≤ u ≤ s)] = G(s−η)+ .

Note that

FB
η ∨ σ(G(u−η)+ , 0 ≤ u ≤ s) ⊆ FB

η ∨ σ(G(u−·)+ , 0 ≤ u ≤ s)

and consider an event in the latter sigma-algebra given by

A := {B(· ∧ η) ∈ C, L(·) ∈ D},
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with Borel sets C, D of C[0,∞) where C[0,∞) is the space of continuous func-
tions on [0,∞) equipped with the topology of uniform convergence on compacts.
We regard B(· ∧ η) as a random function

B(· ∧ η) : Ω → C[0,∞),

and
L(·) := G(u1−·)+ : Ω → C[0,∞)

for some 0 ≤ u1 ≤ s. Furthermore, we define the random functions

H1(·) := G(t−·)+ : Ω → C[0,∞) and

H2(·) := G(s−·)+ : Ω → C[0,∞).

Now consider that the law ν of (H1, H2, B(· ∧ η), L, η) on the space

Θ := (C[0,∞))4 × (R+ ∪ {∞}),

can be decomposed as

dν(x1, x2, x3, x4, x5) = dν(x1, x2, x4 | x3, x5)dµ(x3, x5),

where µ is the law of (B(· ∧ η), η) and ν(·, ·, · | x3, x5) is the conditional law
of (H1, H2, L) knowing B(· ∧ η) = x3 and η = x5. The martingale property of
G(t−x)+ for each x ≥ 0 (Lemma 4.4) implies
∫

Θ

x1(x)1D(x4(x))dϑ(x1, x2, x4) =

∫

Θ

x2(x)1D(x4(x))dϑ(x1, x2, x4), (4.7)

for each x ≥ 0 where ϑ is the (unconditional) law of (H1, H2, L).
Furthermore, the hypotheses of the Lemma entail the independence of H1, H2, L

from B(· ∧ η) and η, so it follows that ν(x1, x2, x4 | x3, x5) does not depend on
(x3, x5) and thus

dν(x1, x2, x4 | x3, x5) = dϑ(x1, x2, x4). (4.8)

By the decomposition of ν and (4.8) we can write

E[G(t−η)+1A] =

∫

Θ

x1(x5)1C(x3)1D(x4(x5))dν(x1, x2, x3, x4, x5)

=

∫

Θ

x1(x5)1D(x4(x5))dϑ(x1, x2, x4)1C(x3)dµ(x3, x5)

which by (4.7) equals
∫

Θ

x2(x5)1D(x4(x5))dϑ(x1, x2, x4)1C(x3)dµ(x3, x5) = E[G(s−η)+1A].

For more general sets A of the form

A := {B(· ∧ η) ∈ C, G(u1−η)+ ∈ D1, . . . , G(un−η)+ ∈ Dn}

the equality
E[G(t−η)+1A] = E[G(s−η)+1A]

holds by the same argument, which proves the lemma.
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Lemma 4.6. Let X be a random variable, G and H be sigma-algebras in a
probability space (Ω,F , P). If G ⊥⊥ H and X ⊥⊥ H, then

E[X | G ∨ H] = E[X | G].

Proof. Obvious.

Finally define the process (St)t≥0 using S̃l, l ≥ 1 and (Ht)t≥0 using H l, l ≥ 1:

St :=
l−1
∑

j=1

S̃j
γj

+ S̃l
t−τl−1

for τl−1 ≤ t ≤ τl,

thus the drift (µt)t≥0 of (St)t≥0 is given by

µt := µ̃l
t−τl−1

for τl−1 ≤ t ≤ τl, (4.9)

and the integrand is defined as

Ht := H l
t−τl−1

for τl−1 ≤ t ≤ τl.

We obviously have

St =

∫ t

0

µsds + Bt.

Then the stochastic integral (Mt)t≥0 is defined by

Mt := (H · S)t =

k−1
∑

l=1

(H l · S̃l)γl
+ (Hk · S̃k)t−τk−1

for τk−1 ≤ t ≤ τk.

(4.10)

Note that, by construction, St and Mt are continuous processes.

Proposition 4.7. The process (Mt)t≥0 as defined in (4.10) satisfies

Mt =

∞
∑

l=1

N l
(t−τl−1)+

, (4.11)

where the sum converges in L2. (Mt)t≥0 is a martingale in its own filtration.
That is, for 0 ≤ s < t < ∞

E[Mt|F
M
s ] = Ms.

Proof. First we show that the sum on the right-hand-side of (4.11) converges in
L2. Note that

k
∑

l=1

N l
(t−τl−1)+

=

∫ τ1∧t

0

sign(S̃1
s−τ0

)µ̃1
s−τ0

ds + · · · +

∫ τk∧t

τk−1∧t

sign(S̃k
s−τk−1

)µ̃k
s−τk−1

ds

+

∫ τ1∧t

0

sign(S̃1
s−τ0

)dBs + · · · +

∫ τk∧t

τk−1∧t

sign(S̃k
s−τk−1

)dBs

=

∫ τk∧t

0

Hsµsds +

∫ τk∧t

0

HsdBs,
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which by Lemma 4.3 a.s. converges to

Mt =

∫ t

0

Hsµsds +

∫ t

0

HsdBs as k → ∞. (4.12)

Furthermore, we know from Proposition 2.3 that

|Htµt| ≤ 2µ for t ≥ 0.

By the Doob inequality and the Itô isometry we get

E[ sup
0≤u≤t

|

∫ u

0

HsdBs|
2] ≤ 4E[(

∫ t

0

HsdBs)
2] = 4t,

as |Hs| = 1. The L2 convergence of the infinite sum follows.
Now we prove that (Mt)t≥0 is a martingale in its own filtration. Define the

filtrations (Gl
t)t≥0 for l ≥ 1 by

Gl
t := σ(N l

(u−τl−1)+
, 0 ≤ u ≤ t),

and consider that

E[Mt | F
M
s ] = E[

∞
∑

l=1

E[N l
(t−τl−1)+

|
∞
∨

j=1

Gj
s ] | FM

s ], (4.13)

where L2-convergence allows us to exchange summation and expectation and
we used that FM

s ⊆
∨∞

j=1 G
j
s for s ≥ 0. Furthermore, notice that

∞
∨

j=1

Gj
s ⊆

l
∨

j=1

Gj
s ∨ σ(N l+1, N l+2, . . .).

To see this, note that for m ≥ l + 1 we have that Gm
s ⊆ σ(Nm, τm−1 ∧ s) and

that by definition σ(τm−1∧s) ⊆ σ(Nm−1, τm−2∧s). Continuing this inductively
we get Gm

s ⊆ σ(Nm, . . . , N l+1, τl ∧ s) and finally, σ(τl ∧ s) ⊆ Gl
s.

Thus define Hl
s :=

∨l
j=1 G

j
s ∨ σ(N l+1, N l+2, . . .) and recall that

∨l
j=1 G

j
s ⊆

FB
τl∧s which is independent of Nk, k ≥ l + 1, recall Remark 4.2. By Lemma 4.6

and the tower law the inner conditional expectation in (4.13) is given by

E[E[N l
(t−τl−1)+

| Hl
s] |

∞
∨

j=1

Gj
s ] = E[E[N l

(t−τl−1)+
|

l
∨

j=1

Gj
s ] |

∞
∨

j=1

Gj
s ]

= E[N l
(t−τl−1)+

|
l
∨

j=1

Gj
s ].
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Note that
∨l

j=1 G
j
s ⊆ F l

s := FB
τl−1

∨Gl
s. By applying Lemma 4.5 with (Gt)t≥0 =

(N l
t)t≥0 we get that

E[N l
(t−τl−1)+

|
l
∨

j=1

Gj
s ] = N l

(s−τl−1)+
.

Substituting these results into (4.13) and using the representation (4.11) for Ms

we get that

E[Mt | F
M
s ] = E[

∞
∑

l=1

N l
(s−τl−1)+

| FM
s ] = E[Ms | FM

s ] = Ms.

Proof of ii) in Theorem 1.2. By construction and by Proposition 4.7 (Mt)t≥0 is
a continuous martingale and its bracket is 〈M〉t = t by (4.12) and by |Hs| =
1, s ≥ 0, hence (Mt)t≥0 is a Brownian motion (in its own filtration).

For (µt)t≥0, the drift of S, we conclude that, due to (4.1), Lemma 4.1, (4.5), (4.9)
and Lemma 4.3

sup
t≥0

|µt − µ| ≤ δ(3µ3 + 2µ2) a.s., (4.14)

which can be made arbitrarily small.

Appendix A: Michel Émery’s question

We now take up again the question discussed at the end of the introduction.
We adopt the notation from there but assume, slightly more generally, that the
independent sequence (ǫn)n≤0 of {−1, 1}- valued random variables fulfill the
condition

P[ǫn = 1] = 1 − P[ǫn = 1] = pn, n ≤ 0,

for some sequence (pn)n≤0 in ]0, 1[ satisfying

0
∑

n=−∞

min(pn, 1 − pn) = ∞. (A.1)

In the sequel we call {−1, 1}-valued random variables Bernoulli variables and
let N− denote the integers less than or equal to zero.

The role of the regularity condition (A.1) is explained in the following lemma.

Lemma A.1. The law of the {−1, 1}N−-valued random variable (ǫn)n≤0 is dif-
fuse iff (A.1) holds true.
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Proof. First assume that there exists an atom A = (a0, a−1, . . .) with P[A] > 0,

then
∏−∞

n=0 p
(1+an)/2
n (1 − pn)(1−an)/2 > 0 which is equivalent to

0
∑

n=−∞

(

1 − p(1+an)/2
n (1 − pn)(1−an)/2

)

=

0
∑

n=−∞

(

(1 − pn)(1+an)/2p(1−an)/2
n

)

< ∞,

which implies that the sum in (A.1) is finite. On the other hand if the sum

in (A.1) is finite, this is equivalent to
∏−∞

n=0 p
(1−an)/2
n (1 − pn)(1+an)/2 > 0 for a

sequence (an)n≤0 such that

p(1+an)/2
n (1 − pn)(1−an)/2 = min(pn, 1 − pn) for n ≤ 0,

and we find A = (a0, a−1, . . .) with P[A] > 0.

We call a {−1, 1}- valued random variable X symmetric Bernoulli if

P[X = 1] = P[X = −1] =
1

2
.

Lemma A.2. Let (ǫn)n≤0 be a sequence of Bernoulli random variables, and
(hn)n≤0 an i.i.d. sequence of symmetric Bernoulli variables independent of (ǫn)n≤0.
Then

(a) (hnǫn)n≤0 is an i.i.d. sequence of symmetric Bernoulli random variables
and

(b)
law[(ǫn)n≤0|(hnǫn)n≤0] = law[(ǫn)n≤0] a.s.

Proof. Fix N ≥ 1 and consider signs x1, . . . , xN as well as indices i1, . . . , iN .
Then by independence of (hn)n≤0 and (ǫn)n≤0 combined with the i.i.d. property
we get

P[hi1ǫi1 = x1, . . . , hiN
ǫiN

= xN ] =
∑

y1,...,yn

P[hi1 = x1/y1, . . . , hiN
= xN/yN ]P[ǫi1 = y1, . . . , ǫiN

= yN ] =

(

1

2

)N
∑

y1,...,yn

P[ǫi1 = y1, . . . , ǫiN
= yN ] =

(

1

2

)N

,

which proves (a). For proving (b), we fix again N, M ≥ 1 and consider signs
x1, . . . , xN and y1, . . . , yN as well as indices i1, . . . , iN such that P[hi1ǫi1 =
x1, . . . , hiN

ǫiN
= xN ] > 0. By independence of (hn)n≤0 and (ǫn)n≤0 and the

previous argument we can calculate that

P[ǫi1 = y1, . . . , ǫiN
= yN | hi1ǫi1 = x1, . . . , hiN

ǫiN
= xN ]

=
P[ǫi1 = y1, . . . , ǫiN

= yN , hi1ǫi1 = x1, . . . , hiN
ǫiN

= xN ]

P[hi1ǫi1 = x1, . . . , hiN
ǫiN

= xN ]

=(1/2)N P[ǫi1 = y1, . . . , ǫiN
= yN ]

(1/2)N

=P[ǫi1 = y1, . . . , ǫiN
= yN ],
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which proves (b).

Assuming (A.1) we can find disjoint, infinite subsets (In)n≤0 of N− such that
i > n, for all i ∈ In, and

∑

i∈In

min(pi, 1 − pi) = ∞. (A.2)

For these sets we define the following infinite sequence
(

I(l)
)∞

l=0
of subsets of

N− by

I(0) := I0

I(1) =
⋃

n∈I(0)

In

I(2) =
⋃

n∈I(1)

In

... etc.

(A.3)

Additionally to the sequence
(

I(l)
)∞

l=0
from (A.3) we furthermore introduce

J = N− \

(

{0} ∪
∞
⋃

l=0

I(l)

)

.

In the following lemma we summarize three properties of these sets.

Lemma A.3. For the sequence
(

I(l)
)∞

l=0
defined in (A.3) we have

(a) I(l) ⊂ {. . . ,−l − 2,−l − 1} for l ≥ 0.
(b) The sets

(

I(l)
)∞

l=0
are mutually disjoint.

(c) For each m ∈ J we have Im ⊂ J .

Proof. Proof of (a): We prove the statement by induction. 0 /∈ I(0) by con-
struction. Thus assume that the statement holds for I(0), . . . , I(n). For I(n+1)

consider that
I(n+1) =

⋃

x∈I(n)

Ix,

and by the induction hypothesis x ≤ −n−1 for x ∈ I(n). But then also y ≤ x−1,
for all y ∈ Ix, thus it follows that y ≤ −n − 2 and Ix ⊂ {. . . ,−n − 3,−n − 2}
for each x ∈ I(n), which proves (a).
Proof of (b): Again by induction: Let us assume that I(0), . . . , I(n) are pairwise
disjoint. We want to prove that I(0), . . . , I(n+1) are also pairwise disjoint. Take
m ∈ I(n+1) =

⋃

x∈I(n) Ix. If we had m ∈ I(j) for some 1 ≤ j ≤ n then m ∈ Iy

for some y ∈ I(j−1) and also m ∈ Iw for some w ∈ I(n). But as the Ii, i ∈ N−

are disjoint this implies y = w so that I(n)∩I(j−1) 6= ∅ which is a contradiction.
Finally if m ∈ I(0), then w = 0, but 0 /∈ I(i) for i ≥ 1 by (a).
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Proof of (c): Let m ∈ J and x ∈ Im. Let I(−1) := {0}. Assume that there is a
k ≥ 0 such that x ∈ I(k), this implies that there is y ∈ I(k−1) such that x ∈ Iy.
Then m = y and m ∈ I(k−1) which is a contradiction.

We now can prove a positive answer for M. Émery’s question.

Theorem A.4. Let (ǫn)n≤0 be a sequence of independent {−1, 1}- valued ran-
dom variables such that,

0
∑

n=−∞

min(P[ǫn = 1], P[ǫn = −1]) = ∞. (A.4)

Then there is a predictable process (hn)n≤0 of {−1, 1}-valued random variables,
such that (hnǫn)n≤0 is an i.i.d. sequence of symmetric Bernoulli random vari-
ables.

Proof. Consider the disjoint, infinite subsets (In)n≤0 of N− verifying (A.2).
By Lemma A.1, we may find Borel-functions

fn : {−1, 1}N− → {−1, 1},

such that

hn = fn((ǫi)i∈In
) (A.5)

satisfies

P[hn = 1] = P[hn = −1] =
1

2
.

We claim that these (hn)n≤0 do the job.
For this aim we show that

P[h0ǫ0 = 1|(hnǫn)n≤−1]
a.s.
= P[h0ǫ0 = −1|(hnǫn)n≤−1]

a.s.
= 1/2. (A.6)

To see the dependence structure of the (hn)n∈N−
note that by (A.5) for n ≥ 0

the {−1, 1}N−-valued random variable (hi)i∈I(n) does depend on (ǫi)i∈I(n+1) but
it is independent of (ǫi)i∈I(n) as I(n) ∩ I(n+1) = ∅, by Lemma A.3(b).

The (hi)i∈I0 are an i.i.d. sequence of symmetric Bernoulli random variables
independent of (ǫi)i∈I0 and (ǫi)i∈J hence by Lemma A.2 (b)

law[(ǫi)i∈I0 | (hiǫi)i∈I0 , (ǫi)i∈J ]
a.s.
= law[(ǫi)i∈I0 ]. (A.7)

It follows that

P[h0 = 1 | (hiǫi)i∈I0 , (ǫi)i∈J ]
a.s.
= P[f0((ǫi)i∈I0 ) = 1 | (hiǫi)i∈I0 , (ǫi)i∈J ]

a.s.
= P[f0((ǫi)i∈I0 ) = 1] =

1

2
.

(A.8)

Similarly we get for (hi)i∈I0 = (fi(ǫn, n ∈ Ii))i∈I0 that

law[(hi)i∈I0 | (hiǫi)i∈I(1) , (ǫi)i∈J ] is a.s. i.i.d. symmetric Bernoulli. (A.9)
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Now we claim that

law[h0 | (hiǫi)i∈I0∪I(1) , (ǫi)i∈J ] is a.s. symmetric Bernoulli. (A.10)

Indeed, fix finite index sets K ⊂ I0, L ⊂ I(1), M ⊂ J and signs (xi)i∈K as
well as (yi)i∈L, (zi)i∈M . Then

P[h0 = 1 | (hiǫi)i∈K = (xi)i∈K , (hiǫi)i∈L = (yi)i∈L, (ǫi)i∈M = (zi)i∈M ]

=
P[h0 = 1, (hiǫi)i∈K = (xi)i∈K | (hiǫi)i∈L = (yi)i∈L, (ǫi)i∈M = (zi)i∈M ]

P[(hiǫi)i∈K = (xi)i∈K | (hiǫi)i∈L = (yi)i∈L, (ǫi)i∈M = (zi)i∈M ]
.

For the denominator consider that by (A.9) together with independence of
(ǫi)i∈I0 from (ǫi)i∈I(1)∪I(2)∪J and by Lemma A.2 (a)

P[(hiǫi)i∈K = (xi)i∈K | (hiǫi)i∈L = (yi)i∈L, (ǫi)i∈M = (zi)i∈M ]=2−|K|.

By (A.8) and (A.9) we get for the numerator

P[h0 = 1, (hiǫi)i∈K = (xi)i∈K | (hiǫi)i∈L = (yi)i∈L, (ǫi)i∈M = (zi)i∈M ]

=P[h0 = 1, (hiǫi)i∈K = (xi)i∈K ]=
1

2
2−|K|,

and (A.10) follows as the same conclusion passes to infinite index sets.
Continuing analogously we get by induction that

law[h0 | (hiǫi)i∈
⋃

∞

l=0
I(l) , (ǫi)i∈J ] is a.s. symmetric Bernoulli,

which gives the claim (A.6) since σ(hnǫn, n ≤ −1) is contained in σ(ǫnhn, n ∈
⋃∞

l=0 I(l), ǫn, n ∈ J) by Lemma A.3 (c).
Analogous arguments show that

P[hiǫi = 1 | (hnǫn)n≤i−1]
a.s.
= P[hiǫi = −1 | (hnǫn)n≤i−1]

a.s.
= 1/2,

for any i ≤ −1, which proves the theorem.
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